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Chapitre 1

Introduction

Le 16�eme probl�eme de Hilbert concerne les champs de vecteurs polynomiaux dans le plan r�eel. Un
cycle limite est une orbite ferm�ee isol�ee. Le probl�eme est le suivant :

Est-il vrai que le nombre de cycles limites est toujours major�e par une constante ne d�ependant
que du degr�e maximal d'une composante du champ ?

Ce probl�eme est ouvert et a une histoire riche de plus de 100 ans (voir [69]). Le meilleur r�esultat
connu dit que pour tout champ polynomial, le nombre de cycleslimites est �ni. Cela fut d�emontr�e
simultan�ement et ind�ependamment par J. �Ecalle [28] et Yu.S.Ilyashenko [66].

Dans les ann�ees 1950, I.G.Petrovskii et E.M.Landis [84] ont essay�e de r�esoudre le 16�eme probl�eme
de Hilbert. Leur d�emonstration s'est av�er�ee fausse [62]. En même temps, ils ont sugg�er�e une m�ethode
int�eressante : �etudier un champ de vecteurs polynomial complexe sur C2 et ses orbites complexes,
qui sont des surfaces de Riemann. Ces derni�eres orbites forment un feuilletage holomorphe singulier
de C2. Les cycles limites du champ r�eel sont des cycles limites complexes de son complexi��e : lacets
non contractiles sur des orbites complexes dont l'holonomie (l'application de premier retour) est non
triviale.

Il est bien connu, que les racines complexes d'une famille depolynômes de même degr�e sont
continues en le param�etre, et leur nombre (avec multiplicit�es) reste constant (il est toujours �egal au
degr�e). Petrovskii et Landis ont essay�e de d�emontrer que, grosso modo, les cycles complexes d'une
famille de champs polynomiaux ont une propri�et�e similair e.

L'�etude du 16�eme probl�eme de Hilbert et les id�ees de Petr ovskii et Landis ont motiv�e le d�eveloppement
de beaucoup de domaines dans la dynamique, l'analyse et la g�eom�etrie, en particulier,

- les feuilletages par des surfaces de Riemann et l'uniformisation de feuilles ;
- les int�egrales ab�eliennes ;
- les invariants de classi�cation analytique de germes d'applications conformes et de champs de

vecteurs holomorphes, le ph�enom�ene de Stokes.
Yu.S.Ilyashenko a commenc�e l'�etude des feuilletages holomorphes singuliers par des surfaces de

Riemann �a la �n des ann�ees 1960. Il a d�emontr�e qu'un champ de vecteurs polynomial non lin�eaire
g�en�erique sur C2 d'un degr�e donn�e a toutes les orbites complexes denses, etun nombre d�enombrable
de cycles limites complexes [65, 60].

Dans les ann�ees 1960 D.V.Anosov a conjectur�e que pour un champ polynomial g�en�erique toutes
les orbites complexes sont simplement connexes (sauf pour un nombre d�enombrable d'orbites). Cette
conjecture est ouverte.

La plupart de mes travaux concernent les trois th�emes mentionn�es ci-dessus. Mes travaux plus
r�ecents concernent

- les laminations horosph�eriques en dynamique holomorphe;
- les sous-groupes non libres dans les groupes de Lie.
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1.1 R�esum�e des travaux pr�esent�es dans ce m�emoire

Ici toutes les citations sont donn�ees selon les R�ef�erences �a la �n du m�emoire.

1.1.1 Uniformisation de feuilletages par des surfaces de Ri emann (chapitre
2)

Pour �etudier les cycles complexes, Ilyashenko a commenc�e(�a la �n des ann�ees 1960) l'�etude de
l'uniformisation des feuilles (orbites) complexes. Le r�esultat d'uniformisation d'une feuille �x�ee
est donn�e par le th�eor�eme classique de Poincar�e et K•obe :

Th�eor�eme d'Uniformisation. Toute surface de Riemann simplement connexe et non compacte
est conform�ement �equivalente ou bien �a C, ou bien au disque.

D�e�nition 0. Une surface de Riemann estparabolique (hyperbolique), si son revêtement universel
est conform�ement �equivalent �a C (resp. au disque).

�A toute section transverseD simplement connexe, Ilyashenko a associ�e la r�eunion des revêtements
universels des feuilles intersectantD : toute revêtement universel est celui d'une feuille avec un point
marqu�e dans D. Cette r�eunion s'appelle la vari�et�e de revêtement universels. Pour les feuilletages
holomorphes singuliers de dimension un sur une vari�et�e deStein (par exempleCn ), il a d�emontr�e que
toute vari�et�e de revêtements universels munie de la structure complexe naturelle est une vari�et�e de
Stein [63, 68]. Cette vari�et�e est un cylindre tordu : vari�et�e �br�ee holomorphiquement au-dessus de D,
dont les �bres sont des courbes holomorphes simplement connexes (revêtements universels), et qui
admet une section holomorphe (donn�ee parD elle-même).

J'avais d�emontr�e dans ma th�ese [35, 36, 37], quetoutes les feuilles d'un champ de vecteurs po-
lynomial g�en�erique sur Cn sont hyperboliques.J'avais aussi d�emontr�e un �enonc�e analogue pour les
feuilletages sur une vari�et�e projective lisse arbitrair e. Ind�ependamment et presqu'en même temps,
des cas particuliers ont �et�e d�emontr�es dans le travail c ommun de A. Candel et X. G�omez-Mont
[19] (plus tôt) et par A.Lins Neto [87]. Cela a donn�e une r�eponse �a une question pos�ee par Ilyashenko
(�n des ann�ees 60).

Il est important de connâ�tre la d�ependance de l'uniformisation d'une feuille en le param�etre
transverse. Le th�eor�eme classique de L. Bers [13] sur l'uniformisation simultan�ee concerne un feilletage
holomorphe par des surfaces de Riemann compactes. Il dit quela vari�et�e �br�ee de leurs revêtements
universels est toujourssimultan�ement uniformisable : biholomorphiquement �equivalente �a un ouvert
de C � D �br�e au-dessus de D par des domaines simplement connexes.

Ilyashenko a conjectur�e (�n des ann�ees 1960), que toute vari�et�e de revêtements universels (et plus
g�en�eralement, tout cylindre tordu Stein) est simultan�e ment uniformisable. Il l'avait d�emontr�e dans
un cas particulier, pour un feuilletage par des courbes alg�ebriques compactes au voisinage d'une
courbe invariante �a singularit�es de Morse [64].

J'ai construit des contre-exemples [43, 44] :des vari�et�es de revêtements universels non simul-
tan�ement uniformisables. Celle de [43] est associ�ee au feuilletage d'une surface (a�ne ou projective)
par des courbes alg�ebriques, pour une section transverse appropri�ee. Dans [44] j'ai montr�e qu'il existe
des surfaces complexes (tant a�nes que projectives) qui admettent un feuilletage holomorphe de di-
mension un �a singularit�es isol�ees, dont aucune vari�et�e de revêtements universels n'est simultan�ement
uniformisable. En plus, un tel feuilletage peut être choisi �a feuilles denses et avec une structure a�ne
transverse.

Les r�esultats des articles [43, 44] sont pr�esent�es dans la section 2.3.
Presqu'en même temps j'avais �etudi�e un autre probl�eme sur une autre notion d'uniformisabilit�e

simultan�ee, concernant les feuilletages (pas forc�ementholomorphes) par des surfaces de Riemann, o�u
la structure complexe des feuilles est lisse en le param�etre transverse. Un exemple de base, introduit
et partiellement �etudi�e par �E. Ghys [34], est un tore de dimension quelconque, feuillet�e par des plans
parall�eles et muni d'une m�etrique riemannienne lisseg arbitraire. La m�etrique induit sur chaque feuille
une structure complexe. Toute feuille est conform�ement �equivalente �a C, et admet donc une m�etrique
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conforme plate et compl�ete. Plus pr�ecis�ement, il existe sur chaque feuille une fonction positive lisse�
(unique �a multiplication par une constante pr�es), telle q ue la m�etrique �g de la feuille soit plate et
compl�ete.

�E. Ghys a demand�e si la fonction � peut être choisie sur chaque feuille de sorte qu'elle soit lisse en
le param�etre transverse. Il a d�emontr�e une r�eponse positive en dimension 3 dans des cas particuliers,
quand ou bien les feuilles sont des cylindres, ou bien la pente du feuilletage v�eri�e une condition
diophantienne [34].

Je l'ai d�emontr�e dans le cas g�en�eral :
Th�eor�eme [45]. Pour tout feuilletage d'un tore (de dimension quelconque) par des plans parall�eles,

et pour toute m�etrique g riemannienne lisse C1 sur le tore, il existe une fonction � positive et lisse
C1 sur le tore, telle que la restriction �a toute feuille de la m�etrique �g soit plate.

Dans le même article [45] j'ai obtenu d'autres r�esultats (positifs et n�egatifs) concernant d'autres
feuilletages. Les r�esultats principaux de cet article sont pr�esent�es dans Sections 2.1 et 2.2.

La preuve de ce dernier th�eor�eme m'a permis d'obtenir une nouvelle d�emonstration du th�eor�eme
de redressement d'une structure presque complexe lisse surle tore de dimension deux [45, 51]. Avec
des arguments classiques, cela donne une nouvelle d�emonstration [51] du th�eor�eme de C.B. Morrey, Jr.
sur l'existence d'une application quasiconforme qui redresse une structure presque complexe born�ee
mesurable sur la sph�ere de dimension 2 [4, 94].

1.1.2 Laminations horosph�eriques en dynamique holomorph e (chapitre 3)

Les laminations (feuilletages topologiques) par des surfaces de Riemann et par des vari�et�es hyper-
boliques apparaissent dans di��erents domaines des math�ematiques, dont la dynamique d'it�erations
d'une fonction rationnelle :

f =
P
Q

: C ! C:

En 1985 D. Sullivan [110] a introduit un dictionnaire entre deux domaines de la dynamique com-
plexe : les it�erations de fonctions rationnellesf (z) = P (z)

Q(z) : C ! C sur la sph�ere de Riemann et la
th�eorie des groupes kleiniens. Ces derniers sont les sous-groupes discrets du groupe d'automorphismes
conformesP SL2(C) de la sph�ere de Riemann. Ce dictionnaire a motiv�e beaucoup de r�esultats remar-
quables dans les deux domaines, en commen�cant par le c�el�ebre th�eor�eme de Sullivan sur l'absence de
composantes errantes dans la th�eorie des it�erations de fonctions rationnelles.

L'un des objets principaux dans l'�etude des groupes kleiniens est la vari�et�e hyperbolique de dimen-
sion trois associ�ee �a un groupe kleinien. C'est le quotient de l'espace hyperboliqueH3 par l'action du
groupe agissant par isom�etries. M. Lyubich and Y. Minsky ont sugg�er�e d'�etendre le dictionnaire de
Sullivan par une construction analogue pour les it�erations de fonctions rationnelles.�A toute fonction
rationnelle f , ils ont associ�e unelamination hyperbolique H f (voir [89] et le Chapitre 3 de ce m�emoire).
C'est un espace topologique feuillet�e par des orbifolds hyperboliques de dimension trois (qui peuvent
avoir des singularit�es coniques), v�eri�ant les propri�e t�es suivantes :

- tout point non singulier poss�ede un voisinage hom�eomorphe au produit d'une partie d'un ensemble
de Cantor par la boule de dimension trois ;

- la m�etrique hyperbolique des feuilles est continue en le param�etre transverse ;
- il existe une projection naturelle H f ! C, qui rel�eve l'action f : C ! C (non inversible) �a l'action

par un hom�eomorphisme f̂ : H f ! H f , qui est une isom�etrie sur les feuilles ;
- l'action de f̂ est proprement discontinue.
Le quotient H f =f̂ est donc un \joli" espace topologique lamin�e par des orbifolds hyperboliques de

dimension trois ; l'espaceH f =f̂ s'appelle la lamination hyperbolique quotient.
La lamination hyperbolique H f est construite de la mani�ere suivante. Prenons l'extension naturelle

f̂ de la dynamique def �a l'espace N f de toutes les demi-orbites n�egatives :

N f = f ẑ = ( z0; z� 1; z� 2; : : : ) j z� j 2 C; f (z� j � 1) = z� j g;
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f̂ : N f ! N f ; (z0; z� 1; : : : ) 7! (f (z0); z0; z� 1; : : : ):

Ce dernier espace contient toujours beaucoup de surfaces deRiemann conform�ement �equivalentes �a
C. La r�eunion de toutes cettes surfaces (not�eeA n

f ) est invariante par la dynamique relev�ee f̂ . La
lamination hyperbolique est obtenue par le recollement d'une copie de l'espace hyperboliqueH3 et
de chaque surface pr�ecedante (eventuellement e�ac�ee), suivi d'un ra�nement de la topologie et d'une
completion appropri�ees.

Des travaux r�ecents sur les vari�et�es hyperboliques associ�ees �a des groupes kleiniens ont abouti �a
la solution de tous les grands probl�emes de la th�eorie, y compris une solution positive �a la c�el�ebre
conjecture d'Ahlfors sur la mesure de l'ensemble limite. Cer�esultat est le fruit des e�orts de nombreux
math�ematiciens, voir les articles [3, 17] et leurs ref�erences. D'un autre côt�e, tout r�ecemment, une
conjecture analogue pour la th�eorie des it�erations rationnelles s'est r�evel�ee fausse. X. Bu� et A. Ch�eritat
[16] ont construit des exemples de polynômes quadratiquesavec ensembles de Julia de mesure positive,
en utilisant une m�ethode compl�etement di��erente, propo s�ee par A. Douady.

Il est esp�er�e, que l'�etude des laminations hyperboliques associ�ees �a des fonctions rationnelles
�eclairera la dynamique sous-jacente d'une nouvelle mani�ere.

J'ai �etudi�e l'arrangement d' horosph�eres dans l'espace quotientH f =f̂ (voir les articles [48, 49]).
Rappelons leur d�e�nition. L'espace hyperbolique H3 avec un point marqu�e \ 1 " sur sa fronti�ere (qui
est la sph�ere de Riemann) admet pour mod�ele standard le demi-espace dans l'espace euclidien de
dimension trois. Ses isom�etries �xant l'in�ni sont exact� ement les extensions des transformations af-
�nes complexes de la fronti�ere. Un plan horizontal dans le demi-espace s'appelle unhorosph�ere. Les
isom�etries hyperboliques deH3 �xant l'in�ni transforment des horosph�eres en des horosph�eres. Les
horosph�eres du quotient deH3 par l'action d'un groupe discret de telles isom�etries sontles images des
horosph�eres deH3 par la projection naturelle (toutes ces horosph�eres portent des structures eucli-
diennes induites par la restriction de la m�etrique hyperbolique). Ces structures euclidiennes peuvent
avoir des singularit�es coniques. Les horosph�eres feuillettent l'orbifold hyperbolique ambiant.

Les feuilles des laminationsH f et H f =f̂ sont aussi des quotients deH3 par un groupe d'isom�etries
�xant l'in�ni. Toutes leurs feuilles sont donc feuillet�ee s par des horosph�eres bien d�e�nies.

L'arrangement des horosph�eres dansH f et dans son quotientH f =f̂ est li�e au comportement du
cocycle des d�eriv�eesjDf n (z)j des it�erations de la fonction rationnelle f .

La lamination de H f par vari�et�es hyperboliques est toujours minimale (toute feuille hyperbolique
est dense), sauf pour le cas d'une fonction rationnelle ayant une orbite periodique r�epulsive\�a rami�-
cation exceptionnelle" (pour exemple, Chebyshev ou Latt�es, voir la D�e�nition 3.1.10 dans le Chapitre
3). Dans ce dernier cas il y a des feuilles isol�ees, dont le nombre est toujours �ni. Notons

H 0
f = H f n (feuilles hyperboliques isol�ees):

La lamination hyperbolique de H 0
f est toujours minimale.

M. Lyubich et V. Kaimanovich ont d�emontr�e, que si f appartient �a la liste suivante :

Latt�es, Chebyshev, z� d;

alors aucune horosph�ere dansH 0
f =f̂ n'est dense.

J'ai d�emontr�e (en [48, 49]) une sorte de r�eciproque :
- si f n'appartient pas �a la liste ci-dessus, alors il y a une in�ni t�e d'horosph�eres (explicitement

pr�esent�ees) denses dans le quotientH 0
f =f̂ ou autrement dit, la lamination horosph�erique de H 0

f =f̂ est
topologiquement transitive.

- si f n'appartient pas �a la liste ci-dessus, et de plus est critiquement non r�ecurrent et sans or-
bite p�eriodique parabolique, alors la lamination horosph�erique de H 0

f =f̂ est minimale : toutes les ho-
rosph�eres sont denses.

Les �enonc�es analogues sout faux pour la lamination horosph�erique de l'espace non factoris�eH 0
f ,

d�ej�a pour des polynômes quadratiques r�eels [49].
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1.1.3 Sous-groupes non libres dans les groupes de Lie (chapi tre 4)

Il est connu que dans un groupe de Lie dont la composante neutre est non r�esoluble, un couple
g�en�erique (au sens de la mesure de Haar) d'�el�ements engendre un sous-groupe libre [29]. J'ai d�emontr�e
que si, en plus, ce sous-groupe libre n'est pas discret, alors il est instable : il existe des paires arbitrai-
rement proches qui engendrent des sous-groupes non libres.

Th�eor�eme [50]. Soit G un groupe de Lie non r�esoluble,(A; B ) 2 G � G un couple d'�elements
engendrant un sous-groupe libre non discret. Alors il existe une suite(Ak ; Bk ) ! (A; B ) et une suite
de motswk (a; b) non triviaux en deux symboles abstraits (et leurs inverses)tels quewk (Ak ; Bk ) = 1
pour tout k.

Ce th�eor�eme r�epond �a une question d' �E. Ghys, qui a propos�e d'�etudier le taux d'approximation
d'une paire (A; B ) comme ci-dessus par des g�en�erateurs de sous-groupes nonlibres, dont la lon-
gueur minimale d'une relation soit donn�ee. Il y a une conjecture qui dit, que pour une paire (A; B )
\g�en�erique", le taux optimal d'approximation est expone ntiel en cette derni�ere longueur.

Dans le même article [50] j'ai obtenu une majoration du tauxoptimal, qui est exponentielle en une
puissance de la longueur minimale d'une relation.

1.1.4 Int�egrales ab�eliennes et g�eom�etrie alg�ebrique quantitative (chapitre
5)

Tout champ de vecteurs polynomial sur le plan r�eel peut s'�ecrire comme un champ de droites de
z�eros d'une 1- forme �a coe�cients polynomiaux. Un champ de drô�tes tangentes �a un champ vectoriel
hamiltonien polynomial s'�ecrit comme

dH = 0 ; ou H est le hamiltonien:

Les orbites ferm�ees d'un champ hamiltonien forment une famille continue d'ovales : courbes ferm�ees
(non singuli�eres) dans les courbes de niveau de l'hamiltonien.

Aucune borne uniforme pour le nombre de cycles limites n'estconnue pour les champs polynomiaux
proches des champs hamiltoniens (sauf pour les champs quadratiques ; un survol des r�esultats partiels
avec r�ef�erences est pr�esent�e dans [69]), par exemple, dans une famille en un param�etre" du type

dH + "! = 0 ; ! = A(x; y)dx + B (x; y)dy; degA; degB < degH:

Un ovale  � f H = tg du champ hamiltonien (" = 0) peut engendrer un cycle limite du champ
perturb�e ( " 6= 0), seulement dans le cas o�u le niveau correspondantt est un z�ero d'une fonction I (t)
sp�eciale : l'int�egrale ab�elienne

I (t) =
Z


!:

Cette derni�ere se prolonge �a une fonction holomorphe sur le revêtement universel au-dessus du
compl�ementaire de l'ensemble des valeurs critiques complexes deH .

Dans mon travail commun avec Yu.S.Ilyashenko ([52, 53]), nous avons obtenu une majoration
explicite du nombre de z�eros d'une int�egrale ab�elienne pour un hamiltonien polynomial d'un degr�e
arbitraire, de telle sorte, que :

- les droites complexes de z�eros de la partie homog�ene sup�erieure sont distinctes (i.e. la partie
sup�erieure est non d�eg�en�er�ee) et ne sont pas trop proches l'une de l'autre ;

- les valeurs critiques complexes sont distinctes, et la distance minimale entre deux n'est pas trop
petite par rapport �a la distance maximale.

Cette majoration est exponentielle en (degH)4. C'est la meilleure majoration connue jusqu'�a
pr�esent.

La preuve de cette majoration est bas�ee sur une id�ee de Ilyashenko, la th�eorie de Picard-Lefschetz et
mes r�esultats [46, 47] obtenus au cours de notre travail. Ces r�esultats concernent les courbes de niveau
d'un polynôme complexe en deux variables, dont la partie homog�ene sup�erieure est non d�eg�en�er�ee.
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Le r�esultat principal de [47] donne une formule explicite pour le d�eterminant d'une matrice
d'int�egrales ab�eliennes des 1- formes monomiales formant une base, le long d'une base des cycles
engendrant l'homologie d'une courbe de niveau.

Il est connu que les racines et les points critiques d'un polynôme complexe unitaire normalis�e
admettent une borne sup�erieure explicite. \Normalis�e" s igni�e, que z�ero est un point critique, et
toutes les valeurs critiques sont dans le disque unit�e.

Les r�esultats de [46], qui appartiennent �a la \g�eom�etri e alg�ebrique quantitative", �etendent cet
�enonc�e aux polynômes en deux variables (convenablementnormalis�es d'une mani�ere analogue). Le
th�eor�eme principal donne une majoration du rayon minimal d'un bidisque centr�e en z�ero, qui contient
toute la topologie non triviale d'une courbe de niveau donn�ee.

1.1.5 Conuence de points singuliers et ph�enom�ene de Stok es (chapitre 6)

L'holonomie (l'application de premier retour) d'un cycle l imite d'un feuilletage holomorphe de co-
dimension un est un germe d'application conforme (C; 0) ! (C; 0) �a point �xe 0. Un germe est parabo-
lique s'il est tangeant �a l'identit�e en 0 et di��erent de l'ident it�e. La classi�cation analytique (i.e. modulo
conjugaison conforme) de germes paraboliques a �et�e obtenue simultan�ement et ind�ependamment par
J. �Ecalle [27] et S.M. Voronin [117]. Leurs invariants analytiques sont la forme normale formelle et
une collection �nie de germes conformes (C; 0) ! (C; 0). Cette derni�ere collection s'appelle lemodule
d' �Ecalle-Voronin.

La th�eorie des invariants d' �Ecalle-Voronin est un analogue non lin�eaire de la th�eorie classique
(d�evelopp�ee dans les ann�ees 1970) des �equations di��erentielles ordinaires lin�eaires en temps complexe
�a points singuliers irr�eguliers. Consid�erons, par exemple, une �equation di��erentielle

_z = A(t)z; z 2 Cn ;

o�u A(t) est une fonction matricielle m�eromorphe. Un point singulier d'une telle �equation est un pôle
de A(t). Il est de type Fuchssi c'est un pôle simple. Il est irr�egulier si une certaine solution crô�t
exponentiellement le long d'un secteur �a sommet en le pointsingulier. La classi�cation analytique de
germes d'�equations lin�eaires �a points singuliers irr�e guliers a �et�e obtenue par W. Balser, W. Jurkat, D.
Lutz, A. Peyerimho�, Y. Sibuya [10, 75, 107]. Les invariants analytiques sont la forme normale formelle
et une collection d'op�erateurs lin�eaires unipotents agissant dans les espaces de solutions au-dessus de
secteurs appropri�es. Ces derniers op�erateurs s'appellent les op�erateurs de Stokes.

Dans les ann�ees 1980 V.I. Arnold a propos�e d'�etudier une �equation �a point singulier irr�egulier
comme une limite d'�equations �a points singuliers Fuchsiens, qui conuent. Il avait conjectur�e que cer-
tains op�erateurs de monodromie de l'�equation perturb�ee (Fuchsienne) convergent vers des op�erateurs
de Stokes. Une question proche a �et�e pos�ee et partiellement �etudi�ee par J.-P. Ramis [104] (voir l'article
[41] pour un survol de r�esultats partiels avec r�ef�erences).

Dans les articles [38, 40, 41, 42], j'ai obtenu des r�esultats qui relient la monodromie limite avec
les op�erateurs de Stokes dans le cas non r�esonnant g�en�eral et dans certains cas r�esonnants. Dans [39],
j'ai obtenu des analogues non lin�eaires de ces r�esultats,en particulier pour les germes paraboliques
et leurs invariants d' �Ecalle-Voronin. Ces r�esultats, avec une esquisse de d�emonstration et un survol
historique, sont pr�esent�es dans chapitre 6.

1.2 R�esum�e des travaux non pr�esent�es dans ce m�emoire

Ici toutes les citations sont donn�ees selon la liste de publications personnelles dans la section 1.3.
Dans [1] j'ai obtenu la description combinatoire (analogue�a celle de Lyashko et Loojienga) du

revêtement de l'espace des polynômes complexes "�equivariants" en une variable au-dessus des collec-
tions de leurs valeurs critiques.

Les travaux [2], [5], [7] et [22] font partie de ma th�ese de doctorat et concernent les feuilletages
holomorphes singuliers de dimension un surCn ou sur une vari�et�e projective lisse. J'ai d�emontr�e
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[2,5,22] que pour un feuilletage g�en�erique, toutes les feuilles sont hyperboliques : leurs revêtements
universels sont conform�ement �equivalents au disque. Dans [7], j'ai calcul�e la codimension de l'ensemble
des feuilletages surCn et sur CPn qui ne satisfont pas les conditions su�santes de [2,5,22] pour
l'hyperbolicit�e de feuilles.

Dans les travaux [3] et [4] j'ai d�emontr�e que si un champ de vecteurs lisse surR2 a au moins un
point singulier, et en tout point du plan, toute valeur propr e de sa matrice de Jacobi a une partie
r�eelle n�egative, alors le point singulier est unique et globalement attractif. Cela a donn�e une r�eponse
positive �a la conjecture planaire de Markus et Yamabe. Presqu'en même temps (mais un peu plus
tôt), deux autres solutions ont �et�e obtenues par C. Gutie rrez et R. Fessler par m�ethodes compl�etement
di��erentes. J'ai construit un contre-exemple en dimension 3 dans [23]. Quand j'�etais en train de le
preparer pour publication, un contre-exemple polynomial simple en dimension 3 a �et�e construit dans
un travail commun par A. Cima, A. van den Essen, A. Gasull, E. Hubbers et F. Ma~nosas.

Dans [6], j'ai �etudi�e les courbes sur le tore T2 sans intersections, dont les relev�ees sur le revêtement
universel R2 ne sont pas born�ees. On colle un cercle �a l'in�ni du plan : des rayons di��erents partant
de l'origine aboutissent �a deux points di��erents du cercl e. J'ai donn�e une description compl�ete des
ensembles de directions (comme points du cercle �a l'in�ni), le long desquelles une telle relev�ee peut
s'accumuler vers l'in�ni. Ces ensembles sont : 1) un point ; 2) deux points opposes ; 3) un segment
ferm�e contenu dans un demi-cercle ; 4) le cercle tout entier.

L'article [12] concerne les equations di��erentielles lin�eaires �a point singulier irr�egulier r�esonnant du
type g�en�erique. Les r�esultats obtenus sont analogues �a ceux pr�esent�es dans la sous-section pr�ecedente
et dans le chapitre 6.

Dans [15] j'ai construit des fractions continues\exotiques" �a coe�cients r�eels, qui donnent un
contre-exemple �a une a�rmation trouv�ee dans des notes de Ramanujan.

L'article [17] avec son r�esultat (une formule explicite pour le d�eterminant d'une matrice d'int�egrales
ab�eliennes\de base") a d�ej�a �et�e mentionn�e dans la sou s-section 1.1.4. Ce r�esultat, qui �etait utilis�e dans
la majoration du nombre de z�eros d'une int�egrale ab�elienne [18, 19], ne sera pas pr�esent�e ici.

Les r�esultats de l'article [9] sont bri�evement mentionn�es dans la sous-section pr�ec�edente et dans le
chapitre 6. Ceux qui ne sont pas pr�esent�es ici concernent

- les d�eformations d'un point �xe parabolique et les invari ants d' �Ecalle-Voronin ;
- les d�eformations d'un point singulier n�ud-col d'un cham p vectoriel holomorphe en dimension

strictement sup�erieure �a 2, et ses vari�et�es centrales sectorielles.
L'article [27] concerne une �equation di��erentielle lin� eaire satisfaite par les int�egrales hy-

perg�eom�etriques associ�ees �a un arrangement g�en�erique d'hyperplans r�eels. Cette �equation a un pôle
d'ordre deux �a l'in�ni, qui est un point singulier irr�egul ier non r�esonnant. Nous avons calcul�e ses
op�erateurs de Stokes.
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Chapitre 2

Uniformization of Riemann surface
foliations

The present Chapter deals with foliations by Riemann surfaces. The main question studied here is
the dependence of the uniformization of a leaf on the transversal parameter. We study this question
with respect to two di�erent notions of simultaneous unifor mizability : the metric uniformizability
in the sense of �E Ghys (Sections 2.1, 2.2) and the holomorphic simultaneousuniformizability of
holomorphic foliations in the sense of Yu.S.Ilyashenko (Section 2.3). We present positive and negative
results. The main positive result is Theorem 2.1.3 stated in2.1.2 and proved in Section 2.2. Its proof
yields a new proof of the integrability of smooth almost complex structure on two-torus (Theorem
2.1.2 stated in 2.1.1 and proved in Section 2.2).

2.1 Metric uniformizability

2.1.1 Introduction : at metrics and uniformization

The (almost) complex structureon a two-dimensional real surface is a family of complex structures
on the tangent planes at the points of the surface. A Riemann surface with its standard complex
structure carries a lot of nonstandard almost complex structures. We say that a (nonstandard) complex
structure on a Riemann surface isboundedif it has uniformly bounded dilatation with respect to the
standard complex structure (see 2.1.5).

It is well-known that each measurable bounded almost complex structure is locally integrable.
This was proved in [94] and earlier under additional regularity conditions (H•older or continuous)
in [83, 86, 85]. Each measurable bounded almost complex structure on C is globally integrable, see
the next theorem proved by M.A.Lavrentiev [85] for continuous almost complex structures and by
C.Morrey Jr. [94] in the general case.

Theorem 2.1.1 ([5, 94]). For any measurable (C1 ) bounded almost complex structure� on C there
exists a quasiconformal homeomorphism (C1 di�eomorphism) C ! C that transforms � to the stan-
dard complex structure.

The de�nition of a quasiconformal homeomorphism may be found in [4]. Theorem 2.1.1 implies
that for any C1 metric g on R2 with bounded dilatation there exists aC1 positive function � : R2 !
R+ such that the metric �g is at and complete (the function � is unique up to multiplication by
constant). This statement remains valid with R2 replaced by an arbitrary parabolic Riemann surface
(see De�nition 0).

In this section we present foliated versions of Theorem 2.1.1. Namely, we consider a real two-
dimensional foliation on a compact Riemann manifold (M; g). The metric g induces an almost complex
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structure on each leaf. We suppose that the latter complex structure is parabolic. (This property is
independent on the choice of the metric, by compactness and Theorem 2.1.1.) By the same theorem,
on each individual leaf L there exists aC1 function � : L ! R+ such that the metric �g of the leaf
L is at and complete. We study the following questions.

Question 1. Is it possible to �nd a C1 function � : M ! R+ such that the restriction to each
leaf of the metric �g be at and complete ? In other words, is it true that the previo us functions �
may be chosen to depend smoothly on the transversal parameter ?

Question 2. If yes, is it possible to �nd a Euclidean metric g0 on the ambient manifold M that
coincides with �g along the leaves, and for which each leaf be totally geodesic?

Positive and negative results were obtained in [45]. We present some of them here (Subsections
2.1.2-2.1.4). The main positive results (Theorems 2.1.3, 2.1.11 and 2.1.12) concern linear planar fo-
liations on torus of arbitrary dimension equipped with a nonstandard Riemann metric (Subsections
2.1.2, 2.1.3). Counterexamples to Question 1 are discussedin 2.1.4.

The proof of Theorem 2.1.3 is based on a new proof (presented in [45, 51]) of the following classical
Theorem. Both proofs are given in Section 2.2.

Theorem 2.1.2 ([Ab]) For any C1 almost complex structure� on T2 = R2=2� Z2 there exists aC1

di�eomorphism of T2 onto appropriate complex torus (the latter torus depends on� ) that transforms
� to the standard complex structure.

Theorem 2.1.2 is proved by showing the existence of a global nowhere vanishing� - holomorphic
di�erential. To do this, we use the homotopy method for the Beltrami equation with parameter.
This method reduces the proof to solving a linear ordinary di�erential equation in L 2(T2). We prove
regularity of its solution by showing that the equation is bounded in any Sobolev spaceH s(T2).

As is shown in [51] (by classical arguments), Theorem 2.1.2 implies the Poincar�e-K•obe Uniformiza-
tion Theorem (modulo the contractibility of a simply connected surface) and Theorem 2.1.1. Another
short proof of Theorem 2.1.1 using a di�erent method (Fourier transformation) was earlier obtained
by A.Douady and X.Bu� [23].

Analogues of Question 1 were studied by A.Verjovsky [115], A.Candel and X.G�omez-Mont [19],
A.Lins Neto [87] for some holomorphic foliations with singularities by hyperbolic Riemann surfaces.
A.Candel [18] completely answered the analogue of Question1 for laminations by hyperbolic Riemann
surfaces, with at metric replaced by Poincar�e metric. In 1 995 �E.Ghys [34] proposed and partially
studied Question 1. He proved the positive answer for linearfoliations on T3 under certain Diophantine
condition on the slope of the leaves. He noticed [34] that Reeb foliation of the three-sphere provides a
counterexample to Question 1. Moreover,the foliated manifold (sphere) admits no bounded Riemann
metric whose restriction to each leaf be Euclidean.Theorems 2.1.14 and 2.1.15 stated in 2.1.4 provide
counterexamples to Question 1 in the class ofC1 foliations on compact manifolds for which at least
one latter Riemann metric exists and is analytic. In these examples we construct some other Riemann
metric g on the foliated manifold for which there is no positive smooth function � such that the metric
�g be at along the leaves.

2.1.2 Uniformizability of linear folations

Denote Tn = Rn =2� Zn . Consider a two-dimensional parallel plane foliation onRn . The standard
projection Rn ! Tn induces a foliation on the torus Tn . This foliation is called linear. Take a (non-
standard) metric g on Tn and consider the corresponding complex structures on the leaves. Then each
leaf is parabolic, by Theorem 2.1.1 and since the metricg has a bounded dilatation with respect to
the standard Euclidean metric (by compactness argument).

Theorem 2.1.3 [45]. Let F be an arbitrary linear foliation on Tn , g be a Riemann metric onTn that
is analytic (respectively, C1 /measurable and uniformly bounded from below onTn with uniformly
bounded dilatation along the leaves ofF ). There exists an analytic (respectively, C1 / L 1) positive
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function � : Tn ! R+ such that the restriction of the metric �g to each leaf (almost each in the
measurable case) of the foliationF is at (in the sense of distributions in the third case) and complete.

Remark 2.1.4 In the previous theorem in the smooth and analytic cases the completeness of the
metric �g follows from the nonvanishing of the function � and compactness argument.

Remark 2.1.5 For any linear foliation on Tn either all the leaves are tori, or each leaf is dense. In
the simplest case, when all the leaves are tori, Theorem 2.1.3 follows from Theorem 2.1.2 with smooth
(analytic) dependence of the uniformization of the almost complex torus on the parameter of the
almost complex structure, see [2]. The proof of Theorem 2.1.2 given in 2.2 also works to prove the
regular dependence on the parameter. Thus, the interestingcase of Theorem 2.1.3 is when the leaves
are dense : then all they are either planes, or cylinders.

2.1.3 Existence of conformal Euclidean metric for which lea ves are totally
geodesic

Here we present positive answers to Question 2 for linear foliations on Tn satisfying some (sharp)
Diophantine conditions on the slope. These are two di�erent Diophantine conditions (see De�nition
2.1.7) corresponding to the cases, when the metric of the torus is smooth (respectively, analytic).

De�nition 2.1.6 We say that a number � 2 R n Q is Diophantine, if there exist constants C > 0,
s � 1 such that for any pair m; k 2 Z, k 6= 0, the following inequality holds :

j� �
m
k

j >
C

jkjs+1 :

De�nition 2.1.7 Consider a foliation onRn by parallel planes : level planes of a linear vector function
of rank n � 2. Let F be the corresponding factorized linear foliation onTn . Let W � Rn be the n � 2-
space passing through the origin and orthogonal to the planes. Say that F is Diophantine, if there
exist constantsC > 0, s � 1 such that for any N = ( N1; : : : ; Nn ) 2 Zn n 0

dist (N; W ) >
C

jN js
; jN j =

X

i

jN i j:

Say that F is weakly Diophantine, if

lim N 2 Zn ; jN j!1 (dist (N; W ))
1

j N j = 1 : (2.1.1)

Remark 2.1.8 Let n = 3, x = ( x1; x2; x3) be coordinates in the spaceR3. Consider the foliation
on R3 by level planes of the linear function l(x) = a1x1 + a2x2 � x3. Then the corresponding linear
foliation F on T3 is Diophantine, if and only if there exist constants C > 0, s � 1 such that for any
N = ( N1; N2; N3) 2 Z3 n 0 the following inequality holds :

jN1 + a1N3j + jN2 + a2N3j >
C

jN js
; jN j = jN1j + jN2j + jN3j: (2.1.2)

It is weakly Diophantine, if and only if

limN 2 Z3 ; jN j!1 (jN1 + a1N3j + jN2 + a2N3j)
1

j N j = 1 : (2.1.3)

Example 2.1.9 In the notations of the previous remark let the additive subgroup in R generated by
a1 and a2 contain a Diophantine number. Then the foliation F is Diophantine. It is not known to the
author, whether the converse is true.
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Remark 2.1.10 The limit (2.1.1) is always less than or equal to 1. A Diophantine foliation is always
weakly Diophantine.

Theorem 2.1.11 [45]. Let F be a Diophantine foliation on Tn (see De�nition 2.1.7), g be a C1

Riemann metric on Tn . There exists aC1 Euclidean metric eg on Tn and a C1 function � : Tn ! R+

such that

each leafL of the foliation F is totally geodesic andegjL = �g jL : (2.1.4)

Or equivalently, let � be the family of almost complex structures induced by the metric g on the
leaves of F . There exist a discrete rank n additive subgroupG � Rn and a C1 di�eomorphism
Tn ! TG = Rn =G that transforms F to a linear foliation and sends � to the standard complex
structure induced by the standard Euclidean metric. Conversely, if a linear foliation on Tn is not
Diophantine, then there exists aC1 metric g on the torus such that there is noC2 Euclidean metric
eg on Tn satisfying (2.1.4).

Theorem 2.1.12 [45]. Let F be a weakly Diophantine foliation onTn (see De�nition 2.1.7). Then
for any analytic metric g on Tn there exists an analytic Euclidean metriceg on Tn that satis�es (2.1.4).
Conversely, if F is not weakly Diophantine, then there exists an analytic metric g on Tn such that
there is no C2 Euclidean metric eg on Tn that satis�es (2.1.4).

Let us justify the equivalence of the two statements of Theorem 2.1.11. Clearly, the second one
implies the �rst one : the Euclidean metric from the �rst stat ement is the pull-back of the standard
one under the di�eomorphism from the second statement. Let us prove the converse. Any Euclidean
metric on a torus is transformed under appropriate di�eomorphism into the standard Euclidean metric
on another torus (that is a quotient of the space by another lattice in general). Consider the images
of leaves of the foliation. Their liftings to the space are planes, since the leaves are totally geodesic.
They are parallel. Indeed, the liftings to the space of any two leaves of the initial foliation remain on a
bounded distance from each other. Therefore, the same is true for the liftings of their images (by the
compactness ofTn ). Hence, they are parallel. Thus, the leaves ofF are transformed to the leaves of
a linear foliation. This shows that statement (2.1.4) of Theorem 2.1.11 implies its second statement.

Remark 2.1.13 Earlier A.Haeiger [58] have obtained a result implying that under an a priori stron-
ger Diophantine condition the metric �g on the leaves extends up to a global metric on the torus for
which all the leaves are minimal surfaces.

2.1.4 Nonuniformizability. Counterexamples to Question 1

Theorem 2.1.14 [45]. There exists a two-dimensional analytic foliationF on T3 = T2 � S1 with the
following properties.
1) F is invariant under the translations of T2.
2) Any leaf is locally 1-to-1 projected to T2.
3) There are exactly two leaves that are horizontal tori ; anyother leaf is homeomorphic to the cylinder
S1 � R.
4) There exists an analytic family of almost complex structures on the leaves satisfying the two follo-
wing statements :

a) there is a unique continuous family of conformal at metrics on the leaves up to multiplication
by constant ; it is analytic outside the previous toric leaves ;

b) the latter family of at metrics is not di�erentiable in th e transversal parameter at one of the
toric leaves.

Theorem 2.1.15 [45]. There exists a two-dimensionalC1 foliation F on T2 � S2 with the following
properties.



21

1) F is invariant under the translations of T2.
2) Any leaf is locally 1-to-1 projected to T2.
3) There is a big circle S1 � S2 such that the productT2 � S1 is a union of leaves ofF ; each of these
leaves is a horizontal torusT2 � a, a 2 S1.
4) Any other leaf is di�eomorphic to R2, and its accumulation set is the previous productT2 � S1.
5) There exists a C1 metric g on T2 � S2 such that on each non-toric leafL there exists a unique
function � : L ! R+ (up to multiplication by constant) such that the metric �g jL is at and complete.
The function � (x) tends to in�nity, as x ! 1 .

Let us describe briey the construction of the foliation and the metric from Theorem 2.1.15. The
foliation F is the suspension over the torusT2 under appropriate action of its fundamental group Z2

by sphere di�eomorphismsS2 ! S2. Any of these di�eomorphisms �xes only the points of the equator
S1 � S2 and is atly tangent to the identity at these points. Thus, th e product T2 � S1 is an invariant
set foliated by horizontal tori. Any other leaf L is canonically identi�ed with R2 and embedded to
T2 � S2 by the pair of projections (� 1; � 2) : L ! T2 � S2. The mapping � 2 : L = R2 ! S2 is a
di�eomorphism onto a hemisphere bounded by the equator. It commutes with the rotations of R2

around the origin and those of the hemisphere around its center. The projection � 1 : L ! T2 is a
universal covering : the composition of the group quotient mapping R2 ! T2 with a translation of
the torus. To de�ne the metric g, we construct its restriction to the leaves and then extend it to the
transversal direction in an arbitrary way. The metric on the horizontal toric leaves is the lifting of the
standard Euclidean metric on T2. Any other leaf L = R2 is equipped with an appropriate rotation-
invariant metric that tends to the standard Euclidean metri c, as the point where it is taken tends to
in�nity.

For any rotation-invariant metric g on R2 with uniformly bounded dilatation the corresponding
function � : R2 ! R+ , for which the metric �g is at and complete, is also rotation-invariant. The
latter function � can be �nd by an explicit formula. It appears that one can achieve appropriate
asymptotic behaviors at in�nity of the mapping � 2 and the metric g so that the function � (x) tend
to in�nity, as x ! 1 , and g extends up to aC1 family of metrics on all the leaves of the foliation F .

2.1.5 Complex structures and Beltrami equations. Basic not ations

To a (nonstandard) almost complex structure (denoted by � ) on a subset D � C we put into
correspondence aC- valued 1- form that is C- linear with respect to � . The latter form can be
normalized to have the type

! � = dz + � (z)d�z; j� j < 1: (2.1.5)

The function � : D ! C is uniquely de�ned by � . Vice versa, for an arbitrary complex-valued function
� with j� j < 1, the 1- form (2.1.5) de�nes the unique complex structure for which the form is C- linear.
We denote by � � the almost complex structure thus de�ned (whenever the contrary is not speci�ed).
Then � � is bounded, if and only if the essential supremum of the function j� j is less than 1.

De�nition 2.1.16 The ellipse associated to� � on the tangent plane at a point z is given by the
equation jdz + � (z)d�zj = 1. The dilatation of � � is the aspect ratio of the ellpise : it is equal to
1+ j � (z) j
1�j � (z) j .

We will be looking for a di�erentiable homeomorphism �( z) that is holomorphic, i.e., that transforms
� � to the standard complex structure. This is equivalent to say that the di�erential of � (which is a
closed 1- form) is aC- linear form, i.e., has the type f (z)(dz + �d �z) :

@�
@�z

= �
@�
@z

(Beltrami equation) :
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Remark 2.1.17 Conversely, let � be C1 with j� j < 1. Then any C1 closed 1- formf (z)(dz + �d �z)
is � � - holomorphic, i.e., is a di�erential of a complex-valued C1 function � transforming � � to the
standard complex structure. A form f (dz + � (z)d�z) is closed if and only if

@�z f = @z (�f ): (2.1.6)

2.2 Uniformization of almost complex torus. Proof of Theo-
rems 2.1.2 and 2.1.3

First we prove Theorem 2.1.2. At the end of the section we discuss the proof of Theorem 2.1.3
obtained by modifying the proof of Theorem 2.1.2.

