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Normale Supérieure de Lyon, 46, allée d’Italie, 69364 Lyon Cedex 07 France

1



2

3 Lower bounds of the formula for the main determinant. Proof of
Theorem 1.60 40
3.1 Lower bound of Pd. The sketch of the proof of Lemma 1.61 . . . . . . . 40
3.2 The max- norm and the coefficients. A priori bounds . . . . . . . . . . 44
3.3 Lower bound of ||Lv||max. Proof of (3.10) . . . . . . . . . . . . . . . . . 45
3.4 From max- to Hermitian norm. Proof of (3.8) . . . . . . . . . . . . . . 49
3.5 Upper bound of the discriminant. Proof of (3.1) . . . . . . . . . . . . . 50
3.6 Lower bound of C(h, Ω). Proof of (1.33) . . . . . . . . . . . . . . . . . 50
3.7 Lower estimate of the constant Cn. Proof of (3.2) . . . . . . . . . . . . 51

4 Acknowledgements 53

1 Introduction, main results and the plan of the
paper

It is known that the roots and the critical points of a monic polynomial in one complex
variable admit the following a priori bound in terms of the maximal module of the
critical values.

Proposition 0. If a monic polynomial in one complex variable has a critical point
at 0 and all its critical values lie in the closed unit disk, then all its zeros and critical
points lie in the closed disk of radius four centered at 0.

The following more precise statement was communicated to the author by X.Buff.
Proposition 1. Let the conditions of Proposition 0 hold, but 0 is not necessarily a

critical point. Then all the roots and the critical points lie in the closed disk of radius
two centered at the barycenter of the roots.

The author believes that these statements are well-known, but he did not find them
in the literature. Their proofs will be given below.

The present paper gives analogues of the above bounds for polynomials in two
complex variables with a generic highest homogeneous part, see the following Definition.

Definition 1.1 We say that a homogeneous polynomial in two complex variables is
generic, if it has only simple zero lines.

Let H(x, y) be a complex polynomial in two variables, h be its highest homogeneous
part, H ′ = H − h be its lower terms. We assume that

- h is generic,
- 0 is a critical point of H ,

H ′ − H(0) #≡ 0.

It is well-known that under these assumptions H has at least two distinct critical
values. In the present paper we prove quantitative versions of this statement (Theorems
1.10 and 1.17). Assuming that H is appropriately normalized by affine variable changes
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in the image and the preimage (see Definition 1.4), we give explicit upper bounds of
the following quantities:

- the lower terms H ′ = H − h (Addendum to Theorem 1.10);
- the minimal size of a closed bidisk containing a deformation retract (i.e., all the

nontrivial topology) of a level curve

St = {H = t} (Theorem 1.10);

- the minimal lengths of representatives of cycles in H1(St, Z) vanishing along ap-
propriate paths from t to the critical values (Lemma 1.45 and Corollary 1.48 in 1.5,
these representatives are contained in the previous bidisk);

- the intersection indices of the latter cycles (Theorem 1.50 in 1.6).
The above-mentioned upper bounds of locations and lengths of vanishing cycles

were used in [4] (a joint paper with Yu.S.Ilyashenko), where we studied zeros of Abelian
integrals of polynomial 1- forms over real ovals of real polynomials. In [4] we gave an
upper bound of the number of zeros for a wide class of real polynomials of arbitrary
degree n+1 ≥ 3 and any real polynomial 1- form of smaller degree. This class consists
of ultra-Morse polynomials H (see Definition 1.18). The estimate of the number of zeros
is done in terms of the minimal gap between two zero lines of the higher homogeneous
part h and the ratio of that between two critical values of H over the diameter of the
critical value set. The key object considered in the proofs in [4] is the Abelian integral
matrix

I(t) = (Iij(t)), Iij(t) =

∫

δj⊂St

ωi, where (1.1)

ωi, i = 1, . . . , µ = n2, are fixed monomial forms of appropriate degrees, δj ⊂ H1(St, Z)
are appropriate cycles (marked vanishing cycles) that form a basis.

Remark 1.2 The matrix elements Iij(t) are multivalued holomorphic functions with
branchings at the critical values of H .

In the present paper we prove the following statements used in [4]:
- upper bound of the elements of the Abelian integral matrix (1.1) (see 1.7);
- lower bound of its determinant

∆(t) = ∆H,Ω(t) = det I(t), Ω = (ω1, . . . ,ωn2) (1.2)

(see 1.8), which is called the period determinant. We prove these statements in full
generality, without assumption that H is real.

The above-mentioned upper bound of |Iij(t)| is implied by the previously-mentioned
upper bound of locations and lengths of vanishing cycles. The upper bound of the latter
lengths is proved by using the upper bound of topology of level curve and Bezout’s
theorem.

It is well-known that if ωi are homogeneous polynomial 1- forms of appropriate
degrees, then the period determinant is a polynomial of the type
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∆(t) = C(h, Ω)
n2∏

i=1

(t − ai), where (1.3)

ai are the critical values of H , see [2]. The value C(h, Ω) was partially calculated (up
to a constant factor) in [6]. An explicit formula for C(h, Ω) (with the latter constant
factor calculated) was obtained in [3]. The proof of the lower bound of ∆(t) is based
on the latter formula.

The upper bound of topology and the lower bound of the period determinant are
the principal results of the paper: their proofs take its most part.
Proof of Proposition 0. Let p(z) = zd + ... be the polynomial under consideration.
Denote

D1 = {|z| < 1}, S = p−1(C \ D1).

The set S is mapped by p outside the closed unit disk, which contains all the critical
values. Therefore, it contains neither roots, nor critical points. Hence, for the proof
of the Proposition it suffices to show that the set S contains the complement to the
closed disk of radius 4 centered at 0.

By construction,

p : S → C \ D1 is a covering of degree d

nonramified outside infinity, as is zd : C\D1 → C\D1. Therefore, there is a conformal
1-to-1 variable change

φ : C \ D1 → S, such that p(φ(z)) = zd, φ(z) = z + O(1), as z → ∞.

By the condition of the Proposition, 0 is a critical point of p. Then the set S, which is
the image of φ, does not contain 0. By Köbe 1

4 theorem [5], the image S of φ contains
the complement to the closed disk of radius 4 centered at 0. This proves Proposition
0. !

Proof of Proposition 1 (by X.Buff). Without loss of generality we assume that
the barycenter of the roots is at 0 (one can achieve this by translation of the variable).
Let S, φ be as above. Then

φ : C \ D1 → C is an univalent function, φ(z) = z + o(1), as z → ∞. (1.4)

It is well-known that the image S of each univalent holomorphic function satisfying
(1.4) contains the complement to the closed disk of radius 2 centered at 0. For example,
this follows from results presented in [5]: theorem 6.11 and corollary 6.11 (pp. 154 and
157 of the Russian edition). This proves Proposition 1. !
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1.1 The plan of the paper

The results concerning upper bounds of topology of level curve and of lower terms of
H are stated in 1.2 and proved in 1.2 and Section 2.

The definition of vanishing cycles is recalled in 1.3.
Upper bounds of lengths of their appropriate (canonical) representatives are stated

and proved in 1.5. These canonical representatives are defined in 1.4; their projections
to the x- axis are piecewise-linear curves. The number of pieces is estimated at the
same place (Proposition 1.38 and Corollary 1.39). The intersection indices of vanishing
cycles are estimated in 1.6 (using Corollary 1.39). Proposition 1.38 is the key statement
used in the estimates of lengths and intersection indices.

Upper bounds (used in [4]) of the integrals Iij(t) are stated and proved in 1.7.
The lower bound of the period determinant is stated in 1.8 and proved in Section

3.

1.2 Upper bounds of topology and lower terms

To state the results from the title of the Subsection, we have to normalize the polyno-
mial in appropriate way by affine variable changes. To specify the normalization, let
us firstly introduce the following definitions (see also [4], where some of them were also
introduced).

Definition 1.3 The norm of a homogeneous polynomial is the maximal value of its
module on the unit sphere; this norm is denoted by ‖h‖max. The norm of a nonhomo-
geneous polynomial is the sum of norms of its homogeneous parts.

For any r > 0 denote

Dr = {z ∈ C | |z| < r}, Dr(a) = {z ∈ C | |z − a| < r}.

For any X, Y > 0 denote

DX,Y = {(z, w) ∈ C2 | |z| ≤ X, |w| ≤ Y }.

Definition 1.4 A polynomial H as at the beginning of the paper is said to be weakly
normalized, if ||h||max = 1 and all its critical values are contained in the closed disk
D2. It is said to be normalized, if the previous conditions hold and there is no smaller
disk containing the critical values.

Remark 1.5 Any polynomial H as at the beginning of the paper can be transformed
to a normalized one by (nonunique) affine variable changes in the image and the preim-
age so that the highest homogeneous part remains unchanged up to multiplication by
constant. (The previous definition is a slightly extended version of an analogous one
from [4].)
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Remark 1.6 The max- norm of a polynomial (and hence, the notion of (weak) nor-
malizedness are invariant under unitary coordinate transformations in the variable
space.

Let us introduce the following function on the space of normalized polynomials.

Definition 1.7 For any polynomial H of degree n +1 with a generic highest homoge-
neous part h put c1(H) to be n multiplied by the smallest distance between two lines
in the zero locus of h. The distance between two lines is taken in sense of Fubini-Study
metric on the projective line CP 1. Let

c′(H) = min(c1(H), 1).

Definition 1.8 We say that the topology of a level curve St = {H = t} is contained
in a bidisk DX,Y , if the difference St \ DX,Y consists of n + 1 = deg H punctured
topological disks, and the restriction of the projection (x, y) ,→ x to any of these disks
is a biholomorphic map onto {x ∈ C | X < |x| < ∞}.

Remark 1.9 Let a complex polynomial H(x, y) have a generic highest homogeneous
part h. A bidisk containing the topology of a level curve of H exists, if and only if the
y- axis is transversal to each zero line of h. (Then such a bidisk exists for each level
curve.)

Theorem 1.10 For any weakly normalized polynomial H of degree n + 1 ≥ 3 the
Hermitian basis in C2 may be so chosen that the topology of all the level curves St for
|t| ≤ 5 will be located in a bidisk DX,Y with

X ≤ Y < (c′(H))−14n3

n65n3
= R0. (1.5)

The choice of basis in C2 is specified below.

Addendum In the conditions of the Theorem the norm of the lower terms H ′ =
H − h admits the following upper bound:

||H ′||max < (c′)−13n4
n64n4

. (1.6)

The Theorem and the Addendum are proved in Section 2.

Corollary 1.11 In the conditions of the previous Theorem for any t ∈ C the topology
of the level curve St is contained in the bidisk DX,Y with

X ≤ Y ≤ R0χ(|t|),χ(t) = max{1, ( |t|
5

)
1

n+1}. (1.7)
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Proof If |t| ≤ 5, then the statement of the Corollary follows immediately from the

Theorem. If |t| > 5, consider the rescaled polynomial H̃(x, y) = 5
|t|H(| t

5 |
1

n+1 x, | t
5 |

1
n+1 y).

It is also weakly normalized. Indeed, its highest homogeneous part coincides with that
of H . Its critical values are equal to 5

|t| < 1 times those of H , thus, their modules are

no greater than 2. This implies weak normalizedness. The level curve St = {H = t} is
transformed by the previous rescaling to the level curve {H̃ = t 5

|t|}, which corresponds

to a level value of H̃ with module 5 by construction. Hence, by the Theorem applied
to H̃, the topology of the latter curve is contained in the bidisk DX′,Y ′ , X ′ ≤ Y ′ ≤ R0.
Applying the inverse rescaling yields that the topology of the curve St is contained in
DX,Y , X ≤ Y ≤ R0| t

5 |
1

n+1 . This proves the Corollary. !

Choice of basis in C2. Theorem 1.10 will be proved for orthogonal coordinates
(x, y) in C2 satisfying the following inequality (their existence is implied by the next
Proposition):

the distance of the y − axis to the zero lines of h is greater than
1√
n

. (1.8)

Proposition 1.12 For any m ∈ N and any tuple of m+1 complex lines in C2 passing
through the origin there exists another complex line through the origin whose distance
to each line of the tuple is greater than 1√

m .

Proof Take the 1√
m neighborhood in the sphere CP1 of each line of the tuple. The

area of the neighborhood is less than that of an Euclidean disk of the same radius, i.e.,
less than π 1

m . The union of the latter neighborhoods through all the lines from the
tuple does not cover the whole sphere (and this implies the Proposition). Indeed, the
area of the union is less than m+1

m π < 2π, which is less than the area 4π of the whole
sphere. The Proposition is proved. !

Definition 1.13 A complex polynomial H = h + H ′ with a generic highest homoge-
neous part h is said to be unit-scaled, if

||h||max = 1 ≥ ||H ′||max.

Let us give a brief description of proof of Theorem 1.10. This Theorem and its
Addendum hold true automatically for unit-scaled polynomials H , and a much stronger
bound of topology follows almost immediately by elementary inequalities. Namely, one
uses the fact that outside a ball whose radius can be explicitly estimated from above
the foliation H = const resembles the foliation by level curves of the homogeneous
polynomial h. This is done in Subsection 2.3. The results of 2.3 imply the following

Proposition 1.14 Let H be a unit-scaled polynomial of degree n + 1 ≥ 3, h be its
highest homogeneous part, (x, y) be orthogonal coordinates satisfying (1.8). Then for
any t ∈ C, |t| ≤ 5, the topology of the level curve St is contained in the bidisk DXn,Yn,

Xn = n7n(c′(H))−2n, Yn = nnXn = n8n(c′(H))−2n. (1.9)



8

In the general case, when the norm of lower terms may be large, for the proof of
Theorem 1.10, we change the normalization of H to make the norm of lower terms
unit, and we prove an upper bound of the rescaling rate. This bound is based on the
next Theorem, which is a quantitative analogue of the first statement mentioned at
the beginning of the paper. Roughly speaking, it says that if the difference H ′ −H(0)
is not too small, then the maximal distance between critical values of H admits an
explicit lower bound. To formulate it, we change normalization again in such a way
that in addition H(0) = 0.

Definition 1.15 A polynomial H as at the beginning of the paper is said to be
centrally-rescaled , if H(0) = 0 and ||h||max = ||H ′||max = 1.

Remark 1.16 Each polynomial H from the beginning of the paper can be transformed
to a centrally-rescaled one by homothety in the preimage and an affine transformation
in the image. The space of centrally-rescaled polynomials is invariant under unitary
transformations of the variables, as is the max- norm.

Theorem 1.17 Each centrally-rescaled polynomial H of degree n + 1 ≥ 3 has at least
one critical value with module no less than

δ0 = (c′(H))13n4
n−63n4

. (1.10)

The proof of Theorem 1.17 takes the most part of Section 2. Theorem 1.10 will be
deduced from Theorem 1.17 and Proposition 1.14 in 2.2.

For the proof of Theorem 1.17 we consider projections πt : St → Ox of level curves
to the x- axis. The proof is done by combining topological arguments and analysis of
arrangement configuration of critical values of projections. The topological arguments
are based on connectivity of the intersection graph of marked basic vanishing cycles
and Picard-Lefschetz theorem [1]. The main technical result of the analysis of critical
values of projection is a lower bound of the maximal module of a critical value of π0

(Lemma 2.6 stated in 2.1). The topological and analytical arguments are related to
each other via studying appropriate (canonical) representatives of the vanishing cycles
whose projections are piecewise-linear curves with vertices at the critical values of
projection.

1.3 Vanishing cycles

All the definitions and the statements of the present Subsection are contained in [1]
and [4].

The basic vanishing cycles are usually defined in homology of level curves of an
ultra-Morse polynomial, see the following Definition.

Definition 1.18 A complex polynomial of degree n + 1 with a generic highest homo-
geneous part is said to be ultra-Morse, if all its critical values are simple (then their
number is equal to µ = n2).
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Firstly we recall the definition of a local vanishing cycle.

