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Unité de mathématiques pures et appliquées
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Toronto, qui m’a beaucoup appris dans la dynamique holomorphe et m’a introduit dans le monde
des laminations dynamiques. Grâce à Misha et Étienne, j’ai appris que les laminations horosphériques
sont présentes dans beaucoup de domaines différents des mathématiques. Un chapitre de ce mémoire
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Merci à mes collègues et amis toulousains pour leur accueil pendant mon stage à l’Université Paul
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Merci à tous mes autres amis et collègues, qui m’ont beaucoup enrichi et pour leur intérêt à mes
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Chapitre 1

Introduction

Le 16ème problème de Hilbert concerne les champs de vecteurs polynomiaux dans le plan réel. Un
cycle limite est une orbite fermée isolée. Le problème est le suivant :

Est-il vrai que le nombre de cycles limites est toujours majoré par une constante ne dépendant
que du degré maximal d’une composante du champ?

Ce problème est ouvert et a une histoire riche de plus de 100 ans (voir [69]). Le meilleur résultat
connu dit que pour tout champ polynomial, le nombre de cycles limites est fini. Cela fut démontré
simultanément et indépendamment par J.Écalle [28] et Yu.S.Ilyashenko [66].

Dans les années 1950, I.G.Petrovskii et E.M.Landis [84] ont essayé de résoudre le 16ème problème
de Hilbert. Leur démonstration s’est avérée fausse [62]. En même temps, ils ont suggéré une méthode
intéressante : étudier un champ de vecteurs polynomial complexe sur C2 et ses orbites complexes,
qui sont des surfaces de Riemann. Ces dernières orbites forment un feuilletage holomorphe singulier
de C2. Les cycles limites du champ réel sont des cycles limites complexes de son complexifié : lacets
non contractiles sur des orbites complexes dont l’holonomie (l’application de premier retour) est non
triviale.

Il est bien connu, que les racines complexes d’une famille de polynômes de même degré sont
continues en le paramètre, et leur nombre (avec multiplicités) reste constant (il est toujours égal au
degré). Petrovskii et Landis ont essayé de démontrer que, grosso modo, les cycles complexes d’une
famille de champs polynomiaux ont une propriété similaire.

L’étude du 16ème problème de Hilbert et les idées de Petrovskii et Landis ont motivé le développement
de beaucoup de domaines dans la dynamique, l’analyse et la géométrie, en particulier,

- les feuilletages par des surfaces de Riemann et l’uniformisation de feuilles ;

- les intégrales abéliennes ;

- les invariants de classification analytique de germes d’applications conformes et de champs de
vecteurs holomorphes, le phénomène de Stokes.

Yu.S.Ilyashenko a commencé l’étude des feuilletages holomorphes singuliers par des surfaces de
Riemann à la fin des années 1960. Il a démontré qu’un champ de vecteurs polynomial non linéaire
générique sur C2 d’un degré donné a toutes les orbites complexes denses, et un nombre dénombrable
de cycles limites complexes [65, 60].

Dans les années 1960 D.V.Anosov a conjecturé que pour un champ polynomial générique toutes
les orbites complexes sont simplement connexes (sauf pour un nombre dénombrable d’orbites). Cette
conjecture est ouverte.

La plupart de mes travaux concernent les trois thèmes mentionnés ci-dessus. Mes travaux plus
récents concernent

- les laminations horosphériques en dynamique holomorphe ;

- les sous-groupes non libres dans les groupes de Lie.

7
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1.1 Résumé des travaux présentés dans ce mémoire

Ici toutes les citations sont données selon les Références à la fin du mémoire.

1.1.1 Uniformisation de feuilletages par des surfaces de Riemann (chapitre
2)

Pour étudier les cycles complexes, Ilyashenko a commencé (à la fin des années 1960) l’étude de
l’uniformisation des feuilles (orbites) complexes. Le résultat d’uniformisation d’une feuille fixée
est donné par le théorème classique de Poincaré et Köbe :

Théorème d’Uniformisation. Toute surface de Riemann simplement connexe et non compacte
est conformément équivalente ou bien à C, ou bien au disque.

Définition 0. Une surface de Riemann est parabolique (hyperbolique), si son revêtement universel
est conformément équivalent à C (resp. au disque).

À toute section transverse D simplement connexe, Ilyashenko a associé la réunion des revêtements
universels des feuilles intersectant D : toute revêtement universel est celui d’une feuille avec un point
marqué dans D. Cette réunion s’appelle la variété de revêtement universels. Pour les feuilletages
holomorphes singuliers de dimension un sur une variété de Stein (par exemple Cn), il a démontré que
toute variété de revêtements universels munie de la structure complexe naturelle est une variété de
Stein [63, 68]. Cette variété est un cylindre tordu : variété fibrée holomorphiquement au-dessus de D,
dont les fibres sont des courbes holomorphes simplement connexes (revêtements universels), et qui
admet une section holomorphe (donnée par D elle-même).

J’avais démontré dans ma thèse [35, 36, 37], que toutes les feuilles d’un champ de vecteurs po-
lynomial générique sur Cn sont hyperboliques. J’avais aussi démontré un énoncé analogue pour les
feuilletages sur une variété projective lisse arbitraire. Indépendamment et presqu’en même temps,
des cas particuliers ont été démontrés dans le travail commun de A. Candel et X. Gómez-Mont
[19] (plus tôt) et par A.Lins Neto [87]. Cela a donné une réponse à une question posée par Ilyashenko
(fin des années 60).

Il est important de connâıtre la dépendance de l’uniformisation d’une feuille en le paramètre
transverse. Le théorème classique de L. Bers [13] sur l’uniformisation simultanée concerne un feilletage
holomorphe par des surfaces de Riemann compactes. Il dit que la variété fibrée de leurs revêtements
universels est toujours simultanément uniformisable : biholomorphiquement équivalente à un ouvert
de C ×D fibré au-dessus de D par des domaines simplement connexes.