2.2.1 Homotopy method. The sketch of the proof of Theorem 2.1 .2

Let � : T2 ! C be aC1 complex-valued function with j� j < 1. Let � � be the corresponding almost
complex structure, ! � = dz + �d �z be the correspondingC- linear 1- form, see (2.1.5). Theorem 2.1.2
says that there exists a di�eomorphism transforming (T2; � � ) into appropriate complex torus equipped
with the standard complex structure. We construct a C1 nowhere vanishing function f : T2 ! C
such that the 1- form f ! � be closed or equivalently,f satisfy partial di�erential Equation (2.1.6).
Then the lifting to the universal cover R2 ! T2 of the form f ! � is the di�erential of the mapping
	 : R2 = C ! C, 	( z) =

Rz
0 f ! � . The mapping 	 is a di�eomorphism and transforms the integer

lattice Z2 and its translation images to some lattice G � C and its appropriate translation images.
This follows from the de�nition and the local di�eomorphici ty of 	 ( f 6= 0). The factorized mapping
T2 ! T2

G = C=G is a di�eomorphism that sends � � to the standard complex structure. This implies
Theorem 2.1.2.

To solve (2.1.6), we use the homotopy method. Namely, we include � � into the one-parametric
family of complex structures (denoted by � � ) de�ned by their C- linear 1- forms

! � = dz + � (z; t)d�z; � (z; t) = t� (z); t 2 [0; 1]:

The complex structure corresponding to the parameter valuet = 0 is the standard one, the given
structure � � corresponds tot = 1. We will �nd a C1 family f (z; t) : T2 � [0; 1] ! C of complex-valued
nowhere vanishingC1 functions on T2 depending on the same parametert, such that the di�erential
forms f (z; t)! � be closed, i.e.,

@�z f = @z (f � ); and f (z;0) � 1: (2.2.1)

Then the function f = f (z;1) is the one we are looking for.
To construct the above-mentioned family of functions, �rst we will �nd a family f (z; t) of functions

that satisfy (2.2.1) and do not vanish identically on T2 for any �xed parameter value t.

Lemma 2.2.1 Let � (z; t) : T2 � [0; 1] ! C be a C1 family of C1 functions on T2 with j� j < 1,
� (z;0) � 0, z be the complex coordinate onT2. There exists aC1 family f (z; t) : T2 � [0; 1] ! C of
C1 functions on T2 that are solutions of di�erential Equation (2.2.1) (with th e boundary condition)
such that for any �xed t 2 [0; 1] one hasf (z; t) 6� 0.

The Lemma will be proved in the next subsection.
We show that, in fact, the functions f (z; t) from the lemma vanish nowhere. To do this (and only

in this place) we use the local integrability of a C1 complex structure :

Proposition 2.2.2 [20, 83, 85, 86]. Let D � C be a disk centered at 0,� : D ! C be aC1 function
with j� j < 1. Let � � be the corresponding almost complex structure, see (2.1.5). There exists a local
C1 � � - holomorphic univalent complex coordinate near 0.
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The proposition will be proved in Subsection 2.2.3.
Proof of Theorem 2.1.2 modulo Lemma 2.2.1 and Proposition 2. 2.2. Let f (z; t) be a family
of functions from Lemma 2.2.1. By the previous discussion, it su�ces to show that f (z; t) 6= 0. This
inequality holds for t = 0, where f (x; 0) � 1.

Let us prove that f (z; t) 6= 0 by contradiction. Suppose the contrary. Then the set of the parameter
values t corresponding to the functions f (z; t) having zeroes is nonempty. Denote this set byM . Its
complement [0; 1]nM is open by de�nition. Let us show that the set M is open as well. This will imply
that the parameter segment is a union of two disjoint open sets, which will bring us to contradiction.
It is su�cient to show that the local presense of a zero of a function f persists under perturbation.

Supposef (z0; t) = 0 for some z0 and t (let us �x them). It su�ces to show that for any t0 close to
t the function f (z; t0) has a zero nearz0. Let w be the local � � - holomorphic coordinate onT2 near
z0 from Proposition 2.2.2 with � (z) replaced by � (z; t) and w(z0) = 0. We consider that the function
f (z; t) does not vanish identically on T2 locally near z0. One can achieve this by changingz0, since
f (z; t) does not vanish identically on T2. Recall that the 1- form f (z; t)! � (z;t ) is a closedC- linear
form on T2 with respect to the complex structure � � (z;t ) . Hence, it is holomorphic in the coordinate
w. Therefore, f (z; t)! � (z;t ) = ( wk + higher terms) dw, k � 1. Now by an index argument, the local
presense of zero off on T2 persists under perturbation. This together with the previous discussion
proves the inequality f (z; t) 6= 0 and Theorem 2.1.2. 2

2.2.2 Variable holomorphic di�erential : proof of Lemma 2.2 .1

We denote by _f the partial derivative in t of a function f . Di�erentiating (2.2.1) in t yields

@�z
_f � (@z � � ) _f = ( @z � _� )f: (2.2.2)

where @z � � (@z � _� ) is the composition of the operator of the multiplication by the function �
(respectively, _� ) and the operator @z . Any C1 solution f of equation (2.2.2) with the initial condition
f (z;0) � 1 that does not vanish identically on the torus for any value of t is a one we are looking
for. Let us show that (2.2.2) is implied by a bounded linear di�erential equation in L 2(T2) and in any
Hilbert Sobolev space. To do this, we use the following properties of the operators@z and @�z .

Remark 2.2.3 Denote z = x1 + ix 2, x = ( x1; x2) 2 R2. The operators @z , @�z on T2 have common
eigenfunctionsen (x) = ei (n;x ) , n = ( n1; n2) 2 Z2. The corresponding eigenvalues (denote them by� n

and � 0
n respectively) have equal moduli, more precisely,

� 0
n = � � n : (2.2.3)

This is implied by the fact that the operator @�z is conjugated to � @z in the L 2 scalar product, which
follows from de�nition. In fact,

� n =
i
2

(n1 � in 2) and � 0
n =

i
2

(n1 + in 2):

Corollary 2.2.4 There exists a unique unitary operator U : L 2(T2) ! L 2(T2) preserving averages
and such that \U = @� 1

�z � @z " (more precisely, U � @�z = @�z � U = @z in the sense of distributions). The
operator U commutes with partial di�erentiations and extends up to a unitary operator to any Hilbert
Sobolev space of functions onT2. In particular, it preserves the space ofC1 functions.

Proof The operator U from the corollary is de�ned to have the eigenfunctions en with the eigen-
values � n

� 0
n

= n 1 � in 2
n 1 + in 2

if n 6= 0, and 1 if n = 0. Its uniqueness follows immediately from the previous
operator equation onU applied to the functions en . The rest of the statements of the corollary follow
immediately from de�nition and Sobolev embedding theorem (see [21], p.411). 2
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Let us write down equation (2.2.2) in terms of the new operator U. Applying the \operator" @� 1
�z

to (2.2.2) and substituting U = @� 1
�z � @z yields

(Id � U � � ) _f = ( U � _� )f:

This equation implies (2.2.2). For any t 2 [0; 1] the operator Id � U � � in the left-hand side is invertible
in L 2(T2) and the norm of the inverse operator is bounded uniformly int, sinceU is unitary and the
modulus j� j is less than 1 and bounded away from 1 by compactness. Thus, the last equation can be
rewritten as

_f = ( Id � U � � )� 1(U � _� )f; (2.2.4)

which is a linear ordinary di�erential equation in f 2 L 2(T2). The operator in its right-hand side
is uniformly bounded in the operator L 2- norm. Let us show that the same operator is uniformly
bounded in the SobolevH s(T2)- norms. More precisely, for anys 2 N there exists acs > 0 such that

jj (Id � U � � )� 1 jjH s (T2 ) < c s(1 +
X

k � s; i r =1 ;2

max
T2 � [0;1]

j
@k �

@xi 1 : : : @xi k

js): (2.2.5)

Proof Let us prove (2.2.5) for s = 1. For higher s the proof is analogous. Let

� = max j� j: Then max
T2 � [0;1]

j� j � � < 1; jjU � � jjL 2 � � < 1:

Hence, the operatorId � U � � is invertible in L 2 = H 0 and

(Id � U � � )� 1 = Id +
1X

k=1

(U � � )k ; (2.2.6)

jj (U � � )k jjL 2 � � k ; jj (Id � U � � )� 1 jjL 2 �
1

1 � �
: (2.2.7)

To prove (2.2.5), we use (2.2.6) and estimate theH 1- norms of the terms in its sum.
Let f 2 H 1(T2). Let us estimate jj (U � � )k f jjH 1 . We show that for any k 2 N

jj
@

@xr
((U � � )k f )jjL 2 � ck� k � 1jj f jjH 1 ; c = � + max j

@�
@xr

j; r = 1 ; 2: (2.2.8)

This together with (2.2.6) and the �rst inequality in (2.2.7 ) implies (2.2.5) ; herecs = c1 = 4
P

k2 N k� k � 1 =
4

(1 � � )2 .
Let us prove (2.2.8), e.g., forr = 1. The derivative in the left-hand side of (2.2.8) equals

(U � � )k @f
@x1

+
kX

i =1

(U � � )k � i � (U �
@�
@x1

) � (U � � ) i � 1f;

since U commutes with the partial di�erentiations. The L 2- norm of the �rst term in the previous
formula is no greater than � k jj f jjH 1 by (2.2.7). Each term in the latter sum has L 2- norm no greater
than � k � 1 max j @�

@x1
jjj f jjL 2 by (2.2.7). This proves (2.2.8). Inequality (2.2.5) is proved. 2

Ordinary di�erential Equation (2.2.4) is bounded in any Sob olev spaceH s(T2), by (2.2.5). The-
refore, it has a unique solution f (x; t ) with the initial condition f (x; 0) � 1 that belongs to all the
Sobolev spaces. This follows from the existence and uniqueness theorem for solution of ordinary dif-
ferential equation in Banach space with right-hand side having bounded derivative, see [21]. This
solution is C1 by the Sobolev embedding theorem (see [21], p.411). For any �xed value of t it does
not vanish identically on T2 (the uniqueness of local solution). Lemma 2.2.1 is proved.
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Remark 2.2.5 The solution of Equation (2.2.4) with the initial condition f jt =0 � 1 admits the
following formula :

f (x; t ) = ( Id � U � � )� 1(1) = 1 + U(� ) + ( U � � � U)( � ) + : : : (2.2.9)

Indeed, its right-hand side is a well de�ned C1 family of C1 functions on T2, which follows from the
uniform boundedness of the operators (Id � U � � )� 1 in any given Hilbert Sobolev space. By de�nition,
f satis�es the initial condition f (x; 0) � 1. Di�erentiating (2.2.9) in t yields

_f = ( Id � U � � )� 1 � (U � _� ) � (Id � U � � )� 1(1) = ( Id � U � � )� 1 � (U � _� )f:

Hence, the function (2.2.9) satis�es (2.2.4).

2.2.3 Zero of holomorphic di�erential. Proof of Propositio n 2.2.2

Let us prove the existence of local holomorphic coordinate.Without loss of generality we assume
that � (0) = 0. One can achieve this by applying a real-linear transformation of the plane R2 = C � D
that brings the ellipse at 0 associated to� � to a circle. One can achieve also that� be arbitrarily
small with derivatives of orders up to 3 by applying a homothety and taking the restriction to a
smaller disk centered at 0. We consider that the disk where� is de�ned is embedded into T2 and
extend the function � smoothly to T2. We assume that the extended function satis�es the inequality
jj � jjC 3 (T2 ) < � ; one can make� arbitrarily small.

Let � (x; t ) = t� , f (x; t ) be the corresponding function family from Lemma 2.2.1 constructed as the
solution of di�erential equation (2.2.4) with unit initial condition. Put f (x) = f (x; 1). We show in the
next paragraph that f (0) 6= 0, if the previous constant � is small enough. Then the local coordinate
we are looking for is the function

w(z) =
Z z

0
f (dz + �d �z):

Indeed, it is well-de�ned and holomorphic, since the 1- formf (dz + �d �z) is closed by construction.
Its local univalence follows from the nondegeneracy of its di�erential f (0)(dz + � (0)d�z) at 0 (the
inequalities j� j < 1, f (0) 6= 0).

Recall that by (2.2.9),

f (x; t ) = ( Id � tU � � )� 1(1); where U = ( @�z )� 1@z :

The functions f (x; t ) are equal to 1, if � = 0. Let us show that they are C0- close to 1 (and hence,
f (0) = f (0; 1) 6= 0), whenever � is small enough with derivatives up to order 3. For any t 2 [0; 1]
consider the operator-valued functional A(� ) = ( Id � tU � � )� 1 de�ned for jj � jjC 3 < � : its value
being an operator acting in H 3(T2). (It is well-de�ned, see Inequality (2.2.5).) The derivat ive A 0(� )
exists and is uniformly bounded. Indeed, the operatorsA(� ) are uniformly bounded by some constant
c0 = c0(� ) (Inequality (2.2.5)). Therefore, we can apply the usual formula for the derivative of the
inverse operator : the derivative ofA(� ) along a vector h 2 C3(T2) is equal to

r h A(� ) = tA(� ) � U � h � A (� ): Hence,jjr h A(� )jjH 3 � jjA (� )jj2
H 3 jjhjjH 3 � c0(� )jjhjjC 3 :

Thus, the operator-valued functional A(� ) is Lipschitz (and hence, continuous) in � . Therefore, if
jj � jjC 3 is small enough, then each functionf (x; t ) is close to 1 in H 3 (thus, in C0, by the Sobolev
embedding theorem, and hence,f 6= 0). This proves Proposition 2.2.2. The proof of Theorem 2.1.2 is
complete.

2.2.4 Foliated version : proof of Theorem 2.1.3

Here we present only a proof of theC1 version of Theorem 2.1.3. The proof of its other (analytic
and measurable) versions is analogous.



26

Fix a projection Tn ! T2 to appropriate coordinate two-torus whose restriction to each leaf ofF
be a local di�eomorphism. The universal coveringR2 ! T2 lifts under the projection up to a universal
covering of any leaf. Let us introduce an a�ne complex coordinate z on R2. Its di�erential dz yields
well-de�ned complex-valued 1- forms (also denoted bydz) on T2 and on any leaf. Consider the complex
structures on the leaves de�ned by the metric g. In the local coordinate z they are de�ned by a 1-
form

! � = dz + �d �z; � : Tn ! C is a C1 function with j� j < 1;

as in (2.1.5). Vice versa, each function� as above yields aC1 family of almost complex structures
on the leaves that is de�ned by someC1 Riemann metric on Tn . Namely let H : Rn ! Rn � 2 be a
linear vector function whose level planes are the liftings to Rn of the leaves of the foliationF . Then
g = j! � j2 + jdH j2 is a C1 Riemann metric on Tn that is conformal with respect to the given complex
structures along the leaves.

We prove the following more precise version of Theorem 2.1.3.

Theorem 2.2.6 Let F be a linear foliation on Tn . Let � : Tn ! C be an arbitrary C1 function with
j� j < 1. Let z, ! � be as above. There exists aC1 nowhere vanishing functionf : Tn ! C such that
the restriction to each leaf of the 1- formf ! � be closed.

The restriction to each leaf of the 1- form f ! � from Theorem 2.2.6 is a nowhere vanishing holo-
morphic di�erential. Therefore, its squared modulus jf ! � j2 is a at metric on each leaf. This yields
a C1 family of at metrics on the leaves. These metrics are proportional to the restrictions of the
C1 metric g to the leaves with a positive functional coe�cient (which is then alsoC1 ). This implies
Theorem 2.1.3.

Remark 2.2.7 If in the conditions of the previous theorem the leaves of thefoliation are dense, then
the corresponding function f is unique up to multiplication by constant.

Proof of Theorem 2.2.6. Without loss of generality we consider that each leaf is dense. In the
opposite case, all the leaves are tori and Theorem 2.2.6 follows from Theorem 2.1.2 with smooth
dependence of the uniformizing di�eomorphism of the almostcomplex torus on the parameter of the
almost complex structure (see Remark 2.1.5).

The closeness of a 1- formf ! � is equivalent to the partial di�erential Equation (2.1.6) a long the
leaves :

D �z f = D z (�f ); D z =
@
@z

; D �z =
@
@�z

: both di�erentiations are done along the leaves:

The function f is constructed by homotopy method, as before. We include� into the family of
functions

� (x; t ) = t� (x); t 2 [0; 1];

and �nd a solution f (x; t ) of the previous di�erential equation with � replaced by � :

D �z f = D z (�f ) with the initial condition f (x; 0) � 1: (2.2.10)

Di�erentiating in t (we denote _f = @
@t) yields

D �z
_f = ( D z � � ) _f + ( D z � � )f:

The operators D z and D �z are di�erential operators with constant coe�cients, for wh ich the Fourier
harmonics eN = ei (N;x ) , N 2 Zn , are thus eigenfunctions. The corresponding eigenvalues� N and � 0

N
have equal moduli, moreover,

� 0
N = � � N ;

since the operatorsD z and � D �z are conjugated. One has� N = 0, if and only if N = 0. Indeed, a
smooth function on Tn (anti)holomorphic on the leaves (in the standard complex structure given by
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the coordinate z) is always constant along the leaves (Liouville's theorem), and hence, is constant
globally (the density of the leaves). Consider the operatorU : L 2(Tn ) ! L 2(Tn ) de�ned to have the
eigenbasef eN gjN 2 Zn with the eigenvalues � N

� � N
if N 6= 0 and 1 if N = 0. The operator U extends up

to a unitary operator to each Hilbert Sobolev space of functions onTn such that the equality

U � D �z = D �z � U = D z

holds true on smooth functions. The equation

(Id � U � � ) _f = ( U � � )f

has a unique smooth solutionf (x; t ) with unit initial condition, which satis�es (2.2.10) and v anishes
nowhere, as in Subsections 2.2.1 and 2.2.2. The functionf = f (x; 1) is a one we are looking for. This
proves Theorems 2.2.6 and 2.1.3. 2

2.3 Holomorphic nonuniformizability

2.3.1 Main result : nonuniformizable universal covering ma nifolds

Let S be an a�ne (or projective) smooth algebraic surface of dimension 2,F be a one-dimensional
holomorphic foliation on S (with isolated irremovable singularities) tangent to a rat ional vector �eld.
In this case we say briey that the foliation F is algebraic a�ne (projective) .

Remark 2.3.1 Let S, F be as above,S be a�ne and its projective closure S be smooth. Then F
extends up to an algebraic foliation onS (called the projective extension, denoted F ).

Roughly speaking, the principal result of the section is theexistence ofS, F as above such that
the family of leaves intersecting an arbitrary given cross-section does not admit a uniformization
holomorphic in the parameter by a family of simply connecteddomains in the Riemann sphere. To
state this result precisely, let us introduce the following

De�nition 2.3.2 Let S, F be as above,D � S be a simply connected (may be not global) transversal
cross-section toF containing no singularities. For any z 2 D denote L z � S the leaf of F passing
through z. The universal covering manifold (briey u.c.m.) associated toD is

M D =
S

z2 D (the universal covering ofL z with the base point z):

Theorem 2.3.3 [63, 68] Let S, F , D , M D be as above,S be a�ne. Then the space M D admits a
natural structure of complex manifold and it is Stein.

Remark 2.3.4 In general, the spaceM D is a complex manifold, if and only if it is Hausdor�. If S is
projective, then in generalM D may be non-Hausdor�. (Such an example was proposed by the referee
of the paper [44] ; the foliation from this example is obtained from another one by blowing up at a
nonsingular point.) But if S is projective and no leaf ofF intersecting D is a once punctured sphere,
then M D is a manifold. This follows from a remark of E.Chirka and a version of Gromov compactness
theorem [57]. It is not known in the latter case, whetherM D is always Stein whenever it is a manifold.

The manifold M D admits a natural holomorphic projection p : M D ! D and a sectionD ! M D

inverse to p de�ned by taking the base points of the universal coverings.

De�nition 2.3.5 A u.c.m. M D is said to be uniformizable, if it admits a biholomorphism (called
uniformization ) onto a domain in C � D that forms a commutative diagram with the projections.
It is said to be locally uniformizable at a given point z 2 D , if its restriction p� 1(U) = M U to a
neighborhoodU of z is uniformizable.
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Theorem 2.3.6 [44] There exists an a�ne algebraic foliation with no unifor mizable u.c.m.

Corollary 2.3.7 For a foliation from Theorem 2.3.6 each u.c.m. is nowhere locally uniformizable.

Addendum to Theorem 2.3.6 [44]. In Theorem 2.3.6 the a�ne foliation (denoted by F ) can
be chosen to have the following additional properties :

1) F is transversally a�ne and admits a Liouvillian �rst integra l (cf. 5) below) ;
2) each leaf is dense and hyperbolic : its universal covering isconformally equivalent to disc ;
3) some leaf contains an attracting cycle (a closed curve with an attracting return mapping) ;
4) the projective extensionF is well-de�ned, each its u.c.m is a manifold and nonuniformizable.
5) F is a rational pullback of the foliation on (C n � 1) � C with a �rst integral I (w; z) = z(1 �

w)� + �
Rw

0
(1 � � ) �

� +1 d�:
A brief proof of Theorem 2.3.6 and its Addendum is given in thenext two Subsections.
In late 1960-s Yu.S.Ilyashenko proposed the conjecture saying that each u.c.m. of any algebraic

foliation is uniformizable. He proved uniformizability of certain u.c.m's [64]. In 1969 T.Nishino [96]
independently proved the positive answer with u.c.m replaced by abstract holomorphic Stein sur-
face �bered by complex lines (Stein skew cylinder with �ber C, see De�nition 2.3.8 below). His and
Ilyashenko's results [96, 63, 68] together imply the positive answer to Ilyashenko's conjecture for the
u.c.m's with �bers C. At the end of 1999 a negative answer in the general case was proved by the
author in [43]. The counterexample constructed there was locally uniformizable at a generic point. In
2001 A.A.Shcherbakov asked the following question : is it true that each u.c.m. of any algebraic folia-
tion with hyperbolic leaves is locally uniformizable ? Theorem 2.3.6, its Corollary and the Addendum
give a negative answer.

The proofs of Theorem 2.3.6 and the results of [43] are based on a key result in several complex
variables due to B.Berndtsson and J.Ransford ([12], see Theorem 2.3.13 below). Their result provides
a very exotic subsetK in the product of C and unit disk D with a Stein complement V = ( C � D) nK
and in�nitely many C- slices of the setK being single points with two distinct C- coordinates. The
universal coveringM over V is �bered over D by simply connected Riemann surfaces. It appears that
the �bered manifold M is not uniformizable in the sense of De�nition 2.3.5. This was proved in [43] ;
the proof is presented in the next subsection. Afterwards in2.3.3 we construct a foliation satisfying
the statements of Theorem 2.3.6 and its Addendum by using thenonuniformizability of M , the Stein
nature of V , and approximations of holomorphic functions on Stein manifolds embedded inCN by
polynomials.

2.3.2 Skew annuli and nonuniformizable Stein skew cylinder s

Universal covering manifolds are particular cases of skew cylinders, see the following De�nition.

De�nition 2.3.8 [68] Let D be a simply-connected domain inC, M be a two-dimensional complex
manifold, p : M ! D be a holomorphic surjection having nonzero derivative. We say that the triple
(M; p; D ) is a skew cylinderwith the base D and the total spaceM , if

1) the level sets of the mappingp are connected and simply connected holomorphic curves ;
2) M has a holomorphic section : a holomorphic mappingi : D ! M , p � i = Id .

The de�nition of a (locally) uniformizable skew cylinder coincides with that of a uniformizable
u.c.m. (De�nition 2.3.5). A skew cylinder is said to be Stein, if its total space is Stein. A u.c.m.
corresponding to an algebraic foliation is a skew cylinder,whenever it is a manifold. It is Stein, if the
foliation is a�ne (Theorem 2.3.3). Denote

� : C � D ! D the product projection.

De�nition 2.3.9 A domain V � C � D is said to be auniformizable skew annulus(or briey, u.s.a.),
if it satis�es the following conditions : 1) for any z 2 D the �ber � � 1(z) \ V is either a once punctured
complex line, or a complement ofC to a disk ; 2) V � c � D for any c 2 C large enough.
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Remark 2.3.10 The universal covering over a uniformizable skew annulus has a natural structure of
skew cylinder.

Theorem 2.3.11 [43] There exists a pseudoconvex u.s.a. whose universal covering is a nonuniformi-
zable Stein skew cylinder.

Remark 2.3.12 It is easy to construct a u.s.a. with nonuniformizable (non-Stein) universal covering
manifold, e.g.,

V = ( C � D) n f w = �zg; D being unit disk,

w, z are the coordinates onC and D respectively. Other examples of nonstein nonuniformizable skew
cylinders with �bers C may be found in [73].

We prove the statement of Theorem 2.3.11 for an exotic u.s.a.V given by the following

Theorem 2.3.13 [12] Let D be unit disk in complex line with the coordinatez. Let E+ = f 1
2 g [

f n
2n +1 gn 2 N; E � = � E+ � D . There exists a closed subsetK � C � D such that

1) the complementV = ( C � D) n K is pseudoconvex ;
2) for any z 62E+ [ E � the �ber K \ � � 1(z) is a disc ;
3) for any z 2 E+ K \ � � 1(z) = 0 � z ;
4) for any z 2 E � K \ � � 1(z) = 1 � z.

For the completeness of presentation, we recall the construction of the set K from [12]. Let w
be the coordinate in the �ber C on the direct product C � D . Let u(z) = ln jz � 1

2 j + ln jz + 1
2 j +

P + 1
n =1 2� n (ln jz � n

2n +1 j + ln jz + n
2n +1 j), A 2 R+ . The function u is harmonic, u(E � ) = �1 . Let

 : D ! C be a C1 function with bounded derivatives (up to the second order) that is constant in a
neighborhood of each setE � so that  jE + = 0,  jE � = 1. De�ne

(1) K = fj w �  (z)j � eu(z)+ jzj 2 + A g:
The �bers of K over E+ (E � ) are single points where the coordinatew is equal to 0 and 1

respectively. Its other �bers are disks. Thus, V = ( C � D) n K is a uniformizable skew annulus. IfA
is large enough, thenV is pseudoconvex [12].
Proof of Theorem 2.3.11. Let V = ( C � D) n K be a skew annulus given by Theorem 2.3.13,
pV : M ! V be its universal covering. The manifold M is Stein, as is V (the pseudoconvexity
statement in Theorem 2.3.13), since a covering over a Stein manifold is Stein [109]. Let us prove that
the skew cylinder M is nonuniformizable (by contradiction). Suppose the contrary : there exists a
uniformization g : M ! C � D . Let f : M ! C be the C- component ofg. The �bers of the cylinder
M over E � are conformally equivalent to complex line. Let w be the C- coordinate on C � D � V .
Consider the multivalued holomorphic function ln w � pV on M . It provides a well-de�ned 1-to-1
parametrization by C of the �bers of M over E+ . This is not the case for the �bers over E � , where
this function is multivalued and has branch points wherew � pV = 0. The function f is univalent on
each �ber of M by de�nition. Therefore, for any z 2 E+ the restriction to the �ber of M over z of
the function f is M•obius in the chart ln w � pV , and this is not the case forz 2 E � . Let Sf be the
Schwartzian derivative of f along the �bers of M in the (multivalued) coordinate ln w � pV . It is a
well-de�ned holomorphic function on M n f w = 0 g, since any two distinct branches of lnw di�er from
each other by constant. It vanishes identically on all the �bers over the setE+ , which contains a limit
point 1

2 . Therefore, Sf � 0 on M . On the other hand, Sf does not vanish identically on the �bers
over the set E � , since f is not M•obius in the previous coordinate on these �bers. The contradiction
thus obtained proves that M is nonuniformizable. 2
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2.3.3 Nonuniformizable universal covering manifolds. Pro of of Theorem
2.3.6

The proof of Theorem 2.3.6 and its Addendum is based on Propositions 2.3.17, 2.3.20 and Theorem
2.3.18 stated and proved below. Theorem 2.3.18 follows fromProposition 2.3.20 and Lemma 2.3.22,
which is the main technical statement of the subsection. Theorem 2.3.6 will be deduced from them at
the end of the section.

De�nition 2.3.14 An a�ne algebraic foliation is geometrically nice, if it satis�es the statements
1)-3), 5) of the Addendum to Theorem 2.3.6 (in particular, it has a dense leaf with an attracting
cycle).

De�nition 2.3.15 Let F be an algebraic foliation,D be a simply connected cross-section such that
some leaf contains an attracting cycle starting at a point 02 D with a well-de�ned Poincar�e return
mapping h : D ! D (then h(0) = 0). Let hD b D. Then we say that D is (h-) contracting. In this
case the corresponding u.c.m.M D is also said to becontracting.

De�nition 2.3.16 Two skew cylinders are said to beequivalent, if there exist biholomorphisms of
their total spaces and bases that form a commutative diagramwith the projections.

Proposition 2.3.17 Let an algebraic foliation have a nonuniformizable contracting u.c.m. M D , 0 2
D be the starting point of the corresponding attracting cycle. Then M D is locally nonuniformizable at
0.

Proof The iterations hn converge to 0 uniformly onD, as n ! + 1 (since hD b D). For any n 2 N
the u.c.m. M hn D corresponding to the smaller cross-sectionhn D is equivalent to M D . Since M D is
nonuniformizable by assumption, so isM hn D . This together with the uniform convergence hn ! 0
implies Proposition 2.3.17. 2

Theorem 2.3.18 There exists a geometrically nice foliationF having at least one nonuniformizable
contracting u.c.m. M D . The foliation F and the cross-sectionD may be chosen so that in addition,
all the u.c.m.'s associated to the projective extensionF be manifolds, and the one corresponding toD
be nonuniformizable.

For the proof of Theorem 2.3.18 let us introduce the following de�nition.

De�nition 2.3.19 Let (M; p; D ) be a skew cylinder,B � M (B b M ) be its subdomain. Then B is
called a (compact) subcylinder, if the triple ( B; p; p(B )) is a skew cylinder.

Proposition 2.3.20 (by Ilyashenko, see [106]). Let a Stein skew cylinder be exhausted by an increa-
sing sequence of uniformizable subcylinders. Then it is uniformizable.

Remark 2.3.21 A.A.Shcherbakov [106] proved that any Stein skew cylinder can be exhausted by
a growing sequence of compact subcylinders with smooth strictly pseudoconvex boundaries. His re-
sult together with Theorem 2.3.11 and Proposition 2.3.20 imply the existence of a nonuniformizable
compact skew cylinder with a strictly pseudoconvex boundary.

Lemma 2.3.22 For any Stein u.s.a. any compact subcylinder of its universal covering is equivalent
to a subcylinder of a contracting u.c.m. corresponding to a geometrically nice foliation.
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Remark 2.3.23 Yu.S.Ilyashenko had shown (late 1960-ths, unpublished) that any compact subcy-
linder of a Stein skew cylinder is equivalent to a subcylinder of a u.c.m. corresponding to an a�ne
(projective) algebraic foliation. He proved this by considering the Stein cylinder as embeddedto CN

so that its cylinder projection be the restriction of an orth ogonal projection p : CN ! C, and then
approximating its compact subcylinder by a piece of an algebraic surfaceS. The foliaton on S we are
looking for is the �bration de�ned by the same orthogonal pro jection. The method of the proof of
Lemma 2.3.22 given below was motivated by this Ilyashenko'smethod.

Proof of Lemma 2.3.22 (sketch). We consider the auxiliary foliation on (C n � 1) � C (denoted
by F�;� ) with the �rst integral I (w; z) = z(1 � w)� + �

Rw
0

(1 � � ) �

� +1 d�: (The foliation F�;� tends to the
parallel line �bration z = const, as �; � ! 0.)

Proposition 2.3.24 The foliation F�;� is algebraic and transversally a�ne. If � =2 R [ iR; � 6= 0 ;
then all its leaves are dense. Leth+ : 0 � C ! 0� C be the �rst return mapping corresponding to F�;�

and the circuit in C � 0 starting at 0� 0 and going around1� 0 counterclockwise. The mappingh+ is
a�ne (i.e., linear nonhomogeneous) with the derivative e� 2�i� . If Im � < 0, then h+ is a contraction
and its �xed point is 0 � O(� ), as �; � ! 0.

Proposition 2.3.24 easily follows from the de�nition of the foliation F�;� . Its statements imply that
the foliation F�;� becomes geometrically nice after realizing its phase space(C n � 1) � C as an a�ne
algebraic surface.

Let V � C � D be a given Stein u.s.a.,M be its universal covering, B � M be a compact
subcylinder. DenotepV : M ! V the covering projection. Recall that w and z are the coordinates on
C and D respectively. Fix a R > 4 such that

pV (B ) � fj wj < R � 4g; fj wj � R � 4g � D � V: Put (2.3.1)

VR = ( V + ( iR; 0)) n (� 1 � D ) � C � D; pV;R (B ) = pV (B ) + ( iR; 0) � VR : (2.3.2)

Fix a disk D 0 b D centered at 0 such that � (pV (B )) = � (pV;R (B )) b D 0. Replace the parallel line
�bration z = const of VR by the restriction to VR of the foliation F�;� . Consider auxiliary domains
� 1; : : : ; � 4 b (C n � 1) � D with the following properties :

� 1 = fj w � iR j < R g � D 0; � 1 b � 2; � 3 b � 4 b (VR \ � 2); pV;R (B ) b � 3; 0 � D 0 b � 3;

the domain � 2 being a bidisk (whose closure is disjoint from� 1 � D by de�nition), the C- �bers of
the domain � 3;4 being di�eomorphic to an annulus. The existence of the domains � 2;3;4 follows from
de�nition : the �bers of the skew annulus V are topological annuli. For any � , � small enough there
exists a biholomorphism

� : � 2 ! � (� 2) b C � D; � j0� D 0 = 0 � Id D 0; � (� 3) b � 4; (2.3.3)

that transforms the foliation z = const to the foliation F�;� and preserves thew- coordinate : the
leaves of the foliation F�;� are uniformly close to the product C- �bers in any closed bidisk disjoint
from � 1 � D , whenever� and � are small enough.

We �x � and � such that � =2 R [ iR; Im � < 0, � 6= 0. We show that if they are small enough,
then there exist a smooth a�ne surface S and a rational mapping P : S ! (C n � 1) � C with nowhere
degenerate Jacobian matrix such that the subcylinderB and the foliation F = P � 1

� F�;� on S satisfy
the statements of Lemma 2.3.22.

To construct S, P and F , we consider the Stein manifoldVR as a submanifold in some spaceCN so
that the natural inclusion VR ! C2 is the restriction to VR of an orthogonal projection P : CN ! C2.
Let V r be the intersection of VR with a ball centered at 0 of a large radiusr such that

P(V r ) c � 4: (2.3.4)



32

We approximate V r by a compact piece of a smooth a�ne algebraic surfaceS0 � CN using results of
[11] (cf. [43]) and approximation and extension theorems for functions on Stein manifolds. We do the
approximation so that P jS0 has a holomorphic inverse (denoted (P jS0)� 1) on � 4. In what follows, we
identify � 4 (and hence, � 3) with its image in S0 under the latter inverse : thus, � 3 b � 4 b S0. Let
S = S0n(Crit (P jS0) [ f w � P = � 1g), ~D = ( PjS0)� 1(0 � D 0). The foliation F = ( PjS )� 1

� F�;� is the one
we are looking for, if r is large enough and� , � are small enough : ~D is a contracting cross-section to
F and B is embedded toM ~D as a subcylinder. The latter embedding is constructed as follows. Recall
that

� 4 � S0; and F j � 4 = F�;� ; pV;R (B ) b � 3 b � 4

by construction. Let � : � 3 ! � 4 be the mapping (2.3.3). The mapping� = � � pV;R : B ! � 4 sends
the �bers of the skew cylinder B to leaves of the foliationF�;� . Two points in B are mapped by� to one
and the same point in � 4, if and only if they lie in one and the same �ber of B and the path connecting
them is transformed by � to a contractible closed loop in a leaf of the foliationF�;� . This follows from
construction. Consider the projection  : M eD ! S, which sends the universal cover of each leaf ofF
to the leaf itself. Consider the germ of the inverse � 1 sending 0� D 0 to the canonical section (a copy
of eD) of the cylinder M eD . This is a multivalued analytic mapping � 4 ! M eD that extends analytically
along each path in any leaf ofF�;� j � 4 . This implies that the corresponding compositionQ = (  )� 1 � �
yields a holomorphic mapping ofB onto a subset in M eD . The latter mapping is a biholomorphism :
its injectivity follows from construction and the fact that no contractible loop in a leaf of F can be
transformed by P to a noncontractible loop in a leaf ofF�;� (the maximum principle for holomorphic
functions). The foliation F is geometrically nice. This follows from its construction,Proposition 2.3.24
and the discreteness of the preimage of each point inC2 under the mapping PjS , which is a local
biholomorphism. (The latter discreteness statements yields in particular that the density of leaves of
the foliation F�;� implies the density of leaves of its pullbackF .) This proves Lemma 2.3.22. 2

Proof of Theorem 2.3.18. Let V be a Stein u.s.a. with a nonuniformizable universal covering M .
By Proposition 2.3.20, M contains a nonuniformizable compact subcylinderB . By Lemma 2.3.22,
B is equivalent to a subcylinder of a contracting u.c.m. of a geometrically nice foliation. The latter
u.c.m. is nonuniformizable as well. The proof of the second statement of Theorem 2.3.18 (on projective
extension) is relatively easy and is omitted to save the space. 2

Proof of Theorem 2.3.6. Let F , M D be as in Theorem 2.3.18. By assumption, each leaf ofF is
dense and the cross-sectionD is contracting (and hence, intersects an attracting cycle in some leaf).
Let 0 2 D be the starting point of this attracting cycle, L be the leaf ofF through 0. By Proposition
2.3.17,M D is locally nonuniformizable at 0. For any cross-sectionD 0 intersecting L the u.c.m. M D 0 is
locally nonuniformizable at the points of the intersection D 0 \ L . Now density of L implies Theorem
2.3.6. (Recall that the foliation F is geometrically nice, hence, each its leaf is dense.) Statement 4)
of the Addendum follows analogously from the second statement of Theorem 2.3.18 and Proposition
2.3.17. 2



Chapitre 3

On minimality of horospheric
laminations associated to rational
functions

This chapter deals with iterations of rational functions f (z) = P (z)
Q(z) : C ! C of degree at least

two. In 3.1.2 we recall Lyubich-Minsky construction (brie y mentioned in the Introduction), which
associates to eachf the following objects : a�ne Riemann surface lamination A f ; lamination H f by
hyperbolic three-dimensional varietes (that may have singularities), the lifted dynamics f̂ : H f !
H f and the quotient hyperbolic lamination H f =f̂ . Each leaf of H f and H f =f̂ is foliated itself by
horospheres, which form the horospheric laminations ofH f and H f =f̂ .

In Section 3.2 we present the main results of the papers [48, 49], which concern topological tran-
sitivity and minimality of the horospheric lamination of th e quotient H f =f̂ . The principal Theorem
3.2.3 says that the quotient horospherical lamination (with isolated hyperbolic leaves deleted) is to-
pologically transitive (i.e., at least one horosphere is dense), provided that the map f does not belong
to the following list of exceptions :

z� d; Chebyshev polynomials, Latt�es examples. (3.0.1)

In this case, all the horospheres \over the repelling periodic orbits" are dense.

Remark 3.0.25 For any exceptional f on the list (3.0.1), each horosphere in a nonisolated leaf of
H f =f̂ is nowhere dense inH f =f̂ (see [78] and Corollary 3.2.2).

Theorem 3.2.4 asserts that all the horospheres are dense (outside possible isolated hyperbolic
leaves) for any non-exceptionalf which is critically non-recurrent without parabolic perio dic points.

In the case when parabolic points are allowed, a more generalTheorem 3.2.5 says that all the
horospheres are dense inH f =f̂ (outside possible isolated hyperbolic leaves), except forthe horospheres
\related" to the parabolic points. To prove it, we show (Theo rem 3.2.6) that any horosphere in question
accumulates onto some horosphere over an appropriate repelling periodic point (which is dense by
Theorem 3.2.3). Theorem 3.2.7 deals with an arbitrary rational function having a parabolic periodic
point. It says that each horosphere in a leaf associated to this point is closed in H f =f̂ and does not
accumulate onto itself.

Remark 3.0.26 There exist non-exceptional rational functions (even hyperbolic) such that the cor-
responding hyperbolic lamination H f has a leaf whose horospheres are nowhere dense inH f . This is
true, e.g., for real quadratic polynomials f " (z) = z2 + " with " < 1

4 , " 6= 0 ; � 2 (which are hyperbolic,
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e.g., whenever" is small enough). Moreover, this is true for an open set of complex values of the
parameter " containing the above real values. The leaf with nowhere dense horospheres is associated
to a repelling �xed point (which is real, if so is " ). These statements are proved in [49].

On the other hand, under some arithmetic assumptions on the multipliers of repelling perio-
dic points, the horospherical lamination of H f is topologically transitive (private communication by
M. Lyubich and D. Saric).

Example 3.0.27 Let us consider once again the quadratic familyf " (z) = z2 + " . It is well-known that
the quotient hyperbolic laminations H f 0 =f̂ 0 and H f " =f̂ " are homeomorphic for all" 6= 0 small enough.
(The homeomorphism sends leaves to leaves but not isometrically.) On the other hand, Theorem 3.2.4
implies that if " 6= 0 is small enough, then each horosphere in the latter lamination is dense, while no
horosphere in the former lamination (with " = 0) is dense (see Corollary 3.2.2).

The necessary background material is recalled in Section 3.1 : iterates of rational functions, see
3.1.1 ; a�ne and hyperbolic laminations, see 3.1.2 ; horospheres and their metric properties, see 3.1.3.

Brief proofs of Theorems 3.2.3, 3.2.6 and 3.2.7 are given in Section 3.3. To prove Theorem 3.2.3,
we �x a horosphere in H f \over" a repelling periodic orbit and show that the orbit of t his horosphere
under the forward and the backward iterates of f̂ is dense. To this end, we study the holonomies of
the horosphere along loops based at a repelling periodic point. We show that the images of a point of
the horosphere under consecutively applied dynamics and holonomies are dense in the �ber over the
base point. To do this, we use the description of the holonomyin terms of the basic cocycle introduced
in [78] (its de�nition and some basic properties are recalled in 3.1.3).

Recall that everywhere below we assume that the rational function f (z) = P (z)
Q(z) : C ! C under

consideration has degree at least 2.

3.1 Background material : rational dynamics, laminations a nd
horospheres

3.1.1 Rational iterations

The basic notions and facts of holomorphic dynamics recalled here are contained, e.g., in [88] and
[89]. Let

f =
P(z)
Q(z)

: C ! C be a rational function. Recall that

- its Julia set J = J (f ) is the closure of the union of the repelling periodic points, see the next
De�nition. An equivalent de�nition of the Julia set says tha t its complement C n J (called the Fatou
set) is the maximal open subset where the iterationsf n form a normal family (i.e., are equicontinuous
on compact subsets). One has

f � 1(J ) = J = f (J ):

De�nition 3.1.1 A germ of nonconstant holomorphic mappingf : (C; 0) ! (C; 0) at a �xed point 0 is
called attracting (repelling / parabolic / superattracting) , if its derivative at the �xed point respectively
has nonzero modulus less than 1 (has modulus greater than 1 / is equal to a root of unity and no
iteration of the mapping f is identity / is equal to zero). An attracting (repelling, pa rabolic or
superattracting) periodic point of a rational mapping is a � xed point (of the corresponding type) of
its iteration.

De�nition 3.1.2 A rational function is said to be hyperbolic, if the forward orbit of each its critical
point either is periodic itself (and hence, superattracting), or tends to an attracting (or a superattrac-
ting) periodic orbit.
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De�nition 3.1.3 Given a rational function. A point of the Riemann sphere is called postcritical, if
it belongs to the forward orbit of a critical point. A rationa l function is called critically-�nite , if the
number of its postcritical points is �nite.

De�nition 3.1.4 The ! - limit set ! (c) of a point c 2 C is the set of limits of converging subsequences
of its forward orbit f f n (c)jn � 0g (the ! - limit set of a periodic orbit is the orbit itself). A point c is
called recurrent, if c 2 ! (c).

De�nition 3.1.5 A rational mapping is called critically-nonrecurrent , if each its critical point is
either nonrecurrent, or periodic (or equivalently, each critical point in the Julia set is nonrecurrent).

Example 3.1.6 The following mappings are critically-nonrecurrent : any hyperbolic mapping ; any
critically-�nite mapping ; any quadratic polynomial with a parabolic periodic orbit. A hyperbolic
mapping has no parabolic periodic points.