Lemma 1.19 (Morse lemma). A holomorphic function having a Morse critical
point may be transformed to a sum of a nondegenerate quadratic form and a constant
term by an analytic change of coordinates near this point.

Corollary 1.20 Consider a holomorphic function in C2 having a Morse critical point
with a critical value a. There exists a ball centered at the critical point whose intersection
with each level curve corresponding to a value close to a of the function is diffeomorphic
to an annulus.

Definition 1.21 A generator of the first homology group of the latter intersection
annulus (considered as a cycle in the homology of the global level curve) is called a
local vanishing cycle corresponding to a.

A local vanishing cycle is well defined up to change of orientation.

Definition 1.22 Let H be a ultra-Morse polynomial, aj be its critical values, j =
1, . . . , µ. A path αj : [0, 1] → C is called regular provided that

αj(1) = aj , αj [0, 1) contains no critical value of H. (1.11)

Definition 1.23 Let αj be a regular path, t0 = αj(0), s ∈ [0, 1] be close to 1, δj(t), t =
αj(s), be a local vanishing cycle on St corresponding to αj . Consider the extension of
δj along the path αj up to a continuous family of cycles δj(s) in complex level curves
H = αj(s). The homology class δj = δj(0) ∈ H1(St0 , Z) is called a cycle vanishing along
αj .

Definition 1.24 Consider a set of regular paths α1, . . . ,αµ, see (1.11), with a common
starting point t0. Suppose that these paths are not pairwise and self intersected. Then
the set of cycles δj ∈ H1(St0 , Z) vanishing along αj , j = 1. . . . , µ, is called a marked
set of vanishing cycles on the level curve H = t0.

Lemma 1.25 Any marked set of vanishing cycles is a basis in the first integer homol-
ogy group of the level curve.

The extension of a cycle in H1(St, Z) along a loop (avoiding critical values) defines
an operator from the homology group to itself called monodromy operator.

Lemma 1.26 The images of any vanishing cycle under the monodromy operators along
all the loops generate the homology group.

The Lemma follows from Picard-Lefschetz theorem and the connectedness of the
intersection graph of marked set of vanishing cycles [1].
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1.4 Canonical representatives of vanishing cycles

Below we define the representatives of vanishing cycles for which we prove upper bounds
of lengths and locations. To do this, we use the following properties of projection of
local level curve near critical point, which are well-known and follow immediately from
definition.

Proposition 1.27 Let H(x, y) be an analytic function having a Morse critical point
at 0, H(0) = 0. The singular level curve H = 0 is locally a union of two regularly
embedded analytic curves intersecting at 0 transversally (denote Li, i = 1, 2, their
tangent lines at 0). Let πt : St → C be a projection along a line transversal to both Li.
There exist a neighborhood U of the critical point and an ε > 0 such that for any t #= 0
close to 0 the restriction πt|St∩U defines a degree two branched covering

πt : π−1
t (Dε) ∩ U → Dε.

Addendum. The latter covering has two critical values (branching points) x1(t),
x2(t) confluenting to 0, as t → 0. The union of the two liftings of the segment [x1, x2]
under the covering is a closed curve representing a local vanishing cycle (the liftings
are taken with inverse orientations).

Definition 1.28 Let in the previous Proposition the projection πt be made along the
y- axis. Then the corresponding closed curve from the Addendum is called the canonical
representative of the local vanishing cycle (see Fig.1).

S

!

1  
                                2

St

  x  (t)           x  (t)

0

t

Canonical representative of local vanishing cycle

Figure 1

Everywhere below we assume that H is an ultra-Morse polynomial. For any non-
critical value t denote

CSt = {critical values of the projection πt : St → Ox}.
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Below we define the canonical representative of a global vanishing cycle, which will be
projected to a piecewise-linear curve in the x- axis with vertices in CSt. To do this,
we firstly deform the coordinate system and the path under consideration to avoid
collisions of points from CSt while t ranges along the path.

Definition 1.29 Let H(x, y) be an ultra-Morse polynomial, h be its highest homoge-
neous part, t ∈ C be a noncritical value of H . A coordinate system (x, y) is said to be
t- regular, if the y- axis is transversal to all the zero lines of h, all the lines tangent to
the critical level curve branches at the critical points and all the lines tangent to St at
its inflection points.

Remark 1.30 In the conditions of the previous Definition
- the canonical representative of each local vanishing cycle is well-defined;
- each critical point of the projection πt : St → Ox is simple (i.e., of order 1);
- the latter statement holds true for projections πτ corresponding to all but a finite

number of values τ .

Remark 1.31 For any noncritical value t one can always choose a t- regular orthogonal
coordinate system satisfying (1.8): the t- regularity is a generic condition; (1.8) is an
open condition.

Now we construct the canonical representatives of the global vanishing cycles along
appropriate piecewise-linear paths, see the next Definition. To do this, we use the
following

Remark 1.32 There exists a µ′ ∈ N (depending on H) such that for all but finite
number of values of t the cardinality of the set CSt (without multiplicities) is equal
to µ′ (algebraicity). For a typical polynomial H all the critical values of πt are simple
and µ′ = n(n + 1) := η(n) (Bezout’s theorem). In general, some critical values of
the projection may be multiple for all t (i.e., µ′ < η(n)). This is the case for the
homogeneous polynomial xn+1 + yn+1, where µ′ = n + 1.

Definition 1.33 A piecewise-linear regular (see Definition 1.22) path α : [0, 1] → C
with a finite number of edges is said to be critically-regular, if for any t ∈ α[0, 1) the
cardinality of the set CSt is maximal (i.e., equal to µ′) and each critical point of the
projection πt is simple.

Remark 1.34 Let H(x, y) be an ultra-Morse polynomial, t ∈ C be its noncritical
value, (x, y) be a t- regular coordinate system. Then any regular path starting from t
is homotopic (outside the critical values of H) to some critically-regular path.

Let a ∈ C be a critical value of H , A ∈ C2 be the corresponding critical point,
x(A) be its x- coordinate. Let t0 ∈ C be a noncritical value of H , α : [0, 1] → C be a
critically-regular path from t0 to a. Let

CSt = {x1(t), . . . , xµ′(t)}.
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The functions xi(t) are multivalued, but their restriction pull-backs xi(α(τ)) along α
have well-defined continuous branches with disjoint graphs (critical regularity). Let
x1(α(τ)), x2(α(τ)) be those of them that confluent to x(A), as τ → 1, δ̃(τ) be the
canonical representative of the corresponding local vanishing cycle. This representative
is well-defined for τ close to 1 as a double lifting to St of the segment [x1(t), x2(t)],
t = α(τ). Let us construct its continuous extension (as a family of closed curves in
Sα(τ)) for all τ ∈ [0, 1). Then the curve δ̃(0) represents the global vanishing cycle along
α and will be called its canonical representative.

Case 1: xi(α(τ)) /∈ (x1(α(τ)), x2(α(τ))) whenever τ ∈ [0, 1), i #= 1, 2. Then the
previous double lifting δ̃(τ) of [x1, x2] is well-defined and continuous for all τ ∈ [0, 1).

Case 2: α is a segment and there exists a parameter value τ1 for which

some xi, i #= 1, 2, meet (x1, x2), denote N(τ1) the number of these xi. (1.12)

(No xi, i #= 1, 2, can meet x1, x2, by critical regularity of α.) For τ = τ1 the previous
points xi split [x1, x2] into a union of N(τ1) + 1 smaller segments [xir , xir+1], r =
0, . . . , N(τ1). The new segments (whose ends are functions in τ) do not meet other
xj whenever τ is close enough to τ1 (by construction and critical regularity). Then

the family δ̃(τ) extends continuously to the values τ ≤ τ1 close to τ1 as the union
of appropriate double liftings of the previous segments [xir , xir+1]. This extension is
well-defined until we cross a parameter value τ2 < τ1 for which some of the intervals
(xir , xir+1) (which are the edges of the projection of δ̃(τ)) meet some other xj ’ s. Then

we repeat the previous extension of δ̃ to smaller values τ < τ2, etc. By algebraicity,
after a finite number of steps we will extend δ̃(τ) to all the values τ ∈ [0, 1) (the number
of steps and edges of the projection is estimated below using Bezout’s theorem).

Case 3 (general): the path α has several edges. We extend δ̃ by induction in
the number of edges of α. The induction base (one edge) is given by the previous
construction (Case 2).

Induction step. Let α[0, τ ′] be the first edge of α. By the induction hypothesis,
the family of closed curves δ̃(τ) is extended to τ ∈ [τ ′, 1). The previous construction
applied to each edge of the projection of δ̃(τ ′) (instead of [x1, x2]) yields the desired
extension of δ̃(τ) to τ ∈ [0, τ ′).

Definition 1.35 Thus constructed closed curve δ̃(0) is called the canonical represen-
tative of the cycle vanishing along α.

Proposition 1.36 The canonical representative in a level curve St of a cycle vanishing
along a critically-regular path is projected onto a piecewise-linear curve in the complex
x- axis with vertices in CSt (the edges are minimal: no edge interval contains a point
of CSt). More precisely, the representative is a finite union of couples of arcs; the arcs
from each couple are disjoint (maybe except for their ends) and are projected bijectively
onto the same edge. If the topology of St is contained in a bidisk DX,Y , then the
canonical representative is contained in the same bidisk. For any given critically-regular
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path α : [0, 1] → C the canonical representatives of cycles vanishing along smaller paths
α|[τ,1], 0 ≤ τ < 1, depend continuously on τ .

This Proposition follows immediately from construction. Its statement concerning
the location of the representative in DX,Y follows from the fact that all the critical
values of projection should lie in the disk DX (by definition) and from the convexity
of the latter disk.

Remark 1.37 The projection of a canonical representative of vanishing cycle is a
piecewise-linear curve with a given order of pieces (up to inversion). It may happen
that several distinct arc couples are projected onto one and the same edge (the number
of all the arc couples over a given edge is called its multiplicity). The number of arc
couples from the previous Proposition is equal to the number of projection edges with
multiplicities.

The upper bounds of lengths and intersection indices of vanishing cycles are based
on the next Proposition (proved below by using Bezout’s theorem).

For any piecewise-linear curve Γ denote

m(Γ) = #(edges of Γ).

The number of arc couples of a canonical representative δ̃ of vanishing cycle (or equiv-
alently, the number of edges (with multiplicities) of its projection) will be denoted by
the same symbol m(δ̃). By definition,

m(δ̃) = 1, if δ̃ is a canonical representative of a local vanishing cycle.

Proposition 1.38 Let α : [0, 1] → C be a critically-regular path, α[0, τ ′] be its first
edge. For any τ ∈ [0, 1) let δ̃(τ) be the canonical representative of the cycle vanishing
along the path α|[τ,1]. Let m(δ̃(τ)) be the previously defined number of edges (we put

m(δ̃(1)) = 1). Then

log2 m(δ̃(0)) − log2 m(δ̃(τ ′)) ≤ 23n12. (1.13)

The Proposition is proved below.

Corollary 1.39 In the previous Proposition

m(δ̃(0)) ≤ 2E(α), E(α) = 23n12m(α), m(α) = #(edges of α).

Proof of Proposition 1.38. The number of edges of the projection of a canonical
representative increases exactly while crossing a parameter value τ ′′ ∈ [0, τ ′) (moving
τ from τ ′ towards 0) where a certain xj meets some edge of the projection (the latter
edge may be multiple, see the previous Remark). If only one xj meets one edge, then
this edge breaks in two pieces, their multiplicities are equal to that of the initial edge.
Therefore, the number of edges with multiplicities is at most doubled after passing the



14

value τ ′′. (In addition, some (new) edges may collide, but this does not change the
sum of the multiplicities of all the edges.) Analogously, if there are r > 1 triples xj ,
xi, xk such that xj meets the edge [xi, xk] at τ = τ ′′, then the total number of edges
with multiplicities increases in at most 2r times. Hence, the number of edges with
multiplicities of the global vanishing cycle δ̃(0) is no greater than 2Nm(δ̃(τ ′)), where
N is the total number of quadruples (x1, x2, x3, τ), τ ∈ [0, τ ′), such that xi = xi(α(τ))
form a collinear point triple, and they are not identically collinear in τ ∈ [0, τ ′].

Without loss of generality we assume that α(τ) = τ for τ ∈ [0, τ ′]: one can achieve
this by complex affine change of the coordinate t. Then the previous quadruples are
isolated solutions with τ ∈ [0, τ ′) of the following system of equations






H(xi, yi) − τ = 0
∂H
∂y (xi, yi) = 0

i = 1, 2, 3

Im τ = 0

(Re x1 − Re x2)(Im x1 − Im x3) − (Rex1 − Re x3)(Im x1 − Im x2) = 0

(1.14)

We show that the number of these isolated solutions is less than 23n12 by using
Bezout’s theorem applied to the complexification of (1.14), see the following Definitions.

Definition 1.40 The real form of a complex polynomial is the tuple of its real and
imaginary parts (as polynomials in the real and imaginary parts of the variables).

Definition 1.41 The complexification of a system of real polynomials is the system of
their extensions to the complex variables. The complexification of the real form of a
complex polynomial P will be briefly referred to, as the complexification of P .

The complexification of system (1.14) is a system of 14 complex polynomial equa-
tions in 14 complex variables that is obtained from (1.14) by replacing the (first 6)
complex polynomials and the (two last) real ones by their complexifications. It con-
sists of 6 equations of degree n + 1, 6 ones of degree n, one linear equation, one
quadratic equation. Bezout’s theorem applied to the complexification says that the
number of its isolated solutions is no greater than the product of the latter degrees
2(n + 1)6n6 < 23n12 (the latter inequality follows from elementary inequalities).

Proposition 1.42 Each isolated solution of (1.14) with τ ∈ [0, τ ′) is an isolated solu-
tion of its complexification.

Remark 1.43 One can provide examples of real polynomial equations with isolated
solutions in the real space that are not isolated solutions in the complex space: the
real polynomial equation x2 + y2 = 0 has unique real solution 0 that is not an isolated
solution of its complexification. V.Kharlamov have proposed the following example of
3 real polynomial equations with 3 variables, where the number of isolated solutions
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in the real space is greater than the product of the degrees (which we call the Bezout
number): 





∏d
k=1(x − xk)2 +

∏d
k=1(y − yk)2 = 0

z = 0

z = 0

, d > 2.

It has d2 real solutions (xi, yj, 0), which is greater than its Bezout number 2d.

Proposition 1.42 (which is proved below) together with the previous discussion
implies Proposition 1.38. !

Proof of Proposition 1.42. Fix an isolated solution X of (1.14). Let us show that
it is an isolated solution of its complexification. To do this, we consider the subsystem
(denoted (1.14)’) of system (1.14) consisting of its (first 6) complex polynomial equa-
tions, which is obtained by dropping its nonholomorphic (two last) equations. Below
we show (Proposition 1.44) that the local solutions at X of system (1.14)’ form a reg-
ularly embedded holomorphic curve (two-dimensional real surface, denoted Γ) locally
1-to-1 projected to a domain in the τ - plane. We also show that system (1.14)’ has
the maximal rank at X. This implies the same statements in the complexification. In
particular, the local solutions at X of the complexified system (1.14)’ in C14 form a
two-dimensional holomorphic surface (denoted Γ̃) locally 1-to-1 projected to a domain
in the complexified τ - plane C2. Afterwards we consider the restrictions to Γ̃ of the
complexified two last equations of (1.14): it suffices to show that their solution X is
isolated in Γ̃. The hyperplane Im τ = 0 is transversal to the real surface Γ at X, hence,
their intersection (denoted γ) is a regularly embedded real analytic curve. Hence, the
two latter statements hold true in the complexification (denote γ̃ the intersection of
the complexifications of these hyperplane and surface, γ̃ is a regularly embedded holo-
morphic curve). Now it suffices to show that the last equation of (1.14) does not hold
identically on γ̃. Indeed, it does not hold identically on the real curve γ by isolatedness
of X as a solution of (1.14). Hence, X is an isolated solution of the complexification
of (1.14).