Ilyashenko a conjecturé (fin des années 1960), que toute variété de revêtements universels (et plus
généralement, tout cylindre tordu Stein) est simultanément uniformisable. Il l’avait démontré dans
un cas particulier, pour un feuilletage par des courbes algébriques compactes au voisinage d’une
courbe invariante à singularités de Morse [64].

J’ai construit des contre-exemples [43, 44] : des variétés de revêtements universels non simul-
tanément uniformisables. Celle de [43] est associée au feuilletage d’une surface (affine ou projective)
par des courbes algébriques, pour une section transverse appropriée. Dans [44] j’ai montré qu’il existe
des surfaces complexes (tant affines que projectives) qui admettent un feuilletage holomorphe de di-
mension un à singularités isolées, dont aucune variété de revêtements universels n’est simultanément
uniformisable. En plus, un tel feuilletage peut être choisi à feuilles denses et avec une structure affine
transverse.

Les résultats des articles [43, 44] sont présentés dans la section 2.3.
Presqu’en même temps j’avais étudié un autre problème sur une autre notion d’uniformisabilité

simultanée, concernant les feuilletages (pas forcément holomorphes) par des surfaces de Riemann, où
la structure complexe des feuilles est lisse en le paramètre transverse. Un exemple de base, introduit
et partiellement étudié par É. Ghys [34], est un tore de dimension quelconque, feuilleté par des plans
parallèles et muni d’une métrique riemannienne lisse g arbitraire. La métrique induit sur chaque feuille
une structure complexe. Toute feuille est conformément équivalente à C, et admet donc une métrique
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conforme plate et complète. Plus précisément, il existe sur chaque feuille une fonction positive lisse φ
(unique à multiplication par une constante près), telle que la métrique φg de la feuille soit plate et
complète.

É. Ghys a demandé si la fonction φ peut être choisie sur chaque feuille de sorte qu’elle soit lisse en
le paramètre transverse. Il a démontré une réponse positive en dimension 3 dans des cas particuliers,
quand ou bien les feuilles sont des cylindres, ou bien la pente du feuilletage vérifie une condition
diophantienne [34].

Je l’ai démontré dans le cas général :
Théorème [45]. Pour tout feuilletage d’un tore (de dimension quelconque) par des plans parallèles,

et pour toute métrique g riemannienne lisse C∞ sur le tore, il existe une fonction φ positive et lisse
C∞ sur le tore, telle que la restriction à toute feuille de la métrique φg soit plate.

Dans le même article [45] j’ai obtenu d’autres résultats (positifs et négatifs) concernant d’autres
feuilletages. Les résultats principaux de cet article sont présentés dans Sections 2.1 et 2.2.

La preuve de ce dernier théorème m’a permis d’obtenir une nouvelle démonstration du théorème
de redressement d’une structure presque complexe lisse sur le tore de dimension deux [45, 51]. Avec
des arguments classiques, cela donne une nouvelle démonstration [51] du théorème de C.B. Morrey, Jr.
sur l’existence d’une application quasiconforme qui redresse une structure presque complexe bornée
mesurable sur la sphère de dimension 2 [4, 94].

1.1.2 Laminations horosphériques en dynamique holomorphe (chapitre 3)

Les laminations (feuilletages topologiques) par des surfaces de Riemann et par des variétés hyper-
boliques apparaissent dans différents domaines des mathématiques, dont la dynamique d’itérations
d’une fonction rationnelle :

f =
P

Q
: C → C.

En 1985 D. Sullivan [110] a introduit un dictionnaire entre deux domaines de la dynamique com-

plexe : les itérations de fonctions rationnelles f(z) = P (z)
Q(z) : C → C sur la sphère de Riemann et la

théorie des groupes kleiniens. Ces derniers sont les sous-groupes discrets du groupe d’automorphismes
conformes PSL2(C) de la sphère de Riemann. Ce dictionnaire a motivé beaucoup de résultats remar-
quables dans les deux domaines, en commençant par le célèbre théorème de Sullivan sur l’absence de
composantes errantes dans la théorie des itérations de fonctions rationnelles.

L’un des objets principaux dans l’étude des groupes kleiniens est la variété hyperbolique de dimen-
sion trois associée à un groupe kleinien. C’est le quotient de l’espace hyperbolique H3 par l’action du
groupe agissant par isométries. M. Lyubich and Y. Minsky ont suggéré d’étendre le dictionnaire de
Sullivan par une construction analogue pour les itérations de fonctions rationnelles. À toute fonction
rationnelle f , ils ont associé une lamination hyperbolique Hf (voir [89] et le Chapitre 3 de ce mémoire).
C’est un espace topologique feuilleté par des orbifolds hyperboliques de dimension trois (qui peuvent
avoir des singularités coniques), vérifiant les propriétés suivantes :

- tout point non singulier possède un voisinage homéomorphe au produit d’une partie d’un ensemble
de Cantor par la boule de dimension trois ;

- la métrique hyperbolique des feuilles est continue en le paramètre transverse ;
- il existe une projection naturelle Hf → C, qui relève l’action f : C → C (non inversible) à l’action

par un homéomorphisme f̂ : Hf → Hf , qui est une isométrie sur les feuilles ;

- l’action de f̂ est proprement discontinue.
Le quotient Hf/f̂ est donc un “joli” espace topologique laminé par des orbifolds hyperboliques de

dimension trois ; l’espace Hf/f̂ s’appelle la lamination hyperbolique quotient.
La lamination hyperbolique Hf est construite de la manière suivante. Prenons l’extension naturelle

f̂ de la dynamique de f à l’espace Nf de toutes les demi-orbites négatives :

Nf = {ẑ = (z0, z−1, z−2, . . . ) | z−j ∈ C, f(z−j−1) = z−j};
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f̂ : Nf → Nf , (z0, z−1, . . . ) 7→ (f(z0), z0, z−1, . . . ).

