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1 Introduction and main results

Consider a complex polynomial H(x, y) of degree n + 1 ≥ 2 in two variables. We
assume it generic, see the next Definition, and for each t denote

St = {H = t} ⊂ C2.

Then for any noncritical value t the homology group H1(St, Z) is isomorphic to Zµ,
µ = n2 (see [1]). Let δ1(t), . . . , δµ(t) be its generators.
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Fix a set of µ complex polynomial 1- forms

Ω = (ω1, . . . , ωµ), ωi = Pi(x, y)dx + Qi(x, y)dy.

The period matrix associated to the polynomial H and the form set Ω is the (mul-
tivalued) matrix function

I(t) = (Iij(t)), Iij(t) =

∫

δj(t)

ωi. (1.1)

Its determinant is called the period determinant:

∆(t) = ∆H,Ω(t) = det I(t). (1.2)

1.1 Remark The definition of the period determinant does not depend (up to sign)
on the choice of the homology bases in the level curves, since the transition between
two different bases is given by a matrix with determinant ±1.

1.2 Remark The functions Iij(t) are holomorphic multivalued with branching points
at the critical values of H . At the same time, as it will be shown, the period determinant
is a single-valued function, and even polynomial.

In the present paper we give an explicit formula (see (1.18)) for the period determi-
nant through the coefficients of the polynomial and the forms, provided that the latter
forms are homogeneous and of appropriate degrees, see (1.4) below.

A lower bound of the period determinant was used in [7] (joint paper with
Yu.S.Ilyashenko), where we have obtained an explicit upper bound of the number of
zeros for a wide class of Abelian integrals. This lower bound is proved in a separate
author’s paper [6] by using formula (1.18).

1.3 Definition We say that a homogeneous polynomial is generic, if has only simple
zero lines. A (not necessarily homogeneous) polynomial H is said to be generic, if so
is its highest homogeneous part.

First we give (in the next Subsection) an explicit formula for ∆(t) defined by arbi-
trary generic polynomial H and the following special form set. Namely, let (l(i), m(i)),
i = 1, . . . , µ = n2 be the lexicographic ordered set of integer pairs (l, m), 0 ≤ l, m ≤
n − 1. Put

ei(x, y) = xl(i)ym(i), ωi = yei(x, y)dx, d(i) = l(i) + m(i). (1.3)

Afterwards, in Subsection 1.2 we extend the above-mentioned formula for ∆(t) to
the case of arbitrary form set of the type

Ω = (ω1, . . . , ωn2), ωi are homogeneous of degrees d(i) + 1. (1.4)

The proof of the extended formula takes the rest of the paper.
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1.1 Formula for the period determinant: case of special form
set (1.3)

Let H(x, y) be a generic polynomial of degree n+1 ≥ 2, h be its highest homogeneous
part. Let ai, i = 1, . . . , n2, be the critical values of H . Let ei, ωi be the monomials and
the forms from (1.3), ∆(t) be the corresponding determinant (1.2).

As it will be shown below,

∆(t) = C(h)
n2∏

i=1

(t − ai), C(h) depends only on h so that : (1.5)

- C(h) is a meromorphic function on the double cover over the space of generic homo-
geneous polynomials h with branching at the ”discriminant” hypersurface of the non-
generic polynomials (this hypersurface, which consists of the polynomials with multiple
zero lines, will be denoted by S),

- C(h) tends to infinity, as the discriminant of h tends to zero,
- C(h) = 0 if and only if

there exists a d = n, . . . , 2n − 2 such that a nontrivial linear combination
∑

d(i)=d

ciei

(1.6)
belongs to the gradient ideal of h, which is generated by its partial derivatives.

In particular, this implies the following

1.4 Corollary Let H(x, y) be a polynomial with the highest homogeneous part
h(x, y) = xn+1 + yn+1. Then the corresponding constant C(h) from (1.5) does not
vanish.

The Corollary follows from the statement that the monomials ei form a basis in the
quotient ring of all the polynomials in two variables modulo the gradient ideal of the
polynomial xn+1 + yn+1.

To state the formula for C(h), let us recall the definition of the discriminant Σ(h) of
a homogeneous polynomial h, which vanishes on the nongeneric polynomials. Consider
the decomposition

h(x, y) = h0

n∏

i=0

(y − cix)

of h into a product of linear factors. Put

Σ(h) = h2n
0

∏

0≤j<i≤n

(ci − cj)
2. (1.7)

1.5 Remark The discriminant Σ(h) is a degree 2n homogeneous irreducible polyno-
mial in the coefficients of h:

h(x, y) =
n+1∑

i=0

hix
iyn+1−i. (1.8)
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1.6 Theorem Let n ≥ 1. There exists a homogeneous polynomial P (h) of degree
n(n − 1) in the coefficients (1.8) of the homogeneous polynomial h that satisfies the
following statements.

1) For a generic h P (h) = 0, if and only if condition (1.6) holds.
2) Let H, h, ai, ωi, ∆(t) be as at the beginning of the Subsection.
Then formula (1.5) holds with

C(h) = Cn(Σ(h))
1
2−nP (h), Cn ∈ C depends only on n. (1.9)

The Theorem is proved at the end of 1.2. The formulas for the corresponding
polynomial P (h) and the constant Cn are given below.

The polynomial P (h) from the Theorem is the product

P (h) =
2n−2∏

d=n

Pd(h), (1.10)

where Pd(h) are the polynomials defined as follows.

1.7 Definition Let n ≥ 1, d ∈ {n, . . . , 2n − 2}, h be a homogeneous polynomial of
degree n + 1. Consider the following ordered 2(d − n + 1) polynomials of degree d:
xlyd−n−l ∂h

∂y (l = 0, . . . , d − n), xlyd−n−l ∂h
∂x (l are the same). Let Ad(h) be the matrix

whose columns are numerated by the monomials of degree d distinct from all the e′i s
(with d(i) = d); the lines are numerated by the previous 2(d− n + 1) polynomials and
consists of their corresponding coefficients. (In the case, when d = n, all the monomials
of degree d are ei except for xn and yn (see Fig.1 in the case, when n = d = 3: the
monomials ei of degree 3 are xy2 and x2y), so, we take the coefficients at xn and yn

only.) Put
Pd(h) = det Ad(h) if n ≥ 2, Pd(h) ≡ 1 if n = 1. (1.11)

1.8 Remark The previous matrix Ad(h) is square of the size 2(d−n+1): the number
of the monomials of degree d distinct from ei is equal to 2(d − n + 1). Therefore, the
polynomials Pd(h) are well-defined. Let P (h) be their product (1.10). As it will be
shown in 2.1 (Proposition 2.4), for generic h, P (h) = 0 if and only if condition (1.6)
holds.

1.9 Example Let us calculate the polynomial P (h) in the case, when h is a general
homogeneous cubic polynomial:

h(x, y) = a0x
3 + a1x

2y + a2xy2 + a3y
3. Then n = 2.

The corresponding set of the values of d from the previous Definition consists of the
unique value d = 2, since n = 2n − 2 = 2. The corresponding matrix A2(h) is the
2×2- matrix whose lines consist of the coefficients of the partial derivatives of h at the
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monomials x2 and y2 (these are the only quadratic monomials distinct from the ei’s,
see the same Definition). Hence,

A2(h) =

(
3a0 a2

a1 3a3

)
, thus, P2(h) = P (h) = 9a0a3 − a1a2. (1.12)

The latter equality P2(h) = P (h) holds true since there are no other values d (= 2 for
which the matrices Ad are well defined.

1.10 Theorem Let Pd(h) be the polynomials defined by (1.11), P (h) be their product
(1.10). Then (1.9) holds for

Cn = (−1)
n(3n−1)

4
(2π)

n(n+1)
2 (n + 1)

n2+n−4
2 ((n + 1)!)n

∏n−1
m=1(m + n + 1)!