Thus, the previous discussion proves Proposition 1.42 modulo the following

Proposition 1.44 The solutions of (1.14)’ with τ ∈ (0, τ ′) form a disjoint union of
graphs of analytic vector functions (xi(τ), yi(τ))i=1,2,3 in τ ∈ [0, τ ′). System (1.14)’ has
the maximal rank at these solutions.

Proof The solutions of system (1.14)’ with τ being a noncritical value of H are exactly
the tuples ((xi, yi)i=1,2,3, τ) where (xi, yi) are the critical points of the projection πτ :
Sτ → Ox. By assumptions, the path α is critically-regular and contains the semiinterval
[0, τ ′). The critical regularity implies that the values τ ∈ [0, τ ′) are noncritical for H ,
and (xi(τ), yi(τ)) are simple critical points of the projection πτ (in particular, they do
not collide and depend holomorphically on τ ∈ [0, τ ′)). This proves the first statement
of Proposition 1.44.
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Let us prove its last statement saying that system (1.14)’ has the maximal rank
at the previous tuples ((xi, yi)i=1,2,3, τ). This is equivalent to say that the pair of
polynomials H − τ , ∂H

∂y has the maximal rank at each their common zero, which is a
critical point (xi, yi) of the projection πτ . Indeed, the polynomial H − τ has nonzero
gradient at its zero level curve Sτ , since τ is not a critical value of H . The restriction to
Sτ of the second polynomial ∂H

∂y has nonzero derivative at each point (xi, yi). Indeed,

since the latter is a critical point of πτ , this is equivalent to say that ∂2H
∂y2 (xi, yi) #= 0.

The latter inequality follows immediately from the simplicity of the critical points of
the projection (critical regularity of the path). This proves the maximality of rank and
finishes the proof of Propositions 1.44 and 1.42. ! !

1.5 Lengths of canonical representatives of vanishing cycles

Lemma 1.45 Let H be an ultra-Morse polynomial of degree n+1 ≥ 3, a be its critical
value, t ∈ C be a noncritical value, St = {H(x, y) = t}, πt : St → Ox be the projection
to the x- axis. Let (x, y) be a t- regular orthogonal coordinate system (see Definition
1.29). Let α be a critically-regular path from t to a with m(α) edges, δ̃ ⊂ St be the
canonical representative of the corresponding vanishing cycle. Let X, Y > 0 be such
that the topology of the curve St be contained in the bidisk DX,Y . Then

|δ̃| ≤ 2l(n)m(α)R, R = max{X, Y }, l(n) = 24n12. (1.15)

Corollary 1.46 Let all the conditions of the Lemma hold, but now the orthogonal
coordinate system (x, y) be not necessarily t- regular, and the path α be piecewise-
linear, but not necessarily critically-regular. Then the corresponding vanishing cycle
admits a representative δ̃ satisfying (1.15) and lying in DX,Y .

Proof of Lemma 1.45. Each arc couple of δ̃ (see Proposition 1.36), which is pro-
jected onto a real segment in the complex Ox -line, lies in a real algebraic curve. This
curve (denoted ψ) is the intersection of the complex level curve St of H and the real
hyperplane in C2 = R4 that contains the complex Oy- line and the latter segment.
That is, ψ is the common zero set of the system of 3 polynomials in C2 = R4: the real
and the imaginary parts of H (both of degree n + 1) and a linear function.

The number of the previous arc couples (edges) is already estimated in Corollary
1.39. Let us estimate the total length of one arc couple. It is no greater than the
sum of lengths of its projections to the x- axis and to the real and imaginary y -axes
(more precisely, we have to replace ”length of projection” by ”length of projection
times the maximal number of preimages of a generic point”). Let us estimate the
latter quantities.

The arc couple is projected to the x- axis onto a segment in DX (hence, having
length no greater than 2X), and each point of the latter segment (except for its ends)
has exactly two preimages (Proposition 1.36). Hence, the length contribution of the x-
projection is no greater than 4X.
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The projection image of the arc couple to either real or imaginary y- axis is a seg-
ment lying in DY (hence, of length no greater than 2Y ). The number of preimages of
a generic point is no greater than (n+1)2. Indeed, it suffices to show that the ambient
algebraic curve ψ has at most the same number of isolated intersection points with a
generic real hyperplane in C2 = R4 parallel to a given one (here ”generic” means ”in-
tersecting ψ transversally”). These points are common zeros of the previous system of
3 polynomials (defining ψ) and an additional linear function (defining the hyperplane).
By transversality, these points are isolated common zeros of their complexifications.
Hence, by Bezout’s theorem, their number is no greater than (n + 1)2.

Therefore, the length contribution of the projections to either real or imaginary y-
axis is no greater than 2Y (n + 1)2.

The previous discussion implies that the total length of an arc couple is no greater
than

4X + 4Y (n + 1)2 ≤ (4 + 9n2)Y ≤ 10Rn2.

Together with Corollary 1.39, this implies that the total length of the canonical repre-
sentative is no greater than

10Rn2 × 223n12m(α) < 224n12m(α)R.

This proves Lemma 1.45. !

Proof of Corollary 1.46. One can choose a sequence (xk, yk) of t- regular orthogonal
coordinate systems converging to (x, y) (by the genericity of the t- regularity property).
Let us fix such a sequence (xk, yk). By assumption, the topology of the level curve St is
contained in DX,Y . Therefore, there exists a real pair sequence (Xk, Yk) → (X, Y ) such
that for any k the topology of St is contained in DXk,Yk

in the coordinates (xk, yk). For
any k one can slightly perturb the path α to make it critically-regular with respect to
the coordinates (xk, yk). Applying Lemma 1.45 yields canonical representatives δ̃k of
the vanishing cycle with uniformly bounded lengths and locations: they satisfy (1.15)
with R replaced by Rk → R, Rk = max{Xk, Yk}. Passing to a subsequence ki one
can achieve that the representatives δ̃ki converge to some other representative δ̃ of
the same vanishing cycle that satisfies (1.15). In more details, consider δ̃k as closed
curves parametrized by their natural parameters. If their lengths (i.e., those of the
parameter segments) are different, we rescale the parameter segments by homotheties
(by enlarging the smaller ones) in order to make them equal. By construction, we get a
sequence of closed curves δ̃k parametrized by one and the same segment; the derivatives
of the parametrizations have modules no greater than 1. Now Arzela-Ascoli theorem
implies the previous statement of (uniform) convergence of appropriate subsequence
δ̃ki . The curves δ̃ki are homotopic to their limit δ̃, hence, the latter is a representative
of the same cycle. It satisfies (1.15) and lies in DX,Y by construction. The Corollary
is proved. !

We use also the following Corollary of Lemma 1.45 giving an upper bound of length
of vanishing cycle in terms of the length of the corresponding path. To formulate it,
let us introduce the next Definition.
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Definition 1.47 Let H be a ultra-Morse polynomial, β > 0. A regular path α :
[0, 1] → C (denote a = α(1)) is said to be β- regular, if the curve α ∩ Dβ(a) is a
connected arc of the path α, and α is disjoint from the β neighborhoods of the critical
values distinct from a of the polynomial H .

Corollary 1.48 Let H be an ultra-Morse polynomial of degree n + 1 ≥ 3, 0 < β < 1.
Let a be its critical value, t ∈ C be a noncritical value, α be a β- regular (but now, not
necessarily piecewise-linear) path from t to a. Let X, Y > 0 be such that the topology
of the curve St lies in the bidisk DX,Y , R = max{X, Y }. Then the cycle in H1(St, Z)

vanishing along the path α admits a representative δ̃ such that

δ̃ ⊂ DX,Y , |δ̃| ≤ 2l(n) |α|β−1+5
3 R, where (1.16)

l(n) is the same, as in (1.15).

Proof The vanishing cycle depends only on the homotopy class (modulo the critical
values) of the path α. We construct a piecewise-linear path α′ homotopic to α with

at most |α|β−1+5
3 edges. Then Corollary 1.46 applied to α′ implies (1.16) for the cor-

responding representative δ̃ of the cycle as vanishing along α′. To do this, consider a
splitting of α into its arc α∩Dβ(a) (whose length is no less than β) and at most |α|β−1+2

3
other arcs of lengths at most 3β. Each splitting arc is homotopic outside the critical
values of H to the straightline segment with the same ends. Indeed, by β- regularity,
the β- neighborhood of the path end a does not contain other critical values of H . This
implies that the arc α ∩ Dβ(a) is homotopic to the radius with the same ends. The
similar statement for the other arcs, which are disjoint from the β- neighborhoods of all
the critical values, is implied now by the following geometric fact: a curve lying outside
a disk (or several disks) of a radius β and having a length less than πβ > 3β is always
homotopic with fixed ends (outside the centers of the disks) to the straightline segment
with the same ends. Therefore, the new path (denoted α′) from t to a consisting of
the previous straightline segments is homotopic to α (the homotopy does not meet the

critical values of H). The path α′ is piecewise-linear with at most |α|β−1+5
3 edges. Then

this is a path α′ we are looking for. This together with the previous discussions proves
the Corollary. !

We will also use the following upper bound of length of vanishing cycle along a
path that is not β- regular, in particular, intersects the β- neighborhoods of the critical
values. The bound is given in terms of the length of its part that lies in the disc D3

outside these neighborhoods and the variations of arguments of t − ai (respectively, t)
along its arcs in Dβ(ai) (respectively, outside D3).

Corollary 1.49 Let H be a normalized ultra-Morse polynomial of degree n + 1 ≥ 3,
ai be its critical values. Let 0 < β ≤ ν = c′′(H)

4n2 , α : [0, 1] → C be a regular path,

t0 = α(0), a = α(1), τ ′ = min{τ ∈ [0, 1] | α(τ, 1] ⊂ Dβ(a)}, α̂ = α \ α(τ ′, 1],
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Dβ = D3 \ ∪iDβ(ai), α̃ = α ∩Dβ, (1.17)

V = Vα,β = β
∑

i

Varα̂∩Dβ(ai) arg(t − ai) + 3 Varα̂\D3
arg t

(the Var- terms are the complete variations of arguments along the corresponding pieces
of α). Let X, Y > 0 be such that the topology of the curve St0 lies in the bidisk DX,Y ,
R = max{X, Y }. Then the cycle in H1(St0 , Z) vanishing along the path α admits a
representative δ̃ such that

δ̃ ⊂ DX,Y , |δ̃| < 22l(n) (|eα|+V )β−1+5
3 R, l(n) = 24n12. (1.18)

Proof Recall that each disc Dβ(ai) contains no critical values of H except for ai, and
these disks are disjoint, since β ≤ ν. The complement C \ D3 also contains no critical
values and is disjoint from the latter disks by normalizedness (|ai| ≤ 2).

If α̂ = ∅, then α ⊂ Dβ(a), and hence, α is homotopic to the segment [t0, a] modulo
the critical values. In this case Lemma 1.45 applied to the segment path [t0, a] implies
an upper bound stronger than (1.18).

If α is contained in D3 and is β- regular, then Corollary 1.48 implies an upper
bound stronger than (1.18).

In what follows we assume that α is either not β- regular, or not contained in D3.
We construct a β- regular path α′′ : [0, 1] → D3 of length at most |α̃| + V such that
the composition φ = [t0,α′′(0)]◦α′′ is homotopic to α modulo the critical values. Then

we replace the path α′′ by a homotopic piecewise-linear path α′ with at most |α′′|β−1+5
3

edges, as in the proof of Corollary 1.48. The path φ′ = [t0,α′′(0)] ◦ α′ thus obtained,
which is homotopic to α, is a piecewise-linear path with one edge more. Applying
Corollary 1.46 to φ′ yields (1.18).

The previous path φ is constructed by replacing connected components of the com-
plement α \ Dβ. Let l = α(τ1, τ2) be a maximal arc of α lying in one of the latter
connected components (maximal means that the previous interval (τ1, τ2) is contained
in no other interval with the same property): then either l ⊂ Dβ(ai) for some i, or
l ⊂ C \ D3. If l = α(τ ′, 1], we do not replace it. If not, then l is either a starting arc
α[0, τ ′′) of the path α with one end α(τ ′′) in ∂Dβ , or an arc with both ends in one and
the same boundary circle. In the latter case we replace l by the arc (denoted l′) of this
circle with the same ends that is homotopic to l outside the critical values (it may be
self-overlapped). Then it follows from definition that

|l′| ≤ βVarl arg(t − ai), if l ⊂ Dβ(ai); |l′| ≤ 3 Varl arg t, if l ∩ D3 = ∅.

Now consider the former case, when l is a starting arc (either inside some Dβ(ai),
or outside D3). Then we replace l by the composition of

- the segment joining α(0) to the closest point of the corresponding circle (either
∂Dβ(ai), or ∂D3);

- an arc of the latter circle
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so that their composition be homotopic to l in the punctured disk Dβ(ai) (respec-
tively, in the complement of D3).

Then it follows from construction that the length of the latter circle arc is no greater
than βVarl arg(t − ai) (respectively, 3 Varl arg t).

The previous replacements give us a modified path α (denoted φ) that either starts
in Dβ (then we put α′′ = φ), or starts outside by a segment ending at ∂Dβ (then we
put α′′ to be φ with the latter segment deleted). It follows from construction that α′′

is β- regular. The previous inequalities imply that |α′′| ≤ |α̃| + V . The Corollary is
proved. !

1.6 Intersection indices of vanishing cycles

Theorem 1.50 Let H be an ultra-Morse polynomial, t ∈ C be a noncritical value, α1,
α2 be two piecewise-linear paths starting at t and going to some critical values of H
(may be to one and the same critical value). Then the module of the intersection index
of the corresponding vanishing cycles is less than

224n12(m(α1)+m(α2))

Proof Without loss of generality we consider that the coordinate system under con-
sideration is t- regular and the paths are critically-regular (one can achieve this by
small perturbations of the coordinate system and the paths). Let δ̃1, δ̃2 be the canoni-
cal representatives of the vanishing cycles. Their projections to Ox are piecewise-linear
curves with number of edges estimated from above by Corollary 1.39. For the proof of
the Theorem we estimate the number of the intersection points of the projections and
the contribution of each point to the intersection index.

Case 1. Two arc couples of δ̃1 and δ̃2 respectively have transversally intersected
projection edges (no common vertex). The contribution of this intersection point (per
arc couple pair) to the intersection index of δ̃1 and δ̃2 has module at most 2. Indeed,
each arc couple consists of two arcs (disjoint maybe except for their ends), each arc
is 1-to-1 projected to the corresponding edge (Proposition 1.36). Hence, we have at
most two transversal intersection points of the corresponding unions of arcs over the
intersection point.

There can be at most 2E(α1)+E(α2) arc couple pairs (one arc couple from δ̃1, the
other one from δ̃2) with transversally intersected projections, as above. This follows
from Corollary 1.39. Thus, the total contribution of the transversal intersections of
edges to the intersection index is no greater than 2E(α1)+E(α2)+1.

Case 2. There is a common vertex x of the projections πtδ̃1 and πtδ̃2 (with at most 2
adjacent edges in each πtδ̃i; thus, the total number of adjacent edges of both projections
is at most 4). Firstly let us assume the latter edges are simple and no two of them are
collinear. We claim that the module of the contribution of x to the intersection index
of the canonical representatives is at most 16. Indeed, by assumption, each projection
πtδ̃i has two adjacent edges at x, and δ̃i has two arcs over each edge. Each arc is locally
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(in a neighborhood of the preimage π−1
t (x)) a regularly embedded semicurve with a

tangent line at its end over x (its end may be either a critical point of projection or not);
in total there are 4 semicurves per each πtδ̃i. All these 8 semicurves are transversal
by construction and the previous assumption on noncollinearity of edges. This implies
that the index of the intersection over x of the two unions of 4 semicurves is no greater
than 4 × 4 = 16.