Ce dernier espace contient toujours beaucoup de surfaces de Riemann conformément équivalentes à
C. La réunion de toutes cettes surfaces (notée An

f ) est invariante par la dynamique relevée f̂ . La

lamination hyperbolique est obtenue par le recollement d’une copie de l’espace hyperbolique H3 et
de chaque surface précedante (eventuellement effacée), suivi d’un raffinement de la topologie et d’une
completion appropriées.

Des travaux récents sur les variétés hyperboliques associées à des groupes kleiniens ont abouti à
la solution de tous les grands problèmes de la théorie, y compris une solution positive à la célèbre
conjecture d’Ahlfors sur la mesure de l’ensemble limite. Ce résultat est le fruit des efforts de nombreux
mathématiciens, voir les articles [3, 17] et leurs reférences. D’un autre côté, tout récemment, une
conjecture analogue pour la théorie des itérations rationnelles s’est révelée fausse. X. Buff et A. Chéritat
[16] ont construit des exemples de polynômes quadratiques avec ensembles de Julia de mesure positive,
en utilisant une méthode complétement différente, proposée par A. Douady.

Il est espéré, que l’étude des laminations hyperboliques associées à des fonctions rationnelles
éclairera la dynamique sous-jacente d’une nouvelle manière.

J’ai étudié l’arrangement d’horosphères dans l’espace quotient Hf/f̂ (voir les articles [48, 49]).
Rappelons leur définition. L’espace hyperbolique H3 avec un point marqué “∞” sur sa frontière (qui
est la sphère de Riemann) admet pour modèle standard le demi-espace dans l’espace euclidien de
dimension trois. Ses isométries fixant l’infini sont exactément les extensions des transformations af-
fines complexes de la frontière. Un plan horizontal dans le demi-espace s’appelle un horosphère. Les
isométries hyperboliques de H3 fixant l’infini transforment des horosphères en des horosphères. Les
horosphères du quotient de H3 par l’action d’un groupe discret de telles isométries sont les images des
horosphères de H3 par la projection naturelle (toutes ces horosphères portent des structures eucli-
diennes induites par la restriction de la métrique hyperbolique). Ces structures euclidiennes peuvent
avoir des singularités coniques. Les horosphères feuillettent l’orbifold hyperbolique ambiant.

Les feuilles des laminations Hf et Hf/f̂ sont aussi des quotients de H3 par un groupe d’isométries
fixant l’infini. Toutes leurs feuilles sont donc feuilletées par des horosphères bien définies.

L’arrangement des horosphères dans Hf et dans son quotient Hf/f̂ est lié au comportement du
cocycle des dérivées |Dfn(z)| des itérations de la fonction rationnelle f .

La lamination de Hf par variétés hyperboliques est toujours minimale (toute feuille hyperbolique
est dense), sauf pour le cas d’une fonction rationnelle ayant une orbite periodique répulsive“à ramifi-
cation exceptionnelle” (pour exemple, Chebyshev ou Lattès, voir la Définition 3.1.10 dans le Chapitre
3). Dans ce dernier cas il y a des feuilles isolées, dont le nombre est toujours fini. Notons

H′
f = Hf \ (feuilles hyperboliques isolées).

La lamination hyperbolique de H′
f est toujours minimale.

M. Lyubich et V. Kaimanovich ont démontré, que si f appartient à la liste suivante :

Lattés, Chebyshev, z±d,

alors aucune horosphére dans H′
f/f̂ n’est dense.

J’ai démontré (en [48, 49]) une sorte de réciproque :

- si f n’appartient pas à la liste ci-dessus, alors il y a une infinité d’horosphères (explicitement

présentées) denses dans le quotient H′
f/f̂ ou autrement dit, la lamination horosphérique de H′

f/f̂ est
topologiquement transitive.

- si f n’appartient pas à la liste ci-dessus, et de plus est critiquement non récurrent et sans or-
bite périodique parabolique, alors la lamination horosphérique de H′

f/f̂ est minimale : toutes les ho-
rosphères sont denses.

Les énoncés analogues sout faux pour la lamination horosphérique de l’espace non factorisé H′
f ,

déjà pour des polynômes quadratiques réels [49].
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1.1.3 Sous-groupes non libres dans les groupes de Lie (chapitre 4)

Il est connu que dans un groupe de Lie dont la composante neutre est non résoluble, un couple
générique (au sens de la mesure de Haar) d’éléments engendre un sous-groupe libre [29]. J’ai démontré
que si, en plus, ce sous-groupe libre n’est pas discret, alors il est instable : il existe des paires arbitrai-
rement proches qui engendrent des sous-groupes non libres.

Théorème [50]. Soit G un groupe de Lie non résoluble, (A,B) ∈ G × G un couple d’élements
engendrant un sous-groupe libre non discret. Alors il existe une suite (Ak, Bk) → (A,B) et une suite
de mots wk(a, b) non triviaux en deux symboles abstraits (et leurs inverses) tels que wk(Ak, Bk) = 1
pour tout k.

Ce théorème répond à une question d’É. Ghys, qui a proposé d’étudier le taux d’approximation
d’une paire (A,B) comme ci-dessus par des générateurs de sous-groupes non libres, dont la lon-
gueur minimale d’une relation soit donnée. Il y a une conjecture qui dit, que pour une paire (A,B)
“générique”, le taux optimal d’approximation est exponentiel en cette dernière longueur.

Dans le même article [50] j’ai obtenu une majoration du taux optimal, qui est exponentielle en une
puissance de la longueur minimale d’une relation.

