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Finite triangulations

−→

A triangulation with 2n faces is a set of 2n triangles whose
sides have been glued two by two, in such a way that we
obtain a connected, orientable surface.
The genus g of the triangulation is the number of holes of this
surface (g = 0 on the figure).
Our triangulations are of type I (we may glue two sides of the
same triangle), and rooted (oriented root edge).
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Some combinatorics

Let Tn,g be the set of triangulations of genus g with 2n faces,
and τ(n, g) its size.
Let also τp(n, g) be the number of triangulations of size n and
genus g , where the face on the right of the root has perimeter
p. Can we compute those numbers?
In the planar case, exact formulas [Tutte, 60s]:

τ(n, 0) = 2
4n(3n)!!

(n + 1)!(n + 2)!!
∼

n→+∞

√
6
π

(12
√
3)nn−5/2,

where n!! = n(n − 2)(n − 4).... We also know τp(n, 0)
explicitely.
In general, double recurrence relations [Goulden–Jackson,
2008], but no close formula.
Known asymptotics when n→ +∞ with g fixed, but not when
both n, g → +∞.
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The planar case

Local convergence: two triangulations t and t ′ are close if
there is a large r such that Br (t) = Br (t ′).
Let Tn,g be a uniform triangulation in Tn,g .

Theorem (Angel–Schramm, 2003)

We have the convergence in distribution

Tn,0
(d)−−−−→

n→+∞
T

for the local topology, where T is an infinite triangulation of the
plane called the UIPT (Uniform Infinite Planar Triangulation).

Quick sketch of the proof: if t has size v and perimeter p, then

P (t ⊂ Tn,0) =
τp(n − v , 0)

τ(n, 0)
,

and the limit is given by the results of Tutte.
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A sample of T32400,0
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The UIPT
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The spatial Markov property of T

Let t be a small triangulation with perimeter p and v vertices
in total.

t
(p = 6, v = 9)

⊂

T

Then P (t ⊂ T) = Cp × λvc , where λc = 1
12
√

3
and the Cp are

explicit.
Consequence: conditionally on t ⊂ T, the law of T\t only
depends on p.
Allows to explore T in a Markovian way: peeling explorations
are one of the most important tools in the study of T [Angel
2004...].
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The non-planar case: what is going on?

Euler formula: Tn,g has #E = 3n edges and
#V = n + 2− 2g vertices. In particular g ≤ n

2 .
Hence, the average degree in Tn,g is

2#E

#V
=

6n
n + 2− 2g

≈ 6
1− 2g/n

.

Interesting regime: g
n → θ ∈

(
0, 1

2

)
. The average degree in the

limit is strictly between 6 and +∞.
Th d-regular infinite triangulation is hyperbolic, so we expect a
hyperbolic behaviour.
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The Planar Stochastic Hyperbolic Triangulations

The PSHT (Tλ)0<λ≤λc , where λc = 1
12
√

3
, have been

introduced in [Curien, 2014], following similar works on
half-planar maps [Angel–Ray, 2013].
For every triangulation t with perimeter p and volume v , we
have

P (t ⊂ Tλ) = Cp(λ)λv ,

where the number Cp(λ) are explicit [B. 2016].
Tλc is the UIPT. For λ < λc , they have a hyperbolic
behaviour:

exponential volume growth [Curien, 2014],
transience and positive speed of the simple random walk
[Curien, 2014],
existence of infinite geodesics in many different directions [B.,
2018]...
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A sample of a PSHT
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The local limit of Tn,g

Theorem (B.–Louf, 2019)

Let gn
n → θ ∈

[
0, 1

2

)
. Then we have the convergence

Tn,gn
(d)−−−−→

n→+∞
Tλ(θ)

in distribution for the local topology, where λ(θ) and θ are linked
by an explicit equation.