Let now there be a common vertex of projections (with at most two adjacent edges
in each πtδ̃i, as above) and either some of the (at most four) adjacent edges are collinear,
or some edges coincide. Then one can avoid any of these situations by small deformation
of the interiors of edges (keeping the vertices fixed) in class of smooth curves and lifting
it up to a deformation of the closed curves δ̃i. If the deformation of edges is C1- small
enough, then the number of transversal intersection points of projections (not including
vertices) remains the same. Afterwards the contribution to the intersection index of
each common vertex of the projections is estimated as above: it is no greater than 16.

In the general case, when there are several adjacent edges and (or) some of them
are multiple, define the multiplicity of a vertex of the projection πδ̃i as the sum of the
multiplicities of the adjacent edges of the same projection. The total vertex multiplicity
of the projection is the sum of the multiplicities of its vertices. It follows from defi-
nition and the previous discussion that if A is a common vertex of πδ̃i, i = 1, 2, with
corresponding multiplicities µi, then its contribution to the intersection index is no
greater than 16µ1µ2. Hence, the total contribution of the common projection vertices
to the intersection index is no greater than 16 times the product of the total vertex
multiplicities of the projections.

Each edge has two vertices, hence, the total multiplicity of vertices in each πδ̃i is
no greater than the double total multiplicity of edges, thus, no greater than 2E(αi)+1

(Corollary 1.39). Therefore, the total contribution of the common vertices to the
intersection index is no greater than 2E(α1)+E(α2)+6.

The previous discussion implies that the intersection index of the vanishing cycles
under consideration, which is the sum of contributions of transversal intersections of
the projections and those of their common vertices, is no greater than 2E(α1)+E(α2)+7.
Together with Corollary 1.39 and elementary inequalities, this implies that the module
of the intersection index is less than 224n12(m(α1)+m(α2)). Theorem 1.50 is proved. !

1.7 Upper bounds of integrals

Below we recall and prove upper bounds of Abelian integrals used in [4]. To state
them, let us firstly recall the definition (introduced in [4]) of the following function on
the space of normalized ultra-Morse polynomials.

Definition 1.51 Let H be a normalized ultra-Morse polynomial of degree n + 1 ≥ 3.
Define c2(H) to be n2 times the minimal distance between its critical values. Put

c′′(H) = min(c2(H), 1).
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Theorem 1.52 Let H be a normalized ultra-Morse polynomial of degree n + 1 ≥ 3, a
be its critical value, t be a noncritical value, |t| ≤ 5, α : [0, 1] → C be a ε- regular path
from t to a (see Definition 1.47),

|ε| =
c′′(H)

8n2
, |α| ≤ 36n2 + 10. (1.19)

Let δ ∈ H1(St, Z) be the cycle vanishing along α. Let ω be a monomial 1- form of
degree no greater than 2n − 1 with unit coefficient. Then

|Iδ(t)| = |
∫

δ

ω| < 2
2600n16

c′′(H) (c′(H))−28n4
. (1.20)

Theorem 1.53 Let H be a weakly normalized ultra-Morse polynomial of degree n+1 ≥
3, a be its critical value, t be a noncritical value, 0 < β < 1. Let α be a β- regular path
from t to a (see Definition 1.47), δ ∈ H1(St, Z) be the corresponding vanishing cycle.
Let ω be a monomial 1- form of degree at most 2n − 1 with unit coefficient. Then

|Iδ(t)| < 210n12 |α|+5
β −2n(c′(H))−28n4

. (1.21)

Theorem 1.54 Let H be a normalized ultra-Morse polynomial of degree n + 1 ≥ 3, a
be its critical value, t0 be a noncritical value, 0 < β ≤ ν = c′′(H)

4n2 . Let α : [0, 1] → C
be a regular path, t0 = α(0), a = α(1), α̂, α̃, V = Vα,β be the same, as in (1.17). Let
δ ∈ H1(St0 , Z) be the cycle vanishing along α. Let ω be a monomial 1- form of degree
at most 2n − 1 with unit coefficient. Then

|Iδ(t0)| < 220n12 |eα|+V +5
β −2n(c′(H))−28n4

max{1, ( |t0|
5

)2}. (1.22)

Proof of Theorem 1.52. Let us apply Theorem 1.10 to the polynomial H .
Case 1: the coordinates (x, y) satisfy the statements of Theorem 1.10. Then this

Theorem implies that the topology of the curve St lies in the bidisk DX,Y , X ≤ Y ≤ R0,
R0 is the same, as in (1.5). By assumption, the conditions of Corollary 1.48 hold with
β = ε, R ≤ R0. Let δ̃ ⊂ St ∩ DX,Y be the representative from this Corollary of the
vanishing cycle. Then by the same Corollary and definition,

|
∫

eδ
ω| ≤ R2n−1

0 |δ̃| ≤ R2n
0 2l(n)( |α|+5ε

3ε ), l(n) = 24n12. (1.23)

Substituting the values ε = c′′(H)
8n2 , R0 = (c′(H))−14n3

n65n3
and inequality (1.19) to the

latter right-hand side and applying elementary inequalities yields

|
∫

eδ
ω| ≤ (c′(H))−28n4

2
2600n16

c′′(H)
−4n16

. (1.24)

This proves Theorem 1.52 in Case 1.
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Case 2: general. Let (x′, y′) be orthogonal coordinates on C2 satisfying the state-
ments of Theorem 1.10. The form ω is monomial of degree at most 2n − 1 with unit
coefficient. Therefore, in the new coordinates it becomes a product of a constant 1-
form A1dx′ + B1dy′ and at most 2n − 1 linear functions Aix′ + Biy′, i ≥ 2; the latter
form and linear functions have unit Hermitian norm: |Ai|2 + |Bi|2 = 1.

The sum of modules of the coefficients of the form ω in the new coordinates is no
greater than 2n. Indeed, it is no greater than

∏

i

(|Ai| + |Bi|), |Ai| + |Bi| ≤ 2

√
|Ai|2 + |Bi|2

2
=

√
2

(the classical quadratic mean inequality). Hence, the previous product (and thus, the
sum of modules of coefficients) is no greater than 2n.

Let us repeat the discussion from Case 1 in the coordinates (x′, y′). Now our form
is not necessarily monomial, and the previous upper bounds of the integral should be
multiplied by the sum of modules of its coefficients. This together with the previous
inequality implies the same upper bound (1.24) but with the right-hand side multiplied
by 2n. The right-hand side thus modified is less than that of the inequality in Theorem
1.52. This proves Theorem 1.52. !

Proof of Theorem 1.53. By assumptions, all the critical values of H have modules
at most 2. Hence,

|t| ≤ |α| + 2.

Let us assume that |t| > 5, thus, |α| + 2 > 5 (the opposite case is treated simpler and
we get a stronger inequality than in the Theorem; this case will be briefly discussed at
the end of the proof). We consider only the case when the coordinates in C2 satisfy
the statements of Theorem 1.10: then afterwards one has only to check that the upper
bound thus obtained remains less than that in Theorem 1.53 after multiplication by
2n. This will imply the Theorem in the general case, as in the proof of Theorem 1.52.

By the Corollary of Theorem 1.10 and the previous inequality on |t|, the topology
of the curve St is contained in a bidisk DX,Y ,

X ≤ Y ≤ R = R0(
|α| + 2

5
)

1
n+1 , R0 is the same as in Theorem 1.10. (1.25)

Then as in (1.23), by definition and Corollary 1.48,

|
∫

δ

ω| ≤ R2n2l(n) |α|+5β
3β , l(n) = 24n12. Thus,

|
∫

δ

ω| < R2n
0 (

|α| + 2

5
)2224n12 |α|+5β

3β .

Substituting the value of R0 from Theorem 1.10 together with elementary inequalities
yields

|
∫

δ

ω| < 210n12 |α|+5
β −3n(c′(H))−28n4

(
2

5
)2. (1.26)
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The latter right-hand side (even being multiplied by 2n) is less than that of (1.21).
This proves (1.21).

Let us now consider the case, when |t| ≤ 5. Then the previous upper bounds of
the integral hold, but now we have to replace the ratio |α|+2

5 in (1.25) and the next
inequality by 1. This implies that (1.26) holds with its right-hand side multiplied by
( 5
|α|+2)

2 < (5
2)

2. Thus modified right-hand side (even if multiplied by 2n) is again no

greater than that of (1.21). Theorem 1.53 is proved. !

Proof of Theorem 1.54. The proof of Theorem 1.54 repeats that of Theorem 1.53
with obvious change: we have to substitute the length estimate of vanishing cycle given
by Corollary 1.49 (instead of 1.48) and R = R0 max{1, ( |t0|5 )

1
n+1} (by Corollary 1.11).

!

1.8 Lower bound of period determinant

Definition 1.55 (see [4]) A tuple Ω = (ω1, . . . ,ωn2) of monomial 1- forms ωi of the
type xlym+1dx is called standard, if

- their degrees are no greater than 2n − 1;
- all the forms xlym+1dx, 0 ≤ l + m ≤ n − 1, are contained there;
- the number of forms of degree 2n − k equals k for any k = 1, . . . , n.

The following Theorem was stated and used in [4].

Theorem 1.56 Let H be a normalized ultra-Morse polynomial, Ω be a standard mono-
mial tuple of forms. Let I(t), ∆(t) be respectively the corresponding Abelian integral
matrix (1.1) and its determinant (1.2). The standard monomial tuple Ω can be chosen
so that

|∆(t)| > (c′(H))6n3
(c′′(H))n2

n−62n3
, (1.27)

whenever t lies outside the c′′(H)
4n2 - neighborhoods of the critical values of H.

Example 1.57 Let (l(i), m(i)) be a lexicographic sequence of pairs (l, m), 0 ≤ l, m ≤
n − 1, numerated by i = 1, . . . , n2. Put

ωi = xl(i)ym(i)+1dx.

This is a standard form tuple, which follows from definition. If in the previous Theorem
the highest homogeneous part of H equals h(x, y) = xn+1 + yn+1, then the latter forms
satisfy its inequality. The proof of this statement, which is omitted to save the space,
can be easily derived from the results of this Subsection and Section 3. In general, one
can choose a generic h in such a way that the determinant ∆h,Ω(t) constructed with
the above ωi be identically equal to 0 (this follows from results of [3]): in this case the
form tuple should be changed.
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The proof of Theorem 1.56 is based on the following explicit formula for the period
determinant, see [3]:

∆(t) = C(h, Ω)
n2∏

i=1

(t − ai), (1.28)

C(h, Ω) = Cn(Σ(h))
1
2−nP (h, Ω), where (1.29)

Σ(h) is the discriminant of the homogeneous polynomial h:

if h(x, y) = c−1

n∏

i=0

(y − cix), then Σ(h) = c2n
−1

∏

0≤j<i≤n

(ci − cj)
2, (1.30)

P (h, Ω) =
2n−2∏

d=n

Pd(h, Ω),

where Pd are the polynomials from [3], whose definition is recalled below,

Cn = (−1)
n(3n−1)

4
(2π)

n(n+1)
2 (n + 1)

n2+n−4
2 ((n + 1)!)n

∏n−1
m=1(m + n + 1)!

. (1.31)

Definition 1.58 ([3]). For any given polynomial 1- form ω put Dω to be the polyno-
mial defined by the equality

dω = Dωdx ∧ dy.

Definition 1.59 Let n ≥ 2, d ∈ N, n ≤ d ≤ 2n − 2, h be a homogeneous polynomial
of degree n + 1. Let Ω(d) = (ω′1, . . . ,ω

′
s) be an ordered tuple of homogeneous 1- forms

of degree d + 1, the number s of the forms being equal to s = d + 1 in the case, when
d ≤ n − 1, and s = 2n − d − 1 otherwise. The matrix Ad(h, Ω(d)) associated to the
form tuple Ω(d) is the (d + 1) × (d + 1) matrix whose columns are numerated by all
the monomials yd, yd−1x, . . . , xd of degree d and the lines consist of the corresponding
coefficients of the following polynomials:

Case d ≤ n − 1. Take the d + 1 polynomials Dω′
r

d−r+2 .

Case d ≥ n. Take the d−n+1 polynomials xjyd−n−j ∂h
∂y , 0 ≤ j ≤ d−n; the 2n−d−1

polynomials Dω′
r

n−r+1 ; the d − n + 1 polynomials xjyd−n−j ∂h
∂x , 0 ≤ j ≤ d − n.

Let Ω be a standard form tuple, n ≤ d ≤ 2n − 2, Ω(d) be the tuple of the forms in
Ω of degree d + 1 (numerated in the same order, as in Ω). The number s of forms in
Ω(d) is equal to 2n − d − 1 by definition. Put

Ad(h, Ω) = Ad(h, Ω(d)), Pd(h, Ω) = Pd(h, Ω(d)) = det Ad(h, Ω(d)), (1.32)

P (h, Ω) =
2n−2∏

d=n

Pd(h, Ω).

Now all the entries of formula (1.29) are defined.
As it will be shown below, Theorem 1.56 is implied by the following
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Theorem 1.60 Let h be a given generic homogeneous polynomial of degree n + 1 ≥ 3
with ||h||max = 1. Then one can choose a standard form tuple Ω so that

C(h, Ω) > (c′(h))6n3
n−60n3

. (1.33)

Theorem 1.60 will be proved in Section 3. The principal part of its proof is the
lower bound of Pd(h, Ω) given by the next Lemma. Its proof takes the most of Section
3. The upper bound of Σ(h) and lower bound of Cn are proved in Section 3 using
elementary inequalities and straightforward a priori estimates for h.

Lemma 1.61 For any generic homogeneous polynomial h of degree n + 1 ≥ 3 with
||h||max = 1 and any d = n, . . . , 2n− 2 one can choose a collection Ω(d) = (ω1, . . . ,ωs)
of s = 2n − d − 1 monomial forms of the type xlym+1dx, l + m = d, so that

Pd(h, Ω(d)) > n−44n2
(c′(h))6n2

. (1.34)

Proof of Theorem 1.56. Let t ∈ C lie outside c′′(H)
4n2 - neighborhoods of the critical

values of H . Then by (1.33) and (1.28),

|∆(t)| > (c′(h))6n3
n−60n3

(
c′′(H)

4n2
)n2

.

This together with elementary inequalities implies (1.27) and proves Theorem 1.56
modulo Theorem 1.60. !

2 Upper bounds of topology. Proof of Theorems
1.10 and 1.17

In this Section we give a proof of Theorem 1.17 (the most part of the Section). In 2.2
we prove Theorem 1.10 and its Addendum. In 2.3 we prove Proposition 1.14 and some
more precise a priori bounds for unit-scaled polynomials. These bounds are used in
the proof of Theorems 1.10 and 1.17.

2.1 The plan of the proof of Theorem 1.17

It suffices to prove Theorem 1.17 for ultra-Morse polynomials. The same statement in
the general case then follows by passing to non ultra-Morse limit. Thus, everywhere
below (except for Subsection 2.2 and whenever the contrary is specified) without loss
of generality we consider that the polynomial H is ultra-Morse.

In the proof of Theorem 1.17 we use the following well-known and elementary
topological properties of basic cycles in H1(St, Z).
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Proposition 2.1 Let H be a ultra-Morse polynomial, t ∈ C be a noncritical value,
γ ⊂ St be an embedded curve that joins two distinct points at the infinity line of the
compactified curve St ⊂ CP2. Then there exists a cycle in the homology group of the
affine curve St that has a nonzero intersection index with γ (see Fig.2).

Proof Take a cycle close to infinity and surrounding an end of γ. !

Corollary 2.2 Given a ultra-Morse polynomial H, a noncritical value t ∈ C and a set
of generators in H1(St, Z). Let b ∈ Ox be a critical value of the projection πt : St → Ox.
Then the projection of any representative of some generator intersects any ray issued
from b, see Fig.2.

S         t

 

"

  . b Ox

! t

A cycle intersecting a curve on   S    with infinite ends t

Figure 2

Proof A generic ray issued from b has a pair of liftings to St under the projection,
whose oriented union γ connects two distinct points at infinity of the compactified
level curve (the orientations of the liftings are opposite). It follows from the previous
Proposition that some generator has a nonzero intersection index with γ. Hence, the
projection of any its representative intersects the ray. For nongeneric ray the same
statement follows by passing to the limit. The Corollary is proved. !