1.1.4 Intégrales abéliennes et géométrie algébrique quantitative (chapitre
5)

Tout champ de vecteurs polynomial sur le plan réel peut s’écrire comme un champ de droites de
zéros d’une 1- forme à coefficients polynomiaux. Un champ de drôıtes tangentes à un champ vectoriel
hamiltonien polynomial s’écrit comme

dH = 0, ou H est le hamiltonien.

Les orbites fermées d’un champ hamiltonien forment une famille continue d’ovales : courbes fermées
(non singulières) dans les courbes de niveau de l’hamiltonien.

Aucune borne uniforme pour le nombre de cycles limites n’est connue pour les champs polynomiaux
proches des champs hamiltoniens (sauf pour les champs quadratiques ; un survol des résultats partiels
avec références est présenté dans [69]), par exemple, dans une famille en un paramètre ε du type

dH + εω = 0, ω = A(x, y)dx +B(x, y)dy, degA, degB < degH.

Un ovale γ ⊂ {H = t} du champ hamiltonien (ε = 0) peut engendrer un cycle limite du champ
perturbé (ε 6= 0), seulement dans le cas où le niveau correspondant t est un zéro d’une fonction I(t)
spéciale : l’intégrale abélienne

I(t) =

∫

γ

ω.

Cette dernière se prolonge à une fonction holomorphe sur le revêtement universel au-dessus du
complémentaire de l’ensemble des valeurs critiques complexes de H .

Dans mon travail commun avec Yu.S.Ilyashenko ([52, 53]), nous avons obtenu une majoration
explicite du nombre de zéros d’une intégrale abélienne pour un hamiltonien polynomial d’un degré
arbitraire, de telle sorte, que :

- les droites complexes de zéros de la partie homogène supérieure sont distinctes (i.e. la partie
supérieure est non dégénérée) et ne sont pas trop proches l’une de l’autre ;

- les valeurs critiques complexes sont distinctes, et la distance minimale entre deux n’est pas trop
petite par rapport à la distance maximale.

Cette majoration est exponentielle en (degH)4. C’est la meilleure majoration connue jusqu’à
présent.

La preuve de cette majoration est basée sur une idée de Ilyashenko, la théorie de Picard-Lefschetz et
mes résultats [46, 47] obtenus au cours de notre travail. Ces résultats concernent les courbes de niveau
d’un polynôme complexe en deux variables, dont la partie homogène supérieure est non dégénérée.
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Le résultat principal de [47] donne une formule explicite pour le déterminant d’une matrice
d’intégrales abéliennes des 1- formes monomiales formant une base, le long d’une base des cycles
engendrant l’homologie d’une courbe de niveau.

Il est connu que les racines et les points critiques d’un polynôme complexe unitaire normalisé
admettent une borne supérieure explicite. “Normalisé” signifie, que zéro est un point critique, et
toutes les valeurs critiques sont dans le disque unité.

Les résultats de [46], qui appartiennent à la “géométrie algébrique quantitative”, étendent cet
énoncé aux polynômes en deux variables (convenablement normalisés d’une manière analogue). Le
théorème principal donne une majoration du rayon minimal d’un bidisque centré en zéro, qui contient
toute la topologie non triviale d’une courbe de niveau donnée.

1.1.5 Confluence de points singuliers et phénomène de Stokes (chapitre 6)

L’holonomie (l’application de premier retour) d’un cycle limite d’un feuilletage holomorphe de co-
dimension un est un germe d’application conforme (C, 0) → (C, 0) à point fixe 0. Un germe est parabo-
lique s’il est tangeant à l’identité en 0 et différent de l’identité. La classification analytique (i.e. modulo
conjugaison conforme) de germes paraboliques a été obtenue simultanément et indépendamment par
J. Écalle [27] et S.M. Voronin [117]. Leurs invariants analytiques sont la forme normale formelle et
une collection finie de germes conformes (C, 0) → (C, 0). Cette dernière collection s’appelle le module
d’Écalle-Voronin.

La théorie des invariants d’Écalle-Voronin est un analogue non linéaire de la théorie classique
(développée dans les années 1970) des équations différentielles ordinaires linéaires en temps complexe
à points singuliers irréguliers. Considérons, par exemple, une équation différentielle

ż = A(t)z, z ∈ Cn,

où A(t) est une fonction matricielle méromorphe. Un point singulier d’une telle équation est un pôle
de A(t). Il est de type Fuchs si c’est un pôle simple. Il est irrégulier si une certaine solution crôıt
exponentiellement le long d’un secteur à sommet en le point singulier. La classification analytique de
germes d’équations linéaires à points singuliers irréguliers a été obtenue par W. Balser, W. Jurkat, D.
Lutz, A. Peyerimhoff, Y. Sibuya [10, 75, 107]. Les invariants analytiques sont la forme normale formelle
et une collection d’opérateurs linéaires unipotents agissant dans les espaces de solutions au-dessus de
secteurs appropriés. Ces derniers opérateurs s’appellent les opérateurs de Stokes.

Dans les années 1980 V.I. Arnold a proposé d’étudier une équation à point singulier irrégulier
comme une limite d’équations à points singuliers Fuchsiens, qui confluent. Il avait conjecturé que cer-
tains opérateurs de monodromie de l’équation perturbée (Fuchsienne) convergent vers des opérateurs
de Stokes. Une question proche a été posée et partiellement étudiée par J.-P. Ramis [104] (voir l’article
[41] pour un survol de résultats partiels avec références).

Dans les articles [38, 40, 41, 42], j’ai obtenu des résultats qui relient la monodromie limite avec
les opérateurs de Stokes dans le cas non résonnant général et dans certains cas résonnants. Dans [39],
j’ai obtenu des analogues non linéaires de ces résultats, en particulier pour les germes paraboliques
et leurs invariants d’Écalle-Voronin. Ces résultats, avec une esquisse de démonstration et un survol
historique, sont présentés dans chapitre 6.