Theorem 3.1.7 A germ of conformal mapping at an attracting (repelling) �xed point is always confor-
mally linearizable : there exists a local conformal coordinate in which the germ is equal to its linear
part (the multiplication by its derivative at the �xed point ).

Remark 3.1.8 Let f (z) = z + zk+1 + : : : be a parabolic germ tangent to the identity. The set
f zk 2 R+ g consists ofk rays going out of 0 (calledrepelling rays) such that

- each repelling ray is contained in an appropriate sectorS (called repelling sector) for which there
exists an arbitrarily small neighborhood U = U(0) � C wheref is univalent and such that f (S \ U) �
S \ U and each backward orbit of the restriction f jS\ U enters the �xed point 0 asymptotically along
the corresponding repelling ray ;

- there is a canonical 1-to-1 conformal coordinatet on S \ U in which f acts by translation :
t 7! t + 1 ; if the previous sector S is chosen large enough, then this coordinate parametrizesS \ U by
a domain in C containing a left half-plane ; the previous coordinate is well-de�ned up to translation
and is calledFatou coordinate (see [27], [117]).

For any parabolic germ (not necessarily tangent to the identity) its appropriate iteration is tangent
to the identity. By de�nition, the repelling rays and sector s of the former are those (de�ned above) of
the latter.

Let us recall what are Chebyshev polynomials and Latt�es examples.
Chebyshev polynomials. For any n 2 N there exists a unique (real) polynomialpn of degreen

that satis�es the trigonometric identity cos n� = pn (cos� ). It is called Chebyshev polynomial.
Latt�es examples. Consider a one-dimensional complex torus, which is the quotient of C by a

lattice. Consider arbitrary multiplication by a constant � 2 C, j� j > 1, that maps the lattice to
itself. It induces an endomorphism of the torus of degree greater than 1. The quotient of the torus by
the central symmetry z 7! � z is a Riemann sphere. The previous endomorphism together with the
quotient projection induce a rational transformation of th e Riemann sphere calledLatt�es example.

Remark 3.1.9 Let f be either Chebyshev, or Latt�es. Then it is critically �nite . More precisely,
the forward critical orbits eventually �nish at repelling � xed points. The Julia set of a Chebyshev
polynomial is the segment [� 1; 1] of the real line, while that of a Latt�es example is the whole Rie-
mann sphere. Chebyshev and Latt�es functions have branch-exceptional repelling �xed points, see the
following de�nition.

De�nition 3.1.10 [77] A repelling periodic point of a rational function is called branch-exceptional,
if any its nonperiodic backward orbit contains a critical point. In this case its periodic orbit is also
called branch-exceptional.

Remark 3.1.11 (Lasse Rempe [77]). There exist rational functions with branch-exceptional repelling
�xed points that are neither Chebyshev, nor Latt�es.
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3.1.2 A�ne and hyperbolic dynamical laminations

The constructions presented here were introduced in [89]. We recall them briey and send the
reader to [89] for more details.

Recall that a lamination is a \topological" foliation by manifolds, i.e., a topologi cal space that
is split as a disjoint union of manifolds (called leaves) of one and the same dimension so that each
point of the ambient space admits a neighborhood (called \ow-box") such that each connected
component (local leaf) of its intersection with each leaf ishomeomorphic to a ball ; the neighborhood
itself is homeomorphic to the product of the ball and some (transversal) topological space under a
homeomorphism transforming the local leaves to the �bers ofthe product.

Let f : C ! C be a rational function. Denote

N f = f ẑ = ( z0; z� 1; : : : ) j z� j 2 C; f (z� j � 1) = z� j g:

This is a topological space equipped with the natural product topology and the projections

� � j : N f ! C; ẑ 7! z� j :

The action of f on the Riemann sphere lifts naturally up to a homeomorphism

f̂ : N f ! N f ; (z0; z� 1; : : : ) 7! (f (z0); z0; z� 1; : : : ); f � � � j = � � j � f̂ :

First of all we recall the construction of the \regular leaf subspace" R f � N f , which is a union of
Riemann surfaces that foliateR f in a very turbulent way. Afterwards we take the subset A n

f � R f

of the leaves conformally-equivalent toC. Then we re�ne the induced topology on A n
f to make it

a lamination (denoted A l
f ) by complex lines with a continuous family of a�ne structure s on them.

Afterwards we take a completionA f = A l
f in the new topology. The spaceA f is a lamination by a�ne

Riemann surfaces (the new leaves added by the completion mayhave conical singularities). Then we
discuss the three-dimensional extension ofA f up to a lamination H f by hyperbolic manifolds (with
singularities).

Let ẑ 2 N f , V = V (z0) � C be a neighborhood ofz0. For any j � 0 denote

V� j = the connected component of the preimagef � j (V ) that contains z� j :

Then V0 = V; and f j : V� j ! V are rami�ed coverings:

De�nition 3.1.12 We say that a point ẑ 2 N f is regular, if there exists a disk V containing the
initial point z0 such that the above coveringsf j : V� j ! V have uniformly bounded degrees. Denote

R f � N f the set of the regular points in N f :

Example 3.1.13 Let ẑ 2 N f be a backward orbit such that there exists aj 2 N [ 0 for which the
point z� j is disjoint from the ! - limit sets of the critical points. Then ẑ 2 R f . If the mapping f is
hyperbolic, then this is the case, if and only if ẑ is not a (super) attracting periodic orbit. A mapping
f is critically-nonrecurrent, if and only if

R f = N f n f attracting and parabolic periodic orbitsg; see [89].

De�nition 3.1.14 Let ẑ 2 R f , V , V� j be as in De�nition 3.1.12. The local leaf L (ẑ; V) � R f is the
set of the points ẑ0 2 R f such that z0

� j 2 V� j for all j (the local leaf is path-connected by de�nition).
We say that the previous local leaf isunivalent over V , if the projection � 0 maps it bijectively onto
V . The global leafcontaining ẑ (denoted L(ẑ)) is the maximal path-connected subset inR f containing
ẑ.
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Remark 3.1.15 Each leaf L (ẑ) � R f carries a natural structure of Riemann surface so that the
restrictions to the leaves of the above projections� � j are meromorphic functions. A local leafL (ẑ; V) �
L (ẑ) (when well-de�ned) is the connected component containingẑ of the preimage (� 0 jL ( ẑ) )� 1(V ) �
L (ẑ).

Remark 3.1.16 The above-de�ned objects R f , R f n corresponding to both f and any its forward
iteration f n , are naturally homeomorphic under the mapping that sends a backward orbit ẑ 2 N f to
the backward orbit ( z0; z� n ; z� 2n ; : : : ) 2 N f n . The latter homeomorphism maps the leaves conformally
onto the leaves.

We use the following

Lemma 3.1.17 (Shrinking Lemma) [89] Let f be a rational mapping,V � C be a domain,V 0 b V
be a compact subset. Then for any sequence of single-valued branches f � n : V ! C the diameters of
the imagesf � n (V 0) tend to 0, asn ! + 1 (except for the cases, whenf has either a Siegel disk or a
Herman ring that contains an in�nite number of the previous images).

Remark 3.1.18 Parabolic leaves in R f always exist (see the next two Examples) and are simply
connected ; hence they are conformally equivalent toC [89]. If f is critically-nonrecurrent, then each
leaf is parabolic [89]. On the other hand, there are rationalmappings such that some leaves ofR f are
hyperbolic (e.g., if there is either a Siegel disk or a Hermanring, see [89]). J.Kahn proved [77] that if
the postcritical points are dense in the Julia set, then there are always some hyperbolic leaves inR f .

Example 3.1.19 Let a 2 C be a repelling �xed point of f , â = ( a; a; : : : ) 2 N f be its �xed orbit.
Then â 2 R f and the leaf L (â) is parabolic (it is f̂ - invariant and the quotient of L (â) n â by f̂ is a
torus). The linearizing coordinate w of f in a neighborhood ofa lifts up to a conformal isomorphism
w � � 0 : L (â) ! C: Analogously, the periodic orbit of a repelling periodic point is contained in a
parabolic leaf (see Remark 3.1.16).

Example 3.1.20 Let f have a parabolic �xed point a 2 C, f 0(a) = 1, â = ( a; a; : : : ) 2 N f be its
�xed orbit. Then â =2 R f . On the other hand, for each repelling ray (see Remark 3.1.8)there is a
unique leaf in R f (denoted L a) consisting of the backward orbits that converge toa asymptotically
along the chosen ray. This leaf is parabolic : the Fatou coordinate w on the corresponding repelling
sector lifts up to a conformal isomorphismw � � 0 : L a ! C. An analogous statement holds true in the
case, whena is a parabolic periodic point (and not necessarily tangent to the identity).

De�nition 3.1.21 The leaves from the two previous examples are called respectively a leaf associated
to a repelling (respectively, parabolic) periodic point.

Proposition 3.1.22 A point ẑ 2 N f belongs to a leaf associated to a repelling (or parabolic) �xed
point a, if and only if it is represented by a backward orbit converging to a (and distinct from its �xed
orbit, if the latter is parabolic).

The Proposition follows from the Shrinking Lemma.
Denote

A n
f = the union of the parabolic leaves in R f :

If f is hyperbolic, then A n
f is a lamination with a global Cantor transversal section. In general, A n

f
is not a lamination in a good sense, since some rami�ed local leaves can accumulate to a univalent
one in the product topology. The re�ned topology (de�ned in [ 89]) that makes it a \lamination with
singularities" is recalled below. To do this, we use the following
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Remark 3.1.23 Let ẑ 2 A n
f . Fix a conformal isomorphismC ! L (ẑ) that sends 0 to ẑ (it is unique up

to multiplication by nonzero complex constant in the source). The natural projections � � j : N f ! C
induce a meromorphic function sequence� � j; ẑ = � � j jL ( ẑ) on the leaf L (ẑ) = C :

� � j; ẑ : C ! C; � � j +1 ;ẑ = f � � � j; ẑ for any j ; � � j; ẑ (0) = z� j : (3.1.1)

The latter function sequence is uniquely de�ned up to the C� - action on the source spaceC (by
multiplication by complex constants). Two points of A n

f lie in one and the same leaf, if and only if
the corresponding function sequences are obtained from each other by a�ne transformation of the
variable.

Denote K̂ f the space of the meromorphic function sequences

f � � j (t)gj 2 N[ 0; � � j : C ! C; � � j +1 = f � � � j for all j: (3.1.2)

This is a subset of the in�nite product of copies of the meromorphic function space ; the latter space
is equipped with the topology of uniform convergence on compact sets. The product topology induces
a topology on the spaceK̂ f . The groupsAf f (C) (complex a�ne transformations of C), C� � Af f (C)
and S1 = fj zj = 1 g � C� act on the spaceK̂ f by variable changes in the source. Denote

K̂a
f = K̂ f =C� ; K̂h

f = K̂ f =S1: (3.1.3)

(The latters are equipped with the corresponding quotients of the topology of K̂ f .) A leaf in K̂a
f

(respectively K̂h
f ) is the quotient projection of an orbit of the previous action Af f (C) : K̂ f ! K̂ f . Each

leaf is naturally identi�ed with a quotient � nAf f (C)=C� (respectively, � nAf f (C)=S1), where � is a
discrete group of Euclidean isometries ofC. This equips the leaves with a�ne (respectively, hyperbolic)
structures that vary continuously on K̂a

f (K̂h
f ). There is a natural (not necessarily continuous) inclusion

A n
f ! K̂a

f :

De�nition 3.1.24 The topological subspaceA l
f � K̂a

f is the image of the spaceA n
f under the previous

inclusion (or equivalently, the spaceA n
f equipped with the topology induced from K̂a

f ). The spaceA f

(which is called the a�ne orbifold lamination associated to a rational function f ) is the closure ofA l
f

in the spaceK̂a
f . The subspaceH l

f � K̂h
f is the union of the leaves inK̂h

f containing the S1- orbits in

K̂ f of the function sequences (3.1.1) (which de�ne the points ofA n
f ). Its closure (denoted H f = H l

f )

in K̂h
f is called the hyperbolic orbifold lamination associated tof .

Remark 3.1.25 In general, the topology of the spaceA l
f is stronger than that of A n

f . The spaces
A l

f , A f , H l
f , H f consist of entire leaves. Each leaf ofA f is a�ne-equivalent either to C (as are the

leaves fromA l
f ), or to a quotient of C by a discrete group of a�ne transformations (in this case the

latters are Euclidean isometries ofC). Each leaf of H f is isometric either to H3 (as are those ofH l
f ),

or to its quotient by a discrete group of isometries ofH3 �xing the in�nity and an a�ne Euclidean
metric on C = @H3 n 1 . The latter a�ne (hyperbolic) quotients, if nontrivial, ma y have singularities.
The a�ne (hyperbolic) structures on the leaves of A f (respectively, H f ) depend continuously on the
transversal parameter.

There is a natural projection
p : K̂a

f ! A n
f

induced by the mapping K̂ f ! A n
f that sends each sequence (3.1.2) of functions to the sequence of

their values at 0. The latter sequence is always a regular backward orbit of f and it lies in a parabolic
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leaf of R f . The regularity follows from de�nition. The parabolicity f ollows from Picard's theorem.
The composition of p with the natural inclusion A n

f ! K̂a
f is the identical mapping A n

f ! A n
f . The

projection

A f ! C induced by � 0; (� � j ) j 2 N[ 0 7! � 0(0); will be also denoted by� 0: (3.1.4)

The quotient projection K̂h
f = K̂ f =S1 ! K̂a

f = K̂ f =C� induces a natural leafwise projection

� h : H f ! A f ; which maps H l
f onto A l

f ; such that (3.1.5)

the projection of each leaf inH f is a leaf in A f that is canonically identi�ed with its boundary.
The rational mapping f : C ! C lifts up to the leafwise homeomorphism

f̂ : K̂ f ! K̂ f ; f̂ : (� 0; � � 1; : : : ) 7! (f � � 0; � 0; � � 1; : : : ); which induces homeomorphisms

f̂ : A f ! A f a�ne along the leaves and f̂ : H f ! H f isometric along the leaves.

The previous homeomorphisms form a commutative diagram with the projection � h . The action
f̂ : H f ! H f is proper discontinuous, and its quotient

H f =f̂ is called the quotient hyperbolic lamination associated tof:

Proposition 3.1.26 [89] A sequence of pointŝzm 2 A l
f converges to a pointẑ 2 A l

f , as m ! 1 , if
and only if

- � � j (ẑm ) ! � � j (ẑ) for any j ,
- for any N 2 N, any connected domainV � C and any its subdomainU such that U � V and

� � N (ẑ) 2 U, if the local leaf L (f̂ � N (ẑ); V ) is univalent over V , then the local leafL (f̂ � N (ẑm ); U) is
univalent over U, wheneverm is large enough.

Remark 3.1.27 The analogous criterion holds true for convergence of a sequence of points inA f to
a point in A l

f with the following De�nition of local leaf in A f .

De�nition 3.1.28 Let f be a rational mapping, A f be the corresponding a�ne lamination, L � A f

be a leaf, ẑ 2 L , V � C be a domain containing its projection � 0(ẑ). The local leaf L (ẑ; V) is
the connected component containing ^z of the projection preimage � � 1

0 (V ) \ L . A local leaf is called
univalent over V , if it contains no singular points and is bijectively projected onto V .

Everywhere below for anyẑ 2 A f we denote

L (ẑ) � A f the leaf containing ẑ; H (ẑ) � H f the leaf projected to L (ẑ) by (3.1.5):

Corollary 3.1.29 Let a 2 C be a repelling �xed point of f , â 2 A l
f be its �xed orbit. Let V � C be a

neighborhood ofa, f b̂m gm 2 N be a sequence of points inA f such that � 0(b̂m ) = a and the local leaves
L (b̂m ; V ) are univalent over V (see the previous De�nition). Then f̂ m (b̂m ) ! â, as m ! + 1 .

De�nition 3.1.30 A leaf of A f is associated to a repelling (or parabolic) periodic pointif it is contai-
ned in A l

f and coincides with a leaf ofA n
f that is associated to the previous point (see De�nition

3.1.21). In this case we also say that the corresponding leaves ofH f and H f =f̂ are associated to this
point.

Proposition 3.1.31 [89] The laminations A f and H f are minimal (i.e., each leaf is dense), if and
only if the function f does not have branch-exceptional repelling periodic orbits (see De�nition 3.1.10).
If f has branch-exceptional repelling periodic orbits, then each of the previous laminations has a �nite
number of isolated leaves (all of them are associated to the latter periodic orbits) and becomes minimal
after removing the isolated leaves.
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Denote
H 0

f = H f n (isolated hyperbolic leaves): (3.1.6)

One hasH 0
f = H f , if and only if f does not have branch-exceptional repelling periodic orbits.

3.1.3 Horospheres : metric properties and basic cocycle

The horospheres in the hyperbolic 3- space with a marked point \in�nity" at the boundary (and
in the leaves of the hyperbolic laminations) were de�ned in Subsection 1.1. We use the following their
well-known equivalent de�nition. Consider the projection � : H3 ! L = @H3 n 1 to the boundary
plane along the geodesics issued from the in�nity. In the model of half-space this is the Euclidean
orthogonal projection to the boundary plane. It coincides with the natural projection H3 = Af f (C)=
S1 ! C = Af f (C)=C� , and its latter description equips the boundary with a natural complex
a�ne structure : L = C. The boundary admits a Euclidean a�ne metric (uniquely de�n ed up to
multiplication by constant).

Everywhere below whenever we consider a Riemann metric on a surface, we treat it as a length
element, not as a quadratic form. If we say \two metrics are proportional", then by de�nition, the
proportionality coe�cient is the ratio of the correspondin g length elements.

Consider a global section of the previous projection� : H3 ! L : a surface in H3 that is 1-to-1
projected to L . It carries two metrics : the restriction to it of the hyperbo lic metric of the ambient
spaceH3 ; the pullback of the Euclidean metric of L under the projection.

De�nition 3.1.32 A previous section is ahorosphere, if its latter (Euclidean) metric is obtained from
the former one (the restricted hyperbolic metric) by multip lication by a constant factor. The height
of a horosphere (with respect to the chosen Euclidean metricon L ) is the logarithm of the latter
constant factor. The height of a given point in the hyperbolic space is the height of the horosphere
that contains this point.

Remark 3.1.33 The height is a real-valued analytic function H3 ! R. In the upper half-space model
the horospheres are horizontal planes, and their previously de�ned heights are equal to the logarithms
of their Euclidean heights in the ambient Euclidean 3- space. The isometric liftings to H3 of the a�ne
mappings z 7! �z + b of the boundary C = @H3 n 1 transform the horospheres to the horospheres so
that the height of the image equals lnj� j plus the height of the preimage.

Now we discuss metric properties of the horospheres in the hyperbolic laminations. Let A f , H f be
respectively the a�ne and the hyperbolic laminations associated to a rational function f . Let L � A f

be a leaf,ẑ 2 L be a nonsingular point such that the restricted projection � 0 jL has nonzero derivative
at ẑ. Fix a Hermitian metric on the tangent line to C at � 0(ẑ). Its projection pullback to the tangent
line TẑL extends (in unique way) up to a Euclidean a�ne metric on the wh ole leaf L . Let H be the
corresponding leaf inH f . We denote

� ẑ : H ! R the height with respect to the latter metric, see De�nition 3 .1.32; (3.1.7)

� = ( ẑ; h) 2 H the point such that � h (� ) = ẑ and � ẑ (� ) = h

(then we say that the point � is situated over ẑ at height h),

Sẑ;h � H the horosphere containing�; i.e., such that � ẑ jSẑ;h � h: (3.1.8)

Proposition 3.1.34 A sequence of points(ẑk ; hk ) 2 H f converges to a point(ẑ; h) 2 H f , if and only
if ẑk ! ẑ in A f and hk ! h.

The Proposition follows from de�nition and the continuity o f the family of hyperbolic structures
on the leaves ofH f .

When we extend the horospheres along loops inC, their heights may change. The monodromy of
the heights is described by basic cocycle. Let us recall its de�nition.
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De�nition 3.1.35 Let L � A f be a leaf, ẑ; ẑ0 2 L be a pair of nonsingular points projected to one
and the samez = � 0(ẑ) = � 0(ẑ0) 2 C so that the restricted projection � 0jL has nonzero derivative
at both points ẑ and ẑ0. Let H = H (ẑ) � H f be the corresponding hyperbolic leaf. Fix a Hermitian
metric on TzC, let � ẑ ; � ẑ0 : H ! R be the corresponding heights de�ned in (3.1.7). Thebasic cocycle
is the di�erence

� (ẑ; ẑ0) = � ẑ0 � � ẑ :

Remark 3.1.36 In the conditions of the previous De�nition the basic cocycle is a well-de�ned
constant and depends only on ^z and ẑ0 (it is independent on the choice of metric). One has

� (ẑ; ẑ) = 0 ; � (ẑ; ẑ0) = � � (ẑ0; ẑ):

Each horosphereSẑ;h � H (ẑ) coincides with the horosphereSẑ0;h + � ( ẑ; ẑ0) . The basic cocycle isf̂ -
invariant :

� (ẑ; ẑ0) = � (f̂ n (ẑ); f̂ n (ẑ0)) for any n 2 N: (3.1.9)

For any triple of nonsingular points ẑ; ẑ0; ẑ002 A f lying in one and the same leafL and projected by
� 0 jL to one and the same pointz 2 C with nonzero derivatives one has

� (ẑ0; ẑ00) = � (ẑ; ẑ00) � � (ẑ; ẑ0) (the cocycle property): (3.1.10)

The next proposition is well-known and follows immediately from de�nition.

Proposition 3.1.37 Let L � A f be a leaf,ĉ; ĉ0 2 L , � 0(ĉ) = � 0(ĉ0) = c. Let V � C be a neighborhood
of c such that the local leavesL (ĉ; V); L (ĉ0; V ) � L are univalent over V (see De�nition 3.1.28). De�ne

 ĉ;ĉ0 = ( � 0jL ( ĉ0;V ) )
� 1 � � 0 jL ( ĉ;V ) : L (ĉ; V) ! L (ĉ0; V ): (3.1.11)

Let us �x a Euclidean a�ne metric on the leaf L , which contains the previous local leaves. Consider
the derivative modulusj 0

ĉ;ĉ0j in the chosen Euclidean metric. Then for anyẑ 2 L (ĉ; V), ẑ0 =  ĉ;ĉ0(ẑ),
one has

� (ẑ; ẑ0) = � ln j 0
ĉ;ĉ0(ẑ)j: (3.1.12)

Corollary 3.1.38 Let L , ĉ, ĉ0, V be as in the previous proposition. For anyz 2 V put

ẑ = � � 1
0 (z) \ L (ĉ; V); ẑ0 = � � 1

0 (z) \ L (ĉ0; V ): The function

� ĉ;ĉ0(z) = � (ẑ; ẑ0) (3.1.13)

is harmonic on V (and hence, real-analytic).

3.2 Main results : density of horospheres

First let us recall the following

Theorem 3.2.1 [78] The a�ne lamination A f associated to a rational function f (with isolated
leaves deleted) admits a continuous family of Euclidean a�ne metrics on the leaves, if and only
if f is conformally-conjugated to a function from the list (3.0.1). In the latter case there exists a
unique (up to multiplication by constant) conformal Euclidean metric on C (with isolated singularities)
whose pullback under the projection� 0 : A f ! C yields the previous Euclidean metric family on the
nonisolated leaves.

Corollary 3.2.2 Let f be a rational function from (3.0.1). Then each horosphere in its quotient
hyperbolic lamination H f =f̂ (with isolated leaves deleted) is nowhere dense.
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Proof (sketch). Let S be an arbitrary horosphere in a nonisolated leaf ofH f . For the proof of the
corollary it su�ces to show that the union of the images of S under forward and backward iterations
of f̂ is nowhere dense. Denoteg the singular Euclidean metric on C from the previous theorem. We
measure the heights of the horospheres with respect to this metric. The heights of S over all the
points are all the same (by de�nition and Theorem 3.2.1). The mapping f has a constant modulus
of derivative in the metric g, since f̂ is leafwise a�ne. Hence, the heights of the iterated images of S
form an arithmetic progression, thus, a discrete set of realnumbers. This proves the corollary. 2

Theorem 3.2.3 [48, 49]. Let f be a rational function that does not belong to the list (3.0.1). Let
H f =f̂ (H 0

f =f̂ ) be the corresponding quotient hyperbolic lamination (with deleted isolated leaves, iff

has branch-exceptional repelling periodic orbits, see (3.1.6)) ; H � H 0
f =f̂ be a leaf associated to a

repelling periodic point of f (see De�nition 3.1.30). Then each horosphere inH is dense inH 0
f =f̂ .

Theorem 3.2.3 is the main result of the papers [48, 49]. Its proof is sketched in the next section. As
it is shown below, it implies density of all the horospheres in the critically-nonrecurrent nonparabolic
case and density of \almost" all the horospheres in the general critically-nonrecurrent case, with
parabolics allowed, provided that f =2 (3.0.1).

Theorem 3.2.4 [48, 49]. Let f : C ! C be a critically-nonrecurrent rational function without pa rabo-
lic periodic points (e.g., a hyperbolic one) that does not belong to the list (3.0.1). Then each horosphere
in H f =f̂ accumulates toH 0

f =f̂ .

Theorem 3.2.5 [48, 49]. Let f be a critically-nonrecurrent rational function that does not belong to
the list (3.0.1). Let H � H f be a leaf,L = � h (H ) � A f be its boundary. Let the projectionp(L ) � A n

f

do not lie in a leaf associated to a parabolic periodic point of f . Let H=f̂ � H f =f̂ be the corresponding
leaf of the quotient lamination. Then each horosphere inH=f̂ accumulates toH 0

f =f̂ .

Theorem 3.2.4 follows immediately from Theorem 3.2.5. Below we deduce Theorem 3.2.5 from
Theorem 3.2.3 and the following theorem.

Theorem 3.2.6 [48, 49]. Let the conditions of Theorem 3.2.5 hold (but nowf is not necessarily
excluded from the list (3.0.1)). Then each horosphere inH=f̂ accumulates to some horosphere in a
leaf in H 0

f =f̂ associated to appropriate repelling periodic point.

Proof of Theorem 3.2.5. Each horosphere inH=f̂ accumulates to some horosphere in a leaf in
H 0

f =f̂ corresponding to a repelling periodic point (Theorem 3.2.6). The latter horosphere is dense in

H 0
f =f̂ (Theorem 3.2.3). Hence, the former horosphere accumulatesto H 0

f =f̂ . This proves Theorems
3.2.5 and 3.2.4. 2

The following theorem shows the closeness of the horospheres in the leaves associated to parabolic
periodic points, without the critical nonrecurrence assumption.

Theorem 3.2.7 Let f : C ! C be an arbitrary rational function with a parabolic periodic point
a. Let Ha � H f be a leaf associated to it,Ha=f̂ � H f =f̂ be the corresponding leaf of the quotient
hyperbolic lamination. Each horosphere inHa (Ha=f̂ ) is closed in H f (respectively, H f =f̂ ) and does
not accumulate to itself.
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3.3 Brief proofs of main results

In the next subsection we prove Theorem 3.2.3. In Subsection3.3.2 we prove Theorem 3.2.6 (which,
together with Theorem 3.2.3, implies Theorem 3.2.5 on the density of all the horospheres). In Subsec-
tion 3.3.3 we prove Theorem 3.2.7.

For simplicity, everywhere below (including the statements of lemmas and propositions) we assume
that the rational function f under consideration does not have branch-exceptional repelling periodic
orbits, and thus, H f = H 0

f : the proofs of Theorems 3.2.3 and 3.2.5 (given below) remainvalid in
the opposite case with obvious changes. Thus, the laminations A f and H f are minimal (Proposition
3.1.31).

3.3.1 Dense horospheres over repellers. Proof of Theorem 3. 2.3

Let a 2 C be a repelling periodic point of f , â � A f be its periodic backward orbit, L (â), H (â)
be the respectively the corresponding leaves of the laminations A f and H f . We �x a horosphere
S � H (â), denote

S = [ m 2 Z f̂ m (S); and show that the closure ofS in H f contains H (â): (3.3.1)

The leaf H (â) is dense (minimality). This together with the previous statement implies Theorem 3.2.3.
It su�ces to prove (3.3.1) with S = Sâ; 0. Without loss of generality everywhere below we assume

that the point a is �xed : f (a) = a. One can achieve this by replacingf by its iteration. Then both
leavesL (â) and H (â) are �xed by f̂ , which acts on L(â) by (complex) homothety centered at â with
coe�cient f 0(a). Denote

� a = f b̂ 2 L (â) n â j � 0(b̂) = a; (� 0jL ( â) )
0(b̂) 6= 0 g: (3.3.2)

The set � a is nonempty and in�nite. This follows from the assumption th at a is not a branch-
exceptional �xed point and Picard's theorem.

Each horosphereS � H (â) is mapped by f̂ to a horosphere in the same leafH (â) so that

f̂ m (Sâ; 0) = Sâ;m ln j f 0(a) j ; f̂ (Sb̂;h ) = S ^f ( b̂) ;h +ln j f 0(a) j for any m 2 Z; h 2 R and b̂ 2 � a : (3.3.3)

The monodromies of the horospheres (when de�ned) along loops based ata add appropriate basic
cocycles to the heights (see De�nition 3.1.35) so that for any b̂ 2 � a , h 2 R, m 2 Z

Sâ;h = Sb̂;h+ � ( â; b̂) ; thus, f̂ m (Sâ; 0) = Sb̂;h b̂;m
; hb̂;m = � (â; b̂) + m ln jf 0(a)j:

The main part of the proof of Theorem 3.2.3 is the next lemma, which implies that the previous
height values hb̂;m are dense inR. Theorem 3.2.3 is then deduced from it by elementary topological
arguments (using Corollary 3.1.29), which are omitted to save the space.

Lemma 3.3.1 Let f be a rational function that does not belong to the list (3.0.1), a be its repelling
�xed point, � a be as in (3.3.2). The set

Bf = f � (â; b̂) + m ln jf 0(a)j j b̂ 2 � a ; m 2 Zg (3.3.4)

is dense inR.

Everywhere below for anyz 2 C (with a chosen local chart in its neighborhood, the latter being
equipped with the standard Euclidean metric) and � > 0 we denote

D � (z) = fj w � zj < � g � C; D � = D � (0):

Lemma 3.3.1 is proved below. In its proof we use the followingproperties of the points from � a

and basic cocycles.
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Proposition 3.3.2 Let f be a rational function, a 2 C be its repelling �xed point, � a be as in
(3.3.2), b̂;ĉ 2 � a . Let � > 0 be such that the local leavesL (â; D � (a)) , L (b̂; D� (a)) , L (ĉ; D� (a)) are
univalent over D � (a), and moreover, the inverse branchf � 1 that �xes a extends up to a univalent
holomorphic function D � (a) ! D � (a) (whose orbits in D � (a) thus converge toa). Let j 2 N be such
that b� k 2 D � (a) for any k � j (see Proposition 3.1.22). Let

y 2 L (ĉ; D� (a)) ; � 0(y) = b� j ; d̂ = f̂ j (y); � â; ĉ be the function from (3.1.13). Then

� (â; d̂) = � (â; b̂) + � â; ĉ(b� j ): (3.3.5)

Proof (sketch). One hasd̂ 2 � a , which easily follows from de�nition,

� (â; d̂) = � (â; b̂) + � (b̂;d̂) by (3.1.10); � (b̂;d̂) = � â; ĉ(b̂� j )

(the two latter equalities imply (3.3.5)). Let us prove the second equality. The points f̂ � j (b̂) and y
are projected to one and the same pointb� j and lie in the local leavesL (â; D � (a)) and L(ĉ; D� (a))
respectively by construction. One has� (b̂;d̂) = � (f̂ � j (b̂); y) (the invariance of basic cocycle, see
(3.1.9), and the projection coincidence). Now� (f̂ � j (b̂); y) = � â; ĉ(b� j ) by de�nition and the previous
inclusion. 2

Corollary 3.3.3 Let f , a, � a be as in Proposition 3.3.2. The closure

B = f � (â; b̂) j b̂ 2 � ag (3.3.6)

is an additive semigroup inR.

Proof Fix arbitrary b̂;ĉ 2 � a . We have to show thatB 0 = � (â; b̂)+ � (â; ĉ) 2 B , i.e., B 0 is approximated
arbitrarily well by values � (â; d̂), d̂ 2 � a . Let j , d̂ be as in (3.3.5). Then

� (â; d̂) � B 0 = � â; ĉ(b� j ) � � (â; ĉ) by (3.3.5). (3.3.7)

The latter di�erence tends to 0, as j ! 1 , since � â; ĉ(a) = � (â; ĉ) and b� j ! a. This proves the
Corollary. 2

We use the following elementary property of additive semigroups.

Proposition 3.3.4 Let B � R be an additive semigroup such that for any" > 0 it contains a pair of
at most " - close distinct elements. Then for anyM 2 R n 0 the semigroupBM = B + ZM is dense in
R.

By de�nition, one has
B � B + Z ln jf 0(a)j � Bf : (3.3.8)

We show that the semigroupB contains distinct elements arbitrarily close to each other. Then applying
Proposition 3.3.4 to M = ln jf 0(a)j together with the previous inclusion implies Lemma 3.3.1.

As it is shown below, the previous statement onB is implied by (3.3.5) and the following

Lemma 3.3.5 (Main Technical Lemma) Let f be a rational function that does not belong to the
list (3.0.1), a 2 C be its repelling �xed point, â 2 A f be its �xed orbit, � a be the set from (3.3.2).
There exists a pair of points b̂;ĉ 2 � a such that for any N 2 N

� â; ĉjf b� j j j � N g 6� const: (3.3.9)
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The proof of Lemma 3.3.5 (sketched below) uses essentially the analyticity of basic cocycle.
Proof of Lemma 3.3.1. It su�ces to show that the semigroup B contains pairs of arbitrarily close
distinct elements (see the previous discussion). Let̂b;ĉ 2 � a be as in Lemma 3.3.5,j , d̂ be as in
(3.3.5). The valuesB 0 = � (â; b̂) + � (â; ĉ) and � (â; d̂) are both contained in B (Corollary 3.3.3). Their
di�erence (3.3.7) is arbitrarily small, whenever j is large enough, see the proof of the corollary. It is
nonzero for an in�nite number of indices j by (3.3.7) and (3.3.9). This proves Lemma 3.3.1 modulo
Lemma 3.3.5. 2

Proof of Lemma 3.3.5 (sketch). Fix a small neighborhoodU of a where f is univalent and such
that f (U) � U. Then the linearizing chart of f at a extends up to a holomorphic univalent chart on
U. We take U to be convex in the linearizing chart. For any ẑ 2 L (â) there exists a N > 0 such that
z� j 2 U for any j � N . Then the backward orbit z� N ; z� N � 1; : : : is called a tail of ẑ (the previous
number N is not necessarily chosen to be the minimal one satisfying the previous statement). If N is
minimal, then the tail is called complete. The local leaf L (â; U) is well-de�ned and univalent over U
by de�nition. It consists precisely of the points of A l

f represented by tails.
We have to show that there exists a basic cocycle� â; ĉ that is nonconstant along an arbitrary tail

of appropriate point b̂ 2 � a . First let us show that if f does not belong to the list (3.0.1), then there
exists a ĉ 2 � a such that

� â; ĉ 6� const in a neighborhood ofa: (3.3.10)

This is proved by showing that the contrary would imply that f belongs to (3.0.1). For anyĉ 2 � a

such that � â; ĉ � const one has� â; ĉ � 0. Indeed, the constance of� â; ĉ implies that the mapping
germ  : (L (â); â) ! (L (â); ĉ) preserving the projection extends up to an a�ne automorphi sm  of
L (â) = C such that � â; ĉ � � ln j 0j and � 0 �  � � 0. The latter identity implies that  cannot have
attracting (repelling) �xed points ; hence, j 0j � 1 and � â; ĉ � 0. Now let � â; ĉ � 0 for all ĉ 2 � a .
Recall that the lamination A f is minimal by assumption. Fix an a�ne Euclidean metric on the leaf
L (â). It extends up to a continuous family of a�ne Euclidean metr ics on all the leaves ofA f that
are projected to one and the same (singular) metric onC (by density of L (â), the vanishing and the
invariance of basic cocycle). Hence,f belongs to (3.0.1) by Theorem 3.2.1. This proves the existence
of a nonconstant � â; ĉ.

Fix a ĉ 2 � a satisfying (3.3.10). Without loss of generality we consider that the local leaf L (ĉ; U)
is univalent over U (then the function � â; ĉ is real-analytic on U, see Corollary 3.1.38). We prove the
existence ofb̂ satisfying (3.3.9) by contradiction. Suppose the contrary: � â; ĉ � const on some tail of
each b̂ 2 � a (and hence, equals� â; ĉ(a) there). We show that � â; ĉ � const on U, - a contradiction to
(3.3.10).

The level set � â; ĉ = � â; ĉ(a) is a nontrivial real-analytic subset in U by the analyticity of � â; ĉ and
(3.3.10). Let A � U be the minimal analytic subset that contains a tail of each b̂ 2 � a . Then A lies
in the previous level set. We show that eitherA = U (then � â; ĉ � const), or A is a line interval in the
linearizing chart. In the latter case we also show that� â; ĉ � const.

The existence of a backward orbit converging toa along a nontrivial analytic set A implies imme-
diately that arg f 0(a) 2 � Q. We then deduce that A is a �nite union of line intervals passing through
a with ends on @U. Let us show that then A is a single line interval. To do this, we use the fact, that
A is f � 1- invariant and contains the complete tail of each b̂ 2 � a . The latter statement is deduced
from the former one and the convexity ofU.

Suppose the contrary : the setA contains at least two distinct line intervals (let us �x them
and denote l1 and l2). Fix a N such that ĉ� j 2 U for any j � N . Consider the inverse branch
f � j jU : a 7! c� j (which is single-valued by the univalence ofL (ĉ; U)). We show that the germs of the
analytic curves f � N (l r ), r = 1 ; 2, at their transversal intersection point c� N 6= a are contained in A.
This implies that A cannot be a �nite union of line intervals containing a, - a contradiction. Each l r
contains a subsequencex1; x2; : : : (let us �x it) of a tail of some b̂ 2 � a . The previous germ inclusion
follows from analyticity and the fact that for any s large enough the sequencef � N (xs); f � N � 1(xs); : : :
is a tail of someâs 2 � a .
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Thus, the previous analytic set A is a single line interval. By de�nition, � â; ĉjA � const. The
function � â; ĉ, whose constance we have to prove, is equal to minus the logarithm of the modulus of
the derivative of a holomorphic univalent function  : U ! C. The latter function is de�ned by the
lifting

 : U ! L (ĉ; U) � L (â); � 0 �  = Id; and the a�ne identi�cation L (â) = C:

The latter identi�cation is given by the linearizing coordi nate of f at a (see Example 3.1.19). The
previous derivative of  is taken in the linearizing chart of f on U. The modulus j 0j is constant along
A, since � â; ĉjA � const. The image  (A) lies in a line (the latter line passes through â and near â
it is locally projected to A). This easily follows from the f̂ - invariance of this line by an argument
analogous to the proof of the previous germ inclusion. This together with the following proposition
shows that the derivative (and hence,� â; ĉ) is constant globally, - a contradiction to (3.3.10). This
proves Lemma 3.3.5.

Proposition 3.3.6 Let  be a conformal mapping of one domain ofC onto another one. Let  map
a line interval A to a line and the modulus of its derivative be constant alongA. Then  is an a�ne
mapping.

2

3.3.2 Minimality. Proof of Theorem 3.2.6

Let f : C ! C be a critically-nonrecurrent rational mapping. Let L � A f be a leaf of the
corresponding a�ne lamination whose projection p(L ) � A n

f does not lie in a leaf associated to a
parabolic periodic point. Let H � H f be the corresponding hyperbolic leaf. Let us show that there
exists a repelling periodic point a 2 C of f (denote â 2 A f its periodic orbit) such that for each
horosphereS � H the union of its images under forward and backward iterations of f̂ accumulates
to some point of H (â) (and hence, to the horosphere passing through this point).This will prove
Theorem 3.2.6.

Here we prove the previous accumulation statement only in the case, whenL � A l
f . The proof in

the general case is similar but becomes slightly more technical.

Lemma 3.3.7 Let f and L � A l
f be as above,̂x 2 L be such thatx0 2 J = J (f ). There exist

a sequencenk ! + 1 , a point b 2 J (that is not a parabolic periodic point) and a neighborhood
V = V (b) � C such that x � n k ! b and for any k 2 N the local leaf L (f̂ � n k (x̂); V ) is well-de�ned and
univalent over V .

The Lemma is proved by using Ma~ne's theorem [89].
Let x̂, nk , b and V be as in the previous lemma. Without loss of generality we consider that

V = D1, b = 0. The disk V intersects the Julia set off and hence, contains a repelling periodic point
(let us �x it and denote by a). We show that a is a repelling point we are looking for.

For each local leafL (f̂ � n k (x̂); V ) and any w 2 V denote its lifting to this leaf by

ŵk 2 L(f̂ � n k (x̂); V ); � 0(ŵk ) = w; âk 2 L(f̂ � n k (x̂); V ); � 0(âk ) = a:

Fix a horosphereS � H and denote

Sk = f̂ � n k (S) � H (âk ); � k 2 Sk its point over âk : � h (� k ) = âk :

Let s be the period of a, � = ( f s)0(a). We show that there exists a sequencelk ! + 1 such that
the sequencef̂ sl k (� k ) contains a subsequence converging to a point� = ( â; h) 2 H (â). The height of
the point f̂ sl k (� k ) equals lk ln j� j plus the height of � k (all the heights are measured in the standard
metric on V ). For the proof of the existence of the previous sequencelk we show that the heights of
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� k tend to �1 , and moreover, the heights ofSk over the local leavesL (f̂ � n k (x̂); V ) tend to �1 (as
functions on V , uniformly on compact sets), ask ! 1 . Indeed, the height ofSk over f̂ � n k (x̂) (which
is projected to x � n k ! b = 0) tends to �1 : it equals the height of S over x̂ plus ln j(f � n k )0(x0)j,
which tends to �1 (by the Shrinking Lemma). The previous uniform convergenceto �1 then follows
from the equicontinuity of the heights on compact subsets inV . The equicontinuity follows from the
fact that the heights are equal (up to additive constants) to logarithms of moduli of derivatives of
appropriate univalent functions  : V ! C (that can be normalized by a�ne transformations in the
image so that  (0) = 0,  0(0) = 1) and the compactness of the space of all thus normalized univalent
functions on a disk.

3.3.3 Closeness of the horospheres associated to the parabo lic periodic
points

Let us prove Theorem 3.2.7. Letf be a rational function with a parabolic periodic point a 2 C.
Without loss of generality we consider that a is �xed. Let L a � A f be a leaf associated toa of the
a�ne lamination, Ha � H f be the corresponding hyperbolic leaf. In the proof of Theorem 3.2.7 we
use the following

Proposition 3.3.8 Let f , a, L a, Ha be as above. Then each horosphere inHa is invariant under the
mapping f̂ .

Proof The Fatou coordinate is a�ne on the leaf L a , and f̂ acts by unit translation there. Hence, it
preserves an Euclidean metric onL a . This implies the proposition. 2

Fix a horosphereS � Ha . We show that S is closed inH f and does not accumulate to itself. This
together with its invariance (Proposition 3.3.8) implies Theorem 3.2.7.

Suppose the contrary :S accumulates to some horosphereS0. Let H � H f be the leaf containing
S0, L � A f be the corresponding a�ne leaf. Take an arbitrary nonsingular point b̂ 2 L such that
b = � 0(b̂) 6= a, (� 0 jL )0(b̂) 6= 0 and a neighborhood V = V(b) � C such that the local leaf L (b̂; V) is
univalent over V . There exists a sequencêbk 2 L a converging to b̂ in A f so that the points of S over
b̂k converge to that of S0 over b̂ (by de�nition), and in addition, b̂k =2 L(b̂; V). For any neighborhood
U = U(b), U � V (let us �x it) the local leaves

� k = L(b̂k ; U) � L a are univalent over U for all k large enough.

This follows from the convergenceb̂k ! b̂ and the de�nition of topology in A f . Without loss of
generality we consider that this is true for all k,

U = D1; b = 0 = � 0(b̂k ); and the leaves �k are distinct:

We equip U with the standard Euclidean metric and measure the heights of the horospheres over
the local leaves with respect to this metric. We show that theheights of S over b̂k tend to + 1 , - a
contradiction to the convergence of the points ofS over b̂k .