We prove Theorem 1.17 by contradiction. Suppose the contrary: let there be a
centrally-rescaled polynomial H whose all critical values are contained in the disc Dδ0 .
Fix a noncritical value t ∈ Dδ0 . Lemma 1.26 implies that the vanishing cycles along
all the paths α from t to the critical value 0 generate the integer homology group of
St. Then the same statement holds true for the paths α contained in Dδ0 (by the
previous assumption on the critical values). Without loss of generality we assume that
the coordinate system (x, y) under consideration is t- regular, see Definition 1.29. Then
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the latter paths, whose corresponding vanishing cycles generate the homology, may be
chosen critically-regular by Remark 1.34. We show that in fact, the previous vanishing
cycles cannot generate the homology (due to smallness of δ0). The contradiction thus
obtained will prove Theorem 1.17. To do this, we prove that there exist a critical value
b ∈ Ox of the projection πt and a disk Dr ⊂ Ox whose closure is disjoint from b,
|b| > r, such that the canonical representatives of the previous vanishing cycles are all
projected inside Dr. Hence, their projections do not intersect the ray issued from b
away from 0. Thus, by Corollary 2.2, these cycles cannot generate the homology group.

By definition, the projection of the canonical representative of vanishing cycle is a
piecewise-linear curve whose vertices are critical values of πt. We have to show that
someone of the latters lies outside some disc Dr, in particular, is distant from 0. The
first step to do this is the next Lemma, which gives an a priori lower bound of the
maximal distance between critical values of π0. This is the main technical Lemma of
the Section. Here the critical values are understood in the following generalized sense.

Definition 2.3 Let H be a ultra-Morse polynomial. A generalized critical value of the
projection πt : St → Ox is either a critical value of πt (at a critical point where the
curve St is regular), or the projection image of a critical point of H in St. For any t
the set of the generalized critical values of the projection πt will be denoted by CSt,
as in 1.4.

Remark 2.4 The projection image of a critical point of H is a double generalized
critical value of the projection of the corresponding (critical) level curve, provided that
the tangent lines to the local branches of this curve at the critical point are transversal
to the y- axis. This follows from Proposition 1.27.

Proposition 2.5 Let H be an ultra-Morse polynomial, and zero lines of its highest
homogeneous part be transversal to the y- axis. Then for any t ∈ C the number of
generalized critical values of πt (with multiplicities) is equal to

η(n) = n(n + 1).

The Proposition follows from Bezout’s theorem, as the similar statement of Remark
1.32.

Lemma 2.6 Let H be a centrally-rescaled polynomial of degree n + 1 ≥ 3, (x, y) be
orthogonal coordinates in C2 satisfying (1.8). There exists a generalized critical value
b ∈ CS0 such that

|b| > r(n), r(n) = (c′(H))7n2
n−35n2

. (2.1)

Lemma 2.6 is proved in 2.4.
Let ∂Dr be a circle that separates the previous value b from 0, i.e., |b| > r, and

such that

dist(∂Dr, CS0) ≥
r(n)

2η(n)
, η(n) = n(n + 1). (2.2)
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(Its existence follows from Proposition 2.5 and (2.1).) We show that the disk Dr is a
one we are looking for. To do this, we prove the next Lemma.

Lemma 2.7 Let H, (x, y), r(n) be as in the previous Lemma, ∂Dr be a circle satisfying
(2.2). Then the points from CSt do not cross the circle, while t ranges in Dδ0.

Lemma 2.7 is proved in 2.5, where we also prove the following more general

Lemma 2.8 Let H be a centrally-rescaled polynomial of degree n + 1 ≥ 3, (x, y) be
orthogonal coordinates in C2 that satisfy (1.8). Fix arbitrary x ∈ Ox \ CS0 and put

ε = min(dist(x, CS0), 1). Then

x /∈ CSt for any t ∈ D∆(n,ε), ∆(n, ε) = (c′(H))4n3
n−17n3

εn(n+1). (2.3)

The proofs of Lemmas 2.6 and 2.8 use a priori bounds from 2.3 for unit-scaled
polynomials.
Proof of Theorem 1.17. The statement and the condition of the Theorem are
invariant under orthogonal transformations in the preimage. Let us choose a noncritical
value t ∈ Dδ0 and t- regular orthogonal coordinates in C2 (see Definition 1.29) that
satisfy (1.8). Recall that the canonical representative of any cycle in St vanishing to 0
along a (critically-regular) path in Dδ0 is projected onto a piecewise-linear curve with
vertices in CSt. All the vertices lie in Dr (and hence, so does the projection itself also
by convexity). For the local vanishing cycle this statement follows from definition. The
same statement for the global vanishing cycle then follows from Lemma 2.7, convexity
and continuity. This together with the discussion at the beginning of the Subsection
proves Theorem 1.17 modulo Lemmas 2.6 and 2.7. !

2.2 From centrally-rescaled to weakly-normalized. Proof of
Theorem 1.10 modulo Lemmas 2.6 and 2.7.

Here we deduce Theorem 1.10 and its Addendum from Theorem 1.17.
Let H be a weakly-normalized polynomial: then ||h||max = 1, and the critical values

of H lie in the disk D2. Consider the auxiliary polynomial

H̃ = λ−(n+1)(H(λx,λy) − H(0)), λ > 0, such that ||H̃ ′||max = 1. (2.4)

The possibility of choice of such λ follows from the condition saying that H ′−H(0) #≡
0, see the beginning of the paper. By construction, the new polynomial H̃ is centrally-
rescaled and has the same highest homogeneous part h. For the proof of Theorem 1.10
we prove the following upper bound of λ using Theorem 1.17.

Proposition 2.9 Let λ be as in (2.4), δ0 be as in Theorem 1.17. Then

λ ≤ λ0 = (
4

δ0
)

1
n+1 . (2.5)
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Proof Let ai, ãi = λ−(n+1)(ai −H(0)) be the critical values of H and H̃ respectively.
By weak normalizedness, |ai| ≤ 2, and H(0) is one of the ai’ s (in particular, |H(0)| ≤
2). This together with the previous formula implies that |ãi| ≤ 4λ−(n+1). On the other
hand, there exists an i such that |ãi| ≥ δ0 (Theorem 1.17). The two latter inequalities
imply (2.5). !

Denote H̃eλ a polynomial given by formula (2.4) (with λ replaced by arbitrary λ̃).

Then ||H̃ ′
λ0
||max ≤ 1 (the previous Proposition and the monotonicity of the norm

||H̃ ′
eλ
||max as a function in λ̃). Thus, the polynomial H̃λ0 is unit-scaled.

Let t ∈ C, |t| ≤ 5, St = {H = t}, S̃τ = {H̃λ0 = τ}, τ = λ−(n+1)
0 (t − H(0)). By

definition,

St = λ0S̃τ , |τ | < 5 (formula (2.4) and inequality |H(0)| ≤ 2).

By Proposition 1.14 applied to H̃λ0 , the topology of the curve S̃τ lies in the bidisk
DXn,Yn, see (1.9). This together with the previous formula implies that the topology
of St lies in the bidisc DX,Y , X = λ0Xn, Y = λ0Yn. Now elementary inequalities imply
that X < Y < R0. This proves Theorem 1.10.

Now let us prove the Addendum to Theorem 1.10. We have proved above that
||H̃ ′

λ0
||max ≤ 1, λ0 = ( 4

δ0
)

1
n+1 . On the other hand, it follows from definition that

||H̃ ′
λ0
||max ≥ λ−(n+1)

0 (||H ′||max − |H(0)|). This together with the previous inequality
and the fact that |H(0)| ≤ 2 and (1.10) yield

||H ′||max ≤ λn+1
0 + 2 = 4(c′(H))−13n4

n63n4
+ 2 < (c′(H))−13n4

n64n4
.

This proves the Addendum.

2.3 A priori bounds of topology of unit-scaled polynomials

In the present Subsection we prove the following more precise version of Proposition
1.14.

Lemma 2.10 Let H(x, y) = h + H ′ be a unit-scaled polynomial (see Definition 1.13)
of degree n + 1 ≥ 3. Let the orthogonal coordinates in C2 satisfy (1.8). Then for any
t ∈ C with |t| ≤ 5 the topology of the level curve St = {H = t} is contained in the bidisk
DXn,Yn (see Definition 1.8), where Xn, Yn are the same, as in (1.9). Moreover, the
complement St\DXn,Yn is a union of graphs y = yi(x) of n+1 functions y0(x), . . . , yn(x)
holomorphic in C \ DXn such that

|yi(x) − yj(x)| >
c′(H)

3n
|x| for any x ∈ C \ DXn, i #= j. (2.6)

Proof Consider the scalar product ( , ) on the two-dimensional vectors in C2 defined
by the standard Hermitian metric. The y- axis is not a zero line of h by (1.8), so, the
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latter may be written as

h(x, y) = c−1

n∏

i=0

(y − cix) = c−1

n∏

i=0

(E, vi), vi = (−c̄i, 1), E = (x, y) is the Euler field.

(2.7)
The zero lines of the homogeneous polynomial h(x, y) are y = cix. As it is shown

below, inequality (1.8) and unit-scaledness condition imply the following a priori esti-
mates of the ci’ s:

(n + 1)−
n+1

2 < c−1 ≤ 1, (2.8)

|ci| <
√

n for any i = 0, . . . , n. (2.9)

|ci − cj| >
c′(H)

n
for any i, j ≥ 0, i #= j. (2.10)

Afterwards, we prove the statement of the Lemma as follows. Fix an x, |x| ≥ Xn,
and consider the polynomial h(x, y) as that with fixed x and variable y. The polynomial
h has n + 1 roots cix, i ≥ 0. The distances between them are bounded from below
by c′(H)

n |x|, see (2.10). Using this bound we show that if we add to h a polynomial H ′

of smaller degree and at most unit norm and then subtract a t, |t| ≤ 5, then the new
polynomial P = h + H ′ − t has a root yi(x) in the δ- neighborhood of each cix, where

δ =
c′(H)

3n
|x|. (2.11)

(The proof of this statement is based on the next more general Proposition 2.11.) The
previous neighborhoods are disjoint by (2.10), hence, the roots yi(x) are distinct and
thus, depend holomorphically on x /∈ DXn . Inequality (2.6) of the Lemma follows
immediately from (2.10) and (2.11).

The Lemma says that the topology of the curve St, |t| ≤ 5, is contained in DXn,Yn .
To prove this, now we have to show that |y||{(x,y)∈St, x∈DXn} < Yn. To do this, it suffices
to prove the inequality

|yi|(x) < Yn, whenever |x| = Xn, i = 0, . . . , n. (2.12)

We will prove it at the end of the Subsection. Then the multivalued extensions of the
yi’ s to the interior of DXn satisfy the same inequality by the maximum principle. This
proves the Lemma.
Proof of (2.9). The distance of a zero line li = {y = cix} of h to the y- axis is greater
than 1√

n by (1.8). On the other hand, this distance is equal to arctan 1
|ci| . This follows

from the same statement in the case, when ci is real (one can make an individual ci real
by applying a rotation in the coordinate x; the rotation preserves distances between
lines). Therefore,

arctan
1

|ci|
>

1√
n

, hence |ci| <
1

| tan 1√
n |

. (2.13)

This together with the classical inequality tan x > x implies (2.9). !
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Proof of (2.8). By unit-scaledness, ||h||max = max|x|2+|y|2=1 |h|(x, y) = 1. The pre-
vious maximum of |h| is no less than |h|(0, 1) = |c−1|. Hence, |c−1| ≤ 1, which proves
the right inequality in (2.8).

Now let us prove the lower bound of c−1 from (2.8). Let vi be the vectors from the
expression (2.7) for h. By definition and the same formula (2.7),

1 = ||h||max ≤ |c−1|
n∏

i=0

||vi||. (2.14)

By definition and (2.9), ||vi|| =
√

1 + |ci|2 <
√

n + 1. Substituting the latter inequality

to (2.14) yields 1 < |c−1|(n + 1)
n+1

2 . This proves (2.8). !

Proof of (2.10). Fix i #= j ≥ 0. Consider the line x = 1 and its segment bounded by
its intersections with the lines y = cix and y = cjx. By definition, the length of this
segment is equal to |ci − cj| and is greater than the angle between the two latter lines
(since the previous length is no less than the tangent of the angle and by the inequality
tan x > x). The latter angle is equal to the distance between the lines, and hence, is
no less than c′(H)

n by definition. This proves (2.10). !

Proposition 2.11 Let p(y) = p0(y− c0) . . . (y− cn) be a polynomial of degree n + 1 in
one variable, q(y) be a polynomial of a smaller degree, P (y) = p(y) + q(y). Let δ > 0
be such that

|ci − cj | > 2δ for any i #= j, (2.15)

max
|y|≤maxi |ci|+δ

|q(y)| < |p0|δn+1. (2.16)

Then the polynomial P (y) = p(y) + q(y) has a root in the δ- neighborhood of each root
ci of the polynomial p(y).

Proof The statement of the Proposition holds true for the initial polynomial p(y)
with the roots ci. To prove it for P (y), we consider the auxiliary family of polynomials
Ps(y) = p(y) + sq(y), s ∈ [0, 1]. Let us show that for any s ∈ [0, 1] the polynomial
Ps(y) does not vanish on the circles |y − ci| = δ (whose closed disks are disjoint by
(2.15)). This will prove that the roots of Ps (which depend continuously on s) will not
leave the δ- neighborhoods of ci, as s ranges from 0 to 1. It suffices to show that

|p(y)| > |q(y)|, whenever mini|y − ci| = δ. (2.17)

The right-hand side |q(y)| is less than |p0|δn+1 by (2.16). The left-hand side is greater
than |p0|

∏
|y−ci| ≥ |p0|δn+1, since |y−ci| ≥ δ. This proves (2.17) and the Proposition.

!

Proof of (2.6). Fix an x, |x| ≥ Xn. Let δ be the same, as in (2.11). The distance
between the zeros of the polynomial p(y) = h(x, y) is no less than 3δ by (2.10) and
(2.11). Put q(y) = H ′(x, y) − t. To show that the polynomial P (y) = H(x, y) − t =
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p(y)+ q(y) has a root in the δ- neighborhood of each cix, let us apply Proposition 2.11
(here p0 = c−1). To check the conditions of the Proposition, it suffices to show that

|H ′(x, y) − t| < |c−1|δn+1 whenever |y| ≤ |x|max
i≥0

|ci| + δ, |t| ≤ 5. (2.18)

To prove the latter inequality, let us estimate its left-hand side (which is a polynomial
of degree no greater than n) in terms of ||H ′||max. It follows from definition that

|H ′(x, y)| ≤ ||H ′||max(|x|2 + |y|2)
n
2 ≤ ||H ′||max(|x| + |y|)n, whenever |x|2 + |y|2 ≥ 1,

(2.19)
which is the case, since |x| ≥ Xn. Substituting the inequality ||H ′||max ≤ 1 (unit-
scaledness), the second inequality in (2.18), δ = c′(H)

3n |x| yields

|H ′(x, y)| ≤ (|x|(1 + max
i

|ci| +
c′(H)

3n
))n < (2|x|

√
n)n

by (2.9) and the inequality c′(H) ≤ 1. Hence, |H ′(x, y)− t| ≤ 2(2|x|
√

n)n, since |t| ≤ 5
and |x| ≥ Xn.

Now for the proof of (2.18) it suffices to show that for |x| ≥ Xn

2(2|x|
√

n)n < |c−1|δn+1 = |c−1|(
c′(H)

3n
)n+1|x|n+1, i.e.,

|x| > 2n+1(
√

n)n(3n)n+1|c−1|−1(c′(H))−(n+1). (2.20)

The latter right-hand side is less than Xn by (2.8) and elementary inequalities. This
proves (2.20) and (2.18). Inequality (2.6) is proved. !

Proof of inequality (2.12). For any x with |x| = Xn one has |yi(x) − cix| < δ =
c′

3nXn, as it was proved before. This together with (2.9) and elementary inequalities
yields (2.12). The proof of Lemma 2.10 is completed. ! !