. (1.13)

Theorem 1.10 is proved in Section 3.
Theorem 1.6 will follow from its generalization (Theorem 1.17 stated in 1.2), which

deals with a generalized form set (1.4). Extending the form set has also the following
independent motivation. A direct proof of Theorem 1.6 is done via the study of the
divisor of C(h). The first step is to prove that the divisor of zeros is exactly the zero
locus of P (h).

This divisor is simple. To prove that we need to generalize the problem and to
extend the set of forms ωi used in the definition of the period determinant.

In this way we get that C(h) = S̃P (h), where S̃ is a “polar” term. It appears that
S̃ = ∞ if and only if Σ = 0. Hence, S̃ = CnΣs for some negative s. The homogeneity
arguments imply that s = 1

2 − n. Thus, Theorem 1.6 holds.
In order to find the factor Cn, and to prove Theorem 1.10, it is sufficient to find the

period determinant for some specific h, as well as Σ(h) and P (h) via a straightforward
calculation. This is done for h(x, y) = xn+1 + yn+1 in Section 3.
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1.11 Example Let us check the statement of Theorem 1.10 in the simplest case, when
n = 1, h(x, y) = H(x, y) = x2 + y2. Then

∆(t) =

∫

x2+y2=t

ydx = πt.

On the other hand, Theorem 1.6 claims that

∆(t) = C(h)t, C(h) = C1Σ
sP (h), s =

1

2
− n = −1

2
.

For our H(x, y) = (x − iy)(x + iy) one has

Σ = (2i)2 = −4, Σ− 1
2 = ±(2i)−1,

P (h) =
∏2n−2

d=n Pd(h) = 1, since Pd ≡ 1, see (1.11). Therefore, C1 = ±∆(t)2i/t = ±2πi.
The substitution of n = 1 to (1.13) gives the same result up to sign (the sign of the

first factor (−1)
n(3n−1)

4 = (−1)
1
2 = ±i in (1.13) is not uniquely defined). This deduces

Theorem 1.10 from Theorem 1.6 for n = 1.

1.12 Example Let us calculate the period determinant in the simplest nontrivial case
of a general cubic polynomial:

h(x, y) = a0x
3 + a1x

2y + a2xy2 + a3y
3, n = 2. (1.14)

To do this, we calculate the terms in formula (1.9) for C(h). The polynomial P (h)
was already calculated in (1.12). The formula for the discriminant Σ(h) is given in [10]
(page 141, exercise 11):

Σ(h) = a2
1a

2
2 − 4a0a

3
2 − 4a3

1a3 − 27a2
0a

2
3 + 18a0a1a2a3.

Let us calculate the constant Cn = C2. By (1.13), one has

C2 = (−1)
1
2
(2π)33

22+2−4
2 (3!)2

4!
= ±i

(2π)3 × 3 × 36

24
= ±36π3i.

Substituting the two latter formulas and (1.12) to (1.9) yields

C(h) = ±36π3i(a2
1a

2
2 − 4a0a

3
2 − 4a3

1a3 − 27a2
0a

2
3 + 18a0a1a2a3)

− 3
2 (9a0a3 − a1a2).

Thus, for any cubic polynomial with highest homogeneous part (1.14) and critical
values a1, . . . , a4 one has

∆(t) = C(h)
4∏

j=1

(t − aj), C(h) is as above.
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1.2 Formula for the period determinant: general case.

Everywhere below in the present Subsection we consider that ωi are arbitrary 1- forms
of the type (1.4). Let H(x, y) be a generic polynomial of degree n + 1 ≥ 2, h be its
highest homogeneous part. Let ai, i = 1, . . . , n2, be the critical values of H . Let ∆(t)
be the corresponding period determinant (1.2).

We state and prove a generalization of formulas (1.5), (1.9) for ∆(t) given by The-
orem 1.6 to the case of arbitrary forms ωi as in (1.4). The generalized formulas (1.5),
(1.9) coincide with their previous versions, but now the constant C(h) = C(h,Ω) from
(1.5) depends on Ω, and the polynomial P (h) in (1.9) should be replaced by its appro-
priate extension up to a polynomial P (h,Ω) with variable Ω. To define the extension
of P , let us introduce some notations.

For a polynomial 1- form ω by Dω denote the polynomial defined by the equality

dω = Dωdy ∧ dx. (1.15)

1.13 Example Let ej, m(j), ωj be as in (1.3). Then

Dωj = (m(j) + 1)ej. (1.16)

1.14 Definition Let h be a generic homogeneous polynomial of degree n + 1, D be
the operator defined by (1.15). A set Ω of forms (1.4) is said to be h- degenerate,
if either the polynomials (Dωi)d(i)<n are linearly dependent, or condition (1.6) holds
with ei replaced by Dωi, for some d, n ≤ d ≤ 2n − 2. Otherwise Ω is said to be h-
nondegenerate.

The extended polynomial P (h,Ω) we are looking for is constructed as follows. As
it will be shown in 2.1 (Proposition 2.4), it vanishes, if and only if Ω is h- degenerate.

1.15 Definition Let n ≥ 2, d ∈ N, 0 ≤ d ≤ 2n − 2, h be a homogeneous polynomial
of degree n + 1. Let Ω(d) = (ω′

1, . . . , ω
′
s) be an ordered tuple of homogeneous 1- forms

of degree d + 1, the number s of the forms being equal to s = d + 1 in the case, when
d ≤ n − 1, and s = 2n − d − 1 otherwise. The matrix Ad(h,Ω(d)) associated to the
form tuple Ω(d) is the (d + 1) × (d + 1) matrix whose columns are numerated by all
the monomials yd, yd−1x, . . . , xd of degree d and the lines consist of the corresponding
coefficients of the following polynomials:

Case d ≤ n − 1. Take the d + 1 polynomials Dω′
r

d−r+2 .

Case d ≥ n. Take the d−n+1 polynomials xjyd−n−j ∂h
∂y , 0 ≤ j ≤ d−n; the 2n−d−1

polynomials Dω′
r

n−r+1 ; the d − n + 1 polynomials xjyd−n−j ∂h
∂x , 0 ≤ j ≤ d − n.

Let Ω be as in (1.4), n ≤ d ≤ 2n− 2, Ω(d) be the tuple of the forms in Ω of degree
d + 1 (numerated in the same order, as in Ω). The number s of forms in Ω(d) is equal
to 2d−n−1. Indeed, by definition, it is equal to the number of monomials ei of degree
d; the latter number is equal to 2d − n − 1 by Remark 1.8. Put

Ad(h,Ω) = Ad(h,Ω(d)), Pd(h,Ω) = det Ad(h,Ω), P (h,Ω) =
2n−2∏

d=0

Pd(h,Ω). (1.17)
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1.16 Proposition Let Ω = (ω1, . . . , ωn2), ωi be the same, as in (1.3). Let Ad(h),
Ad(h,Ω) be the matrix functions from Definition 1.7 and (1.17) respectively, Pd(h),
Pd(h,Ω) be their determinants. Then for any d < n Pd(h,Ω) ≡ 1. For any d ≥ n
Pd(h,Ω) = Pd(h) (thus, P (h) = P (h,Ω)).

Proof Let us prove the statement of the Proposition for d < n. Then the matrix
Ad(h,Ω) is unit. Indeed, by definition, its lines consist of the coefficients of the mono-
mials Dωi

m(i)+1 = ei, d(i) = d, see (1.16). The columns are numerated by all the monomials

of degree d. The latters coincide with ei and are ordered lexicographically, so, Ad(h,Ω)
is unit. Hence, Pd(h.Ω) ≡ 1. Now let us prove the statement of the Proposition in the
case, when d ≥ n. In this case the matrix Ad(h) is obtained from the matrix Ad(h,Ω)
by deleting its central 2n−d−1 lines (which consist of the coefficients of the monomials
ei) and the central 2n−d−1 columns, which are numerated by ei. The matrix formed
by the deleted lines and columns is identity: its lines correspond to the monomials

Dωi
m(i)+1 = ei, as before. The elements of the deleted lines outside the deleted columns

are zeros. Therefore, Pd(h,Ω) = det Ad(h) = Pd(h). Proposition 1.16 is proved. !