In particular, if gn = o(n), then the limit is the UIPT.
It may seem surprising that highly non-planar objects become
planar in the limit, but this is already the case in other
contexts (ex: random regular graphs).
The case θ = 1

2 is degenerate (vertices with "infinite degrees").
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Back to combinatorics

Natural idea to prove the theorem: as in the planar case, use
asymptotic results on the number τp(n, gn) of triangulations of
size n with genus gn and a boundary of length p.
Unfortunately, this seems very hard to obtain directly
asymptotics, so new ideas are needed.
On the other hand, our local convergence result gives the limit
value of the ratio τ(n+1,gn)

τ(n,gn) when gn
n → θ, and allows to obtain

asymptotic enumeration results up to sub-exponential factors.

Theorem (B.–Louf, 2019)

When gn
n → θ ∈

[
0, 1

2

]
, we have

τ(n, gn) = n2gn exp (f (θ)n + o(n)) ,

where f (θ) = 2θ log 12θ
e + θ

∫ 1
2θ log

1
λ(θ/t)dt, and λ(θ) is the same

as in the previous theorem.
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Steps of the proof

Tightness result, plus planarity and one-endedness of the
limits.
Any subsequential limit T is weakly Markovian: for any finite
t, the probability P (t ⊂ T ) only depends on the perimeter and
volume of t.
Any weakly Markovian random triangulation of the plane is a
mixture of PSHT (i.e. TΛ for some random Λ).
Ergodicity: Λ is deterministic, characterized by the fact that
the average degree must be 6

1−2θ .
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Tightness: the bounded ratio lemma

The next result is the "minimal combinatorial input" needed to
adapt the Angel–Schramm argument for tightness.

Lemma
Fix ε > 0. There is a constant Cε such that, for every p, n and for
every g ≤

(1
2 − ε

)
n, we have

τp(n, g)

τp(n − 1, g)
≤ Cε.

Proof (without boundary): the average degree is 6n
n+2−2gn ≤

3
ε ,

so there are εn good vertices with degree ≤ 6
ε .

Fix a good vertex v and remember its degree d ≤ 6
ε . Choose

an edge e joining v to another vertex v ′. We will contract e.

Thomas Budzinski High genus triangulations



Proof of the bounded ratio lemma

v v ′
e → →

e’

d = 4

From a triangulation with size n and a good vertex v , we
obtain a triangulation with size n− 1 with a marked (oriented)
edge e ′, and a degree d ≤ 6

ε .
Given d , we can find the other blue edge and reverse the
operation, so the operation is injective.
At least τ(n, g)× εn inputs, and at most τ(n− 1, g)× 6n× 6

ε

outputs, so τ(n,g)
τ(n−1,g) ≤

36
ε2
.
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Tightness

As in [Angel–Schramm, 2003], we first prove that the
degree of the root in Tn,gn is tight.
We explore the neighbours of the root vertex ρ step by step.

t
ρ t+

ρ

We have P (t+ ⊂ Tn,gn |t ⊂ Tn,gn) =
τp(n−v−1,gn)
τp(n−v ,gn) ≥

1
Cε
.

Hence, the number of steps needed to finish the exploration of
the root has exponential tail uniformly in n, so the root degree
is tight.
The root vertex degree is tight and Tn,gn is stationary for the
simple random walk, so the degrees in all the neighbourhood
of the root are tight, which is enough to ensure tightness for
the local topology.
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Planarity and the Goulden–Jackson formula

Let T be a subsequential limit of Tn,gn . If t is finite with
genus 1, then

P (t ⊂ T ) = lim
n→+∞

P (t ⊂ Tn,gn) = lim
n→+∞

τp(n − v , gn − 1)

τ(n, gn)
.

t

Goulden–Jackson formula (algebraic black box):

τ(n, g) =
4

n + 1

(
n(3n − 2)(3n − 4)τ(n − 2, g − 1) +

∑
n1+n2=n−2
g1+g2=g

(3n1 + 2)(3n2 + 2)τ(n1, g1)τ(n2, g2)
)
.