For the proof of the previous height asymptotics, we �x a disk D r (a) where f is univalent, the
branch of f � 1 �xing a is single-valued and such that each backward orbit contained there in fact
converges toa (this is true, whenever the disk is small enough). For any �xed k one hasbk

� j ! a,

as j ! + 1 ; denote nk 2 N the minimal number such bk
� j 2 D r (a) for any j � nk . Passing to a

subsequence of the indicesk one can achieve thatbk
� n k

converge ; then f̂ � n k (b̂k ) converge to some
x̂ 2 N f in N f represented by a backward orbit in D r (a). One has x̂ 2 L a , by construction and
since it is distinct from the �xed orbit of a (by de�nition and the inequality 0 = bk

0 6= a). Moreover,
f̂ � n k (b̂k ) ! x̂ along a local leaf around ^x. The sequencenk tends to in�nity. The height of S = f̂ � n k (S)
over f̂ � n k (b̂k ) (measured in a metric nearx0) tends to a �nite value, namely, to its height over x̂. On
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the other hand, its di�erence with the height of S over b̂k is equal to lnj(f � n k )0(0)j, which tends to
�1 (the Shrinking Lemma). This implies that the height of S over b̂k tends to + 1 . Together with
the previous discussion, this proves Theorem 3.2.7.



Chapitre 4

Instability of nondiscrete Lie
subgroups in Lie groups

4.1 Introduction : main results, open problems and history

4.1.1 Main result : instability of liberty. Plan of the chapt er

Let G be a nonsolvable Lie group. It is well-known (see [29]) that almost each (in the sense of the
Haar measure) pair of elements (A; B ) 2 G � G generates a free subgroup inG. At the same time in
the case, whenG is connected and semisimple, there is a neighborhoodU � G � G of unity in G � G
where a topologically-generic pair (A; B ) 2 U generates a dense subgroup : the latter pairs form an
open dense subset inU. This was proved in [14].

The pairs generating groups with relations form a countableunion of surfaces (relation surfaces)
in G � G. We show that the relation surfaces are dense inU.

The main result of the chapter is the following

Theorem 4.1.1 [50] Any nondiscrete free subgroup with two generators in a nonsolvable Lie groupG
is unstable. More precisely, consider two elementsA; B 2 G generating a free subgroup� = < A; B > .
Let � be not discrete. Then there exists a sequence(Ak ; Bk ) ! (A; B ) of pairs converging to (A; B )
such that the corresponding groups< A k ; Bk > have relations : there exists a sequencewk = wk (a; b)
of nontrivial abstract words in symbolsa, b (and their inverses a� 1, b� 1) 1 such that wk (Ak ; Bk ) = 1
for all k.

Remark 4.1.2 The condition that the subgroup under consideration be nondiscrete is natural : one
can provide examples of discrete free subgroups ofP SL2(C) (e.g., the Schottky group, see [6]) that
are stably free, i.e., remain free under any small perturbation of the generators.

Remark 4.1.3 The closure of a nondiscrete subgroup in a Lie group is a Lie subgroup of positive
dimension (see [116], p.42). Therefore, in Theorem 4.1.1 without loss of generality we assume that the
subgroup < A; B > � G under consideration is dense inG.

The question of instability of nondiscrete free subgroups was stated by �E Ghys, who also suggested
to study the best rate of approximation of the pair (A; B ) by pairs having a relation of a length no
greater than a given l (in analogy with the approximations of irrational number by rationals, where
the best approximation rate is well-known ; it is achieved bycontinued fractions. In our situation the
pair (A; B ) plays the role of an irrational number, the pairs with relat ions play the role of rationals.)

1Everywhere in the chapter, by a word in given symbols we mean a word in the same symbols and their inverses
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We prove an upper bound of the best approximation rate (Theorem 4.1.29 and Corollaries 4.1.30,
4.1.31 stated in 4.1.3 and briey proved in 4.1.3 and 4.6).

The proof of Corollary 4.1.30 uses Theorem 4.1.16 (stated in4.1.2), which deals with a semisimple
Lie group and a pair (A; B ) of its elements generating a dense subgroup (briey calledan irrational
pair). It provides an upper bound for the rate of approximati ons of the elements of the unit ball in
the Lie group by words in (A; B ) satisfying a bound of derivatives. These and related results and open
problems are discussed in Subsections 4.1.2-4.1.4.

Theorem 4.1.16 follows (see 4.1.2) from Lemma 4.1.25 and Theorem 4.1.26, both stated in 4.1.2 ;
their proofs are omitted here and may be found in [50]. Theorem 4.1.26 proves the statement of
Theorem 4.1.16 for a Lie group whose Lie algebra satis�es theso-called weak Solovay-Kitaev inequality
(see De�nition 4.1.23). This inequality means a decomposition (with estimate) of each element of a
Lie algebra as a sum of two Lie brackets. Lemma 4.1.25 shows that the latter inequality holds true
for any semisimple Lie algebra.

Theorem 4.1.21 (recalled in 4.1.2 and proved by R.Solovay and A.Kitaev, see [22, 80, 95]) concerns
the Lie groups whose Lie algebras satisfy the (strong) Solovay-Kitaev inequality (see De�nition 4.1.17).
This inequality says that each element of a Lie algebra is a Lie bracket (with estimate). For these
Lie groups Theorem 4.1.21 provides an upper bound for the rate of approximations of its elements
in the unit ball by words in a given irrational pair of element s. The bound given by Theorem 4.1.21
is stronger than that in Theorem 4.1.16. Corollary 4.1.31 follows (see 4.1.2) from Theorems 4.1.21,
4.1.29 and Remark 4.1.22.

Remark 4.1.4 In the case, when the Lie group under consideration isP SL2(R), Theorem 4.1.1 easily
follows from the density of the elliptic elements of �nite orders in an open domain ofP SL2(R) : the
proof is given in Subsection 4.1.5. The case ofP SL2(C) is already nontrivial (in some sense, this is a
�rst nontrivial case). In this case the previous argument cannot be applied, since the elliptic elements
in P SL2(C) are nowhere dense. At the same time, there is a short proof ofTheorem 4.1.1 for dense
subgroups in P SL2(C) that uses holomorphic motions and quasiconformal mappings. We present it
in Section 4.5.

In this chapter we prove Theorem 4.1.1 only for semisimple Lie groups with irreducible adjoint. Its
statement in the general case then follows (relatively easily, see [50]) by arguments using the classical
radical and decomposition theorems for Lie algebras (see [116], pp. 60, 61, 151 ; they are briey recalled
in Subsection 4.2.1). We treate separately the cases of a Liegroup with proximal elements (Section
4.3, whose arguments work, e.g., forG = SLn (R)) and without proximal elements (Section 4.4). A
reader can read the proofs in Section 4.3 assuming everywhere that G = SLn (R).

In 4.1.7 we formulate a more general Theorem 4.1.33 in the case of a semisimple Lie group with
irreducible adjoint representation. We deduce Theorem 4.1.1 from it at the same place. We prove
Theorem 4.1.33 (modulo technical details) in Sections 4.3 and 4.4.

The de�nition of proximal element and basic properties of groups with proximal elements will be
recalled in 4.2.3.

In 4.1.4 we present a brief historical overview and some openproblems.
In 4.1.6 we give a proof of a simpli�ed analogue (Proposition4.1.32) of Theorem 4.1.1 for the

simplest solvable noncommutative Lie groupAf f + (R), which is the group of orientation-preserving
a�ne transformations of the real line. (The author is sure th at Proposition 4.1.32 is well known to
the specialists.) The proof gives a simple illustration of the basic ideas used in the proof of Theorem
4.1.1.

The basic de�nitions concerning Lie groups (adjoint representation, (semi) simple groups, etc.),
which will be used through the chapter (mostly in proofs), are recalled in 4.2.1 and 4.2.2.

4.1.2 Approximations by values of words.

De�nition 4.1.5 Let G be a Lie group. We say that a pair (A; B ) 2 G� G is irrational , if it generates
a dense subgroup inG.
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Proposition 4.1.6 Let G be a semisimple Lie group. The set of irrational pairs inG � G is open.
More generally, the set ofM - ples of elements ofG generating dense subgroups is open in the product
of M copies ofG.

Proof We prove the statement of the proposition for pairs : for M - ples the proof is analogous. Let
(A; B ) 2 G � G be an irrational pair. We have to show that there exists its neighborhood V � G � G
such that each pair (A0; B 0) 2 V is irrational. Let G0 � G be the unity component of G. Recall that
there exists a neighborhoodU � G0 � G0 of unity where an open and dense set of pairs generate
dense subgroups inG0 (see the beginning of the chapter and [14]). Thus, there exists an open subset
U0 = U1 � U2 � U such that each pair in U0 generates a dense subgroup inG0. There exist wordsw1

and w2 such that wj (A; B ) 2 Uj , j = 1 ; 2. By continuity, there exists a neighborhoodV of (A; B ) such
that for any ( A0; B 0) 2 V one haswj (A0; B 0) 2 Uj , and thus, the subgroup generated bywj (A0; B 0) is
dense inG0 by de�nition. The ambient subgroup generated by (A0; B 0) is dense inG, since its closure
contains G0 (the previous statement) and each connected component ofG contains an element of
< A 0; B 0 > . (The latter fact holds true for the subgroup < A; B > (which is dense) and remains valid
for < A 0; B 0 > by continuity.) Thus, each pair ( A0; B 0) 2 V is irrational. The proposition is proved. 2

Let us recall the following well-known

De�nition 4.1.7 Given a metric spaceE, a subsetK � E and a � > 0. We say that a subset inE is a
� - net on K , if the union of the � - neighborhoods of its elements coversK , and all these neighborhoods
do intersect K .

Remark 4.1.8 A � - net on K is always contained in the� - neighborhood ofK .

Everywhere below (whenever the contrary is not speci�ed) for any given point a of the spaceRn

(or of a Lie group G equipped with a Riemann metric) we denote

D r (a) the ball centered at a of radius r; D r = D r (0) � Rn (respectively, D r = D r (1) � G0);

where G0 is the unity component of G. Everywhere below whenever we say about a distance on a
connected component of a Lie group, we measure it with respect to a given left-invariant Riemann
metric on the group (if the contrary is not speci�ed). We use the following property of left-invariant
distance.

Proposition 4.1.9 Let � 1; � 2 > 0, G be a connected Lie group equipped with a left-invariant metric,
K � G be an arbitrary subset. Let
 ; 
 0 � G be two subsets such that
 contains a � 1- net on K , 
 0

contains a � 2- net on the � 1- ball D � 1 � G. Then the product 

 0 � G contains a � 2- net on K .

Proof Take an arbitrary x 2 K and some its� 1- approximant ! 2 
. Then x0 = ! � 1x 2 D � 1 (the
left-invariance of the metric). Take a � 2- approximant ! 0 2 
 0 of x0. Then !! 0 is a � 2- approximant of
x :

dist (!! 0; x) = dist (! 0; x0) < � 2:

This proves the proposition. 2

Let X > 0,

" : R+ ! R+ be a decreasing function such that" (cx) < c � 1" (x) for any c > 1; x � X: (4.1.1)

Example 4.1.10 For any � > 0 the function " (x) = e� x �
satis�es (4.1.1) with appropriate X (de-

pending on � ).
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De�nition 4.1.11 Let G be a Lie group (equipped with a Riemann metric). Let (A; B ) 2 G � G be
an irrational pair, K � G be a bounded set in the unity componentG0 of G, " (x) be a function as in
(4.1.1). We say that G is " (x)- approximable onK by words in (A; B ), if there exist a c = c(A; B; K ) >
0, a sequence of numberslm = lm (A; B; K ) 2 N (called length majorants), lm ! 1 , as m ! 1 , and
a sequence 
m;K = 
 m;K;A;B of word collections such that

jwj � lm for any w 2 
 m;K and (4.1.2)

the subset 
 m;K (A; B ) is contained in G0 and contains a"(clm ) � net on K: (4.1.3)

We say that G is " (x)- approximable on K by words in (A; B ) with bounded derivatives, if 
 m;K

satisfying (4.1.2) and (4.1.3) may be chosen so that the union [ m 
 m;K (A; B ) is a bounded subset in
G0 and there exist a � = �( A; B; K ) > 0 and a neighborhoodV � G � G of the pair (A; B ) such
that for any m 2 N and any w 2 
 m;K

the mapping G � G ! G; (a; b) 7! w(a; b); has derivative of norm less than � on V: (4.1.4)

De�nition 4.1.12 We say that a Lie group G is " (x)- approximable (with bounded derivatives) by
words in (A; B ) 2 G � G, if so it is on any bounded subset of its unity component. We say briey that
G is " (x)- approximable (with bounded derivatives), if so it is by words in an arbitrary irrational pair
and on any bounded subset of its unity component.

The following proposition shows that the " (x)- approximability is equivalent to the " (x)- approxi-
mability on the unit ball centered at 1.

Proposition 4.1.13 Let " (x) be as in (4.1.1), G, G0, (A; B ) be as in De�nition 4.1.11, and let
the metric on G be left-invariant. Let G be "(x)- approximable by words in(A; B ) (with bounded
derivatives) on the unit ballD1 � G0, c(A; B; D 1), lm (D1) = lm (A; B; D 1), 
 m;D 1 be the corresponding
constant and sequences of length majorants and word collections, see (4.1.2) and (4.1.3). Let R > 1,

 R be a �nite collection of words whose values at(A; B ) form a 1- net on DR � G0,

l (R) = max
w2 
 R

jwj:

Then G is " (x)- approximable onDR by words in (A; B ) (with bounded derivatives), where


 m;D R = 
 R 
 m;D 1 ; lm (DR ) = lm (A; B; D R ) = l (R) + lm (D1); c(A; B; D R ) =
c(A; B; D 1)

l (R)
: (4.1.5)

Proof Let 
 m;D R , lm (DR ) be the word collections and numbers given by (4.1.5). For any m 2 N the
set 
 m;D R (A; B ) contains a � - net on DR ,

� = " (c1lm (D1)) ; c1 = c(A; B; D 1);

by Proposition 4.1.9 applied to K = DR , 
 = 
 R (A; B ), � 1 = 1, 
 0 = 
 m;D 1 (A; B ), � 2 = � . (The
latter satisfy the conditions of the proposition by de�niti on and the "(x)- approximability.) One has

jwj � lm (DR ) for any w 2 
 m;D R ;

� � " (c1(inf
m

lm (D1)
lm (DR )

)lm (DR )) � " (c(A; B; D R )lm (DR )) :

This follows by de�nition, (4.1.5), the inequality l m (D 1 )
l m (D R ) � 1

l (R ) and the decreasing of the function" (x).
If in addition, the set [ m 
 m;D 1 (A; B ) is bounded and the derivatives of the mappings (a; b) 7! w(a; b),
w 2 [ m 
 m;D 1 , are uniformly bounded on a neighborhood of (A; B ) in G � G, then the same holds
true with 
 m;D 1 replaced by 
 m;D R and the same neighborhood. This follows by de�nition and the
�niteness of the collection 
 R . This proves the"(x)- approximability on DR (with bounded derivatives)
and Proposition 4.1.13. 2
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Corollary 4.1.14 Any Lie group "(x)- approximable by words in a given irrational pair (with bounded
derivatives) on unit ball, is " (x)- approximable by words in the same pair (with bounded derivatives)
on any bounded subset.

The next proposition shows that the notion of " (x)- approximability is independent on the choice
of the metric on G.

Proposition 4.1.15 Let " (x) be as in (4.1.1), G, A, B , K be as in De�nition 4.1.11. Let g1, g2 be two
(complete) Riemann metrics onG. Let the group G equipped with the metricg1 be"(x)- approximable
on K by words in (A; B ) (with bounded derivatives), 
 m;K , lm = lm (A; B; K ), c1 = c(A; B; K ) be
respectively the corresponding word collections, majorants and constant from (4.1.2) and (4.1.3). Let

p = max
m

" (c1lm ); K p be the closedp � neighborhood ofK in the metric g1:

Then the group G equipped with the metricg2 is also " (x)- approximable on K by words in (A; B )
(with bounded derivatives), with respect to the same sequences 
 m;K , lm and the new constant

c2 = c2(A; B; K ) = � � 1c1; � = max f sup
x;y 2 K p

dg2 (x; y)
dg1 (x; y)

; 1g:

Proof Each set 
 m;K (A; B ) contains a "(c1lm )- net on K in the metric g1. The latter net is contained
in K p by de�nition, and is a �" (c1lm )- net on K in the metric g2 (by the de�nition of � ). One has

�" (c1 lm ) � " (� � 1c1 lm ) = " (c2 lm ); wheneverm is large enough,

by de�nition and (4.1.1). This proves the "(x)- approximability in the metric g2. Let in addition, ( G; g1)
(the group G equipped with the metric g1) be " (x)- approximable with bounded derivatives, i.e., the
set [ m 
 m;K (A; B ) be bounded and the derivatives of the mappings (a; b) 7! w(a; b), w 2 [ m 
 m;K , be
uniformly bounded on a (bounded) neighborhoodV � G � G of (A; B ) (in the metric g1). Then the

set eV = [ m 
 m;K (V ) is bounded and hence, supx;y 2 eV
dg 2 (x;y )
dg 1 (x;y ) < + 1 . The latter inequality together

with the previous uniform boundedness of the derivatives onV (in the metric g1) implies their uniform
boundedness onV in the metric g2. This proves the proposition. 2

The following well-known Question is open. It was stated in [95], p.624 (without bounds of deri-
vatives) for the groups SU(n).

Question 4.1. Is it true that each semisimple Lie group (having at least oneirrational pair of
elements) is always"(x)- approximable with " (x) = e� x ? If yes, does the same hold true with bounded
derivatives ?

Theorem 4.1.16 Let G be an arbitrary semisimple Lie group (such that there existsat least one
irrational pair (A; B ) 2 G � G). Then the group G is " (x)- approximable with bounded derivatives,
where

" (x) = e� x �

; � =
ln 1:5
ln 9

: (4.1.6)

In addition, for any irrational pair (A; B ) 2 G� G the corresponding length majorantslm = lm (A; B; D 1)
may be chosen so that

lm +1 = 9 lm : (4.1.7)

Theorem 4.1.16 follows from Lemma 4.1.25 and Theorem 4.1.26(both formulated below).
It appears that for many Lie groups the previous approximation rate can be slightly improved. To

state the corresponding result, let us introduce the following
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De�nition 4.1.17 Let g be a Lie algebra with a �xed a positive de�nite scalar product on it. We say
that g has surjective commutator, if for any z 2 g n 0 there exist x; y 2 g such that

[x; y] = z: (4.1.8)

We say that g satis�es the Solovay-Kitaev inequality, if there exists a c > 0 such that for any z 2 gn0
there exist x; y 2 g satisfying (4.1.8) and such that

jxj = jyj < c
p

jzj (4.1.9)

Theorem 4.1.18 (G.Brown, [15]). Each complex semisimple Lie algebra and each real semisimple
split Lie algebra (see [116], p.288) have surjective commutator.

Remark 4.1.19 In fact, the latter Lie algebras satisfy the Solovay-Kitaev inequality. The author
did not �nd a proof of this statement in the literature, but it can be obtained by minor re�nement
of Brown's arguments [15]. The question of the surjectivity of commutator in Lie groups has a long
history, see [15], [59] and the references therein. We wouldlike to mention one of the �rst results
due to M.Goto [54], who have proved that in any compact semisimple Lie group each element is a
commutator of appropriate two other elements.

Example 4.1.20 The Lie algebrassun satisfy the Solovay-Kitaev inequality [22, 80, 95].

Question 4.2. Is it true that each real semisimple Lie algebra has surjective commutator ? If yes,
is it true that it satis�es the Solovay-Kitaev inequality ?

Theorem 4.1.21 (R.Solovay, A.Kitaev, [22, 80, 95]) Let a Lie group G have a Lie algebra satisfying
the Solovay-Kitaev inequality, and there exist at least oneirrational pair (A; B ) 2 G � G. Then the
group G is "0(x)- approximable with

"0(x) = e� x � 0

; � 0 =
ln 1:5
ln 5

: (4.1.10)

In addition, for any irrational pair (A; B ) 2 G� G the corresponding length majorantslm = lm (A; B; D 1)
can be chosen so that

lm +1 = 5 lm : (4.1.11)

Remark 4.1.22 In fact, in Theorem 4.1.21 the Lie group is "0(x)- approximable with bounded de-
rivatives (with length majorants lm (A; B; D 1) satisfying (4.1.11)). This can be easily derived from
Kitaev's proof [22, 80, 95]. See [50] for more detail.

De�nition 4.1.23 Let g be a Lie algebra with a �xed positive de�nite scalar product on it. We say
that g satis�es the weak Solovay-Kitaev inequality, if there exists a consantc > 0 such that for any
z 2 g n 0 there exist x j ; yj 2 g, j = 1 ; 2, such that

z = [ x1; y1] + [ x2; y2]; jx j j = jyj j < c
p

jzj: (4.1.12)

Remark 4.1.24 The condition that a Lie algebra satis�es a (weak) Solovay-Kitaev inequality is
independent on the choice of the scalar product. A Lie algebra satisfying the strong Solovay-Kitaev
inequality obviously satis�es the weak one.

Lemma 4.1.25 Each semisimple Lie algebra satis�es the weak Solovay-Kitaev inequality.

Lemma 4.1.25 is easily deduced from basic properties of complex roots of a semisimple Lie algebra.
Some of these properties are recalled in 4.2.2.
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Theorem 4.1.26 Let a Lie group G have a Lie algebra satisfying the weak Solovay-Kitaev inequality.
Let (A; B ) 2 G � G be an irrational pair. Then the group G is " (x)- approximable with bounded
derivatives, where" (x), lm = lm (A; B; D 1) are the same, as in (4.1.6) and (4.1.7) respectively.

Theorem 4.1.26 is proved analogously to the proof of Theorem4.1.21 given in [22, 80, 95], see its
proof in [50] for more detail. Together, Lemma 4.1.25 and Theorem 4.1.26 imply Theorem 4.1.16.

4.1.3 Approximations by groups with relations

Fix a Riemann metric on a Lie group G.

De�nition 4.1.27 Let G be a Lie group, (A; B ) 2 G � G. Let " (x) be a function as in (4.1.1). We
say that the pair ( A; B ) is " (x)- approximable by pairs with relations, if there exist a c = c(A; B ) > 0
and sequences of numberslk 2 N (called the length majorants), lk ! 1 , as k ! 1 , nontrivial words
wk (a; b) of lengths at most lk and pairs (Ak ; Bk ) ! (A; B ) such that for any k 2 N one has

wk (Ak ; Bk ) = 1 and dist ((Ak ; Bk ); (A; B )) < " (clk ) for any k 2 N: (4.1.13)

Remark 4.1.28 The previous De�nition and the corresponding word sequencewk are independent
on the choice of the metric onG (while the constant c depends on the metric). The proof of this
statement is analogous to the proof of Proposition 4.1.15.

Theorem 4.1.29 Let G be a nonsolvable Lie group,Gss be its semisimple part (see De�nition 4.2.5).
Let " (x) be a function as in (4.1.1). Let A; B 2 G and A0; B 0 2 Gss be their projections. Let the pair
(A0; B 0) 2 Gss � Gss be irrational, and the group Gss be "(x)- approximable with bounded derivatives
by words in (A0; B 0) (see De�nition 4.1.12). Then the pair (A; B ) is " (x)- approximable by pairs with
relations.

Addendum to Theorem 4.1.29. In the conditions of Theorem 4.1.29 the groupGss is " (x)-
approximable by words in(A0; B 0) with bounded derivatives. Letlm = lm (A0; B 0; D1) be the correspon-
ding word length majorants from (4.1.2). There exist constants q 2 N and c00> 0 depending only on
(A; B ) such that the pair (A; B ) 2 G � G is " (x)- approximable by pairs with relations having length
majorants

l0
m = c00lm ; m � q: (4.1.14)

Corollary 4.1.30 Each irrational pair of elements in a nonsolvable Lie group is " (x) = e� x �
- ap-

proximable by pairs with relations, where� = ln 1 :5
ln 9 , see (4.1.6). The corresponding length majorant

sequencelk can be chosen so thatlk+1 = 9 lk .

Proof Let G be a nonsolvable Lie group, (A; B ) 2 G � G be an irrational pair. Then its projection
(A0; B 0) 2 Gss � Gss is also irrational. The function " (x) = e� x �

satis�es the conditions of Theorem
4.1.29 and its Addendum with a majorant sequencelk such that lk+1 = 9 lk (Theorem 4.1.16 applied
to the semisimple part of G). This together with Theorem 4.1.29 and its Addendum, see (4.1.14),
implies the corollary. 2

Corollary 4.1.31 Let G be a nonsolvable Lie group such that the semisimple part ofg satis�es the
Solovay-Kitaev inequality. Then each pair(A; B ) 2 G � G with irrational projection to Gss � Gss is

"0(x) = e� x � 0

- approximable by pairs with relations, where� 0 = ln 1 :5
ln 5 , see (4.1.10). The corresponding

length majorant sequencelk can be chosen so thatlk+1 = 5 lk .

Corollary 4.1.31 follows from Theorem 4.1.29 (with the Addendum), Theorem 4.1.21 and Remark
4.1.22, analogously to the above proof of Corollary 4.1.30.A proof of Theorem 4.1.29 together with
its Addendum is sketched in Section 4.6.
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Question 4.3. Is it true that in any nonsolvable Lie group each irrational pair of elements ise� x -
approximable by pairs with relations ?

By Theorem 4.1.29, a positive solution of Question 4.1 with bounded derivatives (see 4.1.2) would
imply a positive answer to Question 4.3.

4.1.4 Historical remarks and further open questions

The famous Tits' alternative [112] says that any subgroup oflinear group satis�es one of the two
following incompatible statements :

- either it is solvable up-to-�nite, i.e., contains a solvable subgroup of a �nite index ;
- or it contains a free subgroup with two generators.
Any dense subgroup of a connected semisimple real Lie group satis�es the second statement : it

contains a free subgroup with two generators.
The question of possibility to choose the latter free subgroup to be dense was stated in [33] and

studied in [14] and [33]. �E.Ghys and Y.Carri�ere [33] have proved the positive answerin a particular
case. E.Breuillard and T.Gelander [14] have done it in the general case.

T.Gelander [32] have shown that in any compact nonabelian Lie group any �nite tuple of elements
can be approximated arbitrarily well by another tuple (of th e same number of elements) that generates
a nonvirtually free group.

A question (close to Question 4.1) concerning Diophantine properties of an individual pair A; B 2
SO(3) was studied in [79]. We say that a pair (A; B ) 2 SO(3) � SO(3) is Diophantine (see [79]), if
there exists a constantD > 1 depending onA and B such that for any word wk = wk (a; b) of length
k

jwk (A; B ) � 1j > D � k :

A.Gamburd, D.Jakobson and P.Sarnak have stated the following

Question 4.4 [30]. Is it true that almost each pair (A; B ) 2 SO(3) � SO(3) is Diophantine ?

V.Kaloshin and I.Rodnianski [79] proved that almost each pair ( A; B ) satis�es a weaker inequality
with the latter right-hand side replaced by D � k 2

.

Question 4.5. Is there an analogue of Theorem 4.1.1 for the group of
- germs of one-dimensional real di�eomorphisms (at their common �xed point) ?
- germs of one-dimensional conformal di�eomorphisms ?
- di�eomorphisms of compact manifold ?

The latter question concerning conformal germs is related to study of one-dimensional holomorphic
foliations. A related result was obtained in the joint paper [72] by Yu.S.Ilyashenko and A.S.Pyartli,
which deals with one-dimensional holomorphic foliations on CP2 with isolated singularities and inva-
riant in�nity line. They have shown that for a typical foliat ion the holonomy group at in�nity is free.
Here \typical" means \lying outside a set of zero Lebesgue measure". It is not known whether this is
true for an open set of foliations.

4.1.5 A simple proof of Theorem 4.1.1 for G = P SL2(R)

Without loss of generality we assume that< A; B > = G. Otherwise, < A; B > would be dense in
a Lie subgroup of dimension at most two, which is solvable, hence, A and B cannot generate a free
subgroup.

The group G = P SL2(R) acts by conformal transformations of unit disk D1. There is an open
subset U � G formed by nontrivial elliptic transformations, which are c onformally conjugated to
nontrivial rotations. The rotation number (which is the rot ation angle divided by 2� ) is a local
(nowhere zero) analytic function in the parameters ofU. An elliptic transformation f has �nite order
if and only if its rotation number � (f ) is rational.



57

Let w = w(a; b) be a word such that w(A; B ) 2 U (it exists by density). It su�ces to show that the
function (a; b) 7! � (w(a; b)) is not constant near (A; B ) : then it follows that there exists a sequence
(an ; bn ) ! (A; B ) such that � (w(an ; bn )) 2 Q. Hence, w(an ; bn ) are �nite order elements, thus, one
has relations of the typewkn (an ; bn ) = 1.

The previous function is locally analytic. Suppose the contrary : it is constant. Then by analyticity,
it is constant globally and w(a; b) is elliptic with one and the same nonzero rotation number for all
the pairs (a; b). On the other hand, it vanishes at (a; b) = (1 ; 1), since w(1; 1) = 1 - a contradiction.
This proves Theorem 4.1.1 forG = P SL2(R).

4.1.6 Case of group Af f + (R).

For any s > 0, u 2 R denote

gs : x 7! sx; t u : x 7! x + u; �( s) = < g s; t1 > � Af f + (R):

Proposition 4.1.32 For any s0 > 0 there exists a sequencesk ! s0 such that the corresponding
subgroups�( sk ) have relations that do not hold identically ins.

Proof It su�ces to prove the statement of the proposition for open and dense subset of the values
s0 > 0 (afterwards we pass to the closure and diagonal sequences). Thus, without loss of generality
we assume thats0 6= 1. We also assume that 0< s 0 < 1, since the groups �(s) and �( s� 1) coincide.

For any s the group �( s) contains the elements

tsk = gk
s � t1 � g� k

s and tms k ; m 2 Z; k 2 N [ 0:

We construct sequences of numberssk ! s0 and mk 2 N in such a way that each group �(s), s = sk ,
has an extra relation tm k sk = t1. For obvious reasons this is not a relation that holds identically. This
will prove the Proposition.

For any k take mk = [ s� k
0 ], thus, mk is the integer number such that mk sk

0 gives a best ap-
proximation of 1, with rate less than sk

0 ; mk sk
0 ! 1, as k ! 1 . The values sk we are looking for

are the positive solutions to the equationsmk sk = 1 (they correspond to the previous relations by
de�nition). Indeed, it su�ces to show that sk ! s0, or equivalently, that the solutions uk of the equa-
tions  k (u) = mk (s0 + u)k = 1 converge to 0. The mapping  k is the composition of the homothety
u 7! eu = ku and the mapping e k : eu 7! mk (s0 + k � 1eu)k . One has

e k (eu) = mk sk
0 (1 + k � 1 eu

s0
)k !  (eu) = e

eu
s 0 ; as k ! 1 : (4.1.15)

The convergence is uniform with derivatives on compact sets. The limit  (eu) is a di�eomorphism
R ! R+ with unit value at 0. Hence, the solutions euk of the equations e k (eu) = 1 converge to 0.
Therefore, so douk = k � 1euk and sk = s0 + uk ! s0. The proposition is proved. 2

4.1.7 Generalization in the case of semisimple Lie group wit h irreducible
adjoint

Theorem 4.1.33 Let G be a semisimple Lie group with irreducibleAdG (not necessarily connected).
Consider a family � (u) = ( a1(u); : : : ; aM (u)) , M 2 N, of M - ples of its elements that depend on
a parameter u from some manifold (say, Rl ). Let the family � (u) be conj - nondegenerate at 0 (see
De�nition 4.2.12 in 4.2.1). Then there exist arbitrarily sm all valuesu such that the mappingsai (0) 7!
ai (u) do not induce group isomorphisms< � (0) > ! < � (u) > .

Theorem 4.1.33 and Corollary 4.2.14 (stated below, in 4.2.1) imply immediately Theorem 4.1.1
in the case, whenG is semisimple,AdG is irreducible and A, B generate a dense subgroup. Indeed,
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suppose the contrary : each pair (a; b) close to (A; B ) generates a free subgroup, hence, the mapping
(A; B ) 7! (a; b) induces an isomorphism of the corresponding subgroups. Consider the family of all the
pairs (a; b) depending on the parameters inG of the elementsa and b. By the previous assumption
and Theorem 4.1.33 (applied to the same family), this family is conj - degenerate at (A; B ). On the
other hand, it is a priori conj - nondegenerate at (A; B ) (Corollary 4.2.14), - a contradiction.

4.2 Background material on Lie groups

4.2.1 Lie groups, basic de�nitions and properties

Everywhere below the Lie algebra of a Lie groupG will be denoted

g = T1G:

Let us �rstly recall what is the adjoint action (see [116], p.32). The group G acts on itself by
conjugations (the unity is �xed). The derivative of this act ion along the vectors of the tangent Lie
algebra g de�nes a linear representation of G in g called the adjoint representation. The adjoint
representation of an elementg 2 G is denotedAdg. (If G is a matrix group, then the adjoint action is
given by matrix conjugation : Adg(h) = ghg� 1.) The adjoint action of a Lie algebra on itself is de�ned
by the Lie bracket, adx : y 7! [x; y]. Let G be a Lie group with a given algebrag. One has

Adexp x = exp(ad x ) for any x 2 g:

De�nition 4.2.1 A Lie group is said to be simple, if it has dimension greater than one and the
adjoint representation of its unity component is irreducible. A Lie group is said to besemisimple, if
its unity component has no normal solvable Lie subgroup of positive dimension.

Remark 4.2.2 A Lie group is (semi)simple, if and only if so is its algebra inthe following sense.

De�nition 4.2.3 An ideal in a (real or complex) Lie algebrag is a Lie subalgebraI � g (over the
corresponding �eld) such that [g; I ] � I . A Lie algebra g is said to besimple, if it has no nonzero ideal
di�erent from itself. A Lie algebra g is said to besemisimple, if it has no nonzerosolvableideal.

Remark 4.2.4 A complex Lie algebra is semisimple, if and only if so is it as areal algebra.

It is well-known (see [116], pp. 60, 61) that each Lie algebrag has a unique maximal solvable
ideal (called radical ; it may be trivial). The factor of g by the radical is a semisimple Lie algebra.
Analogously, each nonsolvable Lie group has a unique maximal solvable normal connected Lie sub-
group and its tangent algebra coincides with the radical of the Lie algebra of the ambient group ; the
corresponding Lie group quotient is a semisimple Lie group.

De�nition 4.2.5 The factor of a nonsolvable Lie algebra (group) by its radical (respectively, the
maximal solvable normal connected Lie subgroup) is called its semisimple part.

Remark 4.2.6 The Lie algebra of the semisimple part of a nonsolvable Lie group G is the semisimple
part of g.

Remark 4.2.7 Each semisimple Lie algebra is a �nite direct product of simple Lie algebras (the
latter product decomposition is unique, see [116], p.151).
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Example 4.2.8 Let G = SLn (R). The adjoint action of a diagonal matrix

A = diag(a1; : : : ; an ) 2 G

is diagonalizable and has the eigenvalues 1,� ij = a i
a j

, i 6= j . The eigenvector corresponding to the
eigenvalue� ij is represented by the matrix with zeros everywhere except for the ( i; j )- th element. The
other (unit) eigenvalues correspond to the diagonal matrices. It is well-known that the group SLn (R)
is simple (see, [116], pp. 150, 177).

Proposition 4.2.9 For any semisimple (not necessary (simply) connected) Lie group G there exists
a collection of semisimple Lie groupsH1; : : : ; H s, each one with irreducible adjoint AdH j , and a ho-
momorphism

� : G ! H1 � � � � � H s

that is a local di�eomorphism (in particular, g =
Q s

j =1 hj ). Moreover, the image � (G) is projected
surjectively onto each groupH j . The kernel of � is contained in the center of the unity component of
G.

Proof If the adjoint AdG is irreducible, we put s = 1, G = H1, and we are done. In general,g is
a product of simple Lie algebras. If the groupG is simply connected, then it is the product of the
corresponding simply connected Lie groups (which are simple, and hence, have irreducible adjoints).

Case when G is an arbitrary connected semisimple Lie group. Denote eG its universal
covering, C( eG) the center of eG (which is a discrete subgroup in eG). Then

G = eG=� ; � � C( eG); eG = eH1 � � � � � eH s ; eH j are simply connected simple groups.

One hasC( eG) =
Q s

j =1 C( eH j ). Therefore, there is a natural projection homomorphism

� : G = eG=� ! eG=C( eG) = H1 � � � � � H s; H j = eH j =C( eH j ): (4.2.1)

This is a homomorphism we are looking for.
Case, when G is an arbitrary semisimple Lie group. Denote G0 � G its unity component.

We assume thatAdG is not irreducible (the opposite case was already discussed). Let g = g1 � � � � � gr

be the decomposition ofg as a product of simple Lie algebras. The adjoint of eachg 2 G sends
any subalgebragi to an isomorphic subalgebragj ; then we say that gi is equivalent to gj . To each
equivalence class of thegj ' s we associate the product of the algebras from this class. Denote all the
latter products h1; : : : ; hs : by de�nition, g = h1 � � � � � hs . The subalgebrashj are AdG - invariant by
construction, and AdG jh j is irreducible for each j . Indeed, the only AdG0 - invariant subspaces inhj

are the subalgebrasgi from the corresponding equivalence class and their products. No one of these
subspaces isAdG invariant, since AdG acts transitively on the subalgebrasgi in hj by de�nition.

Let eH j be the simply connected Lie groups with algebrashj , Ĥ j = eH j =C( eH j ). Let

�̂ : G0 ! Ĥ1 � � � � � Ĥ s

be the homomorphism (4.2.1), which is a local di�eomorphism. Consider the subsetH 0
j � G0 of the

elements inG0 whose images under ^� have unit Ĥ j - component : it is the kernel of the composition
of �̂ with the projection to Ĥ j . This is a normal Lie subgroup in G0. Denote H 0

j � H 0
j its unity

component. Its Lie algebra is the product of thehi ' s with i 6= j , which is AdG - invariant. Thus, the
subgroup H 0

j � G is normal in G. Denote

H j = G=H 0
j ; � : G ! H1 � � � � � H s

the homomorphism whose components are the natural projections. By construction, this is a local
di�eomorphism and the projection of � (G) to each H j is surjective. Denote � � G the kernel of � ,
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which is the intersection of the subgroupsH 0
j � G0. It is contained in G0 and is a discrete normal

subgroup there. Hence, it is contained in the center ofG0. The image of the adjoint representation
AdH j : hj ! hj coincides with that of the previous representation AdG jh j , which is irreducible.
Therefore, AdH j is also irreducible. Proposition 4.2.9 is proved. 2

De�nition 4.2.10 Let G be a Lie group, � = ( a1; : : : ; aM ) 2 GM . Consider the G- action on GM

by simultaneous conjugations,g : � 7! g�g � 1, and denote Conj (a1; : : : ; aM ) � GM the orbit of
(a1; : : : ; aM ) (i.e., the joint conjugacy class).

Proposition 4.2.11 Let G be a semisimple Lie group,n = dimG. Let a pair (or M - ple) of its ele-
ments be irrational, i.e., generate a dense subgroup inG. Then their joint conjugacy class is bijectively
analytically parametrized (as aG- action orbit) by the quotient of the groupG by its center. The space
of the conjugacy classes corresponding to all the irrational pairs (M - ples) is an analytic manifold
of dimension n (respectively, (M � 1)n). The mapping (a1; : : : ; aM ) 7! Conj (a1; : : : ; aM ) is a local
submersion at the irrational M - ples (a1; : : : ; aM ) 2 GM .

Proof Let A = ( A1; : : : ; AM ) 2 GM be an irrational M - ple : the subgroup < A > generated by
A is dense inG. The parametrization g 7! gAg� 1 of the conjugacy class ofA by g 2 G induces its
1-to-1 parametrization by the quotient of G by its center. Equivalently, for any two distinct elements
g; h 2 G the elementsgAg� 1, hAh � 1 of the conjugacy class ofA coincide if and only if g0 = g� 1h lies
in the center of G. Indeed, gAg� 1 = hAh � 1, if and only if g0 commutes with eachA i , or equivalently,
with < A > . The latter commutation is equivalent to the commutation wi th G = < A > . This proves
the previous statement. The irrational M - ples form an open subset in the product ofM copies ofG
(Proposition 4.1.6). This together with the previous parametrization statement implies the statements
of Proposition 4.2.11. 2

De�nition 4.2.12 Let G be a semisimple Lie group,� (u) = ( a1(u); : : : ; aM (u)) be a C1- family of
M - ples of its elements depending on a parameteru from some mani�old (say, Rl ). We say that �
is conj - nondegenerate atu = u0 if the subgroup < � (u0) > � G is dense inG and the mapping
u 7! Conj (� (u)) has a rank no less thann = dimG at u = u0. Otherwise we say that the family
� (u) is conj - degenerate atu0. If � (u) is conj - nondegenerate at allu, then we say that � (u) is conj -
nondegenerate.

Remark 4.2.13 Let G be a semisimple Lie group,� (u) be an arbitrary family of M - ples of its
elements. Then the set of the parameter valuesu at which � (u) is conj - nondegenerate is an open set
(it may be empty). This follows from de�nition and Propositi on 4.1.6.

Corollary 4.2.14 Let G be a semisimple Lie group,(A; B ) 2 G � G be an irrational pair. The family
of all the pairs (a; b) 2 G � G is conj- nondegenerate at(A; B ).

Proof The mapping (a; b) 7! Conj (a; b) has full rank at ( A; B ), which is equal to n (Proposition
4.2.11). This implies the Corollary. 2

For any real linear space (Lie algebra)g we denote

gC its complexi�cation ;

which is also a linear space (Lie algebra).
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4.2.2 Semisimple Lie algebras and root decomposition

De�nition 4.2.15 An element of a Lie algebra is calledregular, if its adjoint has the minimal possible
multiplicity of zero eigenvalue.

De�nition 4.2.16 Let g be a complex semisimple Lie group. ACartan subalgebraassociated to a
regular element ofg is its centralizer : the set of the elements commuting with it.

It is well-known (see, [116], pp. 153, 159) that
- a) any Cartan subalgebrah is a maximal commutative subalgebra ;
- b) all the Cartan subalgebras are conjugated ;
- c) the adjoint action of h on g is diagonalizable in an appropriate basis ofg ;
- d) the eigenvalues of the latter adjoint action are linear functionals on h, thus, elements ofh� ,

the nonidentically zero ones are calledroots ;
- e) the roots are distinct and the corresponding eigenspaces are complex lines ;
- f) if � is a root, then so is� � ;
- g) for any root � the only roots complex-proportional to � are � � ;
- h) some roots form a complex basis inh� and moreover, an integer root basis in the following

sense : each root is an integer linear combination of the basic roots ;
- i) the algebra g is the direct sum (as a linear space) ofh and the root eigenlines.
Statement g) follows from the analogous statement in [116] (theorem 6 on p.159) for real-proportional

roots and from statement h).

4.2.3 Proximal elements

De�nition 4.2.17 A linear operator Rn ! Rn is calledproximal, if it has a unique complex eigenvalue
(taken with multiplicity) of maximal modulus (then this eig envalue is automatically real). An element
of a Lie group is proximal, if its adjoint is.

Remark 4.2.18 The set of proximal operators (elements) is open.

De�nition 4.2.19 A maximal R- split torus in a semisimple Lie groupG is a maximal connected
Lie subgroup with a diagonalizable adjoint action on g (which is automatically commutative). A
semisimple Lie group is calledsplit (see [116], p. 288), if some its maximalR- split torus is a maximal
connected commutative Lie subgroup.

Example 4.2.20 Each group SLn (R) is split : the diagonal matrices form a maximal R- split torus.
A typical diagonal matrix is a proximal element of SLn (R). The group SO(3) is not split, has trivial
maximal R- split torus and no proximal elements. The group SO(2; 1) is not split and has one-
dimensional maximal R- split torus, whose nontrivial elements are proximal in SO(2; 1).

Lemma 4.2.21 Let a semisimple Lie group contain a proximal element. Then each its maximal R-
split torus contains a proximal element.

The proof of Lemma 4.2.21 is implicitly contained in [1] (p.25, proof of theorem 6.3).

De�nition 4.2.22 An element g of a Lie group will be called 1- proximal, if the operator Adg � Id
is proximal.

We use the following equivalent characterization of semisimple Lie groups with proximal elements.

Corollary 4.2.23 A semisimple Lie group contains a proximal element, if and only if its unity com-
ponent contains a 1- proximal element. In this case the 1- proximal elements form an open subset in
G accumulating to the unity.
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In the proof of the corollary we use the following propertiesof the adjoint representation of a semisimple
Lie group.

Proposition 4.2.24 Let G be a connected semisimple Lie group. For anyx 2 g (g 2 G) and an
eigenvalue� of adx (Adg) the number � � (respectively, � � 1) is also an eigenvalue of the corresponding
adjoint with the same multiplicity, as � .

Proof It su�ces to prove the statement of the proposition for the Li e algebra : this would imply its
statement for any g 2 G close enough to 1 (belonging to an exponential chart), and then, for any
g 2 G (the connectedness ofG and the analytic dependence of the operator familyAdg on g 2 G). For
any regular elementx 2 g the nonzero eigenvalues of adx are split into pairs of opposite eigenvalues
with equal multiplicities. This follows from the central sy mmetry of the root system of the complex
Cartan subalgebra in gC containing x (see 4.2.2, statement f)). The regular elements are dense ing.
This implies that the previous statement remains valid for any x 2 g. This proves the proposition. 2

Corollary 4.2.25 Any 1- proximal element of a connected semisimple Lie group is proximal.