1.17 Theorem Let ωi, Ω = (ω1, . . . , ωn2), H, h, ai, ∆(t) be as at the beginning of the
Subsection, P (h,Ω) be as in (1.17). Then

∆(t) = C(h,Ω)
n2∏

i=1

(t − ai), (1.18)

C(h,Ω) = Cn(Σ(h))
1
2−nP (h,Ω), Cn is the same, as in (1.13). (1.19)

Theorem 1.17 is proved in Section 2 (modulo the calculation of the constant Cn) The
latter constant will be calculated in Section 3. Together with the previous Proposition,
Theorem 1.17 implies Theorem 1.6.

1.18 Definition [5]. Let w = (w1, w2) ∈ N2, d ∈ N, w1, w2 ≤ d
2 . A polynomial P (x, y)

is said to be weighted homogeneous of type w and weighted degree d, if

P (τw1x, τw2y) = τdP (x, y) for any τ, x, y ∈ C.

A polynomial H is said to be semiweighted homogeneous of type w and weighted degree
d, if

H =
d∑

i=0

Hi, Hi are weighted homogeneous of type w and degrees i,

and the highest weighted homogeneous part Hd has an isolated critical point at 0.

1.19 Remark As it was shown in [5], formula (1.18) holds true (with a certain (un-
known) constant C(h,Ω)), if the polynomial H under consideration is semiweighted
homogeneous, and Ω is a collection of monomial 1- forms of appropriate weighted ho-
mogeneous degrees. The corresponding constant C(h,Ω) is nonzero, if no nontrivial
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linear combination of the monomials Dωj belongs to the gradient ideal of the highest
weighted homogeneous part of H . The converse is also true (see Lemma 2.3 below:
its statement and proof extend (with minor modifications) to the case, when H is a
semiweighted homogeneous polynomial).

Question. Find an explicit formula for the period determinant in the case, when
H is a semiweighted homogeneous polynomial. In other words, find an explicit formula
for the constant C(h,Ω) from (1.18) in the case, when h is a weighted homogeneous
polynomial with isolated critical point at 0.

The author thinks that the method of calculation of C(h,Ω) presented below can
be extended to the above-mentioned weighted homogeneous case.

1.3 Historical remarks

An explicit formula for the period determinant up to a constant factor depending on
n was obtained by A.N.Varchenko [14]. In the present paper the constant factor is
calculated.

2 Proof of formula for the period determinant up
to constant Cn

Here we prove the formula from Theorem 1.17 for the period determinant, without
calculation of the constant Cn.

2.1 The plan of the proof of Theorem 1.17

2.1 Definition A generic complex polynomial H is said to be ultra-Morse, if it has
distinct critical values (then their number is equal to µ = n2, n = degH − 1).

It suffices to prove Theorem 1.17 for any ultra-Morse polynomial H (passing to a
non ultra-Morse limit while the highest form h remains unchanged does not change
the right-hand side of (1.18)). Everywhere below we consider that H is ultra-Morse
(whenever the contrary is not specified). We denote

H1(t) = H1(St, Z), B = C \ {a1, . . . , an2}.

We consider the period determinant as defined for a special basis in H1(t) called
marked basis of vanishing cycles, see [1] (whenever the contrary is not specified). The
definitions and some basic properties of vanishing cycles are recalled in 2.2.

Given a noncritical value t ∈ C and a loop γ : [0, 1] → B with a base point
t = γ(0) = γ(1). Any cycle δ ∈ H1(t) extends continuously along γ up to a family
of cycles δ(τ) ∈ H1(γ(τ)), τ ∈ [0, 1]. The result δ(1) ∈ H1(t) of extension is different
from δ = δ(0) in general. The mapping Mγ : H1(t) → H1(t) sending δ to δ(1) (which
is a linear operator) is called the monodromy operator along γ.
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2.2 Proposition [5] Let H be an ultra-Morse polynomial of degree n + 1 ≥ 2, ωi,
i = 1, . . . , µ = n2 be arbitrary polynomial 1- forms, ∆(t) be the corresponding period
determinant (1.2). The function ∆(t) is always polynomial.

Proof The Picard-Lefschetz theorem [1] implies that the monodromy operator along a
circuit around one critical value is always unipotent. Hence, the function ∆(t) does not
change after the extension along the previous circuit. This implies that it is a single-
valued function. It follows from definition that it is bounded in the neighborhood of
the critical values. Hence, it is an entire function C → C (singularity erasing theorem).
Simple estimates whose improved version is checked in 2.4 imply that ∆ has at most
polynomial growth at infinity. Hence, ∆(t) is a polynomial (its degree is calculated at
the same place). !

On the first step of the proof we prove formula (1.18) with a C(h,Ω) depending
only on h and Ω (Lemma 2.3) and we show (in Proposition 2.4 and Lemma 2.3) that
for any fixed generic h the functions C(h,Ω) and P (h,Ω) have the same zeros: they
vanish exactly on those pairs (h,Ω) where Ω is h- degenerate. On the second step we
show that

C(h,Ω) = Cn(Σ(h))sP (h,Ω) with some s ∈ R, Cn ∈ C. (2.1)

To do this, we prove that for any fixed generic h the functions P (h,Ω) and C(h,Ω) in Ω
have simple zero at the hypersurface of h- degenerate tuples Ω (Lemma 2.5). After this
the power s will be found by straightforward calculation of the homogeneity degrees in
h of C and P (at the end of the present Subsection).

2.3 Lemma Let H(x, y) be an ultra-Morse polynomial of degree n + 1 ≥ 2, h be its
highest homogeneous part. Let ai, i = 1, . . . , n2, be the critical values of H. Let Ω
be as in (1.4), ∆(t) be the corresponding period determinant (1.2). Let Dωj be the
polynomials from (1.15) corresponding to the forms ωj. Then formula (1.18) holds
with C(h,Ω) depending only on h and Ω such that C(h,Ω) = 0, if and only if Ω is h-
degenerate (see Definition 1.14).

Lemma 2.3 is proved in 2.2-2.3. The statements of the Lemma saying that ∆(t)
is a polynomial (1.18) and h- nondegeneracy implies C(h,Ω) (= 0) were proved in [5].
Elementary proofs of (1.18) and of the latter implication were obtained separately by
Yu.S.Ilyashenko (his proof is represented in 2.4) and D.Novikov [12].

The theorem on determinant [1] implies that ∆ is a polynomial nonzero for ”typical”
H and Ω. It does not specify concrete H and Ω with this property. Lemma 2.3 provides
this specification.

In the proof of Lemma 2.3 we use a criterium (due to Yu.S.Ilyashenko [8, 9] and
L.Gavrilov [5]) for identical vanishing of an Abelian integral over vanishing cycle (The-
orem 2.14 and Corollary 2.16). We represent the statement and the proof of this
criterium in 2.3.
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2.4 Proposition Let n ≥ 2, h be a generic homogeneous polynomial of degree n + 1
(see Definition 1.3), P (h,Ω) be the polynomial defined by (1.17). Then P (h,Ω) = 0,
if and only if Ω is h- degenerate.