1.2 Résumé des travaux non présentés dans ce mémoire

Ici toutes les citations sont données selon la liste de publications personnelles dans la section 1.3.
Dans [1] j’ai obtenu la description combinatoire (analogue à celle de Lyashko et Loojienga) du

revêtement de l’espace des polynômes complexes ”équivariants” en une variable au-dessus des collec-
tions de leurs valeurs critiques.

Les travaux [2], [5], [7] et [22] font partie de ma thèse de doctorat et concernent les feuilletages
holomorphes singuliers de dimension un sur Cn ou sur une variété projective lisse. J’ai démontré
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[2,5,22] que pour un feuilletage générique, toutes les feuilles sont hyperboliques : leurs revêtements
universels sont conformément équivalents au disque. Dans [7], j’ai calculé la codimension de l’ensemble
des feuilletages sur Cn et sur CP

n qui ne satisfont pas les conditions suffisantes de [2,5,22] pour
l’hyperbolicité de feuilles.

Dans les travaux [3] et [4] j’ai démontré que si un champ de vecteurs lisse sur R2 a au moins un
point singulier, et en tout point du plan, toute valeur propre de sa matrice de Jacobi a une partie
réelle négative, alors le point singulier est unique et globalement attractif. Cela a donné une réponse
positive à la conjecture planaire de Markus et Yamabe. Presqu’en même temps (mais un peu plus
tôt), deux autres solutions ont été obtenues par C. Gutierrez et R. Fessler par méthodes complétement
différentes. J’ai construit un contre-exemple en dimension 3 dans [23]. Quand j’étais en train de le
preparer pour publication, un contre-exemple polynomial simple en dimension 3 a été construit dans
un travail commun par A. Cima, A. van den Essen, A. Gasull, E. Hubbers et F. Mañosas.

Dans [6], j’ai étudié les courbes sur le tore T2 sans intersections, dont les relevées sur le revêtement
universel R2 ne sont pas bornées. On colle un cercle à l’infini du plan : des rayons différents partant
de l’origine aboutissent à deux points différents du cercle. J’ai donné une description complète des
ensembles de directions (comme points du cercle à l’infini), le long desquelles une telle relevée peut
s’accumuler vers l’infini. Ces ensembles sont : 1) un point ; 2) deux points opposes ; 3) un segment
fermé contenu dans un demi-cercle ; 4) le cercle tout entier.

L’article [12] concerne les equations différentielles linéaires à point singulier irrégulier résonnant du
type générique. Les résultats obtenus sont analogues à ceux présentés dans la sous-section précedente
et dans le chapitre 6.

Dans [15] j’ai construit des fractions continues“exotiques” à coefficients réels, qui donnent un
contre-exemple à une affirmation trouvée dans des notes de Ramanujan.

L’article [17] avec son résultat (une formule explicite pour le déterminant d’une matrice d’intégrales
abéliennes“de base”) a déjà été mentionné dans la sous-section 1.1.4. Ce résultat, qui était utilisé dans
la majoration du nombre de zéros d’une intégrale abélienne [18, 19], ne sera pas présenté ici.

Les résultats de l’article [9] sont brièvement mentionnés dans la sous-section précédente et dans le
chapitre 6. Ceux qui ne sont pas présentés ici concernent

- les déformations d’un point fixe parabolique et les invariants d’Écalle-Voronin ;
- les déformations d’un point singulier nœud-col d’un champ vectoriel holomorphe en dimension

strictement supérieure à 2, et ses variétés centrales sectorielles.
L’article [27] concerne une équation différentielle linéaire satisfaite par les intégrales hy-

pergéométriques associées à un arrangement générique d’hyperplans réels. Cette équation a un pôle
d’ordre deux à l’infini, qui est un point singulier irrégulier non résonnant. Nous avons calculé ses
opérateurs de Stokes.

1.3 Liste de publications personnelles

1.3.1 Articles parus

[1] The analogue of Cayley’s theorem for the cyclically-symmetric connected graphs with a single cycle
that are related to the généralized Lyashko - Looijenga coverings - Uspehi Mat.Nauk, 2(1993) 233-234
(version anglaise en Russian Mathematicals Surveys 2(1993), 182-183).

[2] The hyperbolicity of phase curves of a generic polynomial vector field in Cn - Functsionalnyi Analiz
i iego Prilozheniia, 2(1994), 1-11 (version anglaise en Functional analysis and its Applications, 2(1994),
77-84).

[3] The complete solution of the Jacobian problem for planar vector fields - Uspehi Mat.Nauk, 3(1994),
173-174.

[4] Asymptotic stability of linearizations of planar vector field with a singular point implies global
stability - Functsionalnyi Analiz i iego Prilozheniia, 4(1995), 17-30 (version anglaise en Functional
Analysis and its Applications 4(1995), 238-247).
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[5] Hyperbolicity of leaves of a generic one-dimensional holomorphic foliation on a nonsingular pro-
jective algebraic manifold - Trudy Matematicheskogo Instituta im. V.A.Steklova, v.213 (1996), 90-111
(version anglaise en Proceedings of Steklov Mathematical Institute, v.213 (1996), 83-103).

[6] Limit sets at infinity of liftings to the plane of nonself-intersected curves in the torus - Mathema-
ticheskiie zamietki journal, v.64 (1998), No 5, 667-679 (version anglaise in Mathematical Notes, v.64
(1998), No 5, 579-589).

[7] On the codimension of the set of one-dimensional polynomial foliations on Cn and CP
n that do not

satisfy the sufficient conditions for hyperbolicity of leaves (en russe) - Algebra i Analiz, v. 11 (1999),
No 4, 35-63 (la traduction anglaise de ce journal sera Saint-Petersburg Mathematical Journal, v. 11
(2000), No 4).

[8] Stokes operators via limit monodromy of a generic deformation. - Journal of Dynamical and Control
Systems, v.5 (1999) No 1, 101-135.