Proof Let g be a 1- proximal element,� 2 R be the eigenvalue ofAdg � Id with maximal modulus
(which is simple, and hence, nonzero). Then (� + 1) � 1 are simple eigenvalues ofAdg (by Proposition
4.2.24). We claim that (� + 1) � 1 is the eigenvalue ofAdg with maximal modulus, if � 2 R� . Indeed, it
follows from de�nition (in both cases) that ( � + 1) � 1 � j � j + 1. For any eigenvalue � 0 6= � of Adg � Id
one hasj� 0j < j� j (1- proximality). This together with the previous and trian gle inequalities implies
that

(� + 1) � 1 � j � j + 1 > j� 0j + 1 � j � 0+ 1 j:

This proves the previous statement on the maximality of the eigenvalue (� + 1) � 1 and thus, the
proximality of Adg. Corollary 4.2.25 is proved. 2

Proposition 4.2.26 Let G be a semisimple Lie group,T � G be a maximalR- split torus. Let g 2 T
be a proximal element ofG. Then g is also 1- proximal.

Proof The eigenvalues ofAdg (which are real, sinceAdT : g ! g is diagonalizable) are positive, since
this is true for Ad1 = Id and the torus T is connected. The nonunit eigenvalues are split into pairs
of inverses (Proposition 4.2.24). Hence, we can order them as follows (distinct indices correspond to
distinct (may be multiple) eigenvalues) :

0 < � � 1
1 < � � 1

2 < � � � < � � 1
k < 1 < � k < � � � < � 1: (4.2.2)

The eigenvalue� 1 is simple (proximality). One has

� 1 � 1 > � � 1
1 (� 1 � 1) = 1 � � � 1

1 ; since 0< � � 1
1 < 1

by (4.2.2). This together with (4.2.2) implies that � 1 � 1 is a simple eigenvalue ofAdg � Id with
maximal modulus. Hence, the operatorAdg � Id is proximal. Proposition 4.2.26 is proved. 2

Proof of Corollary 4.2.23. Let the unity component of G contain a 1- proximal element. Then
this element is proximal (Corollary 4.2.25). Conversely, let G contain proximal elements. Let T � G
be a maximal R- split torus, g 2 T be a proximal element ofG (which exists by Lemma 4.2.21). Then
g is 1- proximal (Proposition 4.2.26) and lies in the unity component of G.

Now let us prove the last statement of Corollary 4.2.23. To dothis, consider the 1- parameter
subgroup � � T passing through the previous proximal elementg. The elements gr 2 �, r > 0,
are proximal, sinceAdg is proximal and any positive power of a proximal operator is also proximal.
Therefore, they are 1- proximal (Proposition 4.2.26) and accumulate to 1. This together with Remark
4.2.18 proves the corollary. 2
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4.3 Proof of Theorems 4.1.1 and 4.1.33 for semisimple Lie
groups with irreducible adjoint and proximal elements

Here and in Section 4.4 we prove Theorem 4.1.33, which deals with semisimple Lie groups having
irreducible adjoint representation. For those Lie groups Theorem 4.1.1 follows from Theorem 4.1.33
(see 4.1.7). In the present section we treate the case of Lie group with proximal elements. The opposite
case is treated in the next section.

4.3.1 Motivation and the plan of the proof

Let G be a semisimple Lie group with irreducible adjoint and proximal elements, n = dimG,
� (u) = ( a1; : : : ; aM )(u) be a conj - nondegenerate atu = 0 family of M - ples of elements ofG
depending on parameteru (see De�nition 4.2.12). Recall that the subgroup < � (0) > � G is dense.
Without loss of generality we assume that

- the parameter space has the same dimensionn, as G : u 2 Rn (we can restrict our family to
appropriate generically embedded copy ofRn in the parameter space, along which the family remains
conj - nondegenerate).

We construct a sequencewk of words in M elements such that there exists a sequenceuk 2 Rn for
which

wk (� (uk )) = 1 ; uk ! 0; as k ! 1 ; (4.3.1)

and the relations wk (� (u)) = 1 do not hold true identically in a neighborhood of 0. Then the mapping
� (0) 7! � (u) does not extend up to a group isomorphism< � (0) > ! < � (u) > for arbitrarily small
values ofu. Indeed, the relationswk = 1 hold true in the group < � (u) > for the valuesu = uk (which
tend to 0), and do not hold for some other values ofu (which can be chosen arbitrarily small as well).
This will prove Theorem 4.1.33.

First let us motivate the proof of Theorem 4.1.33. A natural way to construct the previously
mentioned wordswk is to achieve that wk (� (0)) ! 1. Then to guarantee the existence of a sequence
uk ! 0 of solutions to the equationswk (� (u)) = 1, we have to show that there exists a sequence
� k ! 0 such that 1 2 wk (� (D � k )), whenever k is large enough. To do this, we have to prove an
appropriate lower bound for derivatives of the mappingswk (� (u)) near 0 ; in particular, to show that
certain derivatives will be greater than � � 1

k dist (wk (� (0)) ; 1).
By density, we can always construct a sequence of wordswk so that wk (� (0)) ! 1. In the case,

when ai (0) are close enough to unity, it su�ces to take wk to be a sequence of appropriate successive
commutators

w1 = [] 1 = [ a1; a2]; w2 = [] 2 = [ a1; [a1; a2]]; : : :

On the other hand, the derivatives of the corresponding mappingswk (� (u)) do not admit a satisfactory
lower bound : the values at � (0) of the commutators converge exponentially to 1, and the previous
derivatives (taken at 0) converge exponentially to zero.

In order to construct words wk with large derivatives, we use the following observation. Fix a small
� > 0. Then dist ([]k (� (0)) ; 1) < �, whenever k is large enough. Consider all the powers []m

k of the
previous commutators. Put

mk = min f m 2 N; dist ([]m
k (� (0)) ; 1) � � g:

(The numbers mk are well-de�ned provided that [] k (� (0)) 6= 1.) Then � � dist ([]m k
k (� (0)) ; 1) < 2�,

wheneverk is large enough, by de�nition, the previous inequality and the left invariance of the metric
on G. We claim that if a1(0) and a2(0) are close enough to 1 and the family� (u) satis�es appropriate
genericity assumption, then the derivative at 0 in certain directions of the mappingu 7! []m k

k (� (u)) 2 G
grows linearly in k, as that of the mappings  k in the proof of Proposition 4.1.32.

In what follows we construct
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- appropriate words g1; : : : ; gn , h, w and de�ne recurrently the iterated commutators

wi 0 = h; wik = gi wi (k � 1) g
� 1
i w� 1

i (k � 1) ; (4.3.2)

- a sequence of collections

M k = ( m1k ; : : : ; mnk ); mik 2 N; and put

! k = wm 1k
1k : : : wm nk

nk ; wk = w� 1! k : (4.3.3)

We show that the latter words wk satisfy (4.3.1). To do this, we introduce the rescaled parameter

eu = ku;

as in Proposition 4.1.32, and show that

! k (� (k � 1eu)) ! 	( eu); as k ! 1 ; 	 : Rn ! G is a local di�eomorphism at 0; (4.3.4)

the previous convergence is uniform with derivatives on compact subsets inRn . Theorem 4.1.33 will
be then deduced from (4.3.4) at the end of the subsection.

For a �xed g 2 G consider the corresponding commutator mapping

� g : G ! G; � g(y) = gyg� 1y� 1: One has� g(1) = 1 ; � 0
g(1) = Adg � Id : g ! g;

wik (� (u)) = � k
gi ( � (u )) (h(� (u))) : (4.3.5)

For any 1- proximal element g 2 G (see De�nition 4.2.22) denote

s(g) = the eigenvalue of Adg � Id with maximal modulus, L g � g its eigenline: (4.3.6)

The function s(g) is analytic on the (open) subset of 1- proximal elements, bythe simplicity of the
eigenvalues(g). Denote

� = f 1- proximal elementsg 2 G j js(g)j < 1g: (4.3.7)

Remark 4.3.1 Let G be an arbitrary semisimple Lie group with proximal elements. The above set
� is open and nonempty (Corollary 4.2.23).

The choice of the wordsgj and h will be speci�ed at the end of the subsection. It will be done so
that

gj (� (0)) 2 � for any j = 1 ; : : : ; n:

The following Proposition 4.3.2 describes the asymptotic behavior of the iterated commutators � k
g (y),

as k ! 1 , for arbitrary g 2 � and y 2 G close enough to 1. Using Proposition 4.3.2, we show
(Corollary 4.3.3) that for appropriately chosen word h and arbitrary given " > 0 one can choose
appropriate exponents mjk (which depend on gj and " , see (4.3.11)) so that the mapping sequence
! k (� (k � 1eu)) converges to some mapping 	(eu), which depends only ongj , h and " . The mapping 	 is
explicitly given by formula (4.3.12) below. The main technical part of the proof of Theorem 4.1.33 is
to show that one can adjust gj , h and " so that the limit 	 be a local di�eomorphism at 0 (Lemmas
4.3.4, 4.3.6 and the Main Technical Lemma 4.3.5 below). Lemmas 4.3.4 and 4.3.6 easily follow from
Lemma 4.3.5. Theorem 4.1.33 will be deduced from Lemma 4.3.6and Proposition 4.3.2 at the end of
the subsection. The proofs of Lemma 4.3.6 and Proposition 4.3.2 are omitted here. A sketch-proof of
Lemma 4.3.5 will be given in 4.3.2.
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Proposition 4.3.2 Let G be a Lie group with proximal elements,� be as in (4.3.7). There exist an
open subset

� 0 � � � G; � 0 � � � 1; (4.3.8)

and a g- valued vector function vg(y) analytic in (g; y) 2 � 0, vg(1) = 0 (denote dvg : g ! g its
di�erential in y at y = 1 ) such that for any (g; y) 2 � 0 one has

vg(y) 2 L g; dvg jL g = Id : L g ! L g; � k
g (y) = exp( sk (g)(vg(y) + o(1))) ; as k ! + 1 ; (4.3.9)

s(g) and L g are the same, as in (4.3.6). The latter" o" is uniform with derivatives in (g; y) on compact
subsets in� 0.

Corollary 4.3.3 Let G, n, M , � (u) be as at the beginning of the subsection,� be as in (4.3.7), � 0,
vg be as in Proposition 4.3.2. Let g1; : : : ; gn , h be words inM elements such that

(gj (� (0)) ; h(� (0))) 2 � 0 for any j = 1 ; : : : ; n: Put

sj (u) = s(gj (� (u))) ; e� j (u) = vgj ( � (u )) (h(� (u))) 2 g; � j = e� j (0): (4.3.10)

Let " > 0. For any k 2 N and j = 1 ; : : : ; n put

mjk = [ " jsj j � k (0)]: (4.3.11)

Let ! k be the corresponding commutator power product (4.3.3). Then

! k (� (k � 1eu)) ! 	( eu) = exp( "e(d ln s1 (0)) eu � 1) : : : exp("e(d ln sn (0)) eu � n ); as k ! 1 ; (4.3.12)

uniformly with derivatives on compact subsets inRn .

Proof One has
wm jk

jk (� (k � 1eu)) ! exp("e(d ln sj (0)) eu � j ) (4.3.13)

uniformly with derivatives on compact sets in Rn . Indeed, by (4.3.5) and (4.3.9), one has

wm jk

jk (� (k � 1eu)) = exp( mjk sk
j (k � 1eu)(e� j (k � 1eu) + o(1))) ; e� j (k � 1eu) ! � j ; (4.3.14)

mjk sk
j (k � 1eu) ! "e(d ln sj (0)) eu ; since (4.3.15)

sk
j (k � 1eu) = ( sj (0) + k � 1(dsj (0)) eu + o(k � 1)) k

= sk
j (0)(1 + k � 1(d ln sj (0)) eu + o(k � 1)) k = sk

j (0)e(d ln sj (0)) eu (1 + o(1)) (4.3.16)

and mjk sk
j (0) ! " by (4.3.11). Substituting (4.3.15) to (4.3.14) yields (4.3.13), which implies (4.3.12).

The corollary is proved. 2

Lemma 4.3.4 Let G, n, � (u), M be as at the beginning of the subsection,� be as in (4.3.7). There
exists a collection g1; : : : ; gn of words in M elements such thatgi (� (0)) 2 � for all i = 1 ; : : : ; n and
the system ofn functions si (u) = s(gi (� (u))) (which are well-de�ned in a neighborhood of 0) has the
maximal rank n at 0. Moreover, given any collectionA1; : : : ; An 2 � one can achieve that in addition,
the elementsgi (� (0)) be arbitrarily close to A i .

For the proof of Theorem 4.1.33 in the general case, without the assumption that G has proximal
elements, we use the following generalization of Lemma 4.3.4.
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Lemma 4.3.5 (Main Technical Lemma). Let G be an arbitrary semisimple Lie group with ir-
reducible adjoint representation (not necessarily with proximal elements), dimG = n. Let � (u) =
(a1(u); : : : ; aM (u)) be a conj - nondegenerate at 0 family ofM - ples of its elements depending on a
parameter u 2 Rn . Let U � G be an arbitrary open subset, and let� : U ! R be a smooth locally non-
constant function. Then there existn abstract wordsgi (a1; : : : ; aM ), i = 1 ; : : : ; n, such that the system
of n functions si (u) = � (gi (� (u))) is well-de�ned (locally near 0) and has the maximal rankn at 0.
Moreover, for any given A1; : : : ; An 2 U one can achieve that in addition, the elementsgi (� (0)) 2 G
be arbitrarily close to A i .

Lemma 4.3.4 follows from Lemma 4.3.5 applied toU = � and the function � (g) = s(g).

Lemma 4.3.6 Let G, n, M , � (u) be as at the beginning of the subsection,� 0 � G � G be as in
Proposition 4.3.2. There exist wordsg1; : : : ; gn , h such that (gj (� (0)) ; h(� (0))) 2 � 0 for all j and for
any " > 0 small enough the corresponding mapping	( eu) from (4.3.12) is a local di�eomorphism at 0.

Proof of Theorem 4.1.33 modulo Proposition 4.3.2 and Lemmas 4.3.5 and 4.3.6. Let gj ,
h, " be as in Lemma 4.3.6,sj (u) be as in (4.3.10),mjk be as in (4.3.11). Let! k be the corresponding
commutator power product from (4.3.3), 	 be the mapping from (4.3.12). Let � > 0 be such that
	 : D � ! 	( D � ) � G be a di�eomorphism (it exists by Lemma 4.3.6). Let w be an arbitrary word
such that

w(� (0)) 2 	( D � ); wk = w� 1! k : Then

wk (� (k � 1eu)) !  (eu) = w� 1(� (0))	( eu);  : D � !  (D � ) � G is a di�eomorphism, (4.3.17)

1 2  (D � )

(Corollary 4.3.3). Therefore, for any k large enough the imagewk (� (k � 1D � )) also contains 1, and
hence,wk (� (k � 1euk )) = 1 for some euk 2 D � . Put

uk = k � 1euk ; one haswk (� (uk )) = 1 ; uk ! 0:

The relation wk (� (u)) = 1, which holds for u = uk , does not hold identically in u 2 D k � 1 � 0 for any
0 < � 0 � � , because of the di�eomorphicity of the mappingseu 7! wk (� (k � 1eu)) on D � for large k (see
(4.3.17) ; the convergence is uniform with derivatives onD � there). Thus, the words wk satisfy (4.3.1).
This proves Theorem 4.1.33. 2

4.3.2 Sketch-proof of the Main Technical Lemma

Denote Û = Rn the parameter u space under consideration. By assumption, the family� (u) is
conj - nondegenerate. This together with the equality of the dimensions ofG and Û implies that the
derivative along each nonzero vectorv 2 T0Û of the function u 7! Conj (� (u)) is nonzero. (Fix a
v 2 T0Û n 0.) The derivatives along v of the mappings u 7! w(� (u)) (where w is an arbitrary word)
form a vector �eld on the dense subgroup � = < � (0) > � G (we extend it to 1 by 0). This vector �eld is
well-de�ned (single-valued), if � is free. In general, if th ere are relations in �, it is single-valued, if and
only if for any word w giving a relation (i.e., w(� (0)) = 1) the corresponding mapping u 7! w(� (u))
has zero derivative alongv.

The maximal rank statement of Lemma 4.3.5 is equivalent to the statement that for any given
v 2 T0Û n 0 there exists an indexj such that the corresponding vector at gj (� (0)) of the previous
�eld is nonzero and transversal to the level hypersurface ofthe function � . To prove that, we show
that the previous vector �eld (if well-de�ned) is not Lipsch itz at 1. Moreover, we show that for any
line � � g there exists a sequence of wordswk (a1; : : : ; aM ), wk (� (0)) ! 1, ask ! 1 , such that

j dw k ( � (u ))
dv j

dist (wk (� (0)) ; 1)
! 1 ; as k ! 1 ; (4.3.18)
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the tangent line in Twk ( � (0)) G generated by the latter derivative tends to � : (4.3.19)

First we prove (by contradiction) that statement (4.3.18) h olds true for some word sequencewk .
Suppose the contrary : the previous vector �eld on the dense subgroup � � G is Lipschitz at 1. Then we
show that it extends up to a vector �eld on the whole G that de�nes a ow of automorphisms of G. The
latter automorphisms preserve conjugacy classes (semisimplicity). This contradicts the nonvanishing
of the derivative along v of Conj (� (u)).

Given any word sequencewk satisfying (4.3.18), passing to a subsequence one can achieve that
the tangent lines in Twk ( � (0)) G generated by the (big) derivatives from (4.3.18) converge to some line
� � g, i.e., statement (4.3.19) holds true for this �. The union of all these possible limit lines � is
closed andAdG - invariant. This follows by de�nition and the density of the subgroup � � G. We show
that the latter union of limit lines is the whole g, by using the irreducibility of the adjoint.

The existence (for arbitrary �) of words satisfying (4.3.18 ) and (4.3.19) implies the following

Corollary 4.3.7 Let G, n, � (u), U � G, � : U ! R be the same, as in the Main Technical Lemma
4.3.5. Let v 2 T0Rn , v 6= 0 . For any g 2 U there exists a sequence of wordsewk (a1; : : : ; aM ), hk =
ewk (� (0)) ! g, such that the derivativesd ewk ( � (u ))

dv are transversal to the level hypersurfaces� = � (hk ).

Proof (sketch). It su�ces to prove the statement of the corollary for any g belonging to a dense
subset in U. We prove it for those g 2 U \ � at which d� (g) 6= 0. Inclusion g 2 � means that
g = w(� (0)) for some word w. If already the derivative � = dw ( � (u))

dv is transversal to the hypersurface
� = � (g), then we put ewk = w and we are done. Now suppose that the latter derivative is tangent
to the hypersurface � = � (g). We �x an arbitrary line � � g whose image inTgG under the left
multiplication by g is transversal to the same hypersurface. Letwk be a word sequence satisfying
(4.3.18) and (4.3.19) for this �. We show that the words ewk = wwk satisfy the statements of the
Corollary. The derivative e� k = d ewk ( � (u ))

dv is the sum of the two following vectors :

- the vector � 0
k 2 Th k G, which is the image of � = dw ( � (u))

dv under the right multiplication by
wk (� (0)) ;

- the vector � k 2 Th k G, which is the image of dw k ( � (u ))
dv under the left multiplication by w(� (0)).

An elementary calculation shows that d�
d� 0

k
= O(dist (hk ; g)), as k ! 1 (by construction : d�

d� =

0), while the derivative d�
d� k

asymptotically dominates O(dist (hk ; g)) (this follows from (4.3.18) and
(4.3.19)). Thus, the latter derivative dominates the former one and d�

de� k
6= 0 for any k large enough.

This proves the corollary. 2

Proof of Lemma 4.3.5. Given a " > 0 and A1; : : : ; An 2 U, let us construct words gi (� ), gi (� (0))
being " - close toA i , such that the valuessi (u) = � (gi (� (u))), i = 1 ; : : : ; n, are functions of joint rank
n at 0. This will prove Lemma 4.3.5.

Given a tangent vector v1 2 T0Û n 0, there exists a wordg1 (denote s1(u) = � (g1(� (u)))) such
that g1(� (0)) is " - close to A1 and ds1 (u)

dv1
6= 0 ( conj - nondegeneracy and Corollary 4.3.7 applied to

g = A1). Take another vector v2 6= 0 tangent to the level hypersurface of the function s1 at 0. Again
applying the corollary to v = v2, one can �nd a word g2 with g2(� (0)) being " - close toA2 such that
the derivative along v2 of the function s2 : u 7! � (g2(� (u))) does not vanish. Now take a vectorv3 6= 0
tangent to the level surface of the vector function (s1; s2) and construct a word g3 similarly etc. This
yields the words gi we are looking for : by construction, the system of functionssi : u 7! � (gi (� (u)))
has rank n at 0. Lemma 4.3.5 is proved. 2

4.4 Case of semisimple Lie groups with irreducible adjoint
and without proximal elements

In the case mentioned in the title of the section the proof (given below) of Theorem 4.1.33 is
essentially the same, as before, but it becomes slightly more technical.
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Everywhere below in this section, whenever the contrary is not speci�ed, we consider that G is a
semisimple Lie group with irreducible adjoint and no proximal elements. Let� (u) = ( a1(u); : : : ; aM (u))
be aconj - nondegenerate family ofM - ples of its elements. As in Section 4.3, we consider thatu 2 Rn ,
n = dimG. We construct appropriate sequence of wordswr and a sequenceur 2 Rn such that

wr (� (ur )) = 1 ; ur ! 0; as r ! 1 ; (4.4.1)

and the relationswr (� (u)) = 1 do not hold identically in a neighborhood of 0. This will prove Theorem
4.1.33.

We construct appropriate words g1; : : : ; gn , h, w, a collection

l = ( l1; : : : ; ln ) 2 Zn ; a sequence of numberskr 2 N; kr ! 1 ; as r ! 1 ;

a collection of sequences
mjr 2 N; j = 1 ; : : : ; n; r 2 N; and put

! r = wm 1r
1;k r + l 1

: : : wm nr
n;k r + l n

; wr = w� 1! r ; (4.4.2)

where wj;k r + l j are the iterated commutators given by the recurrent formula (4.3.2). We consider the
rescaled parameter

eu = kr u and show that

! r (� (k � 1
r eu)) ! 	( eu); 	 : Rn ! G is a local di�eomorphism at 0; (4.4.3)

the latter convergence is uniform with derivatives on compact sets in Rn . This implies Theorem 4.1.33
analogously to the discussion at the end of Subsection 4.3.1. The implication is proved at the end of
the present section.

In the proof of Theorem 4.1.33 we use Proposition 4.4.8 stated below. It describes the asymptotic
behavior of iterated commutators

� k
g (y) = [ g : : : [g; y] : : : ];

ask ! 1 . This is an analogue of Proposition 4.3.2 from Section 4.3. In the case under consideration the
unity component of G contains no 1- proximal elements (for which Proposition 4.3.2 was formulated).
We introduce so-calledC-1-proximal elements(see the next de�nition). We show that their set contains
an open dense subset in the unity component (Proposition 4.4.1 and its Corollary 4.4.4, both stated
below). We state Proposition 4.4.8 for theC-1-proximal elementsg such that the derivative � 0

g(1) is
contracting. To do this, we show (Proposition 4.4.5 below) that for each C-1-proximal element g 2 G
there exists a unique� 0

g(1)- invariant plane L(g) � g equipped with a natural � 0
g(1)- invariant complex

structure such that the restriction � 0
g(1) : L (g) ! L (g) is multiplication by a complex eigenvalue s(g)

of the operator � 0
g(1) : g ! g with maximal modulus.

The words gj will be chosen at the end of the subsection, in particular, sothat each element
g = gj (� (0)) be C-1-proximal and js(g)j < 1. For any collection of words gj satisfying the latter
statements and any given" > 0, Proposition 4.4.9 and Corollary 4.4.10 (both stated below) provide
sequenceskr ; mjr ! 1 such that for any word h with h(� (0)) close enough to the unity and any
collection l = ( l1; : : : ; ln ) 2 Zn the corresponding sequence ofG- valued functions ! r (� (k � 1

r eu)), see
(4.4.2), converges to some mapping 	 : Rn ! G uniformly with derivatives on compact sets in Rn .
The limit mapping 	 is given explicitly by formula (4.4.11) b elow, which depends only on the words
gj , h, the collection l 2 Zn and " . Lemma 4.4.11 stated below shows that one can adjustgj , h and
l so that 	 be a local di�eomorphism at 0, whenever " is small enough. This is the main technical
part of the proof of Theorem 4.1.33. The proof of Lemma 4.4.11uses the Main Technical Lemma from
Section 4.3.

At the end of the section we deduce Theorem 4.1.33 from the technical statements listed above
(Propositions 4.4.1, 4.4.8 and Lemma 4.4.11 ; their proofs are given in [50] and omitted here).
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Proposition 4.4.1 Let G be a connected semisimple Lie group. There exists a nonemptysubsetU �
G such that the subsetAdU � AdG � End(g) is Zariski open in AdG and the adjoint of eachg 2 U
satis�es the following statements :

1) the number of its nonunit complex eigenvalues is maximal and nonempty, and all they are
simple ;

2) if there is a pair of distinct eigenvalues� 1; � 2 6= 1 with j� 1 � 1j = j� 2 � 1j, then � 1 = � 2.

De�nition 4.4.2 An element g of a Lie group is calledC-1-proximal, if the operator Adg � Id has a
pair of simple nonreal complex-conjugated eigenvalues that are the unique eigenvalues with maximal
modulus.

Proposition 4.4.3 Any element of a semisimple Lie group whose adjoint satis�esthe previous sta-
tements 1) and 2) is either 1- proximal (see De�nition 4.2.22) or C-1-proximal.

Proof Let Adg satisfy 1) and 2), � be its eigenvalue for which the modulusj� � 1j is the maximal
possible. Then� � 1 6= 0 and � is a simple eigenvalue (statement 1)). For any eigenvalue� 0 6= �; �� one
has j� � 1j > j� 0� 1j (statement 2)). Therefore, g is 1- proximal, if � 2 R and C-1-proximal otherwise.
Proposition 4.4.3 is proved. 2

Corollary 4.4.4 Let G be a semisimple Lie group without proximal elements. The setof C- 1- proxi-
mal elements inG is open and contains a dense subsetU � G0 of its unity component G0.

Proof The openness of the set ofC-1-proximal elements follows from de�nition. The subset U � G0

from Proposition 4.4.1 is open and dense (sinceAdU is nonempty and Zariski open in a smooth
variety AdG0 , by Proposition 4.4.1). The set U consists ofC-1-proximal elements (Proposition 4.4.3
and absense of 1- proximal elements inG0). Indeed, otherwise, a 1- proximal element ofG0 would
be proximal (Corollary 4.2.25), - a contradiction to the conditions of Corollary 4.4.4. This proves
Corollary 4.4.4. 2

We use the following properties of the adjoint of aC-1-proximal element.

Proposition 4.4.5 Let A : Rn ! Rn be a linear operator with a pair of simple complex-conjugated
eigenvaluess; �s =2 R. There exists a uniqueA- invariant plane L � Rn whose complexi�cation is
the sum of the complex eigenlines corresponding to the eigenvalues s and �s. The plane L carries an
A- invariant linear complex structure (i.e., a structure of complex line compatible with its real linear
structure), unique up to complex conjugation. The restriction A : L ! L acts by multiplication by
either s or �s in the latter complex structure (dependently on double choice of the complex structure).

Proof By basic linear algebra, the previous planeL exists, unique and there exists aR- linear
nondegenerate operatorH : L ! C such that HAH � 1(z) = sz. The H - pullback of the standard
complex structure on C (or of its conjugate) is an A- invariant complex structure on L such that the
restriction A : L ! L acts by multiplication by s (respectively, �s). These are the only A- invariant
linear complex structures onL . Or equivalently, the standard complex structure on C is the unique
linear complex structure (up to complex conjugation) invariant under the multiplication by a number
s 2 C n R. Indeed, each linear complex structure on a plane de�nes an ellipse centered at 0 (up to
homothety) : the latter ellipse is an orbit of a vector under the multiplication by the complex numbers
with unit modulus. Vice versa, an ellipse determines a linear complex structure uniquely up to complex
conjugation. The only ellipse in C sent to a homothetic one by multiplication by a s 2 CnR is a circle.
This proves the previous uniqueness statement and Proposition 4.4.5. 2

De�nition 4.4.6 Let G be a Lie group,g 2 G be a C-1-proximal element. Let s(g) be an eigenvalue
of Adg � Id with the maximal modulus. Let L (g) � g be the Adg � Id - (and hence,Adg- ) invariant
plane corresponding to the eigenvaluess(g), s(g) (see Proposition 4.4.5). The correspondingAdg � Id -
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invariant complex structure on L(g), in which Adg � Id : L (g) ! L (g) acts by multiplication by s(g),
will be called the s(g)- complex structure.

Proposition 4.4.7 Let G be a Lie group, V � G be a connected component of the subset of the
C-1-proximal elements (which is open by de�nition). The values s(g), s(g) from De�nition 4.4.6 yield
two real-analytic complex-conjugated functionss; �s : V ! C = R2.

Proof The local real analyticity of the previous values follows from the simplicity of the eigenvalues
s(g), s(g). The global real analyticity (say, of s(g)) follows from the fact that its analytic extension
along any closed loop inV does not change the analytic branch. Indeed, the result of analytic extension
of s(g) remains an eigenvalue ofAdg � Id with the maximal modulus, by de�nition and the previous
local analyticity statement. Therefore, given a g0 2 V and a loop  � V based atg0, the result of the
analytic extension of s(g) along  is either s(g0), or s(g0). In the latter case there exists ag0 2  where
s(g0) 2 R, by continuity. It follows from de�nition and the local anal yticity that s(g0) is a double
eigenvalue ofAdg0 � Id with maximal modulus, - a contradiction to the C-1- proximality. Proposition
4.4.7 is proved. 2

In what follows, everywhere below in this section, we �x a real-analytic branch of the eigenvalue
function s(g) from Proposition 4.4.7, de�ned on the open set of all theC-1-proximal elements. The
corresponding family of planesL (g) � g and the s(g)- complex structures on them (see the previous
de�nition) also depend analytically on g. We de�ne the multiplication of vectors in L (g) by complex
numbers in the sense of thes(g)- complex structure. Denote

� C;1 = f C � 1 � proximal elements g 2 G with js(g)j < 1g (4.4.4)

This is a nonempty open subset inG, by Corollary 4.4.4.

Proposition 4.4.8 Let G be a Lie group such that� C;1 6= ; , s(g), L (g) and the complex structures
on the planesL (g) be as above. There exists an open subset

� 0
C;1 � � C;1 � G; � C;1 � 1 � � 0

C;1; (4.4.5)

and a g- valued vector function vg(y) analytic in (g; y) 2 � 0
C;1, vg(1) = 0 (denote dvg : g ! g its

di�erential in y at y = 1 ) such that

vg(y) 2 L (g) for any (g; y) 2 � 0
C;1; dvg jL (g) = Id : L (g) ! L (g); (4.4.6)

� k
g (y) = exp( sk (g)vg(y) + o(jsk (g)j)) ; as k ! 1 ; (4.4.7)

the latter \o" is uniform with derivatives on compact subsets in � 0
C;1.

Given a collection of wordsgj , j = 1 ; : : : ; n, with gj (� (0)) 2 � C;1, we denote

� j = arg s(gj (� (0))) :

Proposition 4.4.9 For any real vector � = ( � 1; : : : ; � n ) 2 Rn there exists a sequence of numbers
kr 2 N, kr ! 1 , as r ! 1 , such that

kr � j ! 0(mod2� ); as r ! 1 ; for any j = 1 ; : : : ; n: (4.4.8)

Proof Consider � as an element of the torusTn = Rn =2� Zn . The subgroup < � > � Tn either is
discrete, or accumulates to 0. In both cases there exists a sequence of numberskr 2 N, kr ! 1 ,
such that kr � ! 0 in Tn (the latter statement is equivalent to (4.4.8)). In the second case this follows
from de�nition. In the �rst case the group < � > is �nite cyclic by compactness. Denotem its order,
kr = rm . Then kr � = 0 in Tn for all r 2 N. This proves Proposition 4.4.9. 2
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Corollary 4.4.10 Let G, n, M , � (u) be as at the beginning of the Subsection,� C;1 be as in (4.4.4),
� 0

C;1 be as in (4.4.5). Let g1; : : : ; gn ; h be words inM elements such that

(gj (� (0)) ; h(� (0))) 2 � 0
C;1 for any j = 1 ; : : : ; n: (4.4.9)

Let kr 2 N, kr ! 1 , be a sequence satisfying (4.4.8) with� j = arg s(gj (� (0))) . Let " > 0, put

mjr = [ " jsj � k r (gj (� (0)))] ; sj (u) = s(gj (� (u))) ; � j = vgj ( � (0)) (h(� (0))) 2 L (gj (� (0))) ; (4.4.10)

see (4.4.6). Let l = ( l1; : : : ; ln ) 2 Zn be an arbitrary collection of n integers, ! r be the corresponding
product (4.4.2) of iterated commutator powers. Then

! r (� (k � 1
r eu)) ! 	( eu) = exp( "s l 1

1 (0)e(d ln s1 (0)) eu � 1) : : : exp("s l n
n (0)e(d ln sn (0)) eu � n ); (4.4.11)

as r ! 1 , uniformly with derivatives on compact sets in Rn . (The multiplication of the vectors
� j 2 L(gj (� (0))) by complex numbers is de�ned in terms of thes(gj (� (0))) - complex structures on
L(gj (� (0))) .)

Proof One has (asr ! 1 )

wj;k r + l j (� (k � 1
r eu)) = exp( sk r + l j

j (k � 1
r eu)e� j (eu) + o(jsk r + l j

j (k � 1
r eu)j)) ; where (4.4.12)

e� j (eu) = vgj ( � (k � 1
r eu)) (h(� (k � 1

r eu))) ! � j ;

by de�nition and (4.4.7),

sk r + l j

j (k � 1
r eu) = sk r + l j

j (0)e(d ln sj (0)) eu (1 + o(1)) ; as in (4.3.16);

mjr sk r
j (0) ! " by (4.4.8) and (4.4.10). Hence,wm jr

j;k r + l j
(� (k � 1

r eu)) ! exp("s l j

j (0)e(d ln sj (0)) eu � j ), as
r ! 1 , by (4.4.12) and the latter asymptotics. This implies (4.4.11). 2

Lemma 4.4.11 Let G, n, M , � (u) be as at the beginning of the subsection. There exist words
g1; : : : ; gn ; h satisfying (4.4.9) and a l = ( l1; : : : ; ln ) 2 Zn such that for any " > 0 small enough
the corresponding mapping	( eu) from (4.4.11) be a local di�eomorphism at 0.

Proof of Theorem 4.1.33 modulo Propositions 4.4.1, 4.4.8 an d Lemma 4.4.11. Let g1; : : : ; gn ,
h, l , " be as in Lemma 4.4.11,sj (u) = s(gj (� (u))), � j = arg sj (0). Let kr ! 1 be a natural sequence
satisfying (4.4.8). Let mjr be the numbers from (4.4.10). Let! r be the corresponding iterated com-
mutator power product (4.4.2), 	 be the corresponding mappi ng from (4.4.11). Let � > 0 be such
that

	 : D � ! 	( D � ) � G be a di�eomorphism.

It exists by Lemma 4.4.11. Fix an arbitrary word w in M elements such that

w(� (0)) 2 	( D � ): Put wr = w� 1! r :

For any r large enough the imagewr (� (k � 1
r D � )) contains 1. This follows from the convergence

wr (� (k � 1
r eu)) !  (eu) = w� 1(� (0))	( eu) (4.4.13)

(which takes place by de�nition and (4.4.11)) and the fact that

 : D � !  (D � ) � G is a di�eomorphism, and 1 2  (D � );

as at the end of Subsection 4.3.1. Therefore, for anyr large enough there exists a parameter value

eur 2 D � � Rn ; put ur = k � 1
r eur ; such that wr (� (ur )) = 1 :

The sequenceur satis�es (4.4.1). The relations wr (� (u)) = 1 do not hold identically in u for any r
large enough, as at the end of 4.3.1. This proves Theorem 4.1.33 modulo Propositions 4.4.1, 4.4.8 and
Lemma 4.4.11. 2
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4.5 A short proof of Theorem 4.1.1 for dense subgroups in
G = PSL2(C)

Let A; B 2 P SL2(C) generate a free dense subgroup. We prove Theorem 4.1.1 by contradiction.
Suppose there is a (simply connected) neighborhoodV � P SL2(C) � P SL2(C) of the pair (A; B )
such that each pair (a; b) 2 V generates a free subgroup. Thus, each wordw(a; b) is a holomorphic
function in ( a; b) 2 P SL2(C) � P SL2(C) with values in P SL2(C) ; distinct words de�ne holomorphic
functions with disjoint graphs over V . Using holomorphic motion of the �xed points of the elements
w(a; b) 2 P SL2(C), we construct a nonstandard measurable almost complex structure on C invariant
under the action of < A; B > (and hence, under the action of the whole groupP SL2(C) by density).
But the only measurable almost complex structure preservedunder the action of P SL2(C) on C is
the standard complex structure, - a contradiction.

Remark 4.5.1 The author's initial proof of Theorem 4.1.1 in the case, whenG = P SL2(C), followed
a similar scheme (using the holomorphic motion of �xed points) but was longer than the one pre-
sented below. The �nal quasiconformal mapping and invariance argument, which simpli�ed the proof
essentially, is due to �Etienne Ghys.

Recall that an elementb 2 P SL2(C) is called elliptic , if its action on C is conjugated to a rotation.
It is called hyperbolic, if it has two �xed points : one attracting and the other one re pelling. Otherwise
it is parabolic, i.e., has a unique �xed point and is conjugated to the translation. If b has two �xed
points, then their multipliers are inverse to each other. The half-sum of their multipliers (denoted
� (b)) is a holomorphic function � : P SL2(C) ! C.

Proposition 4.5.2 Let V � P SL2(C) � P SL2(C) be an open set such that each pair(a; b) 2 V
generates a free subgroup inP SL2(C). Then each element of the latter subgroup is hyperbolic.

Proof Suppose the contrary : there exists a pair (a; b) 2 V and a nontrivial word w such that the
multiplier of the transformation w(a; b) at some its �xed point has unit modulus. This is equivalent
to say that � (w(a; b)) 2 [� 1; 1]. There exists a pair (c; d) 2 P SL2(C) � P SL2(C) arbitrarily close
to (a; b) (in particular, lying in V ) such that the multiplier of w(c; d) at some its �xed point be a
root of unity, or equivalently, � (w(c; d)) = cos � , � 2 � Q. This follows from the nonconstance of
the holomorphic function (c; d) 7! � (w(c; d)) and openness of holomorphic mappings. (The function
� (w(c; d)) is nonconstant on P SL2(C) � P SL2(C), since w(1; 1) = 1 and the value of the word w
on the generators of a Schottky group is hyperbolic.) By construction, the transformation w(c; d) is
elliptic of �nite order, - a contradiction to the liberty of t he group< c; d > . The proposition is proved.

2

Thus, each elementw(a; b) 2 P SL2(C), (a; b) 2 V , is hyperbolic, hence, its �xed points are analytic
functions in (a; b) 2 V . The graphs of the �xed point functions are disjoint. Indeed, otherwise, if two
distinct hyperbolic elements of P SL2(C) have one common �xed point, then their commutator is
parabolic : the latter �xed point is its unique �xed point. Th is contradicts the hyperbolicity of the
commutator. If two hyperbolic elements have two common �xed points, then they commute, - a
contradiction to the liberty.

For any (a; b) 2 V denote F ix (a; b) � C the set of �xed points of all the elements of the group
< a; b > . The set F ix (A; B ) is dense inC, since the subgroup< A; B > is dense. The previous disjoint
graphs of �xed point functons form a holomorphic motion over V of the sets F ix (a; b), (a; b) 2 V .
They can be extended up to a global holomorphic motion : �lling the whole product V � C by a
union of disjoint graphs of holomorphic functions V ! C. This follows immediately from the density
of F ix (A; B ) by the disjointness and elementary normal family argument(e.g., a version of Montel's
theorem, see [88]).
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Remark 4.5.3 The well-known Slodkowski theorem [108] says that any holomorphic motion in D � C
of any subset of the Riemann sphere over unit diskD extends up to a holomorphic motion of the
whole Riemann sphere. Here we do not use this theorem in full generality.

For any (a; b) 2 V denoteha;b : C ! C the mapping of the C- �ber ( a; b) � C � V � C to the �ber
(A; B ) � C de�ned by the holonomy of the previous holomorphic motion. In more detail, take any path
in V from (a; b) to ( A; B ) and lift it to each one of the previous disjoint graphs in V � C. By de�nition,
the mapping ha;b sends the starting point of a lifted path to its end-point. Th e mappingha;b does not
depend on the choice of path by simple connectivity ofV . It is a quasiconformal homeomorphism :
any holomorphic motion has a quasiconformal holonomy [111]. The homeomorphismha;b conjugates
the actions onC of the groups< A; B > and < a; b > , since it conjugates them on the dense invariant
subsets F ix (A; B ) and F ix (a; b) in C, by construction. The quasiconformal homeomorphismha;b

transforms the standard complex structure onC to a measurable almost complex structure (denoted
by � (a; b)). The latter structure is invariant under the action of the group < A; B > (by de�nition
and the previous conjugacy statement), and hence, underP SL2(C), by density. Now to prove the
theorem, it su�ces to show that for a generic pair ( a; b) the almost complex structure � (a; b) is not
standard.

For any (a; b) 2 V the elementsa and b are hyperbolic with distinct �xed points ; the latters form
a quadruple denotedQ(a; b) of points in C. If the cross-ratios of two quadruplesQ(a; b) and Q(A; B )
are distinct, then the quasiconformal homeomorphismha;b , which sendsQ(a; b) to Q(A; B ), is not
conformal ; hence,� (a; b) is not standard. This together with the discussion at the beginning of the
section proves Theorem 4.1.1.

4.6 Sketch-proof of Theorem 4.1.29

For simplicity we sketch the proof of Theorem 4.1.29 only in the case, whenG is a semisimple Lie
group with irreducible adjoint and proximal elements. In th e case, whenG is the same but without
proximal elements, the proof is analogous. In the case, whenG is arbitrary semisimple Lie group,
Theorem 4.1.29 is deduced from its statements in the previously mentioned cases and Proposition
4.2.9. In the general case Theorem 4.1.29 is then deduced from its statement for semisimple groups
and the existence of the factorizationG ! Gss (see 4.2.1).

Thus, we assume thatG is semisimple, with irreducible adjoint and with proximal elements. Recall
that G is " (x)- approximable with bounded derivatives. Let (A; B ) 2 G � G be an irrational pair,

lm = lm (D1) = lm (A; B; D 1)

be the corresponding length majorant sequence for approximations by words in (A; B ) on the unit
ball D1 � G, see De�nition 4.1.11. We show that there exist a sequencew0

m (a; b) of nontrivial words,
a sequence of pairs (Am ; Bm ) 2 G � G, (Am ; Bm ) ! (A; B ), and constants c0; c00> 0 (depending only
on (A; B )) such that

w0
m (Am ; Bm ) = 1 ; jw0

m j � l0
m = c00lm ; (4.6.1)

dist ((Am ; Bm ); (A; B )) < " (c0l0
m ): (4.6.2)

This means that the pair (A; B ) is " (x)- approximable by pairs with relations, and Theorem 4.1.29
with its Addendum then follow immediately.

For the proof of (4.6.1) and (4.6.2) we �x an arbitrary conj- n ondegenerate family

� (u) = ( a(u); b(u)) 2 G � G; u 2 Rn ; n = dimG; � (0) = ( A; B ):

As it was shown in Section 4.3 (see (4.3.17)), there exist a sequence of wordswk , a mapping  : Rn ! G
and a � > 0 such that

wk (� (k � 1eu)) !  (eu);  : D � !  (D � ) � G is a di�eomorphism, 1 2  (D � ); (4.6.3)
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the previous convergence is uniform with derivatives on compact sets in Rn . Fix a R > 0 such that

 (0) 2 DR = DR (1) � G: (4.6.4)

Let l (R) be as in (4.1.5),


 m;D R ; elm = lm (DR ) = lm + l(R); cR = c(A; B; D R )

be respectively the word collection and length majorant sequences and the constant, corresponding
to the "(x)- approximations on DR by words in (A; B ) with bounded derivatives, see De�nition
4.1.11 and (4.1.5). For anyk large enough one haswk (� (0)) 2 DR , by (4.6.3) and (4.6.4). We �x
a sequence of words� k;m 2 
 m;D R such that the elements � k;m (A; B ) be "(cR

elm )- approximants of
wk (� (0)) = wk (A; B ). We show that if we �x a k large enough, then the words

w0
m = � � 1

k;m wk

satisfy statements (4.6.1) and (4.6.2). The existence of a pair sequence (Am ; Bm ) = � (um ), um 2 Rn ,
satisfying (4.6.1) and (4.6.2) is deduced from (4.1.5) and the following statements :

dist (w0
m (A; B ); 1) < " (cR

elm ) (by de�nition); (4.6.5)

 km (eu) = w0
m (� (k � 1eu)) = ( � � 1

k;m wk )( � (k � 1eu)) ! e (eu) = (  (0)) � 1 (eu) (4.6.6)

uniformly with derivatives on compact sets, as k; m ! 1 . Statement (4.6.6) follows from de�ni-
tion, (4.6.3) and the uniform boundedness of the derivatives of the words� k;m on one and the same
neighborhood of (A; B ) (" (x)- approximability with bounded derivatives).