2.4 Existence of distant branching points. Proof of Lemma
2.6

Let H be a centrally-rescaled polynomial. For simplicity denote

r = r(n) = (c′)7n2
n−35n2

, see (2.1). (2.21)

Lemma 2.6 says that the projection π : S0 → Ox has a generalized critical value
with module greater than r. To prove this, we have to show that the functions yi(x),
which give the roots of H(x, y) (as a polynomial in y with fixed x), cannot have global
holomorphic branches with disjoint graphs outside the disk Dr. (A point of intersection
of graphs is a critical point of H . Hence, its x- coordinate is a generalized critical value
of the projection.)
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Let us firstly sketch a proof of this statement in the simplest case, when the poly-
nomial H(x, y) under consideration is a product of n + 1 linear (nonhomogeneous)
functions: H(x, y) = c−1

∏n
i=0(y − cix − bi). We know that H(0) = 0, so, at least

one bi is zero, say, b0. On the other hand, H has nonconstant lower terms, moreover,
their max- norm is unit. This implies that at least one bi is not zero and the maximal
module of the bi’s admits a lower bound (see (2.25) below, let b1 have the maximal
module). The line y = c1x + b1 intersects the line y = c0x + b0 = c0x at a point
with the x- coordinate x0 = b1

c0−c1
. An explicit calculation using (2.21), (2.10) and the

lower bound for |b1| shows that |x0| > r. Therefore, the graphs of the linear functions
yi(x) = cix + bi are not disjoint outside the disk Dr.

Now let us prove the statement of the Lemma in the general case, when the functions
yi(x) are not necessarily linear. If they are not holomorphic outside Dr, then the
Lemma follows immediately. Now suppose yi(x) are holomorphic outside Dr. We show
(using smallness of r) that that two of them (say, y0 and y1) have intersected graphs
over the complement to Dr. This together with the discussion at the beginning of the
Subsection proves the Lemma.

By the previous holomorphicity assumption,

yi(x) = cix+bi+φi(x), φi(x) → 0, as x → ∞, φi(x) is holomorphic outside Dr. (2.22)

Let Xn, Yn be the constants from (1.9). Using Lemma 2.10, (2.22) and smallness of
the radius r, we show that the functions φi(x) are small on a domain distant from Dr:

|φi(x)| <
3Ynr

|x|− r
outside Dr, (2.23)

so, the functions yi(x) are close to the linear functions cix + bi and the polynomial H
is close to the product c−1

∏
i≥0(y − cix− bi). As it will be shown below, this together

with previous arguments in the case of product of linear functions imply that one of
the bi’s, say b0, is small, and the other one (say, b1) is large:

there exists a bi (say, b0) with |b0| < 6Ynr
1

n+1 , (2.24)

there exists a bi (say, b1) with |b1| >
1

8n2Yn
, (2.25)

We prove that the graphs of y0(x) and y1(x) are intersected over a point x /∈ Dr.
The graphs of the linear functions are intersected at a point with the x- coordinate

x0 =
b1 − b0

c0 − c1
. We show that |x0| > 4r (2.26)

(in fact, this follows from (2.10), (2.24), (2.25)). Then we show that the closeness of
the yi(x)’ s to the linear functions implies that the difference y0(x)− y1(x) vanishes at
some point in the |x0|

2 - neighborhood of x0. The latter neighborhood (and hence, the
latter point) are disjoint from Dr by (2.26). This proves the Lemma.
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In the proof of the inequalities mentioned above we use the following a priori bounds
of yi and bi. The multivalued functions yi satisfy the bound

|yi(x)| ≤ Yn, whenever |x| ≤ Xn, i = 0, . . . , n (2.27)

(Lemma 2.10, which says that the topology of S0 is contained in DXn,Yn). By the
residue formula and (2.22),

bi =
1

2πi

∫

|x|=Xn

yi(x)

x
dx. Therefore,

|bi| ≤ Yn. (2.28)

Proof of (2.23). The maximal value on DXn of the (multivalued) function φi is less
than 3Yn:

|φi(x)| = |yi(x) − cix − bi| ≤ Yn + |ci|Xn + |bi| ≤ 2Yn +
√

nXn < 3Yn

(by (2.27), (2.28), (2.9) and (1.9)). The function φi is holomorphic in |x| > r and
vanishes at infinity. Hence, the Cauchy formula implies that for any x /∈ Dr one has

φi(x) =
1

2πi

∫

|ζ|=r

φi(ζ)

x − ζ dζ , so, |φi(x)| ≤
r max|ζ|=r |φi(ζ)|

|x|− r
.

This together with the previous inequality implies (2.23). !

Proof of (2.24). By assumption, H(x, y) = c−1

∏n
i=0(y−yi(x)) = c−1

∏n
i=0(y−cix−

bi − φi(x)), H(0, 0) = 0. Therefore, up to a polynomial vanishing at 0, H is equal to

(−1)n+1c−1(
n∏

i=0

bi +
∑

i

(φi(x)
∏

j )=i

yj(x))). (2.29)

(In fact, the sum in (2.29) is a polynomial in x.) The polynomial (2.29) vanishes at
0, as does H . Therefore, the module of the constant term

∏
bi should be no greater

than the maximal module of the sum in (2.29) on any circle centered at 0, e.g., on
∂D1 ⊂ (C \ Dr) ∩ DXn . The latter maximal module is no greater than

(n + 1) max
i

max
∂D1

|φi|Y n
n ≤ 3(n + 1)Y n+1

n r

1 − r
< 4r(n + 1)Y n+1

n (see (2.23)). Hence,

n∏

i=0

|bi| < 4r(n + 1)Y n+1
n , so, min

i
|bi| < (4r)

1
n+1 (n + 1)

1
n+1 Yn < 6r

1
n+1 Yn

!

Proof of (2.25). By definition, H(x, y) = c−1

∏n
i=0(y − cix − bi − φi(x)), hence,

H ′(x, y) = −
n∑

i=0

(bi + φi(x))
H(x, y)

y − yi(x)
. (2.30)
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As it is shown below, this together with the equality ||H ′||max = 1 implies that the bi’ s
cannot be too small simultaneously. To do this, we use the following relation between
the max- norm of a (nonhomogeneous) polynomial and the maximum of its module on
the unit bidisc:

for any polynomial G(x, y), degG ≤ n, one has ||G||max ≤ 2n max
|x|,|y|≤1

|G(x, y)|. (2.31)

Proof Let

G(x, y) =
∑

gijx
iyj. Then max

|x|,|y|≤1
|G(x, y)| ≥

√∑
|gij|2 (2.32)

Indeed, the polynomial G can be considered as a Fourier polynomial in the harmonics
of the torus {|x|, |y| = 1}, the polynomial coefficients coincide with the Fourier co-
efficients. The maximum of the module of the polynomial on the bidisk is equal to
that (of the Fourier polynomial) on the torus. This follows from the one-dimensional
maximum principle applied to G along the lines x = const, y = const. The maximal
module of the Fourier polynomial is no less than its L2- norm (divided by the square
root of the area of the torus). This proves (2.32). On the other hand, it follows from
definition that

||G||max ≤
∑

|gij|. (2.33)

The total number of monomials of degree no greater than n is equal to (n+1)(n+2)
2 . Now

the classical mean inequality says that

∑
|gij| ≤

√
(n + 1)(n + 2)

2

∑
|gij|2.

This together with (2.32), (2.33) and elementary inequalities implies (2.31). !

Now it follows from (2.31) that

max
|x|,|y|≤1

|H ′| ≥ 1

2n
||H ′||max =

1

2n
. (2.34)

On the other hand,

max
|x|,|y|≤1

|H ′| = max
|x|=1,|y|≤1

|H ′| (maximum principle).

Now substituting to (2.30) the upper bounds (2.23), (2.27) of φi||x|=1 and yi respectively
(and also the inequality c−1 ≤ 1, see (2.8)), yields

max
|x|,|y|≤1

|H ′| = max
|x|=1,|y|≤1

|H ′| ≤ (n+1)(max
i

|bi|+
3Ynr

1 − r
) max

i
max

|x|=1,|y|≤1
| H(x, y)

y − yi(x)
|. (2.35)

Let us firstly prove that for any i and any x, |x| = 1, one has

max
|y|≤1

| H(x, y)

y − yi(x)
| ≤ 10

n
2
+1. (2.36)
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Fix an x, |x| = 1, and consider the unit disc D1(y0(x)) ⊂ Oy centered at y0(x).
If it is disjoint from the unit disk centered at 0, then the previous fraction module
maximum is no greater than the maximum of |H| on the same unit disk (by definition).
Otherwise, the same statement holds but for the maximums evaluated on the disk
D3 ⊃ (D1(y0(x)) ∪ D1(0)), since then dist(∂D3, y0(x)) > 1. This together with the
maximum principle imply that in both cases the fraction maximum from (2.36) is less
than max|y|≤3 |H(x, y)| ≤ max|x|≤1,|y|≤3 |H(x, y)|. The latter maximum is no greater
than

||H||max max
|x|≤1,|y|≤3

(|x|2 + |y|2)
n+1

2 = 2 × 10
n+1

2 < 10
n
2 +1,

as in (2.19) (recall that ||h||max = ||H||max = 1, hence ||H||max = 2). This proves
(2.36)

Now substituting (2.36), (2.34) and the (elementary) inequality 3Ynr
1−r < 4Ynr to

(2.35) yields

1

2n
< 2n10

n
2 +1(max

i
|bi| + 4Ynr), thus, max

i
|bi| >

1 − 16n210
n
2 +1Ynr

4n210
n
2 +1

.

This together with elementary inequalities implies (2.25). !

Proof of (2.26). Thus, by (2.24), (2.25) we have |b0| < 6Ynr
1

n+1 < 1
8n2Yn

< |b1|. The
intermediate inequality holds and moreover, its third term is at least twice greater than
its second term (by elementary inequalities). Hence, |b1| > 2|b0|, thus, |b1 − b0| > |b1|

2 .
Recall that |c1 − c0| ≤ |c1| + |c0| < 2

√
n by (2.9). This together with (2.25) and the

previous inequality implies (2.26):

|x0| =
|b1 − b0|
|c0 − c1|

>
|b1|

2|c0 − c1|
>

1

32n2Yn
√

n
= (32n

5
2 Yn)

−1 > 4r. (2.37)

!

Now for the proof of Lemma 2.6 it suffices to show that there exists a point x in the
disk D |x0|

2
(x0) such that y0(x) = y1(x). To prove this, we use the argument principle:

we consider the difference y1(x)− y0(x) restricted to the circle |x−x0| = |x0|
2 and show

that it vanishes nowhere and the increment of its argument along the circle is 2π. This
is true for yi replaced by the linear functions cix + bi = yi(x)− φi(x): the difference of
the latters is equal to (c1 − c0)(x − x0). In the general case one has

y1(x) − y0(x) = (c1 − c0)(x − x0) + (φ1(x) − φ0(x)).

The restriction to the circle of the difference of the linear functions (the first term in
the right-hand side of the previous formula) has a constant module |c1 − c0| |x0|

2 . To
show that the difference of the yi’ s has the same argument increment, as the previous
first term, it suffices to prove that the second term (the difference of the φi’s) has a
smaller module:

|φ1(x) − φ0(x)| < |c1 − c0|
|x0|
2

whenever |x − x0| =
|x0|
2

. (2.38)
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For the proof of the latter inequality let us estimate its right-hand side. By (2.10),
|c1 − c0| > c′(H)

n , hence,

|c1 − c0|
|x0|
2

>
c′(H)

2n
|x0|. (2.39)

Now let us estimate from above the difference of the φi’s on the circle |x − x0| = |x0|
2 :

by (2.23) and inequality r < |x0|
4 (see (2.26)),

|φ1(x) − φ0(x)| ≤ |φ0(x)| + |φ1(x)| < 2
3Ynr

|x|− r
≤ 6Ynr

|x0|
2 − r

<
24Ynr

|x0|
.

By (2.39), for the proof of (2.38) it suffices to check that 24Ynr
|x0| < c′

n
|x0|
2 , or equivalently,

r < c′(48nYn)−1|x0|2.

Indeed, by (2.37), the right-hand side of the latter inequality is greater than

c′(48nYn)
−1(32n

5
2 Yn)

−2 > c′(64nYn)
−1(32n

5
2 Yn)

−2 = c′2−16n−6Y −3
n ≥ c′n−22Y −3

n .

Recall that Yn = n8n(c′)−2n by definition, hence, the previous right-hand side is equal
to (c′)6n+1n−24n−22 ≥ (c′)7nn−35n > r. Inequality (2.38) is proved. The proof of Lemma
2.6 is completed.

2.5 Separation of branching points. Proof of Lemmas 2.7 and
2.8

Firstly we prove Lemma 2.8 and then deduce Lemma 2.7.
Let Xn, Yn be the constants from (1.9). Let yi(x, t), i = 0, . . . , n, be the roots of

the polynomial H(x, y)− t in y, which are multivalued holomorphic functions in (x, t)
with branching at those points (x, t) where x ∈ CSt. The conditions of Lemma 2.10
hold (H is unit-scaled), hence, the topology of St, |t| ≤ 5, is contained in DXn,Yn. This
means that for any t, |t| ≤ 5,

- the functions yi(x, t) are holomorphic in x /∈ DXn and have disjoint graphs;
- for any branch of yi one has |yi|(x) ≤ Yn, whenever |x| ≤ Xn.
The first statement implies that the set CSt of generalized critical values lies in

DXn , whenever |t| ≤ 5.
Now let us take any x ∈ DXn \ CS0 (recall that ε = min(dist(x, CS0), 1)). Let us

prove that then x /∈ CSt whenever |t| < ∆(n, ε) (by definition, ∆(n, ε) < 5). To do
this, consider the discriminant (taken up to constant) of the polynomial H in y:

Σt(x) =
∏

i<j

(yi(x, t) − yj(x, t))2.
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The zeros of Σt coincide with the generalized critical values of the projection of St. For
any fixed t ∈ C yi(x, t) = cix(1 + o(1)), as x → ∞. Therefore (denote xl(t) the roots
of Σt, l = 1, . . . , n(n + 1)),

Σt(x) =
∏

0≤i<j≤n

(cj − ci)
2

n(n+1)∏

l=1

(x − xl(t)). (2.40)

Let |t| < ∆(n, ε) (in particular, |t| < 4). Let us show that x is not a zero of Σt. To do
this, we use the following a priori lower bound of Σ0(x):

|Σ0(x)| ≥ (
∏

0≤i<j≤n

|cj − ci|2)εn(n+1) > (
c′(H)

n
ε)n(n+1) = (c′(H))n(n+1)n−n(n+1)εn(n+1).

(2.41)
This follows from inequalities |x − xi| ≥ ε (which hold by assumption), (2.40) and
(2.10). To show that Σt(x) #= 0 for small t, we estimate from above the derivative of
Σt(x) in t by using the following a priori upper bound of Σt(x) valid whenever |t| ≤ 5
and |x| ≤ Xn:

|Σt(x)| =
∏

i<j

|yi − yj|2(x, t) ≤ (2Yn)n(n+1) ≤ (nYn)n(n+1)

= n8n2(n+1)+n(n+1)(c′)−2n2(n+1) < n16n3
(c′)−3n3

(2.42)

(since |yi(x, t)| ≤ Yn and by elementary inequalities).
The classical inequality on derivative of holomorphic function (which follows from

Cauchy lemma) says that if ψ(t) is a bounded function holomorphic in t ∈ DR, |ψ| <
M, then |ψ′(t)| ≤ M

R−|t| . Applying this inequality to the function Σt(x), now with fixed

x and variable t ∈ D4, R = 5, M = n16n3
(c′)−3n3

(see (2.42)), yields that for any t with
|t| < ∆(n, ε) < 4

|(Σt(x))′t| ≤
M

5 − |t| ≤ M = n16n3
(c′)−3n3

, hence,

|Σt(x) − Σ0(x)| ≤ ∆(n, ε)n16n3
(c′)−3n3

= (c′)4n3
n−17n3

εn(n+1)n16n3
(c′)−3n3

= (c′)n3
n−n3

εn(n+1) (2.43)

Now to prove that Σt(x) #= 0 it suffices to show that the right-hand side of (2.43) is
less than Σ0(x). But it is clearly less than the right-hand side in (2.41), which gives a
lower bound of |Σ0(x)|. This proves the inequality Σt(x) #= 0 and Lemma 2.8.
Proof of Lemma 2.7. To show that CSt does not meet ∂Dr whenever |t| ≤ δ0, we
apply Lemma 2.8 to each point x ∈ ∂Dr. Then by (2.2)

ε = dist(x, CS0) ≥ ε′ =
r(n)

2η(n)
, η(n) = n(n + 1).
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We show that
∆(n, ε′) > δ0 (2.44)

This together with the inequality ∆(n, ε) ≥ ∆(n, ε′) (monotonicity) implies that ∆(n, ε) >
δ0. Together with Lemma 2.8, this yields x /∈ CSt whenever |x| = r, |t| ≤ δ0 and proves
Lemma 2.7.