[9] Confluence of singular points and the nonlinear Stokes Phenomena - Trudy Moskovskogo Ma-
tematicheskogo Obshchestva, v.62 (2000), p.54-104 (en russe, la version anglaise de ce journal est
“Proceedings of Moscow Mathematical Society”).

[10] Nonuniformizable skew cylinders : a counterexample to the simultaneous uniformization problem.
- C.R.Acad.Sci.Paris, Série 1 Math., t.332 (2001), p.209-214.

[11] On simultaneous uniformization and local nonuniformizability. - C.R.Acad.Sci.Paris, Série 1
Math., t.334 (2002), p.489-494.

[12] Resonant confluence of singular points and Stokes phenomena. - Journal of Dynamical and Control
Systems, vol. 10 (2004), No. 2 (April), pp. 253–302.

[13] Simultaneous metric uniformization of foliations by Riemann surfaces” Commentarii Mathematici
Helvetici, vol. 79, Issue 4 (2004), pp.704-752.

[14] On the monodromy group of confluenting linear equations. - Moscow Math. J., 5 (2005), no. 1,
67-90.

[15] On convergence of generalized continued fractions and Ramanujan conjecture. - C. R. Math. Acad.
Sci. Paris 341 (2005), no. 7, 427–432.

[16] Upper bounds of topology of complex polynomials in two variables. - Mosc. Math. J. 5 (2005),
no. 4, 781–828.

[17] An explicit formula for period determinant. - Ann. Inst. Fourier (Grenoble) 56 (2006), no. 4,
887–917.

[18] (Avec Yu.S.Ilyashenko). Restricted infinitesimal Hilbert sixteenths problem. - Doklady Academii
Nauk, 2006, v. 407, No 2, 154-159 (in Russian). English translation in Doklady Mathematics, 2006,
vol. 73, No 2, 185-189.

[19] (Avec Yu.S.Ilyashenko). Restricted version of the insinitesimal Hilbert 16-th problem. - Moscow
Math. J. 7 (2007), no. 2, 281-325.

1.3.2 Actes de colloques
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Chapitre 2

Uniformization of Riemann surface
foliations

The present Chapter deals with foliations by Riemann surfaces. The main question studied here is
the dependence of the uniformization of a leaf on the transversal parameter. We study this question
with respect to two different notions of simultaneous uniformizability : the metric uniformizability
in the sense of É Ghys (Sections 2.1, 2.2) and the holomorphic simultaneous uniformizability of
holomorphic foliations in the sense of Yu.S.Ilyashenko (Section 2.3). We present positive and negative
results. The main positive result is Theorem 2.1.3 stated in 2.1.2 and proved in Section 2.2. Its proof
yields a new proof of the integrability of smooth almost complex structure on two-torus (Theorem
2.1.2 stated in 2.1.1 and proved in Section 2.2).

2.1 Metric uniformizability

2.1.1 Introduction : flat metrics and uniformization

The (almost) complex structure on a two-dimensional real surface is a family of complex structures
on the tangent planes at the points of the surface. A Riemann surface with its standard complex
structure carries a lot of nonstandard almost complex structures. We say that a (nonstandard) complex
structure on a Riemann surface is bounded if it has uniformly bounded dilatation with respect to the
standard complex structure (see 2.1.5).

It is well-known that each measurable bounded almost complex structure is locally integrable.
This was proved in [94] and earlier under additional regularity conditions (Hölder or continuous)
in [83, 86, 85]. Each measurable bounded almost complex structure on C is globally integrable, see
the next theorem proved by M.A.Lavrentiev [85] for continuous almost complex structures and by
C.Morrey Jr. [94] in the general case.

Theorem 2.1.1 ([5, 94]). For any measurable (C∞) bounded almost complex structure σ on C there
exists a quasiconformal homeomorphism (C∞ diffeomorphism) C → C that transforms σ to the stan-
dard complex structure.

The definition of a quasiconformal homeomorphism may be found in [4]. Theorem 2.1.1 implies
that for any C∞ metric g on R2 with bounded dilatation there exists a C∞ positive function φ : R2 →
R+ such that the metric φg is flat and complete (the function φ is unique up to multiplication by
constant). This statement remains valid with R2 replaced by an arbitrary parabolic Riemann surface
(see Definition 0).

In this section we present foliated versions of Theorem 2.1.1. Namely, we consider a real two-
dimensional foliation on a compact Riemann manifold (M, g). The metric g induces an almost complex
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structure on each leaf. We suppose that the latter complex structure is parabolic. (This property is
independent on the choice of the metric, by compactness and Theorem 2.1.1.) By the same theorem,
on each individual leaf L there exists a C∞ function φ : L → R+ such that the metric φg of the leaf
L is flat and complete. We study the following questions.

Question 1. Is it possible to find a C∞ function φ : M → R+ such that the restriction to each
leaf of the metric φg be flat and complete ? In other words, is it true that the previous functions φ
may be chosen to depend smoothly on the transversal parameter ?

Question 2. If yes, is it possible to find a Euclidean metric g′ on the ambient manifold M that
coincides with φg along the leaves, and for which each leaf be totally geodesic ?

Positive and negative results were obtained in [45]. We present some of them here (Subsections
2.1.2-2.1.4). The main positive results (Theorems 2.1.3, 2.1.11 and 2.1.12) concern linear planar fo-
liations on torus of arbitrary dimension equipped with a nonstandard Riemann metric (Subsections
2.1.2, 2.1.3). Counterexamples to Question 1 are discussed in 2.1.4.

The proof of Theorem 2.1.3 is based on a new proof (presented in [45, 51]) of the following classical
Theorem. Both proofs are given in Section 2.2.