Proof If Ω is h- degenerate, then there is a d such that a nontrivial linear combination∑
d(i)=d ciDωi either vanishes, or belongs to the gradient ideal. Then this combination

(which is homogeneous of degree d) is equal to a linear combination of the partial
derivatives of h with (may be zero) homogeneous polynomial coefficients of degree d−n.
This statement is equivalent to vanishing of the polynomial Pd(h,Ω) = det Ad(h,Ω)
by definition, so, P (h,Ω) = 0. Conversely, let h be generic and P (h,Ω) = 0. Let us
prove that Ω is h- degenerate. There exists a d such that Pd(h,Ω) = 0 (fix such a
d). By definition, this means that a nontrivial linear combination of the lines of the
matrix Ad(h,Ω) (or equivalently, that of the corresponding polynomials) is zero. In
the case, when d < n, these lines are nonzero-proportional to the coefficients strings
of the polynomials Dωi, d(i) = d, thus, the latters are linearly dependent and Ω is h-
degenerate. Let d ≥ n. Let us show that there exists a nontrivial linear combination
of Dωi, d(i) = d, that belongs to the gradient ideal. In this case the lines of Ad(h,Ω),
which are linearly dependent, are nonzero-proportional to the coefficients strings of the
polynomials Dωi, and xlyd−n−l ∂h

∂y , xlyd−n−l ∂h
∂x , l = 0, . . . , d − n, so, a nontrivial linear

combination of these polynomials vanishes. The last 2(d−n+1) multiples of the partial
derivatives are linearly independent, which follows from the statement that the partial
derivatives of a generic homogeneous polynomial h are relatively prime. Therefore, a
vanishing nontrivial linear combination of them and the polynomials Dωi contains a
nontrivial linear combination of Dωi. The latter linear combination is a one we are
looking for. Proposition 2.4 is proved. !

Thus, the functions P (h,Ω) and C(h,Ω) have common zero set outside the discrim-
inant hypersurface S = {Σ(h) = 0}: this set is the hypersurface of pairs (h,Ω) such
that Ω is h- degenerate.

As it is shown below, equality (2.1) is implied by the following

2.5 Lemma For any fixed generic homogeneous polynomial h of degree n + 1 ≥ 2 the
functions P (h,Ω), C(h,Ω) have nonzero gradients in Ω on a Zariski open subset of the
set of h- degenerate tuples Ω.

The Lemma is proved in 2.4. The function C(h,Ω) is (at most) double-valued
(its different branches are obtained from each other by multiplication by ±1). This
follows from Remark 1.1. The previous Lemma implies that each one of the functions
C(h,Ω), P (h,Ω) has simple zero at each irreducible component of their common zero
hypersurface outside S. Hence, the ratio C(h,Ω)

P (h,Ω) is a nowhere vanishing (at most) double-
valued function holomorphic outside the hypersurface S. It has at most a polynomial
growth, as (h,Ω) tends to S or to infinity by definition and a theorem of P.Deligne ([2],
theorem III.1.8). Recall that the polynomial Σ(h) is irreducible. Hence, the previous
ratio is a power s of Σ(h) up to multiplication by constant. This proves (2.1). To find
s, we use the following
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2.6 Proposition The function C(h,Ω) is homogeneous in h of the degree −n2.

Proof Let b ∈ C \ 0. Let us compare C(h,Ω) and C(bh,Ω). By definition, for any
t ∈ C the value at t of the function ∆(t) corresponding to a polynomial H = h is equal
to the value at bt of that corresponding to bh, i.e., ∆(t) = C(h,Ω)tn

2
= C(bh,Ω)(bt)n2

.
Therefore, C(bh,Ω) = b−n2

C(h,Ω). This proves Proposition 2.6. !

By definition, a polynomial Pd(h,Ω) is independent on h for d < n and is homoge-
neous in h of degree 2(d−n+1) for d ≥ n. Therefore, the polynomial P is homogeneous
in h of degree n(n − 1). Recall that degΣ(h) = 2n. Therefore, by Proposition 2.6, the
power s in (2.1) is equal to 1

2n(−n2 − n2 + n) = 1
2 − n. This proves (1.19) modulo the

calculation of the constant Cn, which will be done in Section 3.

2.2 Marked basis of vanishing cycles

All the definitions and the statements of the present Subsection are contained in [1].
Firstly we recall the definition of a local vanishing cycle.

2.7 Lemma (Morse lemma). A holomorphic function having a Morse critical point
may be transformed to a sum of a nondegenerate quadratic form and a constant term
by an analytic change of coordinates near this point.

2.8 Corollary Consider a holomorphic function in C2 having a Morse critical point
with a critical value a. There exists a ball centered at the critical point whose intersection
with each level curve corresponding to a value close to a of the function is diffeomorphic
to an annulus.

2.9 Definition A generator of the first homology group of the latter intersection an-
nulus (considered as a cycle in the homology of the global level curve) is called a local
vanishing cycle corresponding to a.

A local vanishing cycle is well defined up to change of orientation.

2.10 Definition Let H be an ultra-Morse polynomial of degree n + 1 ≥ 2, aj , j =
1, . . . , n2, be its critical values, a be one of them. Let t0 ∈ B = C \ {a1, . . . , an2},
α : [0, 1] → C be a path from t0 to a such that

α[0, 1) ⊂ B. (2.2)

For any s ∈ [0, 1] close to 1 let δ(t), t = α(s), be a local vanishing cycle on St

corresponding to a. Consider the extension of δ along the path α up to a continuous
family of cycles δ(s) in complex level curves H = α(s). The homology class δ = δ(0) ∈
H1(t0) is called a cycle vanishing along α.

2.11 Definition Let H , aj , t0 be as in the previous Definition. Consider a set of
paths αj , j = 1, . . . , µ, from t0 to aj that satisfy (2.2). Suppose these paths are
neither pairwise nor self intersected. Then the set of cycles δj ∈ H1(t0) vanishing along
αj , j = 1. . . . , µ, is called a marked set of vanishing cycles on the level curve H = t0.
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2.12 Lemma Any marked set of vanishing cycles is a basis in the first integer homol-
ogy group of the level curve.

2.13 Lemma The images of any vanishing cycle under monodromy operators along
all the loops generate the previous homology group.

2.3 A vanishing criterium for Abelian integral

Denote Ω0 the space of polynomials in two complex variables (x, y). By Ω1 denote the
space of polynomial 1- forms. By Ω1

n ⊂ Ω1 denote the subspace of forms of degrees at
most n.

Let H(x, y) be a complex polynomial. Define

KH = dΩ0 + Ω0dH = {df + gdH |f, g ∈ Ω0}.

In the proof of Lemma 2.3 we use the following

2.14 Theorem [5, 8, 9] Let H be an arbitrary ultra-Morse polynomial of degree n+1 ≥
2. Let ω ∈ Ω1 be a 1- form such that for any t ∈ C and any cycle γ ∈ H1(t)

∫

γ

ω = 0.

If degω ≤ n, then dω = 0.1 In general case, if there are no restriction on degree, then
ω ∈ KH .

Addendum to Theorem 2.14 Theorem 2.14 holds if H is replaced by generic
homogeneous polynomial.

2.15 Remark As it was shown in [5], the last statement of Theorem 2.14 (general
case) holds for arbitrary complex polynomial in two variables with isolated critical
points, provided that all the fibers H−1(t) are connected. A generalization of this
fact to arbitrary dimension was proved in [3] (and also in [13] but under additional
conditions on the polynomial).

2.16 Corollary Theorem 2.14 holds true, if the assumption on the integral is replaced
by ∫

δt

ω = 0,

where δt is a family of cycles vanishing to some critical value.

1This first statement of Theorem 2.14 was firstly proved by Yu.S.Ilyashenko [8, 9]. General Theorem
2.14 (including the second statement) was proved by L.Gavrilov [5]
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Proof The monodromy images of a vanishing cycle generate H1(t) (Lemma 2.13).
This together with Theorem 2.14 implies the Corollary. !