By (2.3),

∆(n, ε′) = (c′)4n3
n−17n3

(
r(n)

2n(n + 1)
)n(n+1) = (c′)4n3

n−17n3
(r(n))n(n+1)(2n(n + 1))−n(n+1).

This together with formula (2.1) for r(n) and elementary inequalities imply that the
latter right-hand side (and hence, the ∆) is greater than

(c′)4n3
n−17n3

(c′)11n4
n−53n4

n−3n3 ≥ (c′)13n4
n−63n4

= δ0.

This proves Lemma 2.7. !

3 Lower bounds of the formula for the main deter-
minant. Proof of Theorem 1.60

Here we prove Theorem 1.60 (in 3.6), which gives a lower bound of C(h, Ω). To do this,
we prove lower bounds of the terms of its formula (1.29). In 3.1-3.4 we prove Lemma
1.61 (lower bound of Pd). In 3.5 we prove an upper bound of the discriminant Σ(h):

Σ(h) < n6n2
. (3.1)

In 3.7 we prove a lower bound of the constant Cn:

Cn > e−12n2
. (3.2)

3.1 Lower bound of Pd. The sketch of the proof of Lemma
1.61

By definition, Pd = det Ad(h, Ω(d)), where Ad is the (d + 1) × (d + 1)- matrix defined
in 1.8. Its lines are naturally identified with the vectors in the space of complex
polynomials of degree d + 1, which are split into two collections:

- the collection (denoted by Π) of 2(d − n + 1) vectors xjyd−n−j ∂h
∂y , xjyd−n−j ∂h

∂x ,
which do not depend on the forms ωi;

- the collection (denoted ΠΩ(d)) of 2n − d − 1 vectors Dωi
n−i+1 , ωi = xl′(i)ym′(i)+1dx,

l′(i) + m′(i) = d, which depend only on Ω(d): by definition,

Dωi = (m′(i) + 1)xl′(i)ym′(i). (3.3)

We have to prove a lower bound of the maximal value of Pd as a function of variable
monomial form tuple Ω(d). Firstly we prove its next a priori lower bound in terms of
the complex volume of the collection Π, see the following Definition.
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Definition 3.1 Let Π = {v1, . . . , vk} ∈ Cm be a collection of vectors, k ≤ m. Consider
the real parallelogramm formed by the vectors vj and ivj , j = 1, . . . , k. The complex
volume of Π (denoted V olΠ) is the square root of the real 2k- dimensional standard
Hermitian (Euclidean) volume of the previous parallelogramm.

Remark 3.2 The complex volume is nonzero, if and only if the vector collection is
linearly independent over complex numbers. If k = m, then the complex volume is
equal to the module of the determinant of the m × m- matrix whose lines are formed
by the components of the collection vectors.

Proposition 3.3 Let h be a generic homogeneous polynomial of degree n + 1 ≥ 3,
d ∈ {n, . . . , 2n − 2}, Π be the corresponding vector collection from the beginning of
the Subsection. There exists a tuple Ω(d) of 2n − d − 1 forms of the type xlym+1dx,
l + m = d, such that

Pd(h, Ω(d)) > n−4nV olΠ. (3.4)

The Proposition is proved at the end of the Subsection by elementary linear algebra
arguments.

The principal part of the Section is the proof of lower bound of V olΠ: we show
that if ||h||max = 1, then

V olΠ > n−42n2
(c′(h))6n2

(3.5)

This together with Proposition 3.3 implies Lemma 1.61.
To prove (3.5), we consider the following space of two-dimensional vector polyno-

mials:

Vs = {v = (v1(x, y), v2(x, y)), degvi = s, vi are homogeneous}, s ≤ 2n − 2, (3.6)

equipped with the standard Hermitian scalar product. Denote ||v||2 the correspond-
ing Hermitian norm. The space Vs has the standard orthonormal basis of 2(s + 1)
monomials (xiyj, 0), (0, xiyj), i + j = s.

Consider the linear operator

L : Vs → Vn+s, L(v) =
dh

dv
= v1

∂h

∂x
+ v2

∂h

∂y
(3.7)

Let s ≤ n − 2, d = n + s. By definition, the vectors of the collection Π are the images
under L of the previous basic monomials. Denote

ν(L) = ||L−1|LVs||−1 = min{||Lv||2
||v||2

, v ∈ Vs \ 0}.

It follows from definition that V olΠ ≥ (ν(L))2(d−n+1).
In Subsection 3.4 we show that ν(L) > n−21n(c′(h))3n, or equivalently,

||Lv||2 > n−21n(c′(h))3n for each v ∈ Vs with ||v||2 = 1, s ≤ n − 2. (3.8)
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Proof of (3.5). The two previous inequalities imply that

V olΠ > (n−21n(c′(h))3n)2(d−n+1) ≥ (n−21n(c′(h))3n)2n = n−42n2
(c′(h))6n2

.

This proves (3.5) modulo (3.8). !

To prove (3.8), we consider the following extension of the max-norm to the vector
polynomials:

||v||max = max
|x|2+|y|2=1

√
|v1|2 + |v2|2(x, y), v = (v1, v2) ∈ Vs. (3.9)

Remark 3.4 The max- norm of a polynomial or of a polynomial vector field in C2 is
invariant under orthogonal transformations, while the Hermitian norm isn’t.

In 3.3 we prove an inequality similar to (3.8), but for the max- norm instead of the
Hermitian norm:

||Lv||max ≥ (c′(h))3nn−19n||v||max. (3.10)

This is the main technical inequality of the Section. Firstly we prove it for constant
vector fields v. To prove it for a higher degree homogeneous polynomial vector field v,
we choose appropriate orthogonal coordinates (x, y) (see Remark 3.4) and consider the
space of vector polynomials in Vs proportional to the Euler vector field with polynomial
coefficient:

Vs,e = {v = (xQ(x, y), yQ(x, y)) ∈ Vs | Q is a homogeneous polynomial of degree s−1}.

We decompose v as a sum

v = v′ + v′′, v′ = (xQ, yQ) ∈ Vs,e, v′′ ⊥ Vs,e. One has Lv =
dh

dv′ +
dh

dv′′ . (3.11)

We estimate from below the contributions of v′ and v′′ to Lv separately. Firstly we
show that

|| dh

dv′ ||max ≥ n−4n||v′||max. (3.12)

Put
S = {|x|2 + |y|2 = 1}.

On the zero lines of h one has dh
dv′ = 0 (by definition), hence, dh

dv = dh
dv′′ . We show that

max | dh

dv′′ ||S∩{h=0} ≥ (c′(h))3nn−12n||v′′||max for any v′′ ∈ Vs, v′′ ⊥ Vs,e. (3.13)

This together with the previous statement implies that

||Lv||max ≥ (c′)3nn−12n||v′′||max. (3.14)

We show that either the latter right-hand side already gives itself the desired lower
bound (3.10) of ||Lv||max, or the contribution of v′′ to Lv is dominated (many times)
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by that of v′. In the latter case lower bound (3.10) will be deduced from (3.12) and
the following simple a priori bound (proved at the end of 3.3):

|| dh

dw
||max ≤ 2n+1||w||max for any w ∈ Vs, s ∈ N ∪ 0, whenever ||h||max = 1. (3.15)

In the proofs of the previously mentioned lower bounds of the derivatives of h along
the vector fields v, v′, v′′ we use simple a priori bounds of coefficients of a polynomial
in terms of its max- norm and the following relation between the Hermitian and the
max- norms (these bounds and relation will be proved in 3.2):

for any s ∈ N, Q ∈ Vs, one has
1√

s + 1
||Q||max ≤ ||Q||2 ≤ 2

s
2 ||Q||max. (3.16)

Proof of Proposition 3.3. Consider the collection ΠΩ(d) of the 2n − d − 1 lines
(defined by Ω(d)) of the matrix Ad. By definition, all the elements of the i-th line of
the collection are zeros except for the one standing in the column numerated by the
monomial xl′(i)ym′(i). It follows from definition and (3.3) that the latter element equals
m′(i)+1
n−i+1 ≥ 1

n . These elements form a unique nonzero minor (denoted M) of maximal
size in the collection ΠΩ(d), |M | ≥ nd+1−2n > n−2n by the previous inequality. The
determinant Pd = det Ad is thus equal (up to sign) to M times the complementary
minor (whose module will be denoted by M ′), which is a maximal size minor in the
collection Π. This together with the previous inequality implies that

Pd ≥ n−2nM ′. (3.17)

It follows from definition and Remark 3.2, that M ′ is equal to the complex volume of
the orthogonal projection of Π along the coordinate plane generated by the monomials
xl′(i)ym′(i). We can choose the tuple Ω(d) so that the latter monomials be arbitrarily
given 2n − d − 1 distinct monomials of degree d with unit coefficient, or equivalently,
the complementary coordinate plane orthogonal to them be arbitrarily given coordinate
plane of dimension 2(d − n + 1). Let us choose Ω(d) so that the previous orthogonal
projection of Π have the maximal possible complex volume M ′.

The triangle inequality says that V olΠ is no greater than the sum of the complex
volumes of the orthogonal projections of Π to all the complex coordinate 2(d− n + 1)-
planes in the space of degree d polynomials (which has dimension d + 1). The number
of all the latter planes is equal to

C2(d−n+1)
d+1 =

(2n − d) . . . (d + 1)

(2(d − n + 1))!
< (2n − d)2(d−n+1) < n2n.

Therefore, the maximal complex volume M ′ of projection is no less than
(C2(d−n+1)

d+1 )−1V olΠ > n−2nV olΠ. This together with (3.17) implies (3.4). !
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3.2 The max- norm and the coefficients. A priori bounds

In the proof of (3.8), (3.10) and (3.16) we use the following properties of the max-
norm.

Proposition 3.5 Let g(x, y) be a complex homogeneous polynomial of degree k,

g = g0

k∏

i=1

((x, y), ui), ui ∈ C2, ||ui|| = 1. Then

||g||max ≤ |g0| ≤ ||g||max(2
√

k)k. (3.18)

(Here the expression ((x, y), ui) is the standard Hermitian scalar product (linear in
(x, y)) of ui and the Euler vector field (x, y).

Proof In the proof of Proposition 3.5 we use the following relation between distance
of complex lines and the Hermitian scalar product.

Proposition 3.6 Let u1, u be vectors in C2, ||u1|| = ||u|| = 1. Let l1 = u⊥
1 be the

complex line orthogonal to u1, λ be the complex line containing u. Then the Hermitian
scalar product (u1, u) admits the lower bound

|(u1, u)| ≥ 1

2
dist(l1,λ). (3.19)

Proof It follows from definition that |(u1, u)| is equal to the length of the orthogonal
projection of u along the line l1. The latter length is equal to the sine of the minimal
angle between u and a real line in l1. The latter angle is no less than dist(l1,λ). The
latter distance is always no greater than π

2 by definition. Thus,

|(u1, u)| ≥ sin dist(l1,λ) ≥
1

2
dist(l1,λ). This proves (3.19).

!

The left inequality in (3.18) follows from definition. Let us prove the right inequality.
Denote li = u⊥

i the zero line of g orthogonal to ui. By Proposition 1.12, there is a
complex line λ through the origin such that dist(λ, li) > 1√

k
for all i (let us fix such a

line λ and a unit vector u on it). Then by (3.19),

|g(u)| = |g0|
∏

|(u, ui)|, |(u, ui)| ≥
1

2
dist(λ, li) >

1

2
√

k
. Hence,

||g||max ≥ |g(u)| ≥ |g0|(
1

2
√

k
)k.

!
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The max- norm of product:

||gQ||max ≥ (
1

2
√

k + m
)k+m||g||max||Q||max for any k, m ∈ N (3.20)

and homogeneous polynomials g, Q, k = deg(g), m = degQ.

Proof Let us write down the decompositions preceding (3.18) of the polynomials
g, Q, gQ (denote g0, Q0, (gQ)0 the corresponding constant factors from their de-
compositions). By definition and the left inequality in (3.18), |(gQ)0| = |g0||Q0| ≥
||g||max||Q||max. Applying the right inequality in (3.18) to gQ yields

||gQ||max ≥ |(gQ)0|(
1

2
√

k + m
)k+m.

This together with the previous inequality proves (3.20). !

Hermitian and the max- norms: proof of (3.16). We use the inequality

max
|x|,|y|≤1

|Q(x, y)| ≤ max
|x|,|y|≤1

(|x|2 + |y|2) s
2 ||Q||max = 2

s
2 ||Q||max, degQ = s, (3.21)

which follows from definition, as does (2.19). The right inequality in (3.16) follows from
(3.21) and (2.32) (inequality (2.32) holds true both for scalar and vector polynomials).
Let us prove the left one. It follows from definition that ||Q||max is no greater than the
sum of the modules of the vector coefficients of Q. The polynomial Q is homogeneous
of degree s, hence, the number of its vector coefficients is s+1. By the mean inequality,
the latter sum is no greater than the sum of the squared modules of the coefficients
times the square root of their number s + 1. This proves the left inequality in (3.16).

3.3 Lower bound of ||Lv||max. Proof of (3.10)

We choose the orthogonal coordinates (x, y) as in (1.8): the distance of the y- axis to
each zero line of h is greater than 1√

n .

Let us firstly prove (3.10) in the case, when v is a constant vector polynomial,
i.e., s = degv1 = degv2 = 0 (we suppose that ||v||2 = 1, denote l the complex line
containing v). Let S = {|x|2 + |y|2 = 1}. By definition, the c′(h)

2n - neighborhoods in S
of the n + 1 ≥ 3 zero lines of the polynomial h are disjoint. Therefore, the previous
neighborhood of at least one zero line (denote the latter zero line by li) is disjoint from
the line l. Let us choose a point z ∈ S ∩ li and show (below) that

|dh

dv
|(z) > (c′(h))n+1n−4n. (3.22)

The latter module of derivative is no greater than ||dh
dv ||max = ||Lv||max). This implies

(3.10) in the particular case under consideration modulo (3.22). Let us prove the latter.
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Let ui be the vector from the expression for h in (3.18) that is orthogonal to the
chosen zero line li: (z, ui) = 0. Then by Proposition 3.5,

dh

dv
(z) = h0(v, ui)

∏

j )=i

(z, uj), |h0| ≥ ||h||max = 1. (3.23)

Let us estimate the factors in the latter right-hand side. By Proposition 3.6,

|(v, ui)| ≥
1

2
dist(li, l), |(z, uj)| ≥

1

2
dist(lj , li).

The former distance is no less than c′(h)
2n , and the latter one is greater than c′(h)

n by
definition. Hence, by (3.23),

|dh

dv
(z)| ≥ c′

4n
(

c′

2n
)n = (c′)n+12−n−2n−n−1 ≥ (c′)n+1n−n−2−n−1 > (c′)n+1n−4n.