Theorem 2.1.2 ([Ab]) For any C∞ almost complex structure σ on T2 = R2/2πZ2 there exists a C∞

diffeomorphism of T2 onto appropriate complex torus (the latter torus depends on σ) that transforms
σ to the standard complex structure.

Theorem 2.1.2 is proved by showing the existence of a global nowhere vanishing σ- holomorphic
differential. To do this, we use the homotopy method for the Beltrami equation with parameter.
This method reduces the proof to solving a linear ordinary differential equation in L2(T

2). We prove
regularity of its solution by showing that the equation is bounded in any Sobolev space Hs(T2).

As is shown in [51] (by classical arguments), Theorem 2.1.2 implies the Poincaré-Köbe Uniformiza-
tion Theorem (modulo the contractibility of a simply connected surface) and Theorem 2.1.1. Another
short proof of Theorem 2.1.1 using a different method (Fourier transformation) was earlier obtained
by A.Douady and X.Buff [23].

Analogues of Question 1 were studied by A.Verjovsky [115], A.Candel and X.Gómez-Mont [19],
A.Lins Neto [87] for some holomorphic foliations with singularities by hyperbolic Riemann surfaces.
A.Candel [18] completely answered the analogue of Question 1 for laminations by hyperbolic Riemann
surfaces, with flat metric replaced by Poincaré metric. In 1995 É.Ghys [34] proposed and partially
studied Question 1. He proved the positive answer for linear foliations on T3 under certain Diophantine
condition on the slope of the leaves. He noticed [34] that Reeb foliation of the three-sphere provides a
counterexample to Question 1. Moreover, the foliated manifold (sphere) admits no bounded Riemann
metric whose restriction to each leaf be Euclidean. Theorems 2.1.14 and 2.1.15 stated in 2.1.4 provide
counterexamples to Question 1 in the class of C∞ foliations on compact manifolds for which at least
one latter Riemann metric exists and is analytic. In these examples we construct some other Riemann
metric g on the foliated manifold for which there is no positive smooth function φ such that the metric
φg be flat along the leaves.

2.1.2 Uniformizability of linear folations

Denote Tn = Rn/2πZn. Consider a two-dimensional parallel plane foliation on Rn. The standard
projection Rn → Tn induces a foliation on the torus Tn. This foliation is called linear. Take a (non-
standard) metric g on Tn and consider the corresponding complex structures on the leaves. Then each
leaf is parabolic, by Theorem 2.1.1 and since the metric g has a bounded dilatation with respect to
the standard Euclidean metric (by compactness argument).

Theorem 2.1.3 [45]. Let F be an arbitrary linear foliation on Tn, g be a Riemann metric on Tn that
is analytic (respectively, C∞ /measurable and uniformly bounded from below on Tn with uniformly
bounded dilatation along the leaves of F ). There exists an analytic (respectively, C∞ /L1) positive
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function φ : Tn → R+ such that the restriction of the metric φg to each leaf (almost each in the
measurable case) of the foliation F is flat (in the sense of distributions in the third case) and complete.

Remark 2.1.4 In the previous theorem in the smooth and analytic cases the completeness of the
metric φg follows from the nonvanishing of the function φ and compactness argument.

Remark 2.1.5 For any linear foliation on Tn either all the leaves are tori, or each leaf is dense. In
the simplest case, when all the leaves are tori, Theorem 2.1.3 follows from Theorem 2.1.2 with smooth
(analytic) dependence of the uniformization of the almost complex torus on the parameter of the
almost complex structure, see [2]. The proof of Theorem 2.1.2 given in 2.2 also works to prove the
regular dependence on the parameter. Thus, the interesting case of Theorem 2.1.3 is when the leaves
are dense : then all they are either planes, or cylinders.

2.1.3 Existence of conformal Euclidean metric for which leaves are totally
geodesic

Here we present positive answers to Question 2 for linear foliations on Tn satisfying some (sharp)
Diophantine conditions on the slope. These are two different Diophantine conditions (see Definition
2.1.7) corresponding to the cases, when the metric of the torus is smooth (respectively, analytic).

Definition 2.1.6 We say that a number α ∈ R \ Q is Diophantine, if there exist constants C > 0,
s ≥ 1 such that for any pair m, k ∈ Z, k 6= 0, the following inequality holds :

|α−
m

k
| >

C

|k|s+1
.

Definition 2.1.7 Consider a foliation on Rn by parallel planes : level planes of a linear vector function
of rank n− 2. Let F be the corresponding factorized linear foliation on Tn. Let W ⊂ Rn be the n− 2-
space passing through the origin and orthogonal to the planes. Say that F is Diophantine, if there
exist constants C > 0, s ≥ 1 such that for any N = (N1, . . . , Nn) ∈ Zn \ 0

dist(N,W ) >
C

|N |s
, |N | =

∑

i

|Ni|.

Say that F is weakly Diophantine, if

limN∈Zn, |N |→∞(dist(N,W ))
1

|N| = 1. (2.1.1)

Remark 2.1.8 Let n = 3, x = (x1, x2, x3) be coordinates in the space R3. Consider the foliation
on R3 by level planes of the linear function l(x) = a1x1 + a2x2 − x3. Then the corresponding linear
foliation F on T3 is Diophantine, if and only if there exist constants C > 0, s ≥ 1 such that for any
N = (N1, N2, N3) ∈ Z3 \ 0 the following inequality holds :

|N1 + a1N3| + |N2 + a2N3| >
C

|N |s
, |N | = |N1| + |N2| + |N3|. (2.1.2)

It is weakly Diophantine, if and only if

limN∈Z3, |N |→∞(|N1 + a1N3| + |N2 + a2N3|)
1

|N| = 1. (2.1.3)

Example 2.1.9 In the notations of the previous remark let the additive subgroup in R generated by
a1 and a2 contain a Diophantine number. Then the foliation F is Diophantine. It is not known to the
author, whether the converse is true.
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Remark 2.1.10 The limit (2.1.1) is always less than or equal to 1. A Diophantine foliation is always
weakly Diophantine.