Proof of Theorem 2.14. 2 For t ∈ C denote St = {H(x, y) = t}.
Let us firstly consider that ω ∈ Ω1

n. Let us prove the first statement of Theorem
2.14. We give a sketch of the proof here: a more detailed proof may be found in [8, 9].
Consider a straight line L which is generic with respect to H. This means that H|L
is a polynomial of degree n + 1, with exactly n critical points; denote them q1, . . . , qn.
For any s ∈ C2 lying on a noncritical level curve of H, denote by b1(s), . . . , bn+1(s) the
intersection points of the level curve SH(s) : H = H(s) with L. Let γj(s) be a real curve
in SH(s) with the beginning at bj(s) and the endpoint s. Consider the function

Q(s) =
1

n + 1

n+1∑

1

∫

γj(s)

ω. (2.3)

This function is well defined on any noncritical level curve St for t (= H(qj), j = 1, . . . , n.
Indeed, it depends on p only, not on the choice of the curves γj(s) : replacing γj(s) by
another curve λj(s) ⊂ St with the same endpoints adds to Q(s) an integral of ω over
the cycle [γj(s) ◦ λ−1

j (s)] ∈ H1(SH(s)); this integral is zero by assumption.
Formula (2.3) implies that

d(Q|SH(s)
) = ω|SH(s)

(2.4)

When the above chosen s ranges over a small disc transversal to the level curves of H,
the arcs γj(s) may be chosen to depend analytically on s. Hence, Q is a holomorphic
function in its domain. This function is bounded in any compact set and well defined
outside a finite union of algebraic curves. By the theorem on removable singularities,
Q may be holomorphically extended to all of C2.

The coefficients of the form ω are polynomials of degree less than n + 1, and level
curves of H near infinity ressemble those of the homogeneous polynomial h(H). Hence,
the function Q grows no faster than a polynomial of degree n + 1. By the Liouville
theorem, Q itself is such a polynomial.

In the assumptions of Theorem 2.14 we constructed a polynomial Q of degree less
than n + 2 whose differential restricted to level curves of H coincide with ω, see (2.4).
Let ω = Fdz+Gdw, dQ = Qzdz+Qwdw. The difference between these forms vanishes
on the Hamiltonian vector field (Hw,−Hz). Hence

(Qz − F )Hw − (Qw − G)Hz = 0. (2.5)

The polynomials Hw, Hz are relatively prime and their degrees equal n because H is
ultra–Morse. The degrees of the polynomials in the parenthesis are less than n + 1.
Hence, Qz−F = cHz, Qw−G = cHw for some c ∈ C. Therefore, the form ω = dQ−cdH
is exact. The first statement of Theorem 2.14 is proved.

2From unpublished paper by Yu.S.Ilyashenko
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Let us now consider that ω is a 1- form of arbitrary degree satisfying the conditions
of Theorem 2.14. Let us prove the second statement of Theorem 2.14.

Formula (2.5) was obtained without any restriction to degrees of the coefficients of
the form ω. Without these restrictions, it implies:

Qz − F = gHz, Qw − G = gHw

for some polynomial g. Hence

ω = dQ − gdH ∈ KH .

Theorem 2.14 is proved !

Proof of Addendum to Theorem 2.14 (Yu.S.Ilyashenko). The previous proof
works for any polynomial H with relatively prime first derivatives. In particular, it
works for generic homogeneous polynomial h taken instead of H and proves Addendum.

!

2.4 Nonvanishing and h- nondegeneracy. Proof of Lemma 2.3

We have already shown (Proposition 2.2) that ∆(t) is a polynomial. Let us prove
(1.18).

For t = aj(H), the j’th column of I(t; H) vanishes. Hence ∆(aj(H), H) = 0.
Therefore, ∆ is divisible by t − aj(H) for any j = 1, . . . , µ = n2. Proposition 2.19
below shows that, in the assumptions of Lemma 2.3 deg ∆ = µ. (This together with
the previous statement implies that ∆(t) is

∏
(t − aj) up to constant factor.)

The last degree equality is proved by comparison between H and its highest form
h = h(H). The following Proposition is the first step of this proof. It is stated in more
general setting than needed for the proof of Lemma 2.3.

2.17 Proposition 3 Let ω1, . . . , ωµ be a collection of polynomial 1-forms, µ = n2, di

be the maximal degree of the polynomial coefficients of ωi. Let βi be the form obtained
from ωi by dropping all the terms of degree lower than di. Let H be an ultra-Morse
polynomial, deg H = n + 1, and h = h(H) its highest homogeneous part. Let γj(t, H),
γj(t, h) be bases in H1({H = t}, Z) and H1({h = t}, Z) respectively,

J = (

∫

γj(t;H)

ωi), K = (

∫

γj(t,h)

βi).

Suppose that the ratio

σ =

∑
di + µ

n + 1
(2.6)

is integer. Then the determinant det J is a polynomial of degree no greater than σ.
Moreover,

det K = qtσ, q ∈ C; deg(det J − det K) < σ.

3From unpublished paper by Yu.S.Ilyashenko
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2.18 Remark Proposition 2.17 holds true if the ultra-Morse polynomial H is replaced
by its highest homogeneous part h in the definition of J. This follows from the statement
of the Proposition in the case of homogeneous 1- forms ωi.

Proof The determinants under consideration are polynomials (For the ultra-Morse
polynomial H this follows from Proposition 2.2; for the homogeneous polynomial h this
follows from the same Proposition applied to its ultra-Morse deformation). Let us first
consider the polynomial det K. The i’th string Ki of the matrix K is a homogeneous
vector function of the form

Ki = tνiqi, νi = (di + 1)/(n + 1), qi ∈ Cµ.

Let Q be the matrix with the strings qi. Then

det K = tσ det Q. (2.7)

Simple rescaling arguments (see [4]) imply that the i’th string of J is tνi(qi + o(1)), as
t → ∞. Hence,

det J = tσ(det Q + o(1)).

This implies the Proposition. !

Proposition 2.17 reduces Lemma 2.3 to the homogeneous case, which is discussed
below.

Recall that vanishing cycles of a generic homogeneous polynomial h are defined as
the limits of vanishing cycles for an ultra-Morse perturbation H of h by lower terms,
as these terms tend to zero.

2.19 Proposition Let ωi be homogeneous polynomial 1- forms as in (1.4), h be a
generic homogeneous polynomial of degree n + 1, t ∈ C \ 0, δj(t; h) ∈ H1(t) be a basis
of cycles, j = 1, . . . , n2. Let µ = n2,

K = (

∫

δj(t;h)

ωi)

Then
det K = C(h,Ω)tµ, (2.8)

C(h,Ω) (= 0 if and only if Ω is h- nondegenerate

Proof Firstly we prove that the determinant (2.8) is a degree n2 monomial. Then we
prove the last nonvanishing criterium for C(h,Ω).
Proof of formula (2.8).4 Let us calculate det K using Proposition 2.17 applied to
forms (1.4). For these forms the number σ from (2.6) is equal to µ. Indeed, di =
l(i) + m(i) + 1, νi = (di + 1)/(n + 1). Hence,

σ =
1

n + 1

∑

0≤k1≤n−1 0≤k2≤n−1

(k1 + k2 + 2) =
n2(n + 1)

n + 1
= n2 = µ.

4From unpublished paper by Yu.S.Ilyashenko
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This together with the statement of Proposition 2.17 on det K implies (2.8). !

Proof of the statement that h- nondegeneracy implies C(h,Ω) (= 0.5 Let
no linear combination of Dωi belong to the gradient ideal of h. Let us show that
C(h,Ω) (= 0. We prove this by contradiction. Suppose that C(h,Ω) = 0. Then
(det K)(t) ≡ 0. Hence, the determinant of the corresponding matrix Q = K(1) from
(2.7) vanishes, so its strings are linearly dependent. The linear dependence for the
strings of K(1) with coefficients σi :

∑
σiq

i = 0,

implies linear dependence for the strings of K(t) with the t- depending coefficients
σit−νi.

Consider the following 1-form with algebraic coefficients:

α =
∑

h−νiσiωi.