In more detail, �x a k 2 N for which there exists a constantK > 0 such that for any m large
enough (dependently onk)

 km : D � !  km (D � ) � G is a di�eomorphism and 1 = e (0) 2  km (D � ); (4.6.7)

jj ( 0
km (x)) � 1 jj < K for any x 2 D � : (4.6.8)

The existence of the previousk follows from (4.6.6). Put

um = k � 1 � 1
km (1); (Am ; Bm ) = � (um ): By de�nition, w0

m (Am ; Bm ) = 1 ;

dist ((Am ; Bm ); (A; B )) = O(um ) = O(dist ( rm (0); 1)) = O(dist (w0
m (A; B ); 1)) = O(" (cR

elm )) ;

by (4.6.5). Thus, there exists a constantC > 1 such that

dist ((Am ; Bm ); (A; B )) < C" (cR elm ) (4.6.9)

for any m large enough (that is, for which the previous pair (Am ; Bm ) is well-de�ned). One has

jw0
m j � j � k;m j + jwk j � elm + jwk j = lm + � ; � = jwk j + l (R): Therefore,

jw0
m j � l0

m = c00lm ; c00= max
m

lm + �
lm

;

dist ((Am ; Bm ); (A; B )) < C" (cR
elm ) < " (c0l0

m ); where c0 = C � 1cR inf
m

elm
l0
m

=
cR

Cc00:

This proves (4.6.1), (4.6.2) and Theorem 4.1.29.



Chapitre 5

Restricted version of the
in�nitesimal Hilbert 16-th problem

5.1 Introduction : zeros of Abelian integrals

5.1.1 Restricted In�nitesimal Hilbert 16th Problem

The original In�nitesimal Hilbert 16th Problem is stated as follows. Consider a real polynomialH
in two variables of degreen + 1 : The space of all such polynomials is denoted byH n .

Connected components of closed level curves ofH are called ovals of H: Ovals form continuous
families, see Fig. 5.1. Fix one family of ovals, say �; and denote by  (t) an oval of this family that
belongs to the level curvef H = tg:

t 0

  

                                   

   

                                                              

  

               

A3
A2A1

            a                 t      a                   a     1                 0      2                   3

H=H(A  )2

g(    )

Fig. 5.1 { Families of ovals ; an oval around A1 that belongs to the level curve H = H (A2) is
distinguished.

Consider a polynomial one-form
! = Adx + Bdy
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with polynomial coe�cients A(x; y) and B (x; y) of degree at most n: The set of all such forms is
denoted by 
 :

n The main object to study below is the integral

I (t) =
Z

 ( t )
!: (5.1.1)

In�nitesimal Hilbert 16th Problem . Let H and ! be as above. Find an upper bound of the
number of isolated real zeros of integral (5.1.1) for a polynomial H 2 H n and any family � of real
ovals of H: The estimate should be uniform in! and H; thus depending onn only.

This problem stated more than 30 years ago is not yet solved. The existence of such a bound was
proved by A.N.Varchenko [113] and A.G.Khovanskii [81]. A weaker version of the problem is called
restricted. In order to formulate it we need the following

De�nition 5.1.1 A polynomial H 2 H n is ultra-Morse provided that it has n2 complex Morse critical
points with pairwise distinct critical values, and the sum h of its higher order terms has no multiple
linear factors.

Denote by Un the set of all ultra-Morse polynomials in H n . The complement to this set is denoted
by � n and called the discriminant set. The integral (5.1.1) may be identically zero. The following
theorem shows that for ultra-Morse polynomials this may happen by a trivial reason only.

Theorem 5.1.2 (Exactness theorem [61, 62, 102]) Let H be a real ultra-Morse polynomial of
degree higher than 2. Let the integral (5.1.1) be identically zero for some family of real ovals of the
polynomial H: Then the form ! is exact : ! = df:

Denote by 
 �
n the set of all non-exact polynomial one-forms from 
n :

Restricted version of the In�nitesimal Hilbert 16th Proble m (RIHP) . For any compact
subsetK of the set of ultra-Morse polynomials �nd an upper bound of the number of all real zeros of
the integral (5.1.1) over the ovals of a polynomialH 2 K : The bound should be uniform with respect
to H 2 K and ! 2 
 �

n : It may depend onn and K only.

This problem is solved in papers [52, 53] (joint with Yu.S.Ilyashenko). The solution is based on
the results of papers [46], [47] and [70]. Each one of the papers [46], [47],[70] is independent on the
others. The paper [53] is the main one in the series. It contains the survey of results of all the four
papers, as well as the solution of the RIHP.

Numerous results obtained during more than 30 years of the study of the in�nitesimal Hilbert
problem are presented in section 7 of a survey paper [69]. Partial solution of the RIHP (given in our
preliminary, unpublished joint paper with Yu.S.Ilyashenk o) was claimed in that survey paper. The
paper [53] contains a complete solution to RIHP (modulo [46], [47], [70]). Its results with a brief proof
were announced in [52].

The main results of the papers [46, 53, 70] are presented in this chapter.

5.1.2 Main results

To measure a gap between a compact setK � U n and the discriminant set � n , let us �rst normalize
ultra-Morse polynomials by an a�ne transformation in the ta rget space. This transformation does not
change the ovals ofH , thus the number of zeros of the integral (5.1.1) remains unchanged.

Say that two polynomials G and H are equivalent i�

G = aH + b; a > 0; b 2 C:

De�nition 5.1.3 A polynomial is balancedif all its complex critical values belong to the closed disk
of radius 2 centered at zero, and there is no smaller disk thatcontains all the critical values.
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Remark 5.1.4 Any polynomial with at least two distinct complex critical v alues is equivalent to
one and unique balanced polynomial. If the initial polynomial has real coe�cients, then so does the
corresponding balanced polynomial.

Let us de�ne two positive functions on Un such that at least one of them tends to zero asH tends
to � n : For any compact set K � U n the minimal values of these functions onK form a vector in
R+ � R+ that is taken as a size of the gap betweenK and � n :

De�nition 5.1.5 For any H 2 Un let c1(H ) be n multiplied by the smallest distance between two
lines in the zero locus ofh; the higher order form of H: The distance between two lines is taken in
sense of the Fubini-Study metric on the projective lineCP1: Let c0(H ) = min( c1(H ); 1):

Denote by Vn the set of all polynomials with more than one critical value and more than one line in
the locus of the higher order homogeneous form. By De�nition5.1.1, Un � V n :

De�nition 5.1.6 For any H 2 Vn ; let G be the balanced polynomial equivalent toH: Let c2(H ) be
the minimal distance between two critical values ofG multiplied by n2: Let c00(H ) = min( c2(H ); 1):

Note that inequality c0(H )c00(H ) > 0 is equivalent to the statement that H is ultra-Morse.
In what follows, we deal with balanced ultra-Morse polynomials only. This may be done without

loss of generality : any ultra-Morse polynomial is equivalent to a balanced one ; equivalent polynomials
have the same number of zeros of the integral (5.1.1) over thecorresponding families of ovals.

Theorem A. [53] Let H be a real ultra-Morse polynomial of degreen + 1 : Let � = f  (t)g be an
arbitrary continuous family of real ovals of H: There exists a universal positivec such that the integral

(5.1.1) has at most (1 � logc0(H ))e
c

c 00( H )
n 4

isolated zeros.

Appendix. The statement of Theorem A holds with c = 5 :000:

An approach to the In�nitesimal Hilbert 16th Problem itself presented below motivates the follo-
wing complex counterpart of Theorem A, namely, Theorem B that gives an estimate of the number
of zeros of the integral (5.1.1) in the complex domain. Consider an ultra-Morse polynomial H and let

� = � (H ) :=
c00(H )
4n2 : (5.1.2)

Fix any real noncritical value t0 of H;
jt0j < 3;

whose distance to the complex critical values ofH is no less than�: Consider a real oval 0 � f H = t0g:
We suppose that such an oval exists. Leta = a(t0) < t 0 < b(t0) = b (or a(H; t 0); b(H; t 0) for variable
H ) be the nearest real critical values ofH to the left and to the right from t0 respectively ; or �1 ; + 1
if there are none. Denote by� (t0) the interval ( a(t0); b(t0)) and let �(  0) be the continuous family of
ovals that contains  0 :

�(  0) = f  (t) jt 2 � (t0);  (t0) =  0g: (5.1.3)

The following cases for (a; b) = � (t0) are possible :

(a; b); b > a; �1 < a < b < + 1 ; (a; + 1 ); ( �1 ; b):

If a is �nite, and lim top t ! a  (t) contains a saddle critical point of H; then a is a logarithmic branch
point of I: If lim top t ! a  (t) is a singleton, or contains no critical point of H , then a is called an
apparent singularity. The same for b:

Denote by B = BH the set of all noncritical values ofH :

B = C n f a1: : : : ; a� g; � = n2; aj are the complex critical values ofH:



78

Let W be the universal cover overB with the base point t0 and the projection

� : W ! B � C:

For any t 2 C denote
St = f H = tg � C2:

De�nition 5.1.7 Any point t̂ 2 W is represented by a class [� ] of curves in B starting at t0 and
terminating at t = � t̂ ; all the curves of the class are homotopic onB: Any cycle  from H1(St 0 ; Z)
may be continuously extended over� as an element of the homology groups of level curves ofH ; the
resulting cycle  (t̂) from H1(St ; Z) is called an extensionof  corresponding to t̂:

This construction allows us to extend the integral (5.1.1) to W : for any t̂ 2 W;

I (t̂) =
Z

 ( t̂ )
!: (5.1.4)

For any 0 < r � � denote by a + rei' 2 W a point represented by a curve �1� 2 � B; where � 1 is
an oriented segment fromt0 to t1 = a + r 2 � (t0); � 2 = f a + rei� j � 2 [0; ' ]g; � 2 is oriented from t1

to t: In the same wayb� rei' 2 W is de�ned. Let

�( a) = f a + rei' 2 W j 0 < r � �; j' j � 2� g; for a 6= �1 (5.1.5)

�( b) = f b� rei' 2 W j 0 < r � �; j' j � 2� g; for b 6= + 1

Let
D(l; a) = f a + rei' 2 W j a + re

i'
l 2 �( a)g

D(l; b) = f b� rei' 2 W j b� re
i'
l 2 �( b)g;

D (l; a) = ; ; if a = �1 ; D (l; b) = ; ; if b = + 1 :

Let DPR = DPR (H; t 0) be the disk of radius R in the Poincar�e metric of W centered at t0:
For any real polynomial H; the choice of a cycle 0 determines a family of ovals (5.1.3) over which

the integral (5.1.1) is taken. When we want to specify this choice we write I H; 0 or I H instead of I:
The integral I H; 0 may be analytically extended not only as a function oft̂ 2 W; but also as a function
of H:

An analytic extension of the integral I to W is denoted by the same symbolI: For any positive R
and natural l denote by G = G(l; R; H; t 0) the domain

G = DPR (H; t 0) [ D (l; a(H; t 0)) [ D (l; b(H; t 0)) ; see Figure 5.2:

Theorem B. [53] For any real ultra-Morse polynomial H; any real oval  0 of H; any natural l and any

positive R > 288n 4

c00(H ) ; the number of zeros of the integralI H; 0 in G = G(l; R; H; t 0); where t0 = H j  0;
is estimated as follows :

# f t̂ 2 G(l; R; H; t 0)jI H; 0 (t̂) = 0 g � (1 � logc0(H )) �
�
e7R + A4800e

481 l
c 00( H )

�
; A = e

n 4

c 00( H ) : (5.1.6)

The lower bound on R in the statement of the theorem is motivated by the remark in Subsection
5.2.4 below.
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Fig. 5.2 { The domains DPR (H; t 0); D (l; a); D (l; b) � W ; the domain G is their union

5.1.3 An approach to a solution of the In�nitesimal Hilbert 1 6th Problem

Conjecture (Yu.S.Ilyashenko). For any n there exist � (n); l (n); R(n) with the following pro-
perty. Let H0 be an arbitrary real polynomial from H n ; t0 be its real noncritical value and  0 be a
real oval of H0 that belongs tof H0 = t0g (we suppose that such an oval exists). LetI H be the integral
(5.1.1). The integral I H depends onH as a parameter. Lett1 2 � (t0); I H 0 (t1) = 0 and t(H ) be a germ
of an analytic function de�ned by the equation I H (t(H )) � 0; t(H0) = t1: The required property is
the following. There exists a path� � H n depending onH0 only starting at H0 and ending at some
H1 2 H n such that :

c0(H1) � � (n); c00(H1) � � (n); (5.1.7)

the analytic extensiont(H1) of the function t(H ) along � starting at the valuet1 belongs to the domain
G(l (n); R(n); H1; t0):

The conjecture above implies the solution of the In�nitesimal 16th Problem. Indeed, suppose that
the conjecture is true. Let N (n) be the right hand side of the inequality (5.1.6) with c0(H ) and c00(H )
replaced by � (n) ; R and l replaced by R(n) and l(n) respectively. Then the number of real zeros
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of integral I H 0 can not exceedN (n): If not, any of real zeros of I H 0 would be extended along� up
to a zero of an integral I H 1 located in G = G(l(n); R(n); H1; t0), for some polynomial H1 satisfying
inequalities (5.1.7). Thus the number of zeros of the integral I H 1 in G will exceedN (n): But Theorem
B implies that the number of zeros ofH1 in G is no greater than N (n); a contradiction.

The chapter is structured as follows. In Section 5.2 we present the main ideas of the proof of
Theorem A. Section 5.2 contains also a survey of the previousinvestigations and describes some
results of [46] ; these results may be called \quantitative algebraic geometry". Moreover, we prove in
this section a part of Theorem A; namely, Theorem A1; modulo the Main Lemma. In Section 5.3
we sketch the proof of the Main Lemma. The proof relies upon two statements : formula for the
determinant of periods, and upper estimates of Abelian integrals provided by quantitative algebraic
geometry. These two statements are proved in two separate papers, [47] and [46] respectively. The
proof of Theorem A (modulo Theorems A1 and A2) will be given inSubsection 5.2.5. Theorem A2 is
written in [53] and is due to Yu.S.Ilyashenko. It will be proved in Section 5.4. The Main Lemma is an
important tool for both Theorems A and B.

5.2 Main ideas of the proof and survey of the related results

5.2.1 Historical remarks

A survey of the history of the In�nitesimal Hilbert 16th Prob lem may be found in [69], and we will
not repeat it here. In particular, a much weaker version of Theorem A is claimed there as Theorem
7.7. The �rst solution to restricted Hilbert problem was sug gested in [100]. An explicit upper bound
for the same numbers of zeros as in Theorem A was suggested there as a tower of four exponents
with coe�cients \that may be explicitly written following t he proposed constructive solution." It
is unclear how much e�orts is needed to write these constantsdown. Moreover, exponential of a
polynomial presented in Theorem A is much simpler (though still very excessive) than the tower of
four exponentials.

The result of [100] is a crown of a series of papers [97] - [99].Solution to the restricted version of
the In�nitesimal Hilbert 16th Problem presented there is on ly one application of a vast theory. This
theory presents an upper bound of the number of zeros of solutions to linear systems of di�erential
equations. Similar results for components of vector solutions to linear systems are obtained. Abelian
integrals are considered as solutions to Picard-Fuchs equations. Using the above-mentioned theory,
A. Grigoriev [55, 56] have proved another upper bound for thenumber of zeros of Abelian integrals
in domains distant from the critical values. His estimate is given by double exponent of the sum
of two terms : a power of the degree of the hamiltonian and a constant term. The latter power is
universal : its exponent is a constant independent on the hamiltonian and the form. The previous
constant term depends on the minimal gap between the domain under consideration and the critical
values. In di�erence to our result, Grigoriev's bound depends only on the latter gap and does not
depend on the higher terms of the hamiltonian.

On the contrary, our presentation is focused on the study of Abelian integrals given by formula
(5.1.1) \as they are" and not as solutions of di�erential equations.

5.2.2 Quantitative algebraic geometry

Everywhere below for anyr > 0 and w 2 C we denote

D r (w) = fj z � wj < r g � C; D r = D r (0):

Our main tool is Growth-and-Zeros theorem for holomorphic functions stated in the next subsec-
tion. It requires, in particular, an upper bound of the integ ral under consideration. We �x an integrand,
say w = xk yn � k dx: Depending on a scale inC2; a cycle  in the integral

R
 ! may be located in a

small or in a large ball. According to this, the integrand wil l be small or large. We want to estimate
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the integral at a certain point of the universal cover W represented by an arc that connects a base
point t0 with some point, say t; with jt j � 3: To make this restriction meaningful, the scale in the
range of the polynomial should be chosen ; in other words, thepolynomial should be balanced. The
argument above shows that it should be alsorescaledin sense of the following de�nitions.

De�nition 5.2.1 The norm of a homogeneous polynomialh is the maximal value of its modulus on
the unit sphere ; this norm is denoted bykhkmax :

De�nition 5.2.2 A balanced polynomial H 2 C[x; y] is rescaledprovided that the norm of its higher
order form h equals one :jjhjjmax = 1 ; and the origin is a critical point for H: Briey, a balanced
rescaled polynomial will be callednormalized.

Remark 5.2.3 Any ultra-Morse polynomial may be transformed to a normalized one by homotheties
and shifts in the source and target spaces (not in the unique way). The functions c0 and c00 remain
unchanged under such transformations.

De�nition 5.2.4 We say that the topology of a complex level curveSt = H � 1(t) of a polynomial
H 2 H n is located in a bidisk

DX;Y = f (x; y) 2 C2 j j xj � X; jyj � Y g

provided that the di�erence St nDX;Y consists ofn + 1 = deg H punctured topological disks, and the
restriction of the projection ( x; y) 7! x to any of these disks is a biholomorphic map ontof x 2 CjX <
jxj < 1g :

Theorem C [46]. For a normalized polynomial, the Hermitian basis in C2 may be so chosen that
the topology of all level curvesSt for jt j � 5 will be located in a bidiskDX;Y with

X � Y � (c0(H )) � 14n 3

n65n 3
= R0:

This theorem is of independent interest, providing one of the �rst results in quantitative algebraic
geometry. On the other hand, it implies upper estimates of Abelian integrals used in the proof of
Theorem A and required by the Growth-and-Zeros theorem below.

In the rest of this section, we describe the main ideas of the proof of a simpli�ed version of
Theorem A, namely Theorem A1 stated below. It provides an upper bound for the number of zeros
of the integral (5.1.1) on a real segment that is� -distant from critical values of H and belongs to the
disk D 3, thus being distant from in�nity ; recall that � = � (H ) is given by (5.1.2).

Together with the use of Theorem A1, we get an estimate of the number of zeros of the integral
I H; 0 near the endpoints of � (t0); as well as near in�nity (Theorem A2 stated in 5.2.5). Together
with Theorem A1, this completes the proof of Theorem A. The tools used in the proof of Theorem
A2 include Petrov method and a so called KRY theorem. The latter one is a recent result in one-
dimensional complex analysis [82, 105]. Its improved version is proved by Yu.S.Ilyashenko in a separate
paper [70]. In this form it provides a powerful tool to estimate the number of zeros of analytic functions
near logarithmic singularities.

5.2.3 Growth-and-Zeros Theorem for Riemann surfaces

The idea of the proof of TheoremA1 is to consider an analytic extension of the integral (5.1.1) to
the complex domain and to make use of the following Growth-and-Zeros theorem. The symbol diamint

used in the statement of the theorem denotes the intrinsic diameter, see De�nition 5.2.6 below. We
need a notion of a� -gap between a set and its subset on a Riemann surface.
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De�nition 5.2.5 Let W be a Riemann surface,� : W ! C be a holomorphic function (called
projection) with non-zero derivative. Consider the metric on W lifted from C by projection �: Let
U � W be a connected domain, andK � U be a compact set. For anyp 2 U let " (p; @U) be the
supremum of radii of disks centered atp; located in U and such that � is bijective on these disks. The
� -gap betweenK and @U;is de�ned as

� -gap (K; @U) = min
p2 K

" (p; @U):

Growth-and-zeros theorem. Let W; � be the same as in De�nition 5.2.5. Let U � W be a
domain conformally equivalent to a disk. LetK � U be a path connected compact subset ofU (di�erent
from a single point). Suppose that the following two assumptions hold :

Diameter condition :
diam int K � D ;

Gap condition :
� -gap(K; @U) � ":

Let I be a bounded holomorphic function onU: Then

# f z 2 K jI (z) = 0 g � e
2D
" log

maxU jI j
maxK jI j

(5.2.1)

The de�nition of the intrinsic diameter is well known ; yet we recall it for the sake of completeness.

De�nition 5.2.6 The intrinsic distance between two points of a path connected set in a metric space
is the in�num of the lengths of paths in K that connect these points (if exists). The intrinsic diameter
of K is the supremum of intrinsic distances between two points taken over all the pairs of points in
K:

De�nition 5.2.7 The second factor in the right-hand side of (5.2.1) is calledthe Bernstein index of
I with respect to U and K and denotedBK;U (I ) :

BK;U (I ) = log
M
m

; M = sup
U

jI j; m = max
K

jI j: (5.2.2)

Proof of the Growth-and-Zeros theorem. The above theorem is proved in [74] for the case when
W = C; � = Id: In fact, in [74] another version of (5.2.1) is proved with (5.2.1) replaced by

# f z 2 K jI (z) = 0 g � BK;U (I )e� ; (5.2.3)

where � is the diameter of K in the Poincar�e metric of U: In this case it does not matter whether U
belongs toC or to a Riemann surface.

Proposition 5.2.8 Let K; U be two sets in the Riemann surfaceW from De�nition 5.2.5, and let
the Diameter and Gap conditions from the Growth-and-Zeros theorem hold. Then the diameter ofK
in the Poincar�e metric of U admits the following upper estimate :

� � 2D=": (5.2.4)

Proof Denote by jvjP U the length of a vector v in sense of the Poincar�e metric of U. By the
monotonicity property of the Poincar�e metric, the length jvjP U of any vector v attached at any point
p 2 K is no greater than two times the Euclidean length ofv divided by the � -gap betweenK and
@U:This implies (5.2.4) 2

Together with (5.2.3), this proves (5.2.1). 2
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5.2.4 Theorem A1 and Main Lemma

In what follows, H will be an ultra-Morse polynomial unless the converse is stated. Consider a
normalized polynomial H . Let aj be its complex critical values, j = 1 ; : : : ; n2; �; t 0; W and � be the
same as in 5.1.2. LetI be the integral (5.1.1) as in Theorem A (well de�ned for t = t0). It admits an
analytic extension to W , which will be denoted by the same symbolI:

Let a = a(t0); b = b(t0) be the same as in 5.1.2, and� be from (5.1.2). Let

l (t0) =

(
a + � for a 6= �1
� 3 for a = �1 ;

r (t0) =

(
b� � for b 6= + 1
3 for b = + 1 :

Let
� (t0; � ) = [ l (t0); r (t0)]; see Figure 5.2:

We identify � (t0; � ) � C with its lift to W that contains t0:

Theorem A1. In the assumptions stated at the beginning of the subsection, for any complex form
! 2 
 �

n ;

# f t 2 � (t0; � ) j I (t) = 0 g < (1 � logc0(H ))A578 ; A = e
n 4

c 00( H ) : (5.2.5)

This theorem is an immediate corollary of the Growth-and-Zeros theorem and the Main Lemma
stated below. Let

L � (t0) =

(
f a + �e � i' 2 W j ' 2 [0; 2� ]g for a 6= �1
f� 3e� i' 2 W j ' 2 [0; 2(n + 1) � ]g; for a = �1 ;

(5.2.6)

R� (t0) =

(
f b� �e � i' 2 W j ' 2 [0; 2� ]g for b 6= + 1
f +3 e� i' 2 W j ' 2 [0; 2(n + 1) � ]g; for b = + 1 ;

(5.2.7)

� a = L + (t0) [ L � (t0); � b = R+ (t0) [ R� (t0); � = � a [ � b [ � (t0; � ):

Main Lemma. Let H be a normalized polynomial of degreen +1 � 3 with critical values aj : j =
1; :::; n2; ! be a complex polynomial 1-form of degree no greater thann: Let W; �; � be the same as
at the beginning of this subsection. Then there exists a pathconnected compact setK � W , K � � ,
�K � D3, with the following properties :

diam int K < 36n2; (5.2.8)

dist (�K; a j ) � � for any j = 1 ; :::; n2: (5.2.9)

Moreover, let U be the minimal simply connected domain inW that contains the �= 2 neighborhood of
K: Then the Bernstein index of the integral (5.1.1) admits the following upper bound :

BK;U (I ) < (1 � logc0(H ))A2: (5.2.10)

The proof of the Main Lemma is sketched in Section 5.3. This Lemma is used also in the estimate of
the number of zeros of the integral in the intervals (a; l(t0)), ( r (t0); b). In fact, a much better estimate
for the Bernstein index holds :

BK;U (I ) <
2700n18

c00(H )
� 30n6 logc0(H ) := B (n; c0; c00): (5.2.11)
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Together with the elementary inequality

B (n; c0; c00) < (1 � logc0)A2; (5.2.12)

it implies (5.2.10).
Proof of Theorem A1. Let us apply Growth-and-Zeros theorem to the function I in the domain
U in order to estimate the number of zeros ofI in K ; note that K � � (t0; � ): The intrinsic diameter
of K is estimated from above by (5.2.8). The gap condition forU and K has the form

� � gap (K; @U) = " =
�
2

=
c00

8n2

by the de�nition of U: Hence,

e
2D

" < e
72 n 2

c 00 8n 2
= A576 :

The Bernstein index BK;U (I ) is estimated from above in (5.2.10). By Growth-and-Zeros theorem

# f t 2 � (t0) j I (t) = 0 g < B K;U (I )A576 < (1 � logc0)A578 :

This proves (5.2.5). 2

The following remark motivates the restriction on R in Theorem B.

Remark 5.2.9 Let K be the set from the Main Lemma,� W K be its diameter in the Poincar�e metric
of W . Then

� W K < (c00)� 1288n4: (5.2.13)

Indeed, � W K is no greater than the ratio of the double intrinsic diameter of K divided by its minimal
distance to the critical values of H (Proposition 5.2.8). Together with (5.2.8) and (5.2.9) this implies
(5.2.13). On the other hand, in the proof of Theorem B, we apply Growth-and-Zeros theorem in the
case, when the Poincar�e diskDPR (H; t 0) is large enough, namely, contains the setK: Hence, the
maximum of jI j over the disk is no less than maxjI j over K . The latter maximum is estimated from
below in the proof of the Main Lemma.

5.2.5 Theorem A2 and proof of Theorem A

Theorem A2. Let H , t0; a = a(t0); b = b(t0), l (t0), r (t0) be the same as in the previous subsection.
Let ! be a real 1- form in 
 �

n . Then, in assumptions of Theorem A1,

# f t 2 (a; l(t0)) [ (r (t0); b) j I (t) = 0 g < (1 � logc0)A4800 (5.2.14)

Proof of Theorem A. By Theorems A1 and A2

# f t 2 (a; b); I (t) = 0 g < (1 � logc0)A578 + (1 � logc0)A4800 < 2(1 � logc0)A4800 : (5.2.15)

This implies the estimate of the number of zeros given by Theorem A on the interval ( a; b).
Let � 0 � R be the maximal interval of continuity of the family � of real o vals that contains  0:

Then � 0 is bounded by a pair of critical values, at most one of them maybe in�nite. In general,
the interval � 0 may contain critical values (see Fig. 5.1, which presents a possible arrangement of
level curves ofH in this case : A1, A2, A3 are critical points of H , aj = H (A j ), a2 2 � 0 = ( a1; a3),
t0 2 (a1; a2)). In this case � 0 6= ( a; b) = ( a1; a2). Let us estimate the number of zeros on� 0. The
interval � 0 is split into at most n2 subintervals bounded by critical values. On each subinterval the
number of zeros ofI is estimated by (5.2.15), as before. Therefore, the number of zeros ofI on � 0 is
less than 2n2(1 � logc0)A4800 < (1 � logc0)A4801 : This proves Theorem A. 2
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5.3 An upper bound for the number of zeros on a real segment
distant critical values. Proof of the Main Lemma

In this section we prove the Main Lemma (modulo technical details) and hence Theorem A1. We
also prove the Modi�ed Main Lemma, see Subsection 5.3.8 below, and prepare necessary tools for the
proof of Theorem A2.

5.3.1 The plan of the proof of the Main Lemma

The proof of the Main Lemma is based on the following idea. Theintegral (5.1.1) is extended onto
the universal coverW of the set of noncritical values of the real ultra-Morse polynomial H ; the base
point of this cover belongs to (� 3; 3): The upper estimate of the Bernstein index of this integral in
the pair of domains U; K requires an upper bound of the maximal modulus of the integral in U; and
a lower bound in K: When we consider these maxima instead of their ratio, we haveto normalize the
form !; multiplying it by an appropriate complex factor.

De�nition 5.3.1 A polynomial 1-form is normalized if the maximal magnitude of its coe�cients
equals 1; and some coe�cients equal 1:

The upper bound of the integral is provided by the quantitati ve algebraic geometry. The main
di�culty is to obtain the lower bound. For this we consider � 2 integrals instead of a single one ; recall
that � = n2: Namely, we introduce a special set of� monomial 1- forms ! i ; i = 1 ; : : : ; � and a special
set of vanishing cycles on the level curvesSt = f H = tg : � 1(t); : : : ; � � (t): The matrix I (t) with the
entries I ij (t) =

R
� j ( t ) ! i is calleda matrix of periods. The determinant �( t) = det I (t) is single-valued.

The �rst step is to evaluate this determinant and to provide a lower bound for �( t) when t is distant
from the critical values of H: This is done in [47] and [46]. The second step is to give an upper estimate
for the entries of I : This estimate is based on the results of [46] (see Theorem C stated in 5.2.2). The
main step is to construct the set K � W: This set is constructed in such a way that the assumption
\ m := max K jI j; I (t) =

R
 ( t ) !; is small" implies that all the integrals

R
� j ( t 0 ) !; j = 1 ; :::; � are small.

This implication makes use of the Picard-Lefschets theorem, and the connectedness of the intersection
graph of the special system of vanishing cycles.

The implication above is used in the following way. For a normalized form ! , one may replace
some row of the matrix I by the row

R
� 1 ( t ) !; : : : ;

R
� � ( t ) ! without changing the main determinant.

All the entries of I are estimated from above ; the determinant ofI is estimated from below. This
implies that none of the rows of I may be too small, and thus provides a lower bound form. The
domain U is chosen as a slightly modi�ed" -neighborhood ofK for appropriate ": The upper estimate
of M = max U jI j is obtained by quantitative algebraic geometry [46], as theupper bound of the jI ij jjU

above, and a Geometric lemma stated in 5.3.4. Upper estimateof M and lower bound for m imply an
upper estimate of the Bernstein indexBU;K (I ) and thus prove the Main Lemma.

5.3.2 Special set of vanishing cycles and modi�ed Main Lemma

All along this section H is a real normalized ultra-Morse polynomial of degreen + 1 � 3; � =
n2; a1; : : : ; a� are the critical values ofH; � is the same as in (5.1.2)," = �= 2: For t close toaj ; � j (t)
is a local vanishing cycle corresponding toaj on a level curve

St = f H = tg:

Recall the de�nition of this cycle.
Consider an ultra-Morse polynomial in C2 having a (Morse) critical point with a critical value a:

An intersection of a level curve of this function corresponding to a value close toa with an appropriate
neighborhood of the critical point is di�eomorphic to an annulus. This follows from the Morse lemma.
The annulus above may be called a local level curve corresponding to the a critical value a:
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De�nition 5.3.2 A generator of the �rst homology group of the local level curve corresponding toa
is called a local vanishing cyclecorresponding toa:

A local vanishing cycle is well de�ned up to change of orientation.

A path � j : [0; 1] ! C is called regular provided that

� j (0) = t0; � j (1) = aj ; � j [0; 1) � B (5.3.1)

De�nition 5.3.3 Let � j be a regular path, s 2 [0; 1] be close to 1; � j (t); t = � j (s); be a local
vanishing cycle on St corresponding to aj : Consider the extension of� j along the path � up to a
continuous family depending ons of cycles� j (� j (s)) in complex level curvesH = � j (s): The homology
class� j = � j (t0) 2 H1(St 0 ; Z) (corresponding to s = 0) is called a cycle vanishing along� j :

De�nition 5.3.4 Consider a set of regular paths� 1; : : : ; � � ; see (5.3.1). Suppose that these paths
are not pairwise and self intersected. Then the set of cycles� j 2 H1(St 0 ; Z) vanishing along � j ; j =
1: : : : ; �; is called amarked set of vanishing cycleson the level curveH = t0:

Recall that the intersection graph of a set of cycles inH1(St ; Z) is the graph whose vertices are
the elements of the set ; two vertices are connected by an edge, if and only if the corresponding cycles
have nonzero intersection index.

Theorem 5.3.5 [9] Let H be a ultra-Morse polynomial. For any noncritical value t any marked set of
vanishing cycles inH1(St ; Z) is a basis in the same homology group and has a connected intersection
graph.

Recall that W = W (t0; H ) is the universal cover over the set of noncritical values ofH with the
base point t0 and the projection � : W ! C:

Let � 1; :::; � � be a marked set of vanishing cycles. For any cycle� l from this set, consider an integral

I l (t) =
Z

� l ( t )
!;

over local vanishing cycles, fort close to al . This integral is holomorphic at al , and takes zero value
at al . Denote by Wl the Riemann surface of the analytic extension of this integral. Note that the
Riemann surfaceWl contains the disk D � (a).

Lemma 5.3.6 (Modi�ed Main Lemma). The Main Lemma from Subsection 5.2.4 holds true pro-
vided that the real oval (t) of integration (1.1) is replaced by a local vanishing cycle� l (t) close to the
corresponding critical value al , W is replaced byWl and � is replaced by the diskD � (al ):

This lemma is proved in 5.3.8.

5.3.3 Matrix of periods

Consider and �x an arbitrary marked set of vanishing cycles � j ; j = 1 ; : : : ; �: For any t̂ 2 W; let
� j (t̂) be the extension of� j corresponding to t̂ (as in De�nition 5.1.7).

De�nition 5.3.7 Consider a set 
 of � forms ! j of the type

! i = yxk yl dx; k; l � 0; k + l � 2n � 2; (5.3.2)

(k; l ) depends oni; such that all the forms with k + l � n � 1 are included in the set, and the number
of forms with monomials of degree 2n � k equalsk for 1 � k � n. In what follows, such a set is called
standard.
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A matrix of periods I = ( I ij ); 1 � i � �; 1 � j � � , is the matrix function de�ned on W by the
formula :

I ij (t̂) =
Z

� j ( t̂ )
! i ; I (t̂ ) = ( I ij (t̂)) (5.3.3)

where � j ; j = 1 ; : : : ; �; form a marked set of vanishing cycles ;f ! i j i = 1 ; : : : ; � g is a standard set of
forms (5.3.2).

When we want to specify dependence onH , we write I (t̂; H ) instead of I (t̂ ):

5.3.4 Upper estimates of integrals

Denote by j� j the length of a curve �; and by U" (A) the " -neighborhood of a setA:
The main result of the quantitative algebraic geometry that we need is the following

Theorem 5.3.8 Let � j be a vanishing cycle from a marked set, see De�nition 5.3.4, corresponding to
a curve � j ; j� j j � 9 (recall that jt0j � 3). Let � � B be a curve starting att0 (denote byt its endpoint)
such that

j� j � 36n2 + 1 ; jt j � 5: (5.3.4)

Let the curve � j \ U" (aj ) be a connected arc of� j , and the curves� j n U" (aj ) and � have an empty
intersection with " -neighborhoods of the critical valuesak ; where " = �= 2; � is from (5.1.2). Let ! be
a form (5.3.2), t̂ 2 W corresponds to[� ]; and � j (t̂) be the extension of� j to t̂. Then

j
Z

� j ( t̂ )
! j < 2

2600 n 16

c 00( H ) (c0(H )) � 28n 4
:= M 0 (5.3.5)

This result is based on TheoremC from 5.2.2. Both results are proved in the paper [46].
We have to give an upper bound of the integral not over a vanishing cycle, but over a real oval.

The following lemma shows that the real oval is always a linear combination of some (at most � )
vanishing cycles with coe�cients � 1.

Lemma 5.3.9 (Geometric lemma). Let H be a real ultra-Morse polynomial and be a real oval of
H: Let H j  = t0: Denote bys the number of critical points of H located inside in the real plane. Let
a1; : : : ; as be the corresponding critical values. Let� j ; j = 1 ; : : : ; s, be nonintersecting and nonself-
intersecting paths that connectt0 with these critical values and satisfy assumption (5.3.1).Moreover,
suppose that all these paths belong to the upper halfplane and for any aj (which is real), an open
domain bounded by a path� j and a real segment (connecting the endpoints of� j ) contains no critical
value of H (see Figures 5.3 and 5.4). Let� j be the vanishing cycles that correspond to the paths� j :
Then

[ ] = � s
1" j � j ; where " j = � 1: (5.3.6)

A proof of Lemma 5.3.9 (given in [53] and omitted here) is based on Picard-Lefschetz theorem [9].
Upper estimates of the integrals of monomial forms over vanishing cycles are provided by Theorem

5.3.8. When we replace a monomial form by a polynomial one, the following changes are needed. Let
! 2 
 �

n be the form in the integral I: There exists another form of type

! 0 =
X

k+ l � n � 1

akl xk yl +1 dx; (5.3.7)

such that the di�erence ! � ! 0 is exact. We may replace the form! by ! 0 in (5.1.1) ; the integral I will
be preserved. Moreover, we can replace the form! 0 by a normalized form �! 0; � 2 C; see De�nition
5.3.1. Hence, we may assume that the form! in the integral I has the type (5.3.7) and is normalized
from the very beginning. When we replace a polynomial form bya normalized one, the previous upper
bound of the integral should be multiplied by the number of monomials, namely, by n (n +1)

2 . When
the vanishing cycle is replaced by a real one, the integral isreplaced by a sum ofs � n2 integrals over
vanishing cycles, by the Geometric Lemma. This results in another multiplication by n2.
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Fig. 5.3 { The cycle  =  (t0) and local vanishing cycles� j = � j (t j ) ; the points t j close to aj are
marked at Fig.4.
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Fig. 5.4 { The paths for the extension of the local vanishing cycles � j (t).

Corollary 5.3.10 In the condition of Theorem 5.3.8 let H be a real polynomial, (t̂) be the extension
to t̂ of a real oval, ! be a normalized form (5.3.7). Then

jI  ( t̂ ) ! j �
n3(n + 1)

2
M 0: (5.3.8)

5.3.5 Determinant of periods

The determinant of the matrix of periods (5.3.3) is called the determinant of periods. It appears
that this determinant is single-valued on B; thus depending not on a point of the universal coverW;
but rather on the projection of this point to B: Let

�( t) = det I (t̂ ); t = � t̂:

The main determinant is single-valued ; this follows from the Picard-Lefschetz theorem. Indeed, a
circuit around one critical value adds the multiple of the correspondent column to some other columns
of the matrix of periods. Thus the determinant remains unchanged.

When we want to specify the dependence of the main determinant on H; we write � H (t): This
function is a polynomial in t; and an algebraic function in the coe�cients of H: The formula for
the main determinant (with ! i of appropriate degrees) with a sketch of the proof was claimed by
A.Varchenko [114] ; this formula is given up to a constant factor not precisely determined. The complete
answer (under the same assumption on the degrees of! i ) is obtained in [47], with the latter constant
factor calculated explicitly. Moreover, the following lower estimate holds :

Theorem 5.3.11 For any normalized ultra-Morse polynomial H; the tuple 
 of standard forms
(5.3.2) may be so chosen that for anyt 2 C lying outside the � = c00

4n 2 - neighborhoods of the cri-
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tical values of H the following lower estimate holds :

j�( t; H )j � (c0(H )) 6n 3

(c00(H )) n 2

n� 62n 3
:= � 0 (5.3.9)

This result is proved in [46] with the use of the explicit formula for the Main Determinant mentioned
before, and results of the quantitative algebraic geometry.

5.3.6 Construction of the set K

We can now pass to the construction of the setK mentioned in the Main Lemma. We �rst construct
a smaller setK 0:

Lemma 5.3.12 (Construction lemma). Let  � St 0 be a real oval of an ultra-Morse polynomial.
Then there exist :

a set of regular paths� j ; j = 1 ; : : : ; �; (see (5.3.1)), such that j� j j � 9; and the paths� j are not
pairwise and self intersected ;

a path connected setK 0 � W; t0 2 K 0; �K 0 � D3; such that for any cycle � j 2 H1(St 0 ; Z)
vanishing along� j there exist two points� 1; � 2 2 K 0 \ � � 1(t0) with the property

[ (� 1)] � [ (� 2)] = l j [� j ]; l j 2 Z n 0: (5.3.10)

Moreover,
diamint K 0 < 19n2; (5.3.11)

and �K 0 is disjoint from the � -neighborhoods of the critical valuesaj ; j = 1 ; : : : ; �:

The next modi�cation of this lemma will be used in the proof of the Modi�ed Main Lemma.

Lemma 5.3.13 (Construction lemma for vanishing cycles). Construction lemma holds true if
 � St 0 is replaced by any vanishing cycle� l = � l (t0) from an arbitrary marked set of vanishing cycles,
and W is replaced byWl (see 5.3.2). In the conclusion, (5.3.10) should be replacedby

[� l (� 1)] � [� l (� 2)] = l j [� j (t0)]; for j 6= l; l j 2 Z n 0:

Both lemmas are purely topological. Their proof is given in [53] and omitted here. It is based
on Picard-Lefschetz theorem [9] and the connectivity of theintersection graph of marked basis of
vanishing cycles (Theorem 5.3.5). In what follows we deducethe Main Lemma from Lemma 5.3.12
and Theorems 5.3.8, 5.3.11.

Corollary 5.3.14 (of Lemma 5.3.12). For any form ! (not necessarily of type (5.3.2)) and any
marked set of vanishing cycles consider the vector function

I ! : W ! C� ; t̂ 7!

 Z

� 1 ( t̂ )
!; : : : ;

Z

� � ( t̂ )
!

!

: (5.3.12)

Let jj � jj denote the Euclidean length inC� : Then

m0 := max
t̂ 2 K 0\ � � 1 ( t 0 )

jI (t̂ )j �
1

2n
jj I ! (t0)jj : (5.3.13)

Proof Consider a component of the vectorI ! (t0) with the largest magnitude. Let its number be j:
Then �

�
�
�
�

Z

� j ( t 0 )
!

�
�
�
�
�

�
1
n

jj I ! (t0)jj : (5.3.14)
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By Lemma 5.3.12, there exist� 1; � 2 2 K 0 \ � � 1(t0) such that

I (� 1) � I (� 2) = l j

Z

� j ( t 0 )
!; l j 2 Z n 0:

Hence, at least one of the integralsI (� l ) in the left hand side, say I (� l ); l 2 f 1; 2g; admits a lower
estimate :

jI (� l )j �
1
2

�
�
�
�
�

Z

� j ( t 0 )
!

�
�
�
�
�
: (5.3.15)

Together with (5.3.14) this proves the corollary. 2

Let us now take
K = K 0 [ � ; � = � (t0) [ L � (t0) [ R� (t0); (5.3.16)

see (5.2.6), (5.2.7).
In the following section we will check that this K satis�es the requirements of the Main Lemma.

5.3.7 Proof of the Main Lemma

Let us take K as in (5.3.16). Let � be the same as in (5.1.2). LetU be the smallest simply connected
set that contains the "-neighborhood ofK; " = �= 2: Then (5.2.8) follows from (5.3.11), (5.3.16). The
last statement of Lemma 5.3.12 implies (5.2.9).

Let us now check (5.2.10), that is, estimate from above the Bernstein index BK;U (I ) for the integral
(5.1.1).

Let the form ! in the integral (5.1.1) be normalized, and let, as before,M = max �U jI j; m =
maxK jI j: By Corollary 5.3.10,

M �
n3(n + 1)

2
M 0 := M 0

0

where M 0 is from (5.3.5). Let us now estimatem from below, following the ideas presented at the
beginning of the section.

Let in (5.3.7) jak0 l 0 j = 1 ; ! i = yxk0 yl 0 dx: Without loss of generality we may assume thatak0 l 0 = 1 :
Let us now replace thei th row of the matrix I by the vector I ! : This transformation is equivalent to
adding a linear combination of rows ofI to the i th row, so the determinant �( t0) remains unchanged.