This proves (3.22) and hence, (3.10) in the case of constant vector field v.
Now let us prove (3.10) in the case, when 1 ≤ s = degvi ≤ n − 2.

Proof of (3.12). By homogeneity,

Lv′ =
dh

dv′ = Q(x, y)(x
∂h

∂x
+ y
∂h

∂y
) = (n + 1)hQ. (3.24)

Applying inequality (3.20) yields that ||Lv′||max = (n + 1)||hQ||max is no less than
( 1

2
√

n+s
)n+s||h||max||Q||max. By definition, ||h||max = 1, ||v′||max = ||Q||max, hence,

||Lv′||max ≥ (
1

2
√

n + s
)n+s||v′||max > (2

√
2n)−2n||v′||max ≥ n−4n||v′||max.

!

Proof of (3.10) modulo (3.13) and (3.15). By (3.12), (3.15) and the triangle
inequality,

||dh

dv
||max ≥ || dh

dv′ ||max − || dh

dv′′ ||max ≥ n−4n||v′||max − 2n+1||v′′||max (3.25)

Let us consider the case, when ||v′′||max < n−6n||v′||max. Then the latter inequality
implies that the first term containing ||v′||max in the right-hand side of (3.25) is at
least twice greater than the second one. By the same inequality, ||v′||max > 1

2 ||v||max.
Therefore,

||dh

dv
||max ≥ 1

2
n−4n||v′||max >

1

4
n−4n||v||max ≥ n−5n||v||max. (3.26)

This proves (3.10) in the case under consideration.
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Now let us consider the opposite case, when ||v′′||max ≥ n−6n||v′||max. Then

||v′′||max(1 + n6n) ≥ ||v′′||max + ||v′||max ≥ ||v||max.

This together with (3.14) (which follows from (3.13)) implies (3.10):

||dh

dv
||max ≥ (c′)3nn−12n||v′′||max ≥ (c′)3nn−12n(1 + n6n)−1||v||max ≥ (c′)3nn−19n||v||max.

!

In the proof of lower bound (3.13) of the contribution of v′′ to Lv we use the
following description of the subspace of Vs orthogonal to Vs,e:

a vector polynomial v′′ ∈ Vs is orthogonal to Vs,e, if and only if it has the form

v′′ = r1y
s ∂

∂x
+ r2x

s ∂

∂y
+ R(x, y)(x

∂

∂x
− y
∂

∂y
), (3.27)

r1, r2 ∈ C, R is a homogeneous polynomial of degree s − 1.

The statement saying that each vector polynomial from (3.27) is orthogonal to Vs,e

follows from definition. The inverse statement follows from the coincidence of the
dimensions of the space V ⊥

s,e and the space of the vector polynomials from (3.27): the
former dimension equals dimVs − dimVs,e = 2(s + 1)− s = s + 2; the latter one equals
s + 2 by definition.
Proof of (3.13). We choose appropriate zero line li of h (as follows) and show that

| dh

dv′′ ||S∩li ≥ (c′)3nn−12n||v′′||max. (3.28)

This will prove (3.13).
Consider the lines through the origin that are tangent to the vector field v′′. They

are defined by the equation yv′′
1(x, y) − xv′′

2 (x, y) = 0 of degree s + 1 (which does not
hold identically, since v′′ /∈ Vs,e). Thus, the number of these lines is at most s + 1 ≤ n,

which is less than the number n + 1 of the zero lines of h. The c′(h)
2n - neighborhoods

of the latters are disjoint by definition. Hence, at least one zero line of h (fix it and
denote li) has distance no less than c′

2n from the lines tangent to v′′.
Let us prove (3.28). On the line li one has x∂h

∂x + y ∂h
∂y = (n + 1)h = 0, hence,

dh

dv′′ |li = v′′
2

∂h

∂y
− v′′

1

y

x

∂h

∂y
= (xv′′

2 − yv′′
1)x

−1∂h

∂y
. Therefore,

| dh

dv′′ ||S∩li ≥ |yv′′
1 − xv′′

2 ||
∂h

∂y
||S∩li. (3.29)

Now we estimate from below the factors in the right-hand side of (3.29). The second
factor admits the following lower bound:

|∂h
∂y

||S∩li > (c′)n+1n−4n. (3.30)
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This follows from (3.22) applied to v = ∂
∂y . (The condition of inequality (3.22) saying

that dist(l, li) ≥ c′

2n (in our case l = Oy) is satisfied by choice of the coordinates, see
the beginning of the Subsection.) Now let us estimate from below the first factor in
the right-hand side of (3.29): we show that

|yv′′
1 − xv′′

2 |(z) ≥ (c′)2sn−8s||v′′||max for any z ∈ S ∩ li. (3.31)

This together with (3.29) and (3.30) implies (3.28), and hence, (3.13):

| dh

dv′′ |(z) ≥ (c′)2sn−8s||v′′||max(c
′)n+1n−4n ≥ (c′)3nn−12n||v′′||max, z ∈ S ∩ li.

For the proof of (3.31) let us firstly show that

||yv′′
1 − xv′′

2 ||max ≥ 2−2s||v′′||max for any v′′ ⊥ Vs,e. (3.32)

Then using the assumption that the line li is distant from the zero lines of the polyno-
mial yv′′

1 − xv′′
2 (which are tangent to v′′), we prove (3.31).

Proof of (3.32). Firstly let us show that ||yv′′
1 −xv′′

2 ||2 ≥ ||v′′||2. A vector polynomial
v′′ ∈ V ⊥

s,e has the type (3.27), hence,

yv′′
1 − xv′′

2 = r1y
s+1 − r2x

s+1 + 2xyR(x, y).

The three terms in the latter right-hand side are orthogonal to each other, as are those
in expression (3.27) for v′′. Let us compare the Hermitian norms of the corresponding
terms in the latter right-hand side and in (3.27). The norms of the first (second) terms
are equal. The norm of the third one in the previous right-hand side is no less than
the norm of that in (3.27):

||2xyR(x, y)||2 = 2||R||2 ≥
√

2||R||2 = ||R(x, y)(x
∂

∂x
− y
∂

∂y
)||2.

This implies that ||yv′′
1 − xv′′

2 ||2 ≥ ||v′′||2. Now applying (3.16) twice yields

||yv′′
1 − xv′′

2 ||max ≥ 2−
s+1
2 ||yv′′

1 − xv′′
2 ||2 ≥ 2−

s+1
2 ||v′′||2 ≥ 2−

s+1
2 (s + 1)−

1
2 ||v′′||max.

The total coefficient at ||v′′||max in the latter right-hand side is no less than 2−2s (recall
that we assume that s ≥ 1). This proves (3.32). !

Proof of (3.31). Let z ∈ S ∩ li. By (3.18) and (3.32), one has

(yv′′
1 − xv′′

2 )(z) = q0

s∏

j=0

(z, uj), ||uj|| = 1, |q0| ≥ ||yv′′
1 − xv′′

2 ||max ≥ 2−2s||v′′||max.

Let l′j = u⊥
j be a zero line of the polynomial yv′′

1−xv′′
2 . Recall that by the choice of li one

has dist(li, l′j) ≥ c′

2n (see the beginning of proof of (3.13)). Hence, by Proposition 3.6,
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|(z, uj)| ≥ 1
2dist(l′j , li) ≥ c′

4n . This together with the previous formula and inequality
implies that

|yv′′
1 − xv′′

2 |(z) ≥ 2−2s||v′′||max(
c′

4n
)s+1 = 2−4s−2(c′)s+1n−s−1||v′′||max

≥ (c′)2sn−8s||v′′||max.

This proves (3.31). The proof of inequality (3.13) is completed. ! !

Proof of (3.15) (upper bound of derivative). Let w be a homogeneous vector
polynomial. The restriction to the unit sphere of the module of the derivative dh

dw is no
greater than

||∇h||
√
|w1|2 + |w2|2 ≤ ||∇h||max||w||max = ||(∂h

∂x
,
∂h

∂y
)||max||w||max. (3.33)

Let us estimate from above the max- norm of the gradient of h, or equivalently, the
maximal Hermitian norm of the gradient at points of the unit ball. To do this, we use
the well-known fact that the module of the derivative of a holomorphic function (in
one variable) at a given point is no greater than the maximal module of the function
in the unit disk centered at the point under consideration. Therefore, the module of
the derivative of h along any unit tangent vector (and hence, the Hermitian norm of
the gradient) at a point of the closed unit ball is no greater than the maximal value of
|h| in the closed ball of radius 2. By definition, ||h||max = 1, hence,

|h(z)| ≤ |z|n+1 for any z ∈ C2. In particular,

|h(z)| ≤ 2n+1 whenever |z| ≤ 2.

Therefore, the max-norm of the gradient of h is no greater than 2n+1. This together
with (3.33) implies (3.15). !

3.4 From max- to Hermitian norm. Proof of (3.8)

Let v ∈ Vs, s ≤ n − 2, ||v||2 = 1. By (3.16) and (3.10),

||Lv||2 ≥
1√

n + s + 1
||Lv||max > (2n)−

1
2 (c′)3nn−19n||v||max

≥ n−2−19n(c′)3n||v||max ≥ n−20n(c′)3n||v||max.

By (3.16), ||v||max ≥ 2−
s
2 ||v||2 = 2−

s
2 > 2−

n
2 . Hence, the right-hand side of the previous

inequality is greater than

n−20n2−
n
2 (c′)3n > n−21n(c′)3n.

This proves (3.8).
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3.5 Upper bound of the discriminant. Proof of (3.1)

Consider a decomposition

h(x, y) =
n∏

i=0

((x, y), vi) (3.34)

of the polynomial h as a product of linear factors (not necessarily of unit norm).
The vectors vi are well-defined up to multiplications by constants (the product of the
latter constants should be unit). Let vi = (vi,1, vi,2) be their components. We use the
following formula for the discriminant Σ of h:

Σ =
∏

i<j

(vi,1vj,2 − vi,2vj,1)
2. (3.35)

Remark 3.7 The right-hand side of (3.35) depends only on h and does not depend
on the normalization of the vectors vi.

Consider a given pair of indices i #= j and the corresponding pair of vectors vi, vj . The
module |vi,1vj,2−vi,2vj,1| is equal to the complex volume of the vector collection (vi, vj)
(Remark 3.2). Therefore, the previous module is no greater than |vi||vj|. Hence,

|Σ| ≤
∏

i<j

(|vi||vj|)2 =
∏

i)=j

(|vi||vj|) = (
∏

i

|vi|)2n. (3.36)

Let us estimate the right-hand side of (3.36). To do this, consider the other product
decomposition (preceding (3.18)) of the polynomial h. Let h0 = g0 be the corresponding
coefficient from (3.18). By definition and (3.18),

|h0| =
∏

i

|vi|, |h0| ≤ ||h||max(2
√

n + 1)n+1 = (2
√

n + 1)n+1.

The two previous inequalities imply that

|Σ| ≤ ((2
√

n + 1)n+1)2n = (2
√

n + 1)2n2+2n < n2(2n2+2n) ≤ n6n2
.

This proves (3.1).

3.6 Lower bound of C(h, Ω). Proof of (1.33)

Recall formula (1.29) for C(h, Ω) from 1.8:

C(h, Ω) = Cn(Σ(h))
1
2−n

2n−2∏

d=n

Pd, Pd = detAd(h, Ω).

Substituting inequalities (1.34), (3.1) and (3.2) to its right-hand side yields

|C(h, Ω)| > e−12n2
n6n2( 1

2−n)(n−44n2
(c′)6n2

)n−1 ≥ e−12n2
n−6n3−44n3

(c′)6n3

= n−12n2(ln n)−1−50n3
(c′)6n3 ≥ n−(6(ln 2)−1+50)n3

(c′)6n3
> n−60n3

(c′)6n3
.

Theorem 1.60 is proved modulo (3.2).
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3.7 Lower estimate of the constant Cn. Proof of (3.2)

In the proof of (3.2), we use the following inequalities:

ln 2π > 1; (3.37)

N ln N − N + 1 <
N∑

k=1

ln k < (N + 1) ln(N + 1) − N for any N ≥ 2; (3.38)

b∑

k=a

k ln k < (
x2 ln x

2
− x2

4
)|b+1

a for any a < b, a, b ∈ N. (3.39)

Inequality (3.38) follows from the inequality

∫ N

1

ln xdx <
N∑

k=1

ln k <

∫ N+1

1

ln xdx

and the statement that the previous integrals are equal respectively to the left- and
right- hand sides of (3.38). The previous inequality follows from increasing of the
function ln x. Inequality (3.39) follows from the statement that its left-hand side is less

than
∫ b+1

a x ln xdx (increasing of the function x ln x); the last integral is equal to the
right-hand side of (3.39). By (1.31), one has

ln |Cn| =
n(n + 1)

2
ln(2π) +

n2 + n − 4

2
ln(n + 1) + n

n+1∑

k=1

ln k −
n−1∑

m=1

m+n+1∑

k=1

ln k. (3.40)

Let us estimate the first three terms in the right-hand side of (3.40). The first term
is greater than n2

2 by (3.37). The second one is greater than n2−2
2 ln n. The third one

(containing the sum till n + 1) is greater that n((n + 1) ln(n + 1) − n) > n2 ln n − n2

by (3.38). Substituting these inequalities to (3.40) and applying the right inequality in
(3.38) to the inner sum of the double sum in (3.40) yields

ln |Cn| >
n2

2
+

n2 − 2

2
ln n+n2 ln n−n2 −

n−1∑

m=1

((m+n+2) ln(m+n+2)− (m+n+1))

=
3n2

2
ln n − n2

2
− ln n +

n−1∑

m=1

(m + n + 1) −
2n+1∑

k=n+3

k ln k. (3.41)

Let us estimate the sums in the right-hand side of (3.41). The first sum is equal to

(n + 1)(n − 1) +
n−1∑

m=1

m = n2 − 1 +
n(n − 1)

2
=

3n2 − n − 2

2
. (3.42)
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The second sum is estimated by inequality (3.39): it is less than

(
x2 ln x

2
− x2

4
)|2(n+1)

n+3

=
4(n + 1)2(ln(n + 1) + ln 2)

2
− (n + 3)2 ln(n + 3)

2
− (n + 1)2 +

(n + 3)2

4

<
3(n + 1)2 ln(n + 1)

2
+ 2(n + 1)2 ln 2 − (n + 1)2 +

(n + 3)2

4

<
3(n + 1)2 ln(n + 1)

2
+

(n + 3)2

4
+ (n + 1)2.

Substituting the right-hand sides of (3.42) and the last inequality instead of the first
(respectively, second) sum in (3.41) yields

ln |Cn| >
3n2 ln n

2
− n2

2
− ln n +

3n2 − n − 2

2

−3(n + 1)2 ln(n + 1)

2
− (n + 1)2 − (n + 3)2

4
. (3.43)

Let us simplify inequality (3.43). To do this, we use the following inequalities:

ln(n + 1) < lnn +
1

n
; n + 1 < 2n; n + 3 ≤ 5

2
n. (3.44)

Let us estimate the fifth term in the right-hand side of (3.43). By (3.44), it is less than

3(n + 1)2(ln n + 1
n)

2
<

3(n + 1)2 ln n

2
+ 6n.

The sixth term in the same place is (n+1)2 < 4n2, and the seventh one is less than 2n2

by (3.44). Substituting these estimates to (3.43) instead of the corresponding terms
yields

ln |Cn| >
3n2 ln n

2
− n2

2
− ln n +

3n2 − n − 2

2
− 3(n + 1)2 ln n

2
− 6n − 4n2 − 2n2

=
3

2
(n2 − (n + 1)2) lnn + n2 − n + 2

2
− ln n − 6n − 6n2

= −5n2 − 3

2
(2n + 1) lnn − ln n − 13n + 2

2
.

Substituting the inequality ln n < n
2 (valid for n ≥ 2) to the right-hand side of the

previous inequality yields

ln |Cn| > −5n2 − 3

4
(2n2 + n) − n

2
− 13n + 2

2
> −7n2 − 9n > −12n2.

This proves (3.2).
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