This form has zero integrals over all 1-cycles of the Riemann surfaces h = t, t ∈ C∗,
i.e., is exact on the nonsingular level curves of h. The form α has branching points
at the lines h = 0. A circuit around any one of these lines, which adds 2π to arg h,
transforms α into

∆α =
∑

e−2πiνih−νiσiωi.

For any ν ∈ Z/(n+1) denote by χν the character of the additive group Zn+1 determined
by χν(1) = e−2πiν . Then k circuits produce

∆kα =
∑

χνi(k)h−νiσiωi.

Let
A(ν) = {i | νi = ν, σi (= 0}, αν =

∑

i∈A(ν)

σiωi.

Note that νi range over the set { 2
n+1 , . . . ,

2n−1
n+1 , 2n

n+1}. Hence, for any ν only one of the
two sets, A(ν + 1) or A(ν − 1), may be nonempty. In what follows, fix an arbitrary ν
in such a way that A(ν) (= ∅, A(ν + 1) = ∅; no assumption about A(ν − 1). The form

βν =
1

n + 1

n∑

k=0

χ−1
ν (k)∆kα

is exact when restricted to the nonsingular level curves of h and polynomial. On the
other hand, the sum of all the values of the character χ−1

ν χνi is zero provided that the
character is not identically 1. Hence,

βν =
∑

i∈A(ν)

h−νσiωi +
∑

i∈A(ν−1)

h−(ν−1)σiωi.

5From unpublished paper by Yu.S.Ilyashenko
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The form
β = hνβν =

∑

i∈A(ν)

σiωi + h
∑

i∈A(ν−1)

σiωi

is exact on the level curves of h and is polynomial. By Addendum to Theorem 2.14,
β ∈ Kh, that is

β = df + gdh (2.9)

for some polynomials f and g. Suppose that A(ν − 1) (= ∅. Otherwise, the form∑
i∈A(ν) σiωi belongs to Kh, which is brought to contradiction even simpler, than it

is done below for (2.9).
Taking the differential of both sides of (2.9) we get:

(
∑

i∈A(ν)

σiDωi)dy ∧ dx = −h d(
∑

i∈A(ν−1)

σiωi) − dh ∧
∑

i∈A(ν−1)

σiωi + dg ∧ dh;

σi (= 0 for i ∈ A(ν) by definition.
Together with the Euler identity: (n + 1)h = zhz + whw, this implies that a non-

trivial linear combination of the polynomials Dωi, namely,
∑

i∈A(ν) σiDωi belongs to
the gradient ideal of h — a contradiction. !

Proof of the statement that h- degeneracy implies C(h,Ω) = 0. Now let a
nontrivial linear combination ∑

d(i)=d

ciDωi (2.10)

vanish (in the case, when d < n) or belong to the gradient ideal of h (in the case, when
d ≥ n). Let us show that C(h,Ω) = 0, or equivalently, determinant (2.8) vanishes.

In the first case, when d < n,

∑
ciDωi = Dω′ = 0; ω′ =

∑
ciωi, (2.11)

so the form ω′ is closed (thus, exact). Hence, its integral over any cycle in H1(t)
vanishes. The string consisting of its integrals along basic cycles is a linear combination
of strings of the Abelian integral matrix K. Therefore, the determinant of the latter
vanishes, and thus, C(h,Ω) = 0.

Now let us consider the case, when n ≤ d ≤ 2n − 2 and

for any d′ ≤ n − 1 the polynomials (Dωj)d(j)=d′ are linearly independent. (2.12)

(If condition (2.12) is not satisfied, then the previous case takes place.) Let us show
that det K = 0. To do this, let us introduce the following notations.

For k ∈ N denote Ω̃0
k (Ω̃1

k) the space of homogeneous polynomials (respectively, 1-
forms) of degree k in two complex variables. For k < 0 we put Ω̃0

k = 0.
To show that det K = 0, we use the following properties of the operator D.
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2.20 Remark For any k ∈ N∪ 0 the operator D defined by (1.15) induces an isomor-
phism between the factor-space Ω̃1

k/dΩ̃
0
k+1 and the space Ω̃0

k−1. This follows from the
definition of D and the statement that each polynomial 2- form on C2 is exact.

2.21 Corollary The dimension of the factor-space Ω̃1
k/dΩ̃

0
k+1 is equal to k.

2.22 Proposition Let h be a generic homogeneous polynomial of degree n + 1 ≥ 2, D
be the operator defined by (1.15). Let n ≤ d ≤ 2n − 1, ∇d be the intersection of the
space Ω̃0

d with the gradient ideal of h. The dimension of the linear space ∇d is equal to
2(d − n + 1). The operator D induces an isomorphism D : hΩ̃1

d−n → ∇d.

Proof The image D(hΩ̃1
k) is contained in ∇d by definition and Euler identity. The

dimensions of the both spaces hΩ̃1
d−n and ∇d are equal to 2(d− n + 1). For the former

space this statement follows from definition. The latter space has the basis of the
2(d − n + 1) polynomials xlyd−n−l ∂h

∂y , xlyd−n−l ∂h
∂x , 0 ≤ l ≤ d − n, cf. the proof of

Proposition 2.4. Now for the proof of Proposition 2.22 it suffices to show that the
restriction of D to hΩ̃1

d−n has zero kernel. We prove this statement by contradiction.

Suppose the contrary, i.e., there exists a nonzero ω ∈ Ω̃1
d−n such that d(hω) = 0. Then

hω is a closed polynomal homogeneous form, and hence, hω = dQ, Q is a homogeneous
polynomial of degree d + 2 < 2n + 2 = 2degh. It follows from definition and genericity
of h that Q vanishes on the n + 1 zero lines of h and has order 2 zero on each of them.
Therefore, degQ ≥ 2degh - a contradiction. Proposition 2.22 is proved. !

For a 1- form ω̃ by Iω̃ denote the string of the integrals of ω̃ over the basic cycles
in H1(t).

Let ci be the coefficients of linear combination (2.10), ω′ be the corresponding 1-
form defined in (2.11) (recall that n ≤ d ≤ 2n − 2). To show that det K = 0, we
construct a vanishing t- depending nontrivial linear combination of the strings of K.
To do this, we prove that there exists an ω′′ ∈ Ω̃1

d−n such that

ω = ω′ + hω′′ ∈ dΩ0. (2.13)

Then the string Iω of the integrals of the form ω vanishes. On the other hand, Iω is
a nontrivial t- depending linear combination of strings of the matrix K. Indeed, by
definition,

Iω = Iω′ + Ihω′′ = Iω′ + tIω′′ .

The string Iω′ is the linear combination of strings of K with the coefficients ci from
(2.10); this combination is nontrivial by assumption. Now for the proof of the previous
statement on Iω it suffices to show that the string Iω′′ is a linear combination of strings
of K with constant coefficients. The d − n forms (ωj)d(j)=d−n−1 form a basis in the
factor-space of Ω1

d−n modulo closed forms (by Corollary 2.21 and assumption (2.12)).
Therefore, ω′′ is equal (modulo closed forms) to a linear combination

ω′′ =
∑

d(j)=d−n−1

c′jωj.
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Hence, Iω′′ is the linear combination of strings of K with the coefficients c′j . Therefore,
(2.13) implies that det K = 0.

Inclusion (2.13) is equivalent to the equation

−Dω′ = D(hω′′).

By assumption, the polynomial −Dω′ (which is the linear combination (2.10) taken
with the sign ”− ”) belongs to the gradient ideal. This together with Proposition 2.22
implies existence of a solution ω′′ ∈ Ω1

d−n to the last equation. This solution is a form
ω′′ we are looking for. The proof of Lemma 2.3 is completed. ! !