By Theorem 5.3.8 and (5.2.8), all the entries in other rows are estimated from above byM 0; see
(5.3.5). (The corresponding paths� j used in the construction of K are chosen as in Lemma 5.3.12,
so, the inequality j� j j � 9 of Theorem 5.3.8 holds true.) Hence, all the vector-rows except for the i th
one have the length at mostnM 0: By (5.3.13), the i th row has the length at most 2nm0: We can now
obtain a lower bound for m: Indeed, m � m0: On the other hand,

� 0 � j �( t0)j � 2m0M � � 1
0 n� ; � = n2;

where � 0 is the same as in (5.3.9). Therefore,

m � m0 �
1
2

� 0M 1� �
0 n� � : (5.3.17)

We can now estimateBK;U (I ) from above. Indeed,

BK;U (I ) = log M � logm � logM 0
0 � logm0:

Elementary estimates (together with (5.3.17)) imply that

logM 0
0 � logm0 > (1 � logc0)A2: (5.3.18)

This proves the Main Lemma.
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5.3.8 Modi�ed Main Lemma and zeros of integrals over (comple x) vani-
shing cycles

Proof of the Modi�ed Main Lemma. The arguments of the previous subsection work almost
verbatim. The previous corollary for the integral I = I l taken over � l instead of ; is stated and proved
in the same way.

Let K 0 be the same as in Lemma 5.3.13. Instead of (5.3.16), let

K = K 0 [ � l [ D � (al ):

Let U be the smallest simply connected set that contains the"-neighborhood ofK:
By Theorem 5.3.8,

max
V

jI l j � M 0; where V = U n D � (al ):

But I l is holomorphic in D � (al ): Hence, by the maximum modulus principle, the previous inequality
holds in U instead of V: After that, the rest of the arguments of the previous subsection work. This
proves the Modi�ed Main Lemma. 2

The following theorem will be used in the next section.

Theorem 5.3.15 The number of zeros of the integralI l in the disk D � (al ) satis�es the inequality :

# f t̂ 2 D � (al ) j I l (t̂ ) = 0 g � (1 � logc0(H ))A578 : (5.3.19)

The proof is the same as for Theorem A1, section 5.2.4.

5.4 Estimates of the number of zeros of Abelian integrals nea r
critical values

In this section we give a proof (due to Yu.S.Ilyashenko) of Theorem A2, see 5.2.5. Together with
Theorem A1 (whose proof was given in Section 5.2), Theorem A2implies Theorem A.

We split the proof of Theorem A2 into three cases : 1)a; b 6= 1 ; 2) a = �1 ; 3) b = + 1 . First
we prove Theorem A2 in Case 1 (Subsections 5.4.1-5.4.5). Cases 2 and 3 are treated in 5.4.6.

5.4.1 Argument principle, KRY theorem and Petrov's method

All the three cases are treated in a similar way. We want to apply the argument principle.
The estimates near in�nity are based on the argument principle only. The estimates near �nite

critical points use the Petrov's method that may be considered as a generalization of the argument
principle for multivalued functions. The increment of the argument is estimated through the Bernstein
index of the integral, bounded from above in the previous sections. The relation between these two
quantities is the subject of the Khovanskii-Roitman-Yakovenko (KRY) theorem and Theorem 5.4.3
stated below. It seems surprising that these theorems were not discovered in the classical period of
the development of complex analysis. The latter theorem is proved in [70] ; the proof is based on the
KRY theorem and methods of [82] and [105].

At this spot we begin the proof of Theorem A2 in case 1. Recall the statement of the theorem in
case 1.

Theorem A2 (Case 1). Let a 6= 1 ; b 6= 1 : Then

# f t 2 (a; l(t0)) [ (r (t0); b) j I (t) = 0 g < (1 � logc0)e
4700
c 00 n 4

;

where l(t0) and r (t0) are the same as at the beginning of 5.2.4.
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We will prove that

# f t 2 (a; l(t0)) j I (t) = 0 g <
1
2

(1 � logc0)e
4700
c 00 n 4

: (5.4.1)

Similar estimate for (r (t0); b) is proved in the same way. These two estimates imply TheoremA2.
Let � = �( a) be the same as in (5.1.5), namely

� = f t 2 W j 0 < jt � aj � �; j arg(t � a)j � 2� g:

Lemma 5.4.1 Inequality (5.4.1) holds provided that in (5.4.1) the interval (a; l(t0)) is replaced by� :

Lemma 5.4.1 implies (5.4.1) because (a; l(t0)) � � : Let

�  = f t 2 � j  � j t � aj � � g

Lemma 5.4.2 Lemma 5.4.1 holds provided that in (5.4.1) the domain� is replaced by�  :

Lemma 5.4.2 implies Lemma 5.4.1, because

� = [  > 0�  :

The proof of Lemma 5.4.2 occupies this and the next four Subsections. We have

@�  = � 1� 2� 3� 4:

As sets, the curves �j are de�ned by the formulas below ; the orientation is de�ned separately :

� 1 = f t j j t � aj = �; jarg(t � a)j � 2� g = � a

� 3 = f t j j t � aj =  ; jarg(t � a)j � 2� g

� 2;4 = f t j  � j t � aj � �; arg (t � a) = � 2� g:

The curve � 1 is oriented counterclockwise, �2 is oriented from the right to the left, � 3 is oriented
clockwise, � 4 is oriented from the left to the right.

Let # f t 2 (a +  ; l (t0)) j I (t) = 0 g = N  : Denote by R� (f ) the increment of the argument of a
holomorphic function f along a curve � ( R of Rouchet),

V� (f ) = the variation of the argument of f along � : Obviously, j R� (f ) j� V� (f ):

In assumption that I 6= 0 on @�  ; the argument principle implies that

N  �
1

2�
R@�  (I ) =

1
2�

4X

1

R� j (I ): (5.4.2)

The �rst term in this sum is estimated by the modi�ed KRY theor em, the second and the forth one
by the Petrov method, the third one by the Mardesic theorem. The case when the above assumption
fails is treated in 5.4.3.
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5.4.2 Bernstein index and variation of argument

The �rst step in establishing a relation between variation of argument and the Bernstein index
was done by the following KRY theorem.

Let U be a connected and simply connected domain inC; � � U be a (nonoriented compact)
curve, f be a bounded holomorphic function onU.

KRY theorem, [82] For any tuple U; � � U as above and a compact setK � U there exists a
geometric constant� = � (U; K; �) ; such that

V� (f ) � �B K;U (f ):

In [82] an upper estimate of the Bernstein index through the variation of the argument along
� = @Uis given ; we do not use this estimate. On the contrary, we needan improved version of the
previous theorem with � explicitly written and U being a domain on a Riemann surface. These two
goals are achieved in the following theorem.

Let j� j be the length, and � (�) be the total curvature of a curve on a surface endowed with a
Riemann metric.

Theorem 5.4.3 [70] Let � b U00b U0 b U � W be respectively a curve, and three open sets in a
Riemann surfaceW: Let f : U ! C be a bounded holomorphic function,f j � 6= 0 : Let � : W ! C be a
projection which is locally biholomorphic, and the metric on W be a pullback of the Euclidean metric
in C: Let " < 1

2 and the following gap conditions hold :

� -gap (� ; U00) � "; � -gap (U00; U0) � "; � -gap (U0; U) � ": (5.4.3)

Let D > 1 and the following diameter conditions hold :

diam int U00� D; diam int U0 � D (5.4.4)

Then

V� (f ) � BU 00;U (f )(
j � j

"
+ � (�) + 1) e

5D
" : (5.4.5)

Recall that intrinsic diameter and � -gap are de�ned in 5.2.3.
We can now estimate from above the �rst term in the sum (5.4.2). The estimate works in both

cases whena is �nite or in�nite.

Lemma 5.4.4 Let H be a normalized polynomial of degreen + 1 � 3. Let I be the same integral as in
(5.1.1). Let K be a compact set mentioned in the Main Lemma, and � 1 = � a be the same as in this
lemma (a may be in�nite). Then

V� 1 (I ) < (1 � logc0(H ))A4600 ; A = e
n 4

c 00 : (5.4.6)

In what follows, we write c0; c00instead of c0(H ); c00(H ):
The lemma follows easily from Theorem 5.4.3 and the Main Lemma, see [53] for more detail.

Remark 5.4.5 Lemma 5.4.4 remains valid if in its hypothesis the integralI is replaced by an integral
J over the cycle vanishing at the critical value a of H . The proof of this modi�ed version of Lemma
5.4.4 repeats that of the original one with the following change : we use the Modi�ed Main Lemma
instead of the Main Lemma.
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Corollary 5.4.6 Suppose that the integralJ with a real integrand ! is taken over a local vanishing
cycle � t corresponding to the real critical valuea. Then the number of zeros ofJ in the disk centered
at a of radius � = c00

4n 2 admits the following upper estimate :

NJ := # f t 2 C j j t � aj < �; J (t) = 0 g <
1

2�
(1 � logc0)A4600 (5.4.7)

This follows from the modi�ed Lemma 5.4.4 and the argument principle.

5.4.3 Application of the Petrov's method

The Petrov's method applied below is based on the remark thatthe magnitude of the increment
of the argument of a nonzero function along an oriented curveis no greater than the number of zeros
of the imaginary part of this function increased by 1 and multiplied by �: Indeed, at any half circuit
around zero, a planar curve crosses an imaginary axis at least once. The method works when the
imaginary part of a function appears to be more simple than the function itself.

Let � (t) 2 H1(t) be the local vanishing cycle at the point a: Let ! be the same real form as in
integral (5.1.1). Let J be the germ of integral J (t) =

R
� ( t ) ! along the cycle � (t); which is a local

vanishing cycle at t = a: Note that J is single-valued in any simply connected neighborhood ofa that
contains no other critical values ofH: Let l0 = (  (t); � (t)) 6= 0 be the intersection index of the cycles
 (t) and � (t): As the cycle  (t) is real and H is ultra-Morse, l0 may take values� 1; � 2 only. This is
implied by the following lemma.

Lemma 5.4.7 Consider a maximal family of real ovals that contains (t0): The union of the ovals
of the family forms an open domain. The boundary of this domain consists of one or two connected
components. Any of these components belongs to a critical level of H and contains a unique critical
point. Fix any of these critical points and denote by� the corresponding local vanishing cycle. Then the
cycle � may be extended to a cycle� (t0) that belongs to a marked set of vanishing cycles constructed
above. Moreover,

(� (t0);  (t0)) 6= 0 ; more precisely, it is equal to � 1; � 2:

Let
� 0 = f t 2 R j te2�i 2 � 2g:

Then by the Picard-Lefschetz theorem

I j � 2 = ( I + l0J ) j � 0 ; I j � 4 = ( I � l0J ) j � 0 :

Proposition 5.4.8 The integral J is purely imaginary on the real interval (a; b).

Proof Recall that the form ! and the polynomial H are real. Then

J (t) = � J (t):

Indeed, ! = Q(x; y)dx. The involution i : (x; y) 7! (x; y) brings the integral J (t) =
R

� ( t )
Qdx to

R

i � ( t )
Qdx =

R

� � ( t )

Qdx = �
R

� ( �t ) Qdx = � J (t): On the other hand, for real t we have t = t and thus,

J (t) = J (t). Hence, J (t) = � J (t) for t 2 (a; b): This implies Proposition 5.4.8. 2

Corollary 5.4.9 Let, as above,l0 6= 0 be the intersection index of the cycles (t) and � (t): Then

ImI j � 2; 4 = � l0J j � 0 :
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Proof This follows from Proposition 5.4.8, Picard-Lefschetz theorem and the reality of I on � 0. 2

Suppose �rst that I has no zeros on �2 and � 4: Then

�
�R� 2; 4 (I )

�
� � � (1 + N ); where N = # f t 2 � 0 j J (t) = 0 g: (5.4.8)

Obviously, N � NJ ; see (5.4.7). The right hand side of this inequality is already estimated from above
in Corollary 5.4.6. Hence,

�
�R� 2; 4 (I )

�
� � � +

1
2

(1 � logc0)A4600 :

Suppose now thatI has zeros on �2 (hence on �4, by Proposition 5.4.8). Indeed, its real part is the
same at the corresponding points of �2; � 0; � 4; and the imaginary parts of I j � 2 and I j � 4 are opposite
at these points. In this case we replace the domain � by � 0

 de�ned as follows.
The curves � 2;4 should be modi�ed. A small segment of �2 centered at zero point ofI that contains

no other zeros ofJ; should be replaced by an upper half-circle having this segment as a diameter and
containing no zeros ofJ: A similar modi�cation should be done for � 4 making use of lower half-circles.
Denote the modi�ed curves by � 0

2;4: Let � 0
 be the domain bounded by the curve

@� 0
 = � 1� 0

2� 3� 0
4: (5.4.9)

It contains �  , and we will estimate from above the number of zeros ofI in � 0
 still using the argument

principle. The increment of argI along � 1 is already estimated in 5.4.2. Here we give an upper bound
for the increment of argI along � 0

2;4: The increment along � 3 is estimated in the next subsection.

Proposition 5.4.10 Let N be the same as in (5.4.8). Then

j R� 0
2; 4

(I ) j� � (2N + 1) : (5.4.10)

Proof We will prove the proposition for � 0
2; the proof for � 0

4 is the same. Let I have zerosbj 2
� 2; j = 1 ; :::; k; the number of occurrences ofbj in this list equals its multiplicity. Note that

Im I j � 2 = l0J (5.4.11)

Hence, at the points bj ; J has zeros of no less multiplicity thanI: Hence, the total multiplicity k0 of
zeros ofJ at the points bj 2 � 2; j = 1 ; :::; k; is no less thank: Let J have s zeros on �02: We have :
k0 � k; s � N � k0 � N � k: Let � 1; :::; � q; q � k +1 ; be the open intervals, the connected components
of the di�erence of � 0

2 and the half-circles constructed above. Letsj be the number of zeros ofJ on
� j ;

P q
1 sj = s: Let

Rj = R� j (I ):

Then

Rj � � (sj + 1) :

Hence,

j R� 0
2
(I ) j� � (k +

qX

1

(sj + 1)) � � (2k + 1 + s) � � (2k0+ 1 + s) � � (2N + 1) ; (5.4.12)

where N � NJ < 1
2� (1 � logc0)A4600 , see (5.4.7). 2
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5.4.4 Application of the Mardesic theorem

Proposition 5.4.11 Let I be the integral (5.1.1), and � 3 be the same as in Subsection 5.4.1. Then
for  small enough,

jR� 3 (I )j � � (4n4 + 1) : (5.4.13)

Proof Let J and l0 be the same as in the previous subsection. Leta = 0 ; and I (e2�i t) means the result
of the analytic extension of I from a value I (t) along a curvee2�i' t; ' 2 [0; 1]: By the Picard-Lefshetz
theorem, for small t

I (e2�i t) = I (t) + l0J (t):

Consider the function

Y (t) = I (t) � l0
log t
2�i

J (t):

This function is single-valued because the increments of both terms I and l0
log t
2�i J (t) under the analytic

extension over a circle centered at 0 cancel. The functionI is bounded along any segment ending at
zero, and J is holomorphic at zero, with J (0) = 0 : Hence, Y is holomorphic and grows no faster
than log jt j in a punctured neighborhood of zero. (In fact, it is bounded in the latter neighborhood :
jJ (t) log tj � cjt jj log tj ! 0, as t ! 0.) By the Removable Singularity Theorem, it is holomorphic at
zero. Hence,

I (t) = Y (t) + l0
log t
2�i

J (t) (5.4.14)

with Y and J holomorphic. We claim that the increment of the argument ofI along � 3 for  small is
bounded from above through ord0J; the multiplicity of zero of J at zero. The latter order is estimated
from above by the following theorem by Mardesic :

Theorem 5.4.12 [90]. The multiplicity of any zero of the integral I (or J ) taken at a point where
the integral is holomorphic does not exceedn4:

The function (5.4.14) is multivalued. The proof of Proposition 5.4.11 is based on the following
simple remark. Let f 1; f 2 be two continuous functions on a segment� � R, and jf 1j � 2jf 2j: Then
jR� (f 1 + f 2)j � j R� (f 1)j + �

3 : Indeed, the value R� (f 1 + "f 2) cannot change more than by �
3 , as "

ranges over the segment [0; 1]:
To complete the proof of Proposition 5.4.11, we need to consider three cases. Let� = ord 0Y; � =

ord0J; f (' ) = Y ( e 2�i' ); g(' ) = l0
�

J log t
2�i

�
( e 2�i' ): Note that � � n4:

Case (i) : � < �: Then, for  small, 2jgj � j f j: By the previous remark, applied to f 1 = f; f 2 = g;
we get

jR� 3 (I )j � � (4� + 1) � � (4� + 1) � � (4n4 + 1) :

Case (ii) : � = �: Then, for  small, 2jf j � j gj; because of the logarithmic factor ing: In the same
way as before, we get

jR� 3 (I )j � � (4� + 1) � � (4n4 + 1) :

Case (iii) : � > �: In the same way, as in Case (ii), we get (5.4.13). 2

5.4.5 Proof of Theorem A2 in case 1 (endpoints of the interval considered
are �nite)

Proof It is su�cient to prove Lemma 5.4.2. We prove a stronger statement

N (I; � 0
 ) := # f t 2 � 0

 j I (t) = 0 g <
1
2

(1 � logc0)A4600 (5.4.15)

By the argument principle

2�N (I; � 0
 ) � V (� 1)+ j R� 0

2
(I ) j + j R� 3 (I ) j + j R� 0

4
(I ) j (5.4.16)
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The �rst term in the r.h.s is estimated in (5.4.6). The second and the fourth terms are estimated from
above in (5.4.10) (the N in the r.h.s. of (5.4.10) is estimated from above byNJ , see (5.4.7)). The
third term is estimated in (5.4.13). Altogether this proves (5.4.15), hence, Lemma 5.4.2 and implies a
stronger version of (5.4.1) :

N (I; � 0
 ) <

1
2

(1 � logc0)A4600 :

This proves Theorem A2 in case 1. 2

5.4.6 Proof of Theorem A2 in Case 2 (near an in�nite endpoint)

Here we prove Theorem A2 for a segment with one endpoint, say,b, in�nite.

Proposition 5.4.13 The integral I has an algebraic branching point at in�nity of order n + 1 :

Proof of Theorem A2 near in�nity. We consider the caseb = + 1 only ; the casea = �1 is
treated in the same way. Let WI be the Riemann surface of the integralI: Let � � WI be the degree
n + 1 cover of the circle jt j = 3 with the base point t1 = +3 : This is a closed curve onWI : This curve
is a boundary of a domain onWI that covers n + 1 times a neighborhood of in�nity on the Riemann
sphere. Let us denote this domain byW 1

I : We will estimate from above

N1 = f t 2 W 1
I j I (t) = 0 g:

This will give an upper estimate to the number of zeros ofI on � + = (3 ; + 1 ) because� + � W 1
I :

We will use the argument principle in the form

N1 �
1

2�
V� (I ) + n + 1 : (5.4.17)

This follows from the argument principle and the fact that th e in�nity is the only pole of I jW 1
I

, and
its order is at most n + 1. The latter bound on the order follows from the condition t hat the 1- form
under the integral (1.1) has degree at mostn, and the fact that the integration oval  (t) has size (and
length) of the order O(jt j

1
n +1 ), as t ! 1 , t 2 R.

The variation in the right hand side will be estimated by Theorem 5.4.3. To apply this theorem
we need to de�ne all the entries like in the previous subsection.

We have : � = @W1
I : Without loss of generality we consider that I j � 6= 0 (one can achieve this by

slight contraction of the circle jt j = 3). Let K be the same as in the Main Lemma. Denote byU0 the
set U from that Lemma : both K and U0 are taken projected to the Riemann surface of the integral
I . By (5.2.7), K � �. Let " = �

6 = c00

24n 2 , U00, U0, U be respectively the minimal simply connected
domain containing " -, 2" -, 3" - neighborhood ofK . One hasK; � b U00b U0 b U. Then U coincides
with the projection of U0 to WI (up to �lling holes, if there are any). Therefore, maxU 0

jI j = max U jI j
(the maximum principle). Hence,

BU 00;U (I ) � BK;U 0 (I ) < (1 � logc0)A2:

The latter inequality is (5.2.10). This provides the estimate of the Bernstein index from inequality
(5.4.5) in Theorem 5.4.3. Other ingredients are the following.

By (5.2.8), the diameter condition (5.4.4) holds with

D = 36n2 + 1 :

The gap condition (5.4.3) for � , U00, U0, U holds with the above " = c00

24n 2 . Hence,

e
5D
" � A4600
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Moreover,
j � j= 6 � (n + 1) ; j � (�) j= 2 � (n + 1) :

Altogether, by Theorem 5.4.3, this implies :

V� (I ) � (1 � logc0)C(n; c00)A4602 ;

with C(n; c00) = 6� (n +1)
" + 2 � (n + 1) + 1 < A 90: Together with (5.4.17) this proves Theorem A2, Case

2. 2



Chapitre 6

Conuence of singular points and
Stokes phenomena

6.1 Introduction : Stokes phenomena and main results

6.1.1 Brief statements of results, plan of the chapter and hi storical remarks

Consider a linear analytic ordinary di�erential equation

_z =
A(t)
tk+1 z; z 2 Cn ; jt j � 1; k 2 N (6.1.1)

with a nonresonant irregular singularity of order (the Poincar�e rank) k at 0 (or briey, an irregular
equation). This means that A(t) is a holomorphic matrix function such that the matrix A(0) has
distinct eigenvalues (denote them by� i ). Then the matrix A(0) is diagonalizable, and without loss of
generality we suppose that it is diagonal.

De�nition 6.1.1 Two equations of type (6.1.1) are analytically (formally) equivalent, if there exists
a changez = H (t)w of the variable z, where H (t) is a holomorphic invertible matrix function (res-
pectively, a formal invertible matrix power series), that t ransforms one equation into the other.

The analytic classi�cation of irregular equations (6.1.1) is well known [8, 10, 71, 75, 107] : the
complete system of invariants for analytic classi�cation consists of a formal normal form (6.1.4) and
Stokes operators (6.1.6) de�ned in Subsection 6.1.2 ; the latter are linear operators acting in the
solution space of (6.1.1) comparing appropriate \sectorial canonical solution bases".

On the other hand, an irregular equation (6.1.1) can be regarded as a result ofconuence of
Fuchsian singular points (recall that a Fuchsian singular point of a linear equation is a �rst order pole
of its right-hand side). Namely, consider a deformation

_z =
A(t; " )
f (t; " )

z; f (t; " ) =
kY

i =0

(t � � i (" )) ; (6.1.2)

of equation (6.1.1) that splits the irregular singular point 0 of the nonperturbed equation into k + 1
Fuchsian singularities � i (" ) of the perturbed equation, i.e., � i (" ) 6= � j (" ) for i 6= j . The family (6.1.2)
depends on a parameter" 2 R+ [ 0, f (t; 0) � tk+1 , A(t; 0) � A(t).

The monodromy group of a Fuchsian equation acts linearly in its solution space byanalytic ex-
tensions of solutions along closed loops. The analytic equivalence class of a Fuchsian equation is
completely determined by the local types of its singularities and the action of its monodromy group.
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Everywhere in what follows we denote byM i the monodromy operator of the perturbed equation
(6.1.2) along a loop going around the singular point� i (the choice of the corresponding loops will
be speci�ed later). The monodromy group of the perturbed equation is generated by appropriately
chosen operatorsM i .

In 1984, V. I. Arnold proposed the following question. Consider a generic deformation (6.1.2). Is
there an operator

M d1
i 1

: : : M dl
i l

(6.1.3)

from the monodromy group of the perturbed equation that converges to a Stokes operator of the
nonperturbed equation ?

A version of this question was proposed independently by J.-P. Ramis in 1988.
It appears that already in the simplest case of dimension 2 and Poincar�e rank k = 1 generically

each operator from the monodromy group(except for that along a circuit around both singularities
(and its powers)) tends to in�nity , and none tends to a Stokes operator. In other terms, no word
(6.1.3) with di 2 Z tends to a Stokes operator. But if k = 1, then appropriate words (6.1.3) with
noninteger powers di tend to Stokes operators (Theorem 6.2.12 in Subsection 6.2.2). The last two
statements are proved in [42].

The previous question and its nonlinear analogue for parabolic mappings were studied by J.-P.
Ramis, B. Khesin, A. Duval, C. Zhang and J. Martinet (see the historical overview in Subsection 6.1.3
and that of recent results below). It was proved by the author [38] in the general case that appropriate
branches of the eigenfunctions of the monodromy operatorsM i of the perturbed equation tend to
appropriate canonical solutions of the nonperturbed equation (Theorem 6.2.5). In the case of Poincar�e
rank k = 1 this implies (Corollary 6.2.6 stated in the two-dimensional case) that Stokes operators of
the nonperturbed equation are limits of transition operators between appropriate eigenbases of the
monodromy operatorsM i . This corollary has a generalization for higher Poincar�e rank and dimension
[38]. These results are also extended to a generic resonant case [40].

The conjecture saying that Stokes operators are limit transition operators between monodromy
eigenbases of the perturbed equation was �rst proposed by A.A. Bolibrukh in 1996.

Nonlinear analogues of the previous statements for parabolic mappings (i.e., one-dimensional
conformal mappings tangent to identity) and their �Ecalle-Voronin moduli, saddle-node singularities
of two-dimensional holomorphic vector �elds and their Mart inet-Ramis invariants (sectorial central
manifolds in higher dimensions) were obtained by the authorin [39] (see Theorem 6.4.17 in Section 6.4
for two-dimensional saddle-nodes). Generalizations and other versions of the statement on parabolic
mappings were later obtained in the paper [91] by P. Mardesic, R. Roussarie, C. Rousseau, and in two
papers by the following authors : (1) X. Bu� and Tan Lei (unpub lished) ; (2) A. Douady, F. Estrada,
P. Sentenac [24].

In Subsection 6.1.2 we recall the analytic classi�cation ofirregular equations (6.1.1) and the de�-
nitions of sectorial canonical solution bases and Stokes operators. Subsection 6.1.3 contains a survey
of previous results.

In Subsection 6.2.1 we state the results on the representation of Stokes operators as limit transition
operators between monodromy eigenbases (Theorem 6.2.5 andCorollary 6.2.6). In Subsection 6.2.2
we state Theorem 6.2.12 on convergence of appropriate word (6.1.3) to a Stokes operator. Its proof is
given in Section 6.3.

In Section 6.4 we state the results from [39] concerning two-dimensional saddle-nodes. One of them
(Corollary 6.4.22) is used in the proof of Theorem 6.2.5 given in Subsection 6.4.3. Corollary 6.4.22 is
proved in Subsection 6.4.4.

6.1.2 Analytic classi�cation of irregular equations. Cano nical solutions and
Stokes operators

Let (6.1.1) be an irregular equation.
One can ask the following question : is it true that the variablesz = ( z1; : : : ; zn ) in the equation can

be separated, more precisely, that (6.1.1) is analyticallyequivalent to a direct sum of one-dimensional
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linear equations, i.e., a linear equation with a diagonal matrix function on the right-hand side ? Ge-
nerically, the answer is \no". At the same time any irregular equation (6.1.1) is formally equivalent
to a unique direct sum of the type

_wi =
bi (t)
tk+1 wi ; i = 1 ; : : : ; n; (6.1.4)

wherebi (t) are polynomials of degree at mostk, bi (0) = � i . The normalizing series bringing (6.1.1) to
(6.1.4) is unique up to left multiplication by a constant dia gonal matrix. The system (6.1.4) is called
the formal normal form of (6.1.1) [8, 10, 71, 75, 107].

Generically the normalizing series diverges. At the same time there exists a �nite covering
S N

j =0 Sj

of a punctured neighborhood of zero in thet-line by radial sectors Sj (i.e., those with the vertex
at 0) that have the following property. There exists a unique change of variablesz = H j (t)w over
each Sj that transforms (6.1.1) to (6.1.4), where H j (t) is an analytic invertible matrix function on
Sj that can be C1 -smoothly extended to the closureSj of the sector so that its asymptotic Taylor
series at 0 coincides with the normalizing series. The preceding statement on existence and uniqueness
of sectorial normalization holds in any good sector (see thetwo following De�nitions) ; the covering
consists of good sectors [8, 10, 71, 75, 107].

Case k = 1 , n = 2 , � 1 � � 2 2 R.

De�nition 6.1.2 A sector in C with the vertex at 0 is said to be good, if it contains only one imaginary
semiaxisiR� , and its closure does not contain the other one (see Fig. 6.1).

General case.

De�nition 6.1.3 Let k 2 N , � = f � 1; : : : ; � n g � C be ann-tuple of distinct numbers, t be the coordi-
nate onC. For a given pair � i 6= � j the rays in C starting at 0 and forming the set Re((� j � � i )=tk ) = 0
are called the (k; �) -imaginary dividing rays corresponding to the pair (� i ; � j ). A radial sector is said
to be (k; �) -good, if for any pair ( � i ; � j ), j 6= i , it contains exactly one corresponding imaginary
dividing ray and so does its closure.

Remark 6.1.4 In the case, whenk = 1, n = 2, � 1 � � 2 2 R, the imaginary dividing rays are the
imaginary semiaxes, and the notions of \good" sector and (k; �)-good sector coincide.

Remark 6.1.5 The ratio w i
w j

(t) of solutions of equations from (6.1.4) tends either to zeroor to
in�nity, as t tends to zero along a ray distinct from the imaginary dividing rays corresponding to the
pair ( � i ; � j ). Its limit changes exactly when the ray under consideration jumps over one of the latter
imaginary dividing rays.

Consider a covering
S N

j =0 Sj of a punctured neighborhood of zero by good (or (k; �)-good) sectors
numbered counterclockwise, and putSN +1 = S0. The standard splitting of the normal form (6.1.4)
into the direct sum of one-dimensional equations de�nes a canonical base in its solution space (uniquely
up to multiplication of the base functions by constants) wit h a diagonal fundamental matrix. Denote
the latter fundamental matrix by

W (t) = diag( w1; : : : ; wn ):

Together with the normalizing changesH j in Sj , it de�nes the canonical bases (f j 1; : : : ; f jn ) in the
solution space of (6.1.1) in the sectorsSj with the fundamental matrices

Z j (t) = H j (t)W (t); j = 0 ; : : : ; N + 1 ; (6.1.5)
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where for any j = 0 ; : : : ; N the branch (\with index j + 1") of the fundamental matrix W (t) in Sj +1

is obtained from that in Sj by the counterclockwise analytic extension for anyj = 0 ; : : : ; N . (We put
SN +1 = S0. The corresponding branch ofW \with index N + 1" is obtained from that \with index
0" by right multiplication with the monodromy matrix of the f ormal normal form (6.1.4).) In the
connected component of the intersectionSj \ Sj +1 there are two canonical solution bases coming from
Sj and Sj +1 . Generically, they do not coincide. The transition betweenthem is de�ned by a constant
matrix Cj :

Z j +1 (t) = Z j (t)Cj : (6.1.6)

The transition operators (matrices Cj ) are calledStokes operators(matrices) (see [8, 10, 71, 75, 107]).
The nontriviality of Stokes operators yields the obstruction to analytic equivalence of (6.1.1) and its
formal normal form (6.1.4).

Remark 6.1.6 The Stokes matrices (6.1.6) are well de�ned up to simultaneous conjugation by one
and the same diagonal matrix.

� �

� �

�

Fig. 6.1 { Case� 1 � � 2 2 R+ . A covering by two good sectors

Example 6.1.7 Let k = 1, n = 2. In this case we may assume without loss of generality that
� 1 � � 2 2 R+ (one can achieve this by linear change of the time variable).Then the above covering
consists of two sectorsS0 and S1 (Fig. 6.1). The former contains the positive imaginary semiaxis and
its closure does not contain the negative one ; the latter hasthe same properties with respect to the
negative (respectively, positive) imaginary semiaxis. There are two components of the intersection
S0 \ S1. So, in this case we have a pair of Stokes operators.The Stokes matrices(6.1.6) are unipotent :
the one corresponding to the left intersection component islower-triangular ; the other one is upper-
triangular [8, 10, 71, 75, 107].

Remark 6.1.8 Stokes operators of an irregular equation (6.1.1) with a diagonal matrix in the right-
hand side are identity operators. In this case, (6.1.1) is analytically equivalent to its formal normal
form. In general, two irregular equations are analytically equivalent, if and only if they have the same
formal normal form and the corresponding Stokes matrix tuples are obtained from each other by simul-
taneous conjugation by one and the same diagonal matrix, cf. the previous remark. Thus, the formal
normal form and the Stokes matrix tuple taken up to the previous conjugation present the complete
system of invariants for analytic classi�cation of irregular equations (see [8, 10, 71, 75, 107]).
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6.1.3 Previous results

Earlier, in 1919, R. Garnier [31] had studied some particular deformations of some class of linear
equations with nonresonant irregular singularity. He obtained some analytic classi�cation invariants
for these equations by studying their deformations. The complete system of analytic classi�cation
invariants (Stokes operators and formal normal form) for general irregular nonresonant di�erential
equations was obtained later in the 70's in the papers by Jurkat, Lutz, Peyerimho� [75], Sibuya [107]
and Balser, Jurkat, Lutz [10]. Later Jurkat, Lutz and Peyeri mho� extended their results to some reso-
nant cases [76]. In 1985, J.-P. Ramis proved that the Stokes operators and the monodromy operators
of a linear ordinary di�erential equation belong to its Galo is group ([103], see also [71]). In 1989 he
considered the classical conuenting family of hypergeometric equations and proved convergence of
appropriate branches of monodromy eigenfunctions of the perturbed equation to canonical solutions
of the nonperturbed one by direct calculation [104]. In the late 80's, B. Khesin also proved a version
of this statement, but his result was not published. In 1991,A. Duval [25] proved this statement for
the biconuenting family of hypergeometric equations (where the nonperturbed equation is equivalent
to Bessel's equation) by direct calculation. In 1994, C. Zhang [119] had obtained the expression of
Garnier's invariants via Stokes operators (for the class ofirregular equations considered by Garnier).

The analytic classi�cation of germs of parabolic mappings was obtained separately by J.�Ecalle [26]
and S. M. Voronin [117]. The orbital analytic classi�cation of germs of two-dimensional saddle-node
holomorphic vector �elds was obtained by J. Martinet and J.-P. Ramis in their joint paper [93]. The
analytic classi�cation of two-dimensional saddle-nodes of multiplicity two was recently obtained in the
joint paper [118] by S. M. Voronin and Yu. I. Meshcheryakova.

A particular case of the result from [39] concerning parabolic mappings (analogous to the previously
mentioned statements on linear equations) was obtained by J. Martinet [92]. For other related results
concerning parabolic mappings see also [91] and the references therein.

6.2 Main results. Stokes operators and limit monodromy

In the present section we formulate the statements expressing the Stokes operators as limit transi-
tion operators between monodromy eigenbases of the conuenting Fuchsian equation (Theorem 6.2.5
and Corollary 6.2.6) and as limits of some words (6.1.3) of noninteger powers of monodromy operators
(Theorem 6.2.12).

6.2.1 Stokes operators as limit transition operators betwe en monodromy
eigenbases

We formulate the result from the title of this subsection only in the case whenk = 1, n = 2
(see [38] in the general case). Let� i , i = 1 ; 2, be the eigenvalues of the matrixA(0). Without loss of
generality we assume that� 1 � � 2 2 R+ : one can achieve this by linear change of the time variable.

We consider a deformation of (6.1.1),

_z =
A(t; " )
f (t; " )

z; f (t; " ) = ( t � � 0(" ))( t � � 1(" )) ; f (t; 0) � t2; A(t; 0) = A(t); (6.2.1)

where A(t; " ) and f (t; " ) depend continuously on a parameter" � 0 so that � 0(" ) 6= � 1(" ) for " > 0.
Without loss of generality we assume that� 0 + � 1 � 0. We formulate the statement from the title of
the subsection for a generic deformation (6.2.1), see the following De�nition.

De�nition 6.2.1 A family of quadratic polynomials f (t; " ) depending continuously on a nonnegative
parameter " , f (t; 0) � t2, with roots � i (" ), i = 0 ; 1, � 0 + � 1 � 0, is said to be generic, if � 0(" ) 6=
� 1(" ) for " 6= 0, and the line passing through � 0(" ) and � 1(" ) intersects the real axis at an angle
bounded away from 0 uniformly in " . A family (6.2.1) of linear equations is said to begeneric, if the
corresponding family of polynomialsf (t; " ) is generic.
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Recall the following :

De�nition 6.2.2 A singular point t0 of a linear analytic ordinary di�erential equation _z = B (t )
t � t 0

z is
said to be Fuchsian, if it is a �rst order pole of the right-hand side (i.e., the co rresponding matrix
function B (t) is holomorphic at t0). The characteristic numbers of a Fuchsian singularity are the
eigenvalues of the corresponding residue matrixB (t0) (which are equal to the logarithms divided by
2�i of the eigenvalues of the corresponding monodromy operator).

Remark 6.2.3 A family (6.2.1) of linear equations is generic if and only if the di�erence of the
characteristic numbers at � 0(" ) (or equivalently, at � 1(" )) of the perturbed equation is not real for
small " and, moreover, has argument bounded away from� Z uniformly in " small enough. The latter
condition implies that the monodromy operator of the perturbed equation around each singular point
� i has distinct eigenvalues (moreover, their moduli are distinct), and hence, a well-de�ned eigenbase
in the solution space (for small " ).

The singularities of the perturbed equation from a generic family have imaginary parts of constant
(and opposite) signs (by de�nition). Without loss of generality we assume in what follows that

Im � 0 > 0; Im � 1 < 0 (see Fig. 6.2):

� �

� �

�

� �� �

�

� �� �

Fig. 6.2 { Two generically conuenting singularities

De�nition 6.2.4 Let (6.2.1) be a generic family of linear equations (see the previous de�nition)
whose singularity families satisfy the previous inequalities. Let Sj , j = 0 ; 1, be a pair of good sectors
in the t-line such that � j (" ) 2 Sj , j = 0 ; 1, iR+ � S0, iR� � S1 (see Fig. 6.1). The sectorSj is said
to be the sector associated to the singularity family� j , j = 0 ; 1.

We show that appropriate branches of the eigenfunctions of the monodromy operatorM i around
� i of the perturbed equation converge to canonical solutions of the nonperturbed equation in the
corresponding sectorSi . This will imply the statement from the title of this subsect ion.

To formulate the latter statement precisely, consider the auxiliary domain

S0
i = Si n [� 0(" ); � 1(" )]; (6.2.2)

which is simply-connected, and the canonical branches of the monodromy eigenfunctions on the domain
S0

i . In more detail, consider a small circle going around� i , and take a base point on it outside the
segment [� 0(" ); � 1(" )]. In the space of local solutions of the perturbed equationat the base point
consider the monodromy operatorM i acting by the analytic extension of a solution along the circle
from the base point to itself in the counterclockwise direction. The eigenfunctions ofM i have well-
de�ned branches (up to multiplication by constants) in the c orresponding disc with the segment
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[� 0(" ); � 1(" )] deleted. Their immediate analytic extension yields their canonical branches onS0
i . In

other terms, we identify the space of local solutions with the space of solutions onS0
i by immediate

analytic extension, considerM i as an operator acting in the latter space and take its eigenfunctions.
The canonical basic solutions of the nonperturbed equationare numbered by the indices 1 and

2, which correspond to the eigenvalues� 1; � 2 of A(0). To state the results previously mentioned, let
us de�ne an analogous numbering of the monodromy eigenfunctions at � i (" ). The monodromy eigen-
functions are numbered by the eigenvalues of the corresponding residue matrix. The latter eigenvalues
are proportional to those of the matrix A(� i (" ); " ), which tend to � 1 and � 2, as " ! 0. This induces
the numbering of the monodromy eigenfunctions with the indices 1 and 2 corresponding to the limit
eigenvalues� 1 and � 2.

Theorem 6.2.5 Let (6.2.1) be a generic family of linear ordinary di�erential equation s (see De�ni-
tion 6.2.1), � i (" ) its singularity family, let Si be the corresponding sector(see the previous de�nition),
and S0

i the domain (6.2.2). Consider the eigenbase onS0
i of the monodromy operator of the perturbed

equation around� i (" ). The appropriately normalized eigenbase(by multiplication of the basic functions
by constants) converges to the canonical solution base(6.1.5) on Si of the nonperturbed equation.

Corollary 6.2.6 Let (6.2.1) be a generic linear equation family (see De�nition 6.2.1), � i its sin-
gularity families, let Si be the corresponding sectors(see the previous de�nition) chosen to cover a
punctured neighborhood of zero, andS0

i the corresponding domains(6.2.2). Let C0, C1 be the corres-
ponding Stokes matrices(6.1.6) of the nonperturbed equation in the left(respectively, right) component
of the intersection S0 \ S1. Consider the eigenbase onS0

i of the monodromy operator of the perturbed
equation around � i (" ). Denote by Z i

" (t) the fundamental matrix of this eigenbase. LetC0(" ) (C1(" ))
be the transition matrix between the monodromy eigenbasesZ i

" (t), i = 0 ; 1, in the left (respectively,
right ) component of the intersectionS0

0 \ S0
1 :

Z 1
" (t) = Z 0

" (t)C0(" ) for Ret < 0;

Z 0
" (t) = Z 1

" (t)C1(" ) for Ret > 0:
(6.2.3)

For any i = 0 ; 1 and appropriately normalized monodromy eigenbasesZ j
" , j = 0 ; 1 (the normalization

of Z 0
" (only) depends on the choice ofi ), Ci (" ) ! Ci as " ! 0.

Remark 6.2.7 Theorem 6.2.5 and Corollary 6.2.6 extend to the general caseof arbitrary Poincar�e
rank k and dimension n [38], as do the notions of a generic family of linear equations and a sector
associated to a singularity family. The statement of Corollary 6.2.6 in the case ofk = 1 and arbitrary
n remains the same. But for higherk (when the number k + 1 of transition matrices is less than
that of Stokes matrices) it says that appropriate products of subsequent Stokes matrices (not all the
Stokes matrices themselves) are limit transition matricesbetween appropriate branches of monodromy
eigenbases. These limit products of Stokes matrices cover all the Stokes matrices. On the other hand,
each element of a Stokes matrix in a limit product can be expressed as a polynomial in the product
elements ; so, all the Stokes matrices can be recovered from the limit transition matrices.

6.2.2 Stokes operators as limits of commutators of appropri ate powers of
the monodromy operators

The Stokes and monodromy operators act in di�erent linear spaces : in the solution spaces of the
nonperturbed (respectively, perturbed) equations. To formulate the statement from the title of the
subsection, let us �rst identify these solution spaces and specify the loops de�ning the monodromy
operators.

Let (6.2.1) be a generic family of linear equations. Take the\base point"

t0 = �
1
2

:
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Remark 6.2.8 The space of local solutions of a linear equation at a nonsingular point t0 2 C is
identi�ed with the space of initial conditions at t0 (which is common for the nonperturbed and the
perturbed equations). This identi�es the solution spaces of the latter. The space thus obtained will be
denoted by H t 0 .

Remark 6.2.9 Let (6.1.1) be an irregular equation with k = 1, n = 2, � 1 � � 2 2 R, and let S0, S1

be good sectors covering a punctured neighborhood of zero inthe t-line, both containing R� and R+

(see Fig. 6.1). LetC0, C1 be the Stokes operators (6.1.6) corresponding to the left (respectively, right)
intersection component of the sectors. The operatorC0 (C1) is well de�ned in the space H t 0 of local
solutions of (6.1.1) at any point t0 2 R� (respectively, t0 2 R+ ).

Now let us de�ne the monodromy operators acting in the previous spaceH t 0 .

De�nition 6.2.10 Let (6.2.1) be a generic family of linear equations,� i (" ), i = 0 ; 1, be its singularity
families. Fix a point t0 2 R (independent of " ). Let l i be a small circle centered at� i (" ) whose closed
disc is disjoint from � � i (" ), ai = [ t0; � i ] \ l i , with the segment [t0; ai ] oriented from t0 to ai . Consider
the closed path  i = [ t0; ai ] � l i � [t0; ai ]� 1, i = 0 ; 1, which starts and ends att0 (see Fig. 6.3). De�ne
M i : H t 0 ! H t 0 to be the corresponding monodromy operator of the perturbedequation.

�

�

� �
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Fig. 6.3 { The loops for the monodromy operators

We show that commutators of appropriate noninteger powers of the operatorsM i (see the following
de�nition) tend to the Stokes operators.

De�nition 6.2.11 Let d 2 R, and let M : H ! H be a linear operator in a �nite-dimensional linear
space having distinct eigenvalues. Thed-th power of M is the operator having the same eigenlines as
M , whose corresponding eigenvalues are some values ofd-th powers of those ofM .