Looking at the first term gives τ(n, g − 1) ≤ c
n2 τ(n + 2, g), so

P (t ⊂ T ) = 0.
One-endedness: similar, but uses the second term in
Goulden–Jackson.
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Weakly Markovian triangulations and mixtures of PSHT

Let T be a subsequential limit of (Tn,gn), and let t be a finite
triangulation with perimeter p and volume v .
Then P (t ⊂ T ) = apv . We say that T is weakly Markovian.
The PSHT are weakly Markovian with apv = Cp(λ)λv , so any
PSHT with a random parameter Λ is weakly Markovian with
apv = E [Cp(Λ)Λv ].

Theorem (B.–Louf, 2019)

Any weakly Markovian random triangulation of the plane is a PSHT
with random parameter.
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Weakly Markovian triangulations: sketch of the proof

The numbers apv are linked by the peeling equations:

apv = ap+1
v+1 + 2

p−1∑
i=0

+∞∑
j=0

τi+1(j , 0)ap−iv+j .

In particular, we can express ap+1
v+1 in terms of constants with

smaller values of p, so everything is determined by (a1
v )v≥1.

For the PSHT, we have a1
v = C1(λ)λv = λv−1, so we are

looking for a variable Λ ∈ (0, λc ] such that

∀v ≥ 1, a1
v = E[Λv−1].
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Weakly Markovian triangulation: sketch of the proof

If we want Λ ∈ [0, 1], this is precisely the Hausdorff moment
problem. It is enough to check that

∀k ≥ 0,∀v ≥ 1, (∆ka1)v ≥ 0,

where ∆ is the discrete derivative operator:

(∆u)n = un − un+1.

The numbers apv are linear functions of the a1
v and are

nonnegative. This proves (∆ka1)v ≥ 0 by doing the right
algebraic manipulations.
If Λ > λc , the sum in the peeling equations does not converge.
If Λ = 0, then T has vertices with infinite degrees, so
Λ ∈ (0, λc ].
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Ergodicity: the two holes argument

We know that any subsequential limit of Tn,gn is of the form
TΛ, where Λ is random and we want Λ deterministic.
In other words, Tn,gn looks like TΛ around the root edge en.
We first prove that Λ does not depend on the choice of en on
Tn,gn , and then that it does not depend on Tn,gn .
Idea: pick two uniform root edges e1

n and e2
n on Tn,gn . The

neighbourhoods of e1
n and e2

n converge to T1
Λ1

and T2
Λ2
.

We consider two pieces around e1
n and e2

n with the same
perimeter and swap them.

e1n

e2n

e2n

e1n
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Ergodicity: the two holes argument

e1n

e2n

e2n

e1n

The triangulation on the right is still uniform, so the
neighbourhoods of e1

n on the right should look like a PSHT.
On the other hand, a gluing of two PSHTs with different
parameters is very different from a PSHT, so we must have
Λ1 = Λ2 a.s..

Thomas Budzinski High genus triangulations



Ergodicity: end of the proof

Since Λ only depends on Tn,gn and not on the root, we can
"group" the triangulations according to the corresponding Λ.
For any Tn,gn , the average root degree over all choices of the
root is 6n

n+2−gn →
6

1−2θ . Hence, conditionally on Λ, the
average root degree in T is 6

1−2θ .
On the other hand, the average degree d(λ) in Tλ can be
explicitely computed, and we must have

6
1− 2θ

= d(Λ).

Since d is monotone, this fixes the value of Λ and we are done.
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Further questions

Robustness of the proof for more general models? Work in
progress, it should work at least for bipartite 2k-angulations.
Models with boundary? With both a high genus and a large
boundary?
Maps decorated with statistical physics models?
Global structure of uniform triangulations with high genus?
Interaction between local and scaling limits?
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THANK YOU !
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