2.5 Simplicity of zeros of P (h,Ω) and C(h,Ω). Proof of Lemma
2.5

We have already shown (Lemma 2.3) that the zero set of C(h,Ω) consists of those pairs
(h,Ω) such that Ω is h- degenerate. Now let us prove that for any fixed generic h the
gradient in Ω of the function C(h,Ω) does not vanish at the points (h,Ω) of its zero
set satisfying the following genericity conditions:

there exists a unique d ≥ n such that a nontrivial

linear combination of Dωi, d(i) = d, belongs to the gradient ideal of h; (2.14)

this linear combination is unique up to multiplication by constant,

i.e., the rank (modulo the gradient ideal) of the system of the 2n − d − 1 polynomials
Dωi is equal to 2n − d − 2.

For any fixed generic h the set of the form tuples Ω satisfying (2.14) is Zariski open
and dense in the zero set of C(h,Ω). This follows from the statement that for each

d, n ≤ d ≤ 2n − 1, the intersection ∇d of the gradient ideal of h with the space Ω̃0
d

of homogeneous polynomials of degree d has codimension 2n − d − 1 in Ω̃0
d, which is

equal to the number of the forms ωi, d(i) = d: dim∇d = 2(d − n + 1) by the previous
Proposition. Fix a point (h,Ω) satisfying (2.14). Let us show that the gradient of C in
the variables Ω at (h,Ω) does not vanish. There is an index l such that the 2n− d− 2
polynomials Dωi, i (= l, are linearly independent modulo ∇d (the last condition of
(2.14)). Let us fix such an l. Then the gradient of the function C along the space
of forms ωl (with fixed ωi corresponding to i (= l) is nonzero. Indeed, let ql be a
homogeneous 1- form of the degree d + 1. The derivative of the function C in ωl in the
direction ql is equal to its value

C(h, ω1, . . . , ωl−1, ql, ωl+1, . . . , ωn2)

at h, the forms ωj with j (= l and ql. This value is nonzero for a typical ql, namely,
when the 2n− d− 2 polynomials Dωi, i (= l, and Dql are linearly independent modulo
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∇d (recall that the latter has codimension 2n−d−1 in Ω̃0
d). This proves the statement

of Lemma 2.5 for C(h,Ω). The proof of the analogous statement for P (h,Ω) repeats
the previous one with obvious changes. Lemma 2.5 is proved. The proof of Theorem
1.17 is completed.

3 The constant Cn

Formula (1.13) for the constant Cn given by Theorem 1.10 is proved in 3.1-3.4.

3.1 The plan of the proof of the formula for the constant Cn

Everywhere below we suppose that H(x, y) = h(x, y) = xn+1 + yn+1 and ωi are the
forms from (1.3). To find the constant Cn, we calculate the corresponding value C(h)
from (1.5) explicitly for this concrete h(x, y) and then find Cn from formula (1.9),
which express the value C(h) via Cn (a more explicit version (3.7) of this formula will
be proved in 3.4).

Let us sketch the calculations. Recall the notation: (l(j), m(j)), j = 1, . . . , n2, is
the lexicographic sequence of the n2 pairs (l, m), 0 ≤ l, m ≤ n−1. For any j = 1, . . . , n2

put

Ij =

∫ 1

0

xl(j)(1 − xn+1)
m(j)+1

n+1 dx, (3.1)

IP =
n2∏

j=1

Ij. (3.2)

Put
σ =

∏

1≤l<k≤n+1

(εk − εl)2, ε = e
2πi
n+1 . (3.3)

In 3.2 we express C(h) via σ and IP : we show that

C(h) = σnIP. (3.4)

In 3.3 we calculate IP : we show that

IP =
(2π)

n(n+1)
2 (n + 1)−

n2+4n+3
2 ((n + 1)!)n

∏n−1
m=1(m + n + 1)!

. (3.5)

3.1 Remark The integrals Ij are expressed via appropriate values of B- (or Γ-) func-
tion. It appears that due to the fact that the product IP contains all the integrals Ij ,
one can kill all the Γ- function values in the expression for IP by using Gauss-Legendre
formula (3.19) for product of Γ- function values over appropriate arithmetic progression
segment.
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In 3.4 we calculate σ: we show that

σ = (−1)
n(n−1)

2 (n + 1)n+1. (3.6)

Then we prove using (1.9) that

C(h) = Cn(−1)
n(n+1)(1−2n)

4 (n + 1)
1−3n

2 . (3.7)

Now formula (1.13) for Cn follows from the two latter formulas and (3.4), (3.5).

3.2 Calculation of C(h). Proof of (3.4)

By definition, C(h) is equal to the value of the determinant ∆(t) at t = 1. Let us
calculate this value.

Let F = {H(x, y) = 1}. The fiber F admits the action of the group Zn+1 ⊕Zn+1 =
{(l, m)| l, m = 0, . . . , n} by multiplication by εl and εm of the coordinates x and y
respectively.

Let (l(j), m(j)), j = 1, . . . , n2, be the lexicographic sequence of the pairs (l, m),
0 ≤ l, m ≤ n − 1. We calculate the value ∆(1) for appropriate basis δ1, . . . , δn2 in
H1(F, Z) (defined below) such that each δj with j > 1 is obtained from δ1 by the
action of the element (l(j), m(j)) ∈ Zn+1 ⊕ Zn+1. (This basis is completely defined by
choice of δ1. The basic cycles δj are not necessarily vanishing.)

To define δ1, let us consider the fiber F as a covering over the x- axis having the
branching points with the x- coordinates εj, j = 0, . . . , n. It is the Riemann surface
defined by the equation y = (1 − xn+1)

1
n+1 .

Consider the radial segments [0, 1] and [0, ε] of the branching points 1 and ε re-
spectively in the x- axis; the former being oriented from 0 to 1, and the latter being
oriented from ε to 0. Their union is an oriented piecewise-linear curve (denote it by
φ). Let φ0 and φ1 be its liftings to the covering F such that φ0 contains the point (0, 1)
and φ1 is obtained from φ0 by multiplication of the coordinate y by ε. The curves φi,
i = 0, 1, are oriented from their common origin (ε, 0) to their common end (1, 0).

3.2 Definition Let F , φ, φ0, φ1 be the same, as above. Define δ1 ∈ H1(F, Z) to be
the homology class represented by the union of the oriented curve φ0 and the curve φ1

taken with the inverse orientation.

3.3 Proposition Let F , δ1, l(i), m(i) be as above, δj ∈ H1(F, Z), j = 2, . . . , n2, be
the homology classes obtained from δ1 by the actions of the elements (l(j), m(j)) ∈
Zn+1 ⊕ Zn+1. The classes δj, j = 1, . . . , n2, generate the homology group H1(F, Z).

3.4 Remark The complete Zn+1 ⊕ Zn+1- orbit of the cycle δ1 has (n + 1)2 elements.
The discussion below shows that they are linearly depending and the n2 cycles obtained
from δ1 by the actions of the n2 elements (l, m), 0 ≤ l, m ≤ n − 1, form a basis in
H1(F, Z).
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Proof Let Γ = ∪n
j=0[0, ε

j] be the union of the radial segments of the branching points

of the fiber F in the x- axis. Let Γ̃ ⊂ F be the preimage of the set Γ under the
projection of F to the x- axis. The set Γ̃ is a deformation retract of the fiber F (hence,
the inclusion Γ̃ → F is a homotopy equivalence). This follows from the statement
that Γ is a deformation retract of the x- axis that contains all the branching points
and from the covering homotopy theorem. The group H1(Γ̃, Z) is generated by δj by
construction. Hence, this remains valid for the whole fiber F . This proves Proposition
3.3. !

Let us calculate the value ∆ = ∆(1) in the basis δj from Proposition 3.3. To do
this, we use the following

3.5 Remark Let ωj be the forms (1.3), δj be as in Proposition 3.3, Ij,r = Ij,r(1) be
the corresponding integrals from (1.1), (l(j), m(j)) be the lexicographic integer pair
sequence, 0 ≤ l, m ≤ n − 1. For any j, r = 1, . . . , n2

Ij,r = εk(j,r)Ij,1, k(j, r) = l(r)(l(j) + 1) + m(r)(m(j) + 1). (3.8)

Formula (3.8) implies the following

3.6 Corollary Let ωj be the forms (1.3), F , δj be as in Proposition 3.3, I = (Ij,r) =
(Ij,r(1)) be the corresponding matrix of the integrals (1.1), ∆ be its determinant. Put

Π =
n2∏

j=1

Ij,1.