Theorem 6.2.12 Let (6.2.1) be a generic family of linear equations(see De�nition 6.2.1) and � i (" ),
i = 0 ; 1, its singularity families. Let t0 = � 1=2, H t 0 the corresponding local solution space(see
Remark 6.2.8). Let M i : H t 0 ! H t 0 be the corresponding monodromy operators from De�nition6.2.10.
Let Si , i = 0 ; 1, be the corresponding associated sectors(see De�nition 6.2.4) forming a covering of
a punctured neighborhood of zero, and letC0, C1 be the Stokes operators(6.1.6) of the nonperturbed
equation corresponding to the left(respectively, right) component of the intersectionS0 \ S1 (acting in
the spacesH � 1=2 and H1=2 respectively, see Remark6.2.9). Then for any pair of numbers d0; d1 > 0
such that d0 + d1 < 1

M � d1
1 M d0

0 M d1
1 M � d0

0 ! C0 in the space H � 1=2;

M � d0
0 M d1

1 M d0
0 M � d1

1 ! C1 in the space H1=2 as " ! 0:
(6.2.4)
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Theorem 6.2.12 is proved in the next section.

Remark 6.2.13 The statements of Theorem 6.2.12 imply the same statements in any spaceH t 0 ,
Ret0 < 0 (respectively, Ret0 > 0). Theorem 6.2.12 extends to the case ofk = 1 and arbitrary
dimension [42].

6.3 Convergence of the commutators to Stokes operators. Pro of
of Theorem 6.2.12

6.3.1 Projectivization. The plan of the proof of Theorem 6.2 .12

Let us prove convergence of the �rst commutator in (6.2.4) ; the proof of the convergence of the
other commutator is analogous.

Thus, from now on, we put t0 = � 1=2.
For the proof of Theorem 6.2.12 we consider the projectivization of the space H t 0 = C2. The

projectivizations of the monodromy and Stokes operators are M•obius transformations C ! C (denote
by mi : C ! C the projectivizations of the monodromy operatorsM i , and by � the projectivization
of the Stokes operatorC0).

Let d0; d1 > 0, d0 + d1 < 1. Denote
m0

i = mdi
i :

For the proof of (6.2.4) we show (below and in subsections 6.3.2, 6.3.3) that

(m0
1)� 1m0

0m0
1(m0

0)� 1 ! � as " ! 0: (6.3.1)

This means that the commutator (6.2.4) multiplied by an appr opriate constant (depending on the
parameter) converges toC0. The commutator (6.2.4) has unit determinant, as does any commutator
and the operator C0 (which is unipotent, see Example 6.1.7). This together with (6.3.1) implies that
its limit exists and is equal to either C0 or � C0. The fact that it is really equal to C0 will be proved
in subsection 6.3.4.

To sketch the proof of (6.3.1), let us �rst recall the followi ng :

De�nition 6.3.1 ([6]) A M•obius transformation is said to be hyperbolic, if it has two �xed points
one of which is attracting (then the other is repelling). It i s said to beparabolic, if it has only one
�xed point. (Otherwise, it is said to be elliptic .)

In what follows, we represent hyperbolic and parabolic transformations by �gures as follows. The
Riemann sphereC will be drawn in the form of a circle. A hyperbolic transformation with �xed points
a and b, a being repelling, will be represented by markinga and b at the circle (representing C) and
an oriented segment going froma to b (see Fig. 6.4(a)). A parabolic transformation with �xed poi nt
a, sending b to c, will be represented by marking the points a; b; cand the arrow from b to c on the
circular arc joining them and disjoint from the �xed point a (see Fig. 6.4(b)).

Remark 6.3.2 The projectivization of a Stokes operator of an irregular equation is parabolic, since
a Stokes operator is unipotent (see Example 6.1.7). The projectivization of a two-dimensional linear
operator having eigenvalues with distinct modulus is hyperbolic : its repelling �xed point corresponds
to the eigenfunction with the eigenvalue of the smallest modulus ; its multiplier at the repelling �xed
point is equal to the ratio of the eigenvalues. Each monodromy operator M i from Theorem 6.2.12 has
eigenvalues of distinct moduli (see Remark 6.2.3), so,its projectivization mi is hyperbolic.

For the proof of (6.3.1) we state and prove its analogue (Lemma 6.3.11 below) for commutators of
families of hyperbolic transformations generalizingm0

i = m0
i (" ). To do this and to motivate the proof,

let us �rst describe the arrangement of the �xed points of m0, m1 and � .
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a

b
a)

a

b

cb)

Fig. 6.4 { Hyperbolic and parabolic transformations

Proposition 6.3.3 Let (6.1.1) be a two-dimensional irregular equation,� 1, � 2 be the eigenvalues of
the corresponding matrix A(0), and � 1 � � 2 > 0. Let S0, S1 be the sectors from Example6.1.7 (see
Fig. 6.1), C0 be the Stokes operator(6.1.6) corresponding to the left component of their intersection,
and let � be the projectivization of C0. Let f i 1, f i 2 be the canonical solutions of(6.1.1) on the sectors
Si , i = 0 ; 1, pi 1, pi 2 be their projectivizations. Then � is a parabolic transformation with the �xed point
p02,

p02 = p12; � (p02) = p02; � (p01) = p11; (see Fig. 6.5(b)):

Proposition 6.3.3 follows from the de�nition, the unipoten ce and the lower triangularity of the
Stokes matrix C0 (see Example 6.1.7).

Proposition 6.3.4 Let (6.2.1) be a generic family of linear equations,t0 2 R, M i be the monodromy
operators of the perturbed equation from De�nition 6.2.10, f i 1;" , f i 2;" be their basic eigenfunctions,
and � i 1, � i 2 the corresponding eigenvalues. Then

� 0 =
� 01

� 02
! 1 ; � 1 =

� 12

� 11
! 1 ; as " ! 0: (6.3.2)

Corollary 6.3.5 Under the conditions of Proposition 6.3.4, let mi : C ! C be the projectivizations of
M i , pij;" be those off ij;" . Then mi are hyperbolic transformations with �xed points pi 1;" , pi 2;" . More
precisely, p02;" is the repelling point of m0, p11;" is that of m1 (see Fig 6.5(a)), the corresponding
multipliers are equal to � 0, � 1, see (6.3.2) : they tend to in�nity. Let Si be the sectors associated to
the singularities � i of the perturbed equation(see De�nition 6.2.4), pij be the projectivizations of the
canonical sectorial solutions onSi of the nonperturbed equation. Then

pij;" ! pij as " ! 0 (see Fig. 6.5(b)): (6.3.3)

Statement (6.3.3) follows from Theorem 6.2.5.
To motivate the proofs of the convergence of the commutatorsin (6.2.4) and (6.3.1), consider the

simplest case, where in the family of equations (6.2.1) the matrix function family A(t; " ) is lower-
triangular. Then the line z1 = 0 is invariant for each equation of the family. This implies that the
monodromy operatorsM 0 and M 1 have a common eigenfunction (whose graph lies in the invariant
line z1 = 0) and their projectivizations mi have the common �xed point p02;" = p12;" , repelling for
m0 and attracting for m1 (see Fig. 6.6(a) below). In this case not only does the commutator in (6.3.1)
converge : it does so with arbitrary powersmdi

i , di > 0, in particular, m� 1
1 m0m1m� 1

0 ! � . This is
implied by (6.3.2), (6.3.3) and a more general Proposition 6.3.6 stated below. To formulate it, let us
introduce the following notation :

ha;b;� : C ! C (6.3.4)

is the hyperbolic transformation of the Riemann sphere �xing points a; b2 C ; a is repelling with the
multiplier � .
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m0

m1

P01;"

P11;"

P12;"
P02;"

a)

P01

P11

P12 = P02

�b)

Fig. 6.5 { The projectivizations of the monodromy and Stokes operators

Proposition 6.3.6 Let p, p01, p11 be three distinct points of the Riemann sphere, and let� : C ! C
be the parabolic transformation �xing p and sendingp01 to p11. Consider three arbitrary families of
points a; b0; b1 2 C converging topij (see Fig. 6.6) :

a ! p; b0 ! p01; b1 ! p11:

Then in the notation (6.3.4)

h� 1
b1 ;a;� 1

ha;b0 ;� 0 hb1 ;a;� 1 h� 1
a;b0 ;� 0

! � as (a; b0; b1) ! (p; p01; p11); � 0; � 1 ! 1 :

b0

b1

a

hb1 ;a;� 1

ha;b 0 ;� 0

a)

P01

P11

P

�b)

Fig. 6.6 { Degenerating hyperbolic transformations with a common �xed point

The proof of Proposition 6.3.6 is straightforward and can bedone by hand (e.g., multiplying the
(triangular) matrices of the h' s explicitly). It is omitted to save space.

In the previous case of the lower-triangular matrix A(t; " ) the families mi of hyperbolic transfor-
mations (and also mdi

i with arbitrary di > 0) satisfy the conditions of Proposition 6.3.6 by (6.3.2),
(6.3.3). This together with the proposition implies (6.3.1).

In the general case, the transformationsmi have distinct �xed points : p02;" 6= p12;" . On the
other hand, the latter �xed points are conuent to the �xed po int p = p02 of � . For the proof
of (6.3.1) in the general case we show �rst that the distance dist(p02;" ; p12;" ) is not too large : it
decreases asO(� � 1

1 ) (Corollary 6.3.8). Then we state and prove a generalization (Lemma 6.3.11) of
Proposition 6.3.6 for families of hyperbolic transformations ha0 ;b0 ;� 0 , hb1 ;a 1 ;� 1 that have no common
�xed point, but conuenting families of �xed points a0; a1 ! p such that the distance dist(a0; a1)
between them decreases fast enough, more precisely, aso(j� 0� 1 j � 1). We apply Lemma 6.3.11 to the



110

hyperbolic transformations m0
i = mdi

i and � i = � di
i . To show the possibility of applying Lemma 6.3.11

to m0
i , it su�ces to prove that dist( p02;" ; p12;" ) = o(j� 0� 1 j � 1). This is the place where we use the

inequalities on the exponentsdi from Theorem 6.2.12.
To estimate the distance dist(p02;" ; p12;" ), we use the following

Lemma 6.3.7 Let (6.2.1) be a generic family of linear equations(see De�nition 6.2.1), � i be its
singularity families, Si be the corresponding sectors(see De�nition 6.2.4) chosen to cover a punctured
neighborhood of zero,S0

i be the corresponding domains from(6.2.2). Let C0, C1 be the Stokes matrices
(6.1.6) of the nonperturbed equation(corresponding to the left (respectively, right) component of the
intersection S0 \ S1),

C0 =
�

1 0
c0 1

�
; C1 =

�
1 c1

0 1

�
(see Example6.1.7): (6.3.5)

Let M i be the monodromy operator of the perturbed equation around� i (" ) acting in the space of
solutions on S0

i . Let Z i
" be (the fundamental matrix of) its eigenbase. LetC0(" ) be the transition

matrix (6.2.3) between the basesZ i
" that converges toC0, as " ! 0, see Corollary 6.2.6 (we consider

the transition in the left component of the intersection S0
0 \ S0

1) :

C0(" ) =
�

1 + o(1) u(" )
c0 + o(1) 1 + o(1)

�
; u(" ) ! 0:

Let � 11; � 12 be the eigenvalues ofM 1 at � 1(" ), � 1 = � 12=� 11 be the corresponding multiplier of its
projectivization. Then the upper triangular element u(" ) of the matrix C0(" ) has the asymptotics

u(" ) = ( � c1 + o(1)) � � 1
1 as " ! 0; (6.3.6)

where c1 is the upper triangular element of the Stokes matrixC1 in (6.3.5).

Lemma 6.3.7 is proved in subsection 6.3.2.

Corollary 6.3.8 Let (6.2.1) be a generic family of linear equations,t0 = � 1=2, M i be the monodromy
operators from De�nition 6.2.10, mi be their projectivizations, p02;" be the repelling �xed point of m0,
p12;" be the attracting �xed point of m1, and let � � 1

1 be the multiplier of the latter attracting �xed
point. Then

dist(p02;" ; p12;" ) = O(� � 1
1 ) as " ! 0:

Remark 6.3.9 The multipliers of a hyperbolic transformation at its �xed p oints are inverse. In
particular, in the preceding corollary, � 1 is the multiplier of m1 at its repelling �xed point p11;" .

Proposition 6.3.10 Let M i be the monodromy operators from De�nition 6.2.10, mi their projectivi-
zations, and � i the multipliers at their repelling �xed points. Then

j� 0j = j� 1j1+ o(1) as " ! 0:

Proof Recall that appropriate logarithms of the eigenvalues of the monodromy operators around
singularities are equal to 2�i times the corresponding eigenvalues of the residue matrices (i.e., the
characteristic numbers). The characteristic numbers at � 0(" ) are equal to � (1 + o(1)) times those
at � 1(" ). This together with (6.3.2) implies that ln j� 0j = (1 + o(1)) ln j� 1j, which proves Proposi-
tion 6.3.10. 2

As is shown below, (6.3.1) is implied by Corollary 6.3.8, Proposition 6.3.10, the inequalities ondi

from Theorem 6.2.12, and the following lemma.
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Lemma 6.3.11 Let p, p0, p1 be three distinct points of the Riemann sphere, and� : C ! C the
parabolic transformation �xing p and sending p0 to p1. Consider four arbitrary families of points
a0; a1; b0; b1 2 C converging top, p0 and p1 (see Fig. 6.7) :

a0; a1 ! p; b0 ! p0; b1 ! p1:

Then in the notations (6.3.4)

h� 1
b1 ;a 1 ;� 1

ha0 ;b0 ;� 0 hb1 ;a 1 ;� 1 h� 1
a0 ;b0 ;� 0

! �; (6.3.7)

as a0; a1 ! p, (b0; b1) ! (p0; p1), � 0; � 1 ! 1 so that dist(a0; a1) = o(j� 0� 1j � 1).

b0

b1

a0

a1

o(j� 0 � 1 j � 1)

hb1 ;a 1 ;� 1

ha0 ;b0 ;� 0

a)

P0

P1

P

�b)

Fig. 6.7 { Degenerating hyperbolic transformations with a pair of rapidly conuenting �xed points

Lemma 6.3.11 is proved in subsection 6.3.3.

Proof of (6.3.1) Let us show that the families of hyperbolic transformations m0
i = mdi

i satisfy the
conditions of Lemma 6.3.11. Their �xed points converge topij by (6.3.3). Their multipliers at the
repelling �xed points are equal to � i = � di

i . Now it su�ces to prove the last asymptotic formula
in (6.3.7) saying in our case that dist(p02;" ; p12;" ) = o(j� d0

0 � d1
1 j � 1). The latter formula follows from

Corollary 6.3.8, Proposition 6.3.10, positivity of the powers di and the inequality d0 + d1 < 1 from
the conditions of Theorem 6.2.12. This together with Lemma 6.3.11 proves (6.3.1). 2

6.3.2 The upper triangular element of the transition matrix . Proof of
Lemma 6.3.7

The transition matrix C0(" ), which converges to the Stokes matrixC0, Z 1
" = Z 0

" C0(" ), compares
the monodromy eigenbasesZ 0

" and Z 1
" in the left component of the intersection S0

0 \ S0
1, in particular,

on a real interval in R� . It is not changed when we extend the basic functions analytically from R� to
R+ along the real line. Denote byZ i

"; + the corresponding branch onR+ of the extended fundamental
matrix Z i

" , i = 0 ; 1. By construction, Z 0
"; + is obtained from Z 0

" jR+ by applying the monodromy operator
M 0 ; Z 1

"; + is obtained from Z 1
" jR+ by applying the inverse monodromy operatorM � 1

1 :

Z 1
"; + = Z 1

" jS0
1
M � 1

1 ; the matrix M 1 is diagonal (6.3.8)

On the other hand, we can choose a renormalization of the eigenbaseZ 0
"; + by multiplication of the

basic functions by constants (i.e., changing it toZ 0
"; + �( " ), �( " ) = diag( l1(" ); l2(" )) so that in the right

component of the intersectionS0
0 \ S0

1 the transition matrix C1(" ) between Z 0
"; + �( " ) and Z 1

" tends to
the Stokes matrix C1 :

Z 0
"; + �( " ) = Z 1

" jS0
1
C1(" ); C1(" ) ! C1:
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Substituting (6.3.8) and (6.2.3) in the latter formula yiel ds

C0(" ) = �( " )C � 1
1 (" )M � 1

1 : (6.3.9)

The matrices Ci (" ) tend to the Stokes matricesCi , which are unipotent. The matrices �( " ), M 1 are
diagonal and depend on" . This implies that

�( " ) = M 1(1 + o(1)) as " ! 0:

This together with (6.3.9) implies (6.3.6).

6.3.3 Commutators of hyperbolic transformations with clos e �xed points.
Proof of Lemma 6.3.11

Lemma 6.3.11 can be proved \by hand" by multiplying explicit ly the matrices of the hyperbolic
transformations in the commutator (6.3.7).

Denote the latter commutator by �. For the proof of Lemma 6.3. 11 it su�ces to show that

�( a0) ! p; (6.3.10)

� 0(a0) ! 1; �( b0) ! p1 :

these statements imply that � does not tend to in�nity and eac h of its limit points is a M•obius
transformation having �xed point p with unit multiplier and sending p0 to p1 (thus, coinciding with
� ), hence � ! � .

Let us prove (6.3.10) (the proof of the other two statements is analogous). Recall the last asymptotic
condition from Lemma 6.3.11 :

dist(a0; a1) = o(j� 0� 1 j � 1): (6.3.11)

Consider the orbit of the point a0 under consecutive hyperbolic transformations forming thecommu-
tator (6.3.7). Applying h� 1

a0 ;b0 ;� 0
does not movea0. Applying hb1 ;a 1 ;� 1 movesa0 to a point (denoted by

a0
0) close to a1 ; more precisely,

dist(a0
0; a1) = � � 1

1 dist(a0; a1)(1 + o(1)) = o(� � 1
0 � � 2

1 ) (6.3.12)

(by (6.3.11)). Put

a00
0 = ha0 ;b0 ;� 0 a0

0; a000
0 = h� 1

b1 ;a 1 ;� 1
a00

0 :

For the proof of (6.3.10) it su�ces to show that

a000
0 ! p; or equivalently; dist(a000

0 ; a1) ! 0: (6.3.13)

By (6.3.11), (6.3.12),

dist(a0
0; a0) = o(j� 0� 1 j � 1):

Applying ha0 ;b0 ;� 0 to a0
0 yields : dist(a00

0 ; a0) = o(� � 1
1 ) ! 0, hence by (6.3.11),

dist(a00
0 ; a1) = o(� � 1

1 ):

Applying h� 1
b1 ;a 1 ;� 1

to a00
0 and using the previous formula yields dist(a000

0 ; a1) ! 0. This proves (6.3.13)
and (6.3.10).
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6.3.4 Convergence of projectivizations versus convergenc e of linear
operators. The end of the proof of Theorem 6.2.12

We have already proved that the projectivization of the �rst commutator in (6.2.4) converges to
that of the Stokes matrix C0. Let us show that the commutator itself converges toC0. This is implied
by Lemma 6.3.11 and the following :

Proposition 6.3.12 Under the conditions of Lemma 6.3.11 consider two-dimensional linear opera-
tors whose projectivizations are the hyperbolic transformations hx;y;� from the commutator (6.3.7).
Then the corresponding commutator of linear operators converges to a unipotent operator.

Proof The transformation � is parabolic ; thus, it is the projectivization of a (unique) unipotent
operator (denote that operator by C). The convergence of projectivizations means that the commu-
tator of the linear operators under consideration multiplied by appropriate constant converges toC.
The commutator has unit determinant, as a commutator, and sodoesC. Therefore, the commutator
converges either toC, or to � C. Let us show that it converges toC.

Let a0, a1 be the conuenting �xed points of the hyperbolic transforma tions. In the case where
a0 � a1, this statement holds by de�nition : the operators in the commutator have a common eigenline,
hence, the corresponding eigenvalue of the commutator is equal to 1, not � 1, so, the limit is C.

In the general case we can consider without loss of generality that the families of points a0; a1

meet in�nitely many times while conuenting. The commutato rs of linear operators corresponding to
the meeting places tend toC by the previous statement. This proves the proposition. 2

Thus, by Lemma 6.3.11 and the above proposition, the commutator (6.2.4) converges to a unipotent
operator whose projectivization is the same as that of the Stokes operatorC0, which is also unipotent.
Hence, the limit operator coincides with C0. This �nishes the proof of Theorem 6.2.12.

6.4 Nonlinear analogues and proof of Theorem 6.2.5

In the present section we state the nonlinear analogues of Theorem 6.2.5 and Corollary 6.2.6
for two-dimensional saddle-node holomorphic vector �eldsand their Martinet-Ramis moduli (subsec-
tion 6.4.2). We consider a two-dimensional holomorphic vector �eld with an elementary degenerate
singular point (saddle-node). We study its generic deformation under which the degenerate singu-
larity of the nonperturbed �eld splits into nondegenerate l inearizable singularities of the perturbed
�eld. The Martinet{Ramis invariant (of the orbital analyti c classi�cation) of the nonperturbed �eld is
expressed in terms of the limit transition functions between the linearizing charts of the singularities
of the perturbed �eld in [39]. Here we state this result only in the case of multiplicity two (see [39] for
its statement for higher multiplicities). The linearizing charts determine the canonical �rst integrals
of the perturbed �eld. Theorem 6.4.17 says that appropriate branches of the canonical �rst integrals
of the perturbed �eld converge to appropriate sectorial canonical integrals of the nonperturbed �eld.
This implies that the components of the Martinet-Ramis invariant are the limit transition functions
between the canonical integrals of the perturbed �eld (Corollary 6.4.18).

The main result on saddle-nodes (Theorem 6.4.17) implies Corollary 6.4.22 saying that the \hori-
zontal" separatrices of the perturbed �eld converge to the sectorial central manifolds (zeros of canonical
integrals) of the nonperturbed �eld.

The main result on linear equations (Theorem 6.2.5) is related to its nonlinear analogue for saddle-
nodes. Namely, the projectivization transforms the nonperturbed linear equation (6.1.1) to a holomor-
phic vector �eld on C�fj t j < 1g having two saddle-node singularities. A generic deformation of (6.1.1)
is transformed to a generic deformation of the pair of saddle-nodes. It appears that Theorem 6.2.5
reformulated in terms of the projectivization follows from the previously mentioned Corollary 6.4.22
on the convergence of the horizontal separatrices of generically perturbed saddle-nodes.

The previously mentioned results concerning saddle-nodesare stated in Subsection 6.4.2. Theo-
rem 6.2.5 and Corollary 6.4.22 are proved in Subsections 6.4.3 and 6.4.4, respectively.
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The basic de�nitions (canonical �rst integrals and Martine t-Ramis moduli of saddle-nodes), which
may be found in [67, 93], are recalled in Subsection 6.4.1.

6.4.1 Two-dimensional saddle-node singularities and thei r Martinet-Ramis
invariants

De�nition 6.4.1 We say that an isolated singular point of a holomorphic vector �eld is of complex
saddle-nodetype, if the corresponding linearization operator has exactly one zero eigenvalue.

De�nition 6.4.2 Two holomorphic vector �elds are said to beorbitally analytically equivalent, if there
exists a biholomorphic di�eomorphism of the correspondingphase spaces that maps the complex phase
curves of the �rst vector �eld into the phase curves of the second one. Orbital analytic equivalence
of germs of holomorphic vector �elds is de�ned similarly. The formal orbital equivalence of germs is
de�ned analogously with a formal di�eomorphism, i.e., a two-dimensional formal power series invertible
under composition. More precisely, two germs are said to beformally orbitally equivalent, if there exists
a formal di�eomorphism transforming the �rst germ to the sec ond one multiplied by a formal nonzero
function, i.e., a formal power series with nonzero free term.

Remark 6.4.3 Any germ of a holomorphic vector �eld in ( C2; 0) with a saddle-node singularity at
the origin is orbitally analytically equivalent to the germ at the origin of a vector �eld of the form

(
_p = p + O(jpj2 + jtjk+1 );
_t = tk+1 :

(6.4.1)

De�nition 6.4.4 Let S be a radial sector on a complex line with coordinatet. For any r > 0, we set
Sr = S \ fj t j < r g.

One can ask the following question : Is it possible to separate variables in the di�erential equation
corresponding to the vector �eld (6.4.1) or, more precisely, is it true that the germ of (6.4.1) is
locally orbitally analytically equivalent to the germ of a � eld corresponding to a di�erential equation
with separated variables ? Generally, this question has a negative answer. At the same time, the
answer is positive for the formal equivalence. Namely, any saddle-node �eld (6.4.1) is formally orbitally
equivalent to a unique vector �eld of the form

(
_~p = ~p(1 + �t k );
_t = tk+1 ;

� 2 C: (6.4.2)

The corresponding vector �eld (6.4.2) is called theformal normal form of (6.4.1) (see [67, 93]).
Generically, the normalizing power series is divergent. Onthe other hand, there are neighborhoods

Up and Ut of the origin on the axesp and t, respectively, and a covering of the punctured neighborhood
Ut by 2k radial sectors Sj (i.e., sectors with vertex at the origin), j = 0 ; : : : ; 2k � 1, possessing the
following property : for appropriate r > 0 in each of the domainseSj = Up � Sr

j , there is a holomorphic
coordinate transformation

eH j : (p; t) 7! (~p = H j (p; t); t) (6.4.3)

that transforms (6.4.1) to its normal form (6.4.2) ; further more, at the origin H j (p; t) possesses an
asymptotic power series inz and t coinciding with the normalizing series (see [67, 93]).

The \nontriviality" of the transition from one normalizing chart (6.4.3) to another (over the in-
tersection of the sectors of the covering) gives rise to an obstruction for orbital analytic equivalence
between the vector �eld (6.4.1) and its formal normal form (6.4.2), and is called thenonlinear Stokes
phenomenon. This obstruction is the nontriviality of the Martinet-Ram is invariant. We now give its
de�nition. To this end, consider the canonical �rst integra l

I (~p; t) = ~pt� � exp
�

1
ktk

�
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of the formal normal form (6.4.2). The integral I , together with the sectorial normalizing coordinate
transformations eH j , induces the �rst integrals

I j = I � eH j (6.4.4)

of (6.4.1) over the sectorsSj (more precisely, in the domainseSr
j ). These integrals are called thesectorial

canonical integrals. We set S2k = S0, eH2k = eH0. In the de�nitions of all the integrals I j = I � eH j ,
j = 0 ; : : : ; 2k, we choose the branches of the (multivalued) functionI so that for each j � 2k � 1
its branch over Sj +1 (corresponding to the index j + 1) be the analytic extension of its branch
over Sj when moving counterclockwise in thet-plane. We introduce 2k transition functions � j (� ),
j = 0 ; : : : ; 2k � 1, comparing the canonical integralsI j and I j +1 over components of the intersections
of the corresponding sectorsSj and Sj +1 :

I j +1 = � j � I j : (6.4.5)

Remark 6.4.5 The system of functions � j in (6.4.5) is determined uniquely up to conjugation by
multiplication by a constant, i.e., up to transformations o f the form

� j (� ) 7! c� j (c� 1� ); where c 2 C n 0 does not depend onj: (6.4.6)

The vector �eld (6.4.1) is orbitally analytically equivale nt to its formal normal form (6.4.2) if and
only if � j (� ) � � for all j . More generally, two germs of vector �elds of the form (6.4.1) are orbitally
analytically equivalent if and only if they have the same formal normal form and the corresponding
systems of functions � j from (6.4.5) are obtained one from the other by applying successively a
transformation of the form (6.4.6) and a cyclic shift of order k of the 2k indices j (see [67, 93]).

Example 6.4.6 Consider the case of multiplicity two, i.e., when k = 1 in (6.4.1), (6.4.2). Then the
previous covering consists of the same two good sectorsS0 and S1, as in subsection 6.1.2, in the
case of linear equations (see Example 6.1.7 and Fig. 6.1). The previous collection f � j g consists of
two functions � 0 and � 1. The function � 1(� ) is holomorphic on C and has the form � 1(� ) = � + c1,
c1 2 C. The function � 0(� ) is holomorphic in a neighborhood of the origin and has unit derivative at
0 : � 0(� ) = � + o(� ), as � ! 0.

De�nition 6.4.7 The equivalence class of a collection of functions� j in (6.4.5) under transformations
(6.4.6) (and cyclic shifts of orderk of the indices, if k > 1) is calledthe Martinet-Ramis orbital analytic
classi�cation invariant of the vector �eld (6.4.1).

6.4.2 Conuence of singular points and Martinet-Ramis inva riant

We state the result on expressing the Martinet-Ramis invariant via limit transitions between li-
nearizing charts only in the case of multiplicity two, i.e., k = 1 (its statement in the general case may
be found in [39]). To do this, we introduce some notations andrecall the theorem on linearizability of
a generic nondegenerate singular point of a two-dimensional holomorphic vector �eld.

De�nition 6.4.8 A singular point of a holomorphic vector �eld is said to be linearizable if the
corresponding germ of the �eld is orbitally analytically equivalent to its linear part.

De�nition 6.4.9 The characteristic number of a two-dimensional holomorphic vector �eld at its
singular point is the ratio of the eigenvalues of the corresponding linearization operator.

Theorem 6.4.10 ([8]) A singular point of a two-dimensional holomorphic vector �eld with a �nite
nonreal characteristic number is linearizable.
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De�nition 6.4.11 A singular point of a two-dimensional holomorphic vector �eld is said to betypical
if in suitable coordinates the corresponding linear part has the form

(
_p = �p;
_t = �t;

j� j > j� j;
�
�

=2 R:

The canonical integral of this linear vector �eld is its �rst integral pt� �=� . The canonical integral of
a two-dimensional vector �eld at its typical singular point is obtained from the canonical integral of
the corresponding linear part by applying the linearizing coordinate transformation.

Remark 6.4.12 If a singular point of a two-dimensional holomorphic vector �eld is typical in the
sense of the preceding de�nition, then it is linearizable (Theorem 6.4.10). The corresponding canonical
integral is determined uniquely up to a constant factor.

We consider the following continuous one-parameter deformation (depending on the parameter
" � 0) of the saddle-node (6.4.1) (which corresponds to" = 0) in the class of holomorphic vector
�elds :

(
_p = p(1 + R(p; t; " )) + g(t; " )f (t; " );
_t = f (t; " );

f (t; " ) = ( t � � 0(" ))( t � � 1(" )) ; (6.4.7)

f (t; 0) = t2; R(0; 0; 0) = 0 ; � 0 + � 1 � 0;

whereg and R are continuous families of holomorphic functions. Assume that the degenerate singular
point 0 of the nonperturbed �eld splits into two typical sing ularities (0; � i (" )) of the perturbed �eld,
� i (" ) 6= � l (" ) for i 6= l , " 6= 0. For a generic deformation (6.4.7) (see the next de�nition) we shall express
the Martinet-Ramis invariant of the nonperturbed �eld in te rms of the limit transition functions
comparing the canonical integrals of the perturbed �eld.

Remark 6.4.13 When we restrict ourselves to deformations of the type (6.4.7) only, we do not loose
generality (see [39]).

De�nition 6.4.14 A vector �eld family (6.4.7) is said to be a generic saddle-node family, if the
corresponding family of polynomialsf (t; " ) is generic (see De�nition 6.2.1).

Remark 6.4.15 Suppose that (6.4.7) is a generic saddle-node family. Then the arguments of the
characteristic numbers of the singular points of the perturbed vector �eld are uniformly bounded
away from � Z for all su�ciently small values of the parameter. In particu lar, for small " the singular
points of the perturbed �eld are typical : one eigenvalue of the corresponding linearized operator
tends to zero and the other eigenvalue tends to one. Thus the corresponding canonical integrals (see
De�nition 6.4.11) are well de�ned for small " 6= 0. Conversely, if the characteristic numbers of the
perturbed �eld in a continuous family of vector �elds (6.4.7 ) satisfy the above estimate, then the
families f (t; " ) and (6.4.7) are generic.

Recall that the roots � i (" ) of a generic family f (t; " ) of polynomials have imaginary parts of
constant sign. Without loss of generality we assume that Im� 0 > 0, then Im � 1 < 0.

A sector in the t-line associated to a root family � i (" ) of f (t; " ), i = 0 ; 1, is de�ned in the same
way as in De�nition 6.2.4.

For a typical family (6.4.7), we shall show that a branch of the appropriately normalized canonical
integral of the perturbed �eld at the singular point (0 ; � i (" )) converges to the sectorial integral of the
nonperturbed �eld over the corresponding sectorSi .
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De�nition 6.4.16 Suppose thatV is a domain on the Riemann sphere,V" is a one-parameter family
(depending on the parameter" � 0) of domains on the sphere. We say that the familyV" converges
to V as " ! 0, if it converges to V in the Hausdor� sense, i.e., if the maximal distance from a point
of the boundary @V" to the boundary @Vtends to zero, and the same is true for the boundaries@V
and @V" interchanged. By convergence of a family of functions holomorphic in V" depending on the
same parameter" we mean uniform convergence of these functions on compact subsets ofV .

Theorem 6.4.17 Suppose that(6.4.7) is a generic saddle-node family of vector �elds(see De�ni-
tion 6.4.14), � = � i (" ) is a continuous family of t-coordinates of their singularities, S = Si is a
sector associated to it (see De�nition 6.2.4). There exist an r > 0, a neighborhoodUp of the origin on
the p-axis, and a family 
 " of simply connected domains on thet-axis that contain � (" ) and do not
contain � � (" ) ( this family depends on the same parameter" and is de�ned for all small values" 6= 0)
such that the following statements hold :

(1) The connected component containing� (" ) of 
 " \ (Sr n [0; � � (" )]) converges toSr as " ! 0
(see De�nition 6.4.16).

(2) Let 
 0
" = 
 " n[� 0(" ); � 1(" )]. The canonical integral I " of the perturbed �eld (6.4.7) at the singular

point (0; � (" )) ( see De�nition 6.4.11) is a multivalued holomorphic function on f
 " = Up � 
 " branched

along the linet = � (" ). This function has a single-valued branch onf
 "
0
= Up � 
 0

" . This branch, when
appropriately normalized (see Remark6.4.12), converges to the sectorial canonical integral(6.4.4) of
the nonperturbed �eld on eSr = Up � Sr .

This theorem is proved in [39] for saddle-nodes of arbitrarymultiplicity (but for a less general class
of deformations (6.4.7) in the case of multiplicity two). In fact, its version from [39] in the latter case
is equivalent to Theorem 6.4.17.

Corollary 6.4.18 Let (6.4.7) be a generic saddle-node family of vector �elds, (0; � i (" )) its singulari-
ties, i = 0 ; 1, and Si the corresponding sectors(see De�nition 6.2.4). Accordingly, suppose thatr > 0,
Up, and 
 " (i ) are the constant, the neighborhood, and the domains
 " corresponding to � = � i from
the preceding theorem,
 0

" (i ) = 
 " (i ) n [� 0(" ); � 1(" )], I i;" (t) is the canonical integral of the perturbed
�eld at the singular point (0; � i (" )) ( see De�nition 6.4.11). More precisely, we take its single-valued

branch in the domain f
 "
0
(i ) = Up � 
 0

" (i ) ; we set I 2;" = I 0;" . Let C j be the connected component
of Sr

0 \ Sr
1 , j = 0 ; 1 (we assume thatC0 � R� , C1 � R+ ), and let � j be the corresponding com-

ponent (6.4.5) of the Martinet-Ramis invariant of the nonperturbed �eld. T here exists a familyC(" )
of connected components ofSr

0 \ Sr
1 \ 
 0

" (0) \ 
 0
" (1) that converges toC j as " ! 0 and possesses

the following property : the transition function � " between appropriately normalized integralsI l;" in
eC(" ) = Up � C(" ), I j +1 ;" = � " � I j;" , is holomorphic in a domain (depending on") that converges to
the domain of � j , and � " ! � j as " ! 0.

Corollary 6.4.18 and its extension to higher multiplicities are contained in [39].
Now we formulate another corollary of Theorem 6.4.17, on convergence of appropriate separatrices

of the perturbed �eld to the sectorial central manifolds of t he saddle-node. We use this corollary
further in the proof of Theorem 6.2.5.

De�nition 6.4.19 The sectorial separatrix of a saddle-node (6.4.1) over a good sectorS is the zero
curve of the corresponding canonical sectorial integral (or equivalently, the image of the central mani-
fold of the formal normal form under the inverse of the normalizing change of variables). Thehorizontal
separatrix of a typical singular point of a two-dimensional holomorphic vector �eld is the zero curve
of the corresponding canonical integral (see De�nition 6.4.11).
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Remark 6.4.20 Let (6.4.1) be a saddle-node vector �eld,S a good sector (see De�nition 6.1.2), and
� the corresponding sectorial separatrix (see the preceding de�nition). There exists an r > 0 such that
� contains the graph

p = q(t) (6.4.8)

of a function q(t) with the following properties :

(i) q is holomorphic in Sr and continuous in its closure ;

(ii) this is the unique function satisfying (i) whose graph is tangent to the �eld.

Remark 6.4.21 Consider a two-dimensional holomorphic vector �eld in coordinates (p; t) with a
typical singularity. Let the eigenline of its linearizatio n operator with the largest eigenvalue be parallel
to the p-axis. Then the corresponding horizontal separatrix (see De�nition 6.4.19) contains the graph

p = q(t) (6.4.9)

of a holomorphic function, the graph contains the singularity. This is the unique graph of a holomorphic
function tangent to the �eld and passing through the singularity.

Corollary 6.4.22 Let (6.4.7) be a generic saddle-node family. Then the horizontal separatrices at
the singularities of the perturbed �eld converge to the sectorial separatrices of the saddle-node over
the corresponding sectors(see the previous De�nition). More precisely, let b(" ) = (0 ; � (" )) be a sin-
gularity family, S be the sector associated to� (see De�nition 6.2.4). Let q(t) be the function whose
graph (6.4.8) is contained in the sectorial separatrix overS, and q" (t) the function with graph (6.4.9)
contained in the horizontal separatrix of the perturbed �eld at b(" ). There exist an r > 0 and a family

 " of domains in the t-line, � (" ) 2 
 " , � � (" ) =2 
 " , satisfying the following statements :

(1) the connected component containing� (" ) of the intersection (Sr n [0; � � (" )]) \ 
 " converges to
Sr , as " ! 0 (see De�nition 6.4.16);

(2) the function q(t) is holomorphic in Sr , q" is holomorphic in 
 " , and q" ! q.

The generalization of the corollary to arbitrary dimension and multiplicity is stated and proved in
[39].

6.4.3 Projectivization. Proof of Theorem 6.2.5

For the proof of Theorem 6.2.5 we projectivize all the linearequations involved. The projectiviza-
tion of a linear equation is a tangent line �eld on the product P1 � fj t j < 1g that is the pushforward
of the linear equation under the tautological projection C2 n0 ! P1 (or a holomorphic vector �eld on
the latter product contained in the tangent line �eld).

The projectivization of a two-dimensional irregular equation (6.1.1) is a holomorphic vector �eld
on P1 � fj t j < 1g having a pair of singularities on the �ber P1 � 0 (which correspond to the eigen-
lines of the matrix A(0), the coordinate lines in our case). These singularitiesare saddle-nodes of the
same orderk as the Poincar�e rank of the equation under consideration (k = 1). The projectivization
transforms the graphs of the canonical sectorial solutionsof (6.1.1) to the sectorial separatrices of the
corresponding saddle-node singularities of the projectivization (and hence, the solutions themselves
to the corresponding functions (6.4.8)). Indeed, the images of the canonical solutions under the tau-
tological projection are functions holomorphic in the corresponding sectors and continuous in their
closures (by construction), and their graphs are tangent tothe projectivization. By uniqueness (see
Remark 6.4.20), they coincide with those de�ning the corresponding sectorial separatrices.

The projectivization of a perturbed equation from a genericfamily (6.2.1) is a holomorphic vector
�eld on the same spaceP1 � fj t j < 1g with four typical singularities : a pair of singularities in each
�ber P1 � � i (" ), i = 0 ; 1. Analogously, the projectivization transforms the graphs of the monodromy
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eigenfunctions at the singularities of the perturbed linear equation to the horizontal separatrices of
the projectivization.

The projectivization of a generic family of linear equations becomes a generic saddle-node family
(locally near each saddle-node singularity of the projectivization of the nonperturbed equation) after
applying an appropriate family of changes of the space variable. Now the preceding corollary applied
to the family of projectivizations says that the horizontal separatrices converge to the sectorial se-
paratrices of the projectivized nonperturbed equation. This means that the branches inS0

i of the
monodromy eigenfunctions (taken up to multiplication by constants) converge to the canonical ba-
sic solutions of the nonperturbed equation (also taken up tomultiplication by constants). Therefore,
appropriately normalized monodromy eigenfunctions converge to appropriately normalized canonical
basic solutions. This proves Theorem 6.2.5 modulo Corollary 6.4.22.

6.4.4 Convergence of the horizontal separatrices. A brief p roof of
Corollary 6.4.22

We give a brief proof of Corollary 6.4.22 independent on Theorem 6.4.17 (the complete text of the
proof may be found in [39]).

Let us prove the statements of Corollary 6.4.22, say, for

� = � 0; S = S0 : let us show that q" ! q:

To do this, we show that the functions q" are holomorphic in domains 
 " large enough (satisfying
statement (1) of Corollary 6.4.22) and form a normal family (i.e., precompact in the topology of
uniform convergence on compact sets inSr ) : more precisely,

jq0
" (t)j < 1; jq" (t)j � j t � � 0(" )j for any t 2 
 " : (6.4.10)

(Recall that by de�nition, q" (� 0(" )) = 0.) Then the limit of any convergent sequence q" n , "n ! 0, is
a function holomorphic in the sector Sr and continuous in its closure that vanishes at 0. Its graph is
tangent to the saddle-node �eld. Therefore, by the uniqueness statement of Remark 6.4.20, the limit
coincides with q. This together with normality proves the convergenceq" ! q.

For the proof of the bounds (6.4.10) we consider the following family K of tangent cones at the
points of the phase plane and the corresponding coneK 0 :

K = fj _pj < j _tjg; K 0 = fj pj < jt � � 0(" )jg:

The inequalities (6.4.10) are equivalent to the inclusions

T � q" � K; � q" � K 0; (6.4.11)

where � q" is the graph of the function q" .
For the proof of the inclusions (6.4.11), we consider an appropriate constant multiple

v� (" ) = ei� (6.4.7); � 2 R is independent on";

of the vector �eld family (6.4.7). We choose the number� so that the singular point b0(" ) = (0 ; � 0(" )) of
the perturbed �eld v� (" ) from the new family is hyperbolic with the stable manifold W s = f t = � 0(" )g
and the unstable manifold being locally the horizontal separatrix W u = � q" . More precisely,

(1) the eigenvalue of the linearization operator ofv� (" ) at b0(" ) at the eigenline tangent to the line
f t = � 0(" )g has a negative real part ;

(2) the other eigenvalue has a positive real part ;

(3) the previous conditions hold \uniformly" : the real part of the former eigenvalue is bounded
away from zero ; the argument of the latter eigenvalue is bounded away from �= 2 + � Z.



120

The above conditions will be satis�ed if, e.g., � < � �= 2 and � is close enough to� �= 2.
In the proof of (6.4.11) we use the fact that for any � satisfying (1){(3)) there exists a bidisc U

in the phase space (independent of" ) such that for any " small enough the tangent cone �eldK is
invariant under the real ow of the perturbed �eld v� (" ) : each cone ofK is mapped under a positive
time ow map strictly inside the cone of K at the image of the point under consideration. This implies
that the cone K 0 is alsov� (" )-invariant.

The inclusions (6.4.11) hold a priori at the singular point b0(" ), and hence in its neighborhood
(whose size depends on the parameter). By invariance ofK , they remain valid in all the trajectories
of the �eld v� (" ) in the unstable manifold � q" that go out from the singular point. These trajectories
saturate a domain in � q" bijectively projected onto some domain in thet-line (denoted by 
 " ). If the
bidisc U is chosen in an appropriate way (say, centered at 0 and so thatits height in the coordinate
p is at least two times greater than its width in the coordinate t ; denote by V its projection to the
t-line), then the previous domain 
 " is saturated by the real trajectories of the quadratic vector �eld

_t = ei� (t � � 0(" ))( t � � 1(" ))

in the disc V that go out from its repelling singular point � 0(" ) (see Fig. 6.8(a)). The family of the
domains 
 " thus constructed satis�es statement (1) of Corollary 6.4.22, at least for some sectorS
associated to� 0. (In fact one can achieve this for an arbitrary given sectorS associated to� 0 by
appropriate choice of� .) This proves Corollary 6.4.22.

In fact, the domain 
 " converges to a domain (denoted 
, see Fig. 6.8(b)) bounded bya cardioid-
like curve having a \cusp" at 0 with tangency to the ray arg t = � � � . Recall that the closure of the
sectorS0 is disjoint from iR� . One can achieve that the latter cusp ray be arbitrarily close to iR� (so
that the limit domain 
 contains the sector Sr

0 for appropriate r > 0) by choosing a� < � �= 2 close
enough to � �= 2.
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Fig. 6.8 { The domains 
 " and 
, where the separatrices have bounded slopes
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