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What is . . . a map?

A planar map is a proper embedding (i.e. no crossing edges) of a finite
connected graph into the sphere S2, viewed up to the orientation-preserving
homeomorphisms of S2.

B planar map
6= planar graph

: faces

6=

To avoid symmetry issues, we consider planar maps with a special corner
(the root). Their edges/vertices/faces can be enumerated deterministically.
external face = face containing the root, perimeter = degree of external face

In the following, we will consider quadrangulations with boundary,
that is, (rooted planar) maps in which all internal faces have degree four.
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What is . . . a map?

Qp := {quadrangulations with boundary of perimeter 2p}

∈ Q12
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Motivations

random maps
→ (discretized) random metric of 2D space-time (Liouville quantum gravity)

random maps + a statistical physics model
→ random metric of space-time coupled to a matter field

 

 

Also:

integrable models

universality

· · ·
and, nice pictures !

Linxiao Chen A positivity bootstrap technique for counting loop-decorated maps 4 / 18



Motivations

random maps
→ (discretized) random metric of 2D space-time (Liouville quantum gravity)
random maps + a statistical physics model
→ random metric of space-time coupled to a matter field

  

Also:

integrable models

universality

· · ·
and, nice pictures !

Linxiao Chen A positivity bootstrap technique for counting loop-decorated maps 4 / 18



Motivations

random maps
→ (discretized) random metric of 2D space-time (Liouville quantum gravity)
random maps + a statistical physics model
→ random metric of space-time coupled to a matter field

  

Also:

integrable models

universality

· · ·
and, nice pictures !

Linxiao Chen A positivity bootstrap technique for counting loop-decorated maps 4 / 18



Definition of model
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O(n) model on quadrangulations

Definition (rigid loop-decorated quadrangulation)

Let q be a quadrangulation with boundary. A loop configuration on q is a set
of disjoint simple closed paths on the dual of q avoiding the external face. It
is rigid if the loops always enter and exit from the opposite sides of a face.

LQp :=
{

(q, `)
∣∣ q ∈ Qp, ` is a rigid loop configuration on q.

}
i.e. gluing of

i.e.

and

 P(12)
g,h,n( · ) =

g8 h38 n9

F12(g, h, n)
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O(n) model on quadrangulations

D := [0,∞)× (0,∞)× (0, 2)

For (g, h, n) ∈ D, let

Fp(g, h, n) :=
∑

(q,`)∈LQp

g# h# n#

A triple (g, h, n) is admissible if Fp(g, h, n) <∞. (This is independent of p).

Definition

Fix p ≥ 1. For each admissible triple (g, h, n) ∈ D, we define a probability
distribution on LQp by

P(p)
g,h,n(q, `) :=

g# h# n#

Fp(g, h, n)
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Results
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Theorem (Borot–Bouttier–Guitter ’12)

Assume that (g, h, n) ∈ D is admissible, then as p→∞,

Fp(g, h, n) ∼ C · γ2pp−a
where C, γ >0 and a ∈ { 32 , 52 , 2−b, 2+b} with b = 1

π arccos(
n
2 ) ∈(0, 12).

D := {(g, h, n, γ) : (g, h, n) ∈ D, 0 < γ ≤ h−1/2}
D̊ := {(g, h, n, γ) ∈ D : γ < h−1/2}

Theorem (Borot–Bouttier–Guitter ’12, C. ’18)

There exist explicit functions h, f and g defined respectively on D, D̊ and D
such that a triple (g, h, n) ∈ D is admissible and . . .

a = 3/2 if and only if h(g, h, n, γ) = 1 and f(g, h, n, γ) > 0 for some γ.

a = 5/2 if and only if h(g, h, n, γ) = 1 and f(g, h, n, γ) = 0 for some γ.

a = 2− b if and only if h(g, h, n, h−
1
2 ) = 1 and g(g, h, n) > 0.

a = 2 + b if and only if h(g, h, n, h−
1
2 ) = 1 and g(g, h, n) = 0.

Moreover, the four cases are all non-empty.
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Phase diagram

Theorem (Borot–Bouttier–Guitter ’12)

Assume that (g, h, n) ∈ D is admissible, then as p→∞,

Fp(g, h, n) ∼ C · γ2pp−a
where C, γ >0 and a ∈ { 32 , 52 , 2−b, 2+b} with b = 1

π arccos(
n
2 ) ∈(0, 12).

h

g1
12

dense
dilute

generic
criticalsubcritical

“UIPQ”

“fully packed”
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γ
{h = 1} ∩ {f ≥ 0 or g ≥ 0}
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Wg,h,n(x) := 1 +
∑∞

k=1 Fk(g, h, n)x−2k (x ∈ Sγ)

ρ...(x) :=
W...(γx − i0)−W...(γx + i0)

2πi x
(x ∈ [−1, 1])

γx+ i0

γx− i0 γ−γ

Sγ=C \ [−γ, γ]

Proposition (Borot–Bouttier–Guitter ’12) (Equation of resolvent)

• If (g, h, n) ∈ D is admissible, then there exists γ ∈ (0, h−1/2] such that the
function W(x) ≡ Wg,h,n(x) satisfies{
W is an even holomorphic function on Sγ such that for all x ∈ (−γ, γ),

W(x − i0) +W(x + i0) + nW((hx)−1) = n+ x2 − gx4 . (∗)

Moreover, ρg,h,n is a non-negative continuous even function on [−1, 1].
• For any (g, h, n) ∈ D and γ ∈ (0, h−1/2], (∗) has a unique solution W(γ)

g,h,n.