Let (l(j), m(j)) be the above lexicographic sequence, k(j, r) be the same, as in (3.8),
G = (gjr) be the n2 × n2- matrix with the elements

gjr = εk(j,r). (3.9)

Then
∆ = Πdet G. (3.10)

Thus, to find ∆, which is equal to C(h), it suffices to calculate the expressions Π
and det G from (3.10). Firstly we calculate det G explicitly. We show that

det G = (n + 1)−2nσn. (3.11)

Then we express Π via IP . We show that

Π = (n + 1)2nIP. (3.12)

This will prove (3.4).
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Proof of formula (3.11) for det G. In the proof of (3.11) we use the formula

n∏

l=1

(1 − εl) = n + 1, (3.13)

which follows from the fact that its left-hand side is equal to the value at x = 1 of the
polynomial xn+1−1

x−1 =
∑n

j=0 xj . The matrix G is the tensor square of the matrix

Q = (qjr) =





1 ε . . . εn−1

1 ε2 . . . ε2(n−1)

. . . . . . . . . . . .
1 εn . . . εn(n−1)



 .

This follows from definition. Therefore, det G is the 2n-th power of det Q, which is van
der Mond:

det G = (det Q)2n =

(
∏

1≤l<k≤n

(εk − εl)
)2n

=

(
∏

1≤l<k≤n

(εk − εl)2

)n

. (3.14)

The product in the right-hand side of (3.14) is equal to (n + 1)−2σ: the defining
expression (3.3) for σ is obtained by multiplying the previous product by

∏

1≤l≤n

(1 − εl)2 = (n + 1)2

(see (3.13)). This together with (3.14) proves (3.11). !

Proof of formula (3.12) for Π. Let us express Ij,1 via the integral Ij from (3.1).
We show that

Ij,1 = (1 − εm(j)+1)(1 − εl(j)+1)Ij . (3.15)

This together with the definition of Π (in Corollary 3.6) and (3.13) will imply (3.12).
Let φ0, φ1 be the oriented curves from Definition 3.2. Then

Ij,1 =

∫

δ1

xl(j)ym(j)+1dx =

∫

φ0

xl(j)ym(j)+1dx −
∫

φ1

xl(j)ym(j)+1dx. (3.16)

The second integral in the right-hand side of (3.16) is equal to the first one times
εm(j)+1 (by definition). Analogously, the first integral in its turn is the integral along
the segment [0, 1] (which is equal to Ij) minus the one along the segment [0, ε] oriented
from 0 to ε. The integral along the last segment is equal to εl(j)+1Ij . This together
with the two previous statements implies (3.15). Formula (3.12) is proved. The proof
of formula (3.4) is completed. !
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3.3 Calculation of IP . Proof of (3.5)

To calculate IP =
∏n2

j=1 Ij , we firstly express it via appropriate values of B- and Γ-
functions. Recall their definitions:

B(a, b) =

∫ 1

0

xa−1(1 − x)b−1dx, Γ(a) =

∫ +∞

0

xa−1e−xdx.

The variable change u = xn+1 transforms integral (3.1) to

1

n + 1

∫ 1

0

u
l(j)+1
n+1 −1(1 − u)

m(j)+1
n+1 du =

1

n + 1
B(

l(j) + 1

n + 1
,
m(j) + 1

n + 1
+ 1).

Therefore,

IP = (n + 1)−n2
∏

0≤l,m≤n−1

B(
l + 1

n + 1
,
m + 1

n + 1
+ 1). (3.17)

To calculate the product in the right-hand side of (3.17), we use the following
expression of B- function via Γ- function:

B(a, b) =
Γ(a)Γ(b)

Γ(a + b)
.

Therefore, by (3.17),

IP = (n + 1)−n2

(∏n−1
l=0 Γ( l+1

n+1)
)n (∏n−1

m=0 Γ(m+1
n+1 + 1)

)n

∏n−1
l,m=0 Γ( l+m+2

n+1 + 1)
. (3.18)

To calculate the products in (3.18), we use the following identities for Γ- function [3]:

Γ(n) = (n − 1)! for any n ∈ N,

n∏

l=0

Γ(z+
l

n + 1
) = (2π)

n
2 (n+1)

1
2−(n+1)zΓ((n+1)z) (Gauss-Legendre formula). (3.19)

One gets
n−1∏

l=0

Γ(
l + 1

n + 1
) = (2π)

n
2 (n + 1)−

1
2 , (3.20)

n−1∏

m=0

Γ(
m + 1

n + 1
+ 1) = (2π)

n
2 (n + 1)

1
2−(n+2)(n + 1)! (3.21)

by applying (3.19) to z = 1
n+1 and z = n+2

n+1 respectively and subsequent substitutions
Γ(1) = 1, Γ(n + 2) = (n + 1)!. Let us calculate the double product in l, m in (3.18).
For any fixed m = 0, . . . , n − 1

n−1∏

l=0

Γ(
l + m + 2

n + 1
+ 1) = (Γ(

m + 1

n + 1
+ 1))−1(2π)

n
2 (n + 1)

1
2−(m+n+2)(m + n + 1)!
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by (3.19) applied to z = m+1
n+1 + 1. Therefore,

n−1∏

l,m=0

Γ(
l + m + 2

n + 1
+ 1)

=

(
n−1∏

m=0

Γ(
m + 1

n + 1
+ 1)

)−1

(2π)
n2

2 (n + 1)
n
2 −

Pn−1
m=0(m+n+2)

n−1∏

m=0

(m + n + 1)!

Substituting formula (3.21) for the first product in the right-hand side of the last
formula and summarizing the power of n + 1 yields

n−1∏

l,m=0

Γ(
l + m + 2

n + 1
+ 1) = (2π)

n2−n
2 (n + 1)−

3(n2−1)
2

n−1∏

m=1

(m + n + 1)!. (3.22)

Substituting (3.20)-(3.22) to (3.18) yields (3.5).

3.4 The constants σ and C(h). Proof of (3.6) and (3.7)

Proof of (3.6). By definition, see (3.3), one has

σ = (−1)
n(n+1)

2

∏

1≤l<k≤n+1

((εk − εl)(εl − εk))

= (−1)
n(n+1)

2

∏

1≤k≤n+1

(
∏

1≤l≤n+1; l '=k

(εk − εl)
)

= (−1)
n(n+1)

2

∏

1≤k≤n+1

(
n∏

l=1

εk(1 − εl)
)

.

The second (inner) product in the right-hand side of the last formula is equal to (n +
1)εnk by (3.13), so,

σ = (−1)
n(n+1)

2 ε
n(n+1)(n+2)

2 (n + 1)n+1 = (−1)
n(n−1)

2 (n + 1)n+1.

!

Proof of (3.7). Let us calculate the corresponding values Σ(h) and P (h) from
formula (1.9) for C(h). By definition, in our case each matrix Ad(h) is diagonal of the
size 2(d−n+1) with the diagonal elements equal to n+1, so, its determinant is equal
to (n + 1)2(d−n+1). Therefore,

P (h) =
2n−2∏

d=n

det Ad(h) = (n + 1)n(n−1).
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Let us calculate Σ(h). By (1.7), (3.3) and (3.6),

Σ(h) =

(
∏

1≤l<k≤n+1

e
πi

n+1 (εk − εl)
)2

= (−1)nσ = (−1)
n(n+1)

2 (n + 1)n+1.

The two previous formulas together with (1.9) imply (3.7). The proof of (1.13) is
completed. !
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