Additional observations: Wg,h,n(∞) = 1.

∀p, Fp(g, h, n) = γ2p
∫ 1
−1 x

2pρg,h,n(x)dx, so ρg,h,n ≥ 0 ⇒ Fp(g, h, n)≥0.

Questions:
How to show that a tripe (g, h, n) is admissible ?

How to characterize the γ in the combinatorial solution ?
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(g, h, n) ∈ D, γ ∈ (0, h−1/2].

Proposition (analytic condition of admissibility.)

If W(γ)
g,h,n(∞)= 1 and ρ(γ)g,h,n≥0, then (g,h,n) is admissible and W(γ)

g,h,n=Wg,h,n

Proposition (positivity bootstrap)

ρ
(γ)
g,h,n(x) ≥ 0 for all x ∈ [−1, 1] if and only if ρ(γ)g,h,n(x) ≥ 0 for all x close to 1.

More precisely,

When γ < h−1/2, ρ(γ)g,h,n(x) = f(g, h, n, γ) · (1− x2)1/2 + O((1− x)3/2),
and ρ(γ)g,h,n(x) ≥ 0 for all x ∈ [−1, 1] if and only if f(g, h, n, γ) ≥ 0.

When γ = h−1/2, ρ(γ)g,h,n(x) = g(g, h, n) · (1− x2)1−b + O((1− x)1+b),
and ρ(γ)g,h,n(x) ≥ 0 for all x ∈ [−1, 1] if and only if g(g, h, n) ≥ 0.
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Idea of Proof
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Background: the gasket decomposition

(q, `) ∈ LQp

gasket−−−→

G(q, `) ∈Mp
The gasket decomposition consists of:

A mapping G : LQp →Mp := {bipartite maps of perimeter 2p}.
For each m ∈Mp, a bijection

G−1(m)↔ LQp1 × LQp2 × · · · × (LQ2 ∪ { })× · · ·
where 2p1, 2p2, . . . are the degrees of the faces of m.

Consequences

Fixed point equation{
Fp(g, h, n) = Bp(g1, g2, . . .)

gk = gδk,2 + n h2k Fk(g, h, n)

where Bp(g1, g2, . . .) =
∑

m∈Mp

(∏
f
g 1
2 deg f

)

Recursive sampling algorithm
of an O(n)-quadrangulation

 Sample a bipartite map m with
Boltzmann weights (g1, g2, . . .)

 Fill each face with a “necklace”
+ an O(n)-quadrangulation

 Repeat
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Background: enumeration of bipartite maps

Lemma (well-known results in disguise)

A sequence of weights (g1, g2, . . .) is admissible (i.e. Bk(g1, g2, . . .) <∞, ∀k)
if and only if there exists γ > 0 such that the (unique) solution of the system{
W is an even holomorphic function on Sγ such that for all x ∈ (−γ, γ),

W(x − i0) +W(x + i0) = x2 −∑∞k=1 gkx
2k .

satisfies W(∞) = 1 and limx→1−
ρ(x)√
1−x2 ≥ 0.

In this case, W(x) = 1 +
∑∞

k=1 Bk(g1, g2, . . .)x
−2k , and ρ is non-negative and

continuous on [−1, 1].

Assume that (g, h, n) is admissible, then:
The fixed point equation gk = gδk,2 + n h2k Bp(g1, g2, . . .)
⇒ ∑∞

k=1 gkx
2k = gx4 + n(W((hx)−1)− 1) and γ ≤ h−1/2.

⇒ The equation of the resolvent for Wg,h,n.
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Admissibility condition

Inversely, fix some (g, h, n) and assume that the equation of resolvent has a

solution such that W(γ)
g,h,n(∞) = 1 and ρ(γ)g,h,n(x) ≥ 0 for all x ∈ [−1, 1].

⇒ (g1, g2, . . .) is admissible.

 Is (g, h, n) admissible ? Yes: use the recursive algorithm from the gasket
decomposition to sample an O(n)-quadrangulation of parameters (g, h, n).

Proposition (Budd ’18+)

For any admissible weight sequence (gk)k≥1
such that gk = gδk,2 + nh2kBp(g1, g2, . . .)
for some g, h, n ≥ 0, the sampling
algorithm almost surely stops.

(The number of vertices discovered by the
sampling algorithm is bounded from above
by some explicit super-martingale.)
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Positivity bootstrap

Lemma (Integral equation for the spectral density)

Let τ = γ2h ∈ [0, 1], then for all x ∈ [−1, 1],

−
2π ρ(γ)g,h,n(x)√

1− x2
= −γ2 + gγ4(x2 + 1/2) + n

∫ 1

−1

τ 2y2

1− τ 2x2y2
ρ
(γ)
g,h,n(y) dy√
1− τ 2y2

,

Consequences:

x 7→ ρ
(γ)
g,h,n/

√
1− x2 extends to an analytic function on [−τ−2, τ−2].

In particular, if τ < 1, then f(g, h, n, γ) := lim
x→1−

ρ
(γ)
0,h,n(x)/

√
1− x2 exists.

(x; g, h, n, γ) 7→ ρ
(γ)
g,h,n/

√
1− x2 is continuous on this extended domain.

ρ
(γ)
g,h,n ≥ 0 on [−1, 1], then ρ(γ)g,h,n > 0 on (−1, 1).

Claim: For all h > 0, n ∈ (0, 2), γ ∈ (0, h−1/2), we have f(0, h, n, γ) > 0.

⇒ The set
{

(g, h, n, γ) : f(g, h, n, γ) ≥ 0
}
is connected.
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Thank you for your attention !
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