Theorem 2.1.11 [45]. Let F be a Diophantine foliation on Tn (see Definition 2.1.7), g be a C∞

Riemann metric on Tn. There exists a C∞ Euclidean metric g̃ on Tn and a C∞ function φ : Tn → R+

such that

each leaf L of the foliation F is totally geodesic and g̃|L = φg|L. (2.1.4)

Or equivalently, let σ be the family of almost complex structures induced by the metric g on the
leaves of F . There exist a discrete rank n additive subgroup G ⊂ Rn and a C∞ diffeomorphism
Tn → TG = Rn/G that transforms F to a linear foliation and sends σ to the standard complex
structure induced by the standard Euclidean metric. Conversely, if a linear foliation on Tn is not
Diophantine, then there exists a C∞ metric g on the torus such that there is no C2 Euclidean metric
g̃ on Tn satisfying (2.1.4).

Theorem 2.1.12 [45]. Let F be a weakly Diophantine foliation on Tn (see Definition 2.1.7). Then
for any analytic metric g on Tn there exists an analytic Euclidean metric g̃ on Tn that satisfies (2.1.4).
Conversely, if F is not weakly Diophantine, then there exists an analytic metric g on Tn such that
there is no C2 Euclidean metric g̃ on Tn that satisfies (2.1.4).

Let us justify the equivalence of the two statements of Theorem 2.1.11. Clearly, the second one
implies the first one : the Euclidean metric from the first statement is the pull-back of the standard
one under the diffeomorphism from the second statement. Let us prove the converse. Any Euclidean
metric on a torus is transformed under appropriate diffeomorphism into the standard Euclidean metric
on another torus (that is a quotient of the space by another lattice in general). Consider the images
of leaves of the foliation. Their liftings to the space are planes, since the leaves are totally geodesic.
They are parallel. Indeed, the liftings to the space of any two leaves of the initial foliation remain on a
bounded distance from each other. Therefore, the same is true for the liftings of their images (by the
compactness of Tn). Hence, they are parallel. Thus, the leaves of F are transformed to the leaves of
a linear foliation. This shows that statement (2.1.4) of Theorem 2.1.11 implies its second statement.

Remark 2.1.13 Earlier A.Haefliger [58] have obtained a result implying that under an a priori stron-
ger Diophantine condition the metric φg on the leaves extends up to a global metric on the torus for
which all the leaves are minimal surfaces.

2.1.4 Nonuniformizability. Counterexamples to Question 1

Theorem 2.1.14 [45]. There exists a two-dimensional analytic foliation F on T3 = T2 ×S1 with the
following properties.
1) F is invariant under the translations of T2.
2) Any leaf is locally 1-to-1 projected to T2.
3) There are exactly two leaves that are horizontal tori ; any other leaf is homeomorphic to the cylinder
S1 × R.
4) There exists an analytic family of almost complex structures on the leaves satisfying the two follo-
wing statements :

a) there is a unique continuous family of conformal flat metrics on the leaves up to multiplication
by constant ; it is analytic outside the previous toric leaves ;

b) the latter family of flat metrics is not differentiable in the transversal parameter at one of the
toric leaves.

Theorem 2.1.15 [45]. There exists a two-dimensional C∞ foliation F on T2 ×S2 with the following
properties.
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1) F is invariant under the translations of T2.

2) Any leaf is locally 1-to-1 projected to T2.

3) There is a big circle S1 ⊂ S2 such that the product T2 ×S1 is a union of leaves of F ; each of these
leaves is a horizontal torus T2 × a, a ∈ S1.

4) Any other leaf is diffeomorphic to R2, and its accumulation set is the previous product T2 × S1.

5) There exists a C∞ metric g on T2 × S2 such that on each non-toric leaf L there exists a unique
function φ : L→ R+ (up to multiplication by constant) such that the metric φg|L is flat and complete.
The function φ(x) tends to infinity, as x→ ∞.

Let us describe briefly the construction of the foliation and the metric from Theorem 2.1.15. The
foliation F is the suspension over the torus T2 under appropriate action of its fundamental group Z2

by sphere diffeomorphisms S2 → S2. Any of these diffeomorphisms fixes only the points of the equator
S1 ⊂ S2 and is flatly tangent to the identity at these points. Thus, the product T2×S1 is an invariant
set foliated by horizontal tori. Any other leaf L is canonically identified with R2 and embedded to
T2 × S2 by the pair of projections (π1, π2) : L → T2 × S2. The mapping π2 : L = R2 → S2 is a
diffeomorphism onto a hemisphere bounded by the equator. It commutes with the rotations of R2

around the origin and those of the hemisphere around its center. The projection π1 : L → T2 is a
universal covering : the composition of the group quotient mapping R2 → T2 with a translation of
the torus. To define the metric g, we construct its restriction to the leaves and then extend it to the
transversal direction in an arbitrary way. The metric on the horizontal toric leaves is the lifting of the
standard Euclidean metric on T2. Any other leaf L = R2 is equipped with an appropriate rotation-
invariant metric that tends to the standard Euclidean metric, as the point where it is taken tends to
infinity.

For any rotation-invariant metric g on R2 with uniformly bounded dilatation the corresponding
function φ : R2 → R+, for which the metric φg is flat and complete, is also rotation-invariant. The
latter function φ can be find by an explicit formula. It appears that one can achieve appropriate
asymptotic behaviors at infinity of the mapping π2 and the metric g so that the function φ(x) tend
to infinity, as x→ ∞, and g extends up to a C∞ family of metrics on all the leaves of the foliation F .

2.1.5 Complex structures and Beltrami equations. Basic notations

To a (nonstandard) almost complex structure (denoted by σ) on a subset D ⊂ C we put into
correspondence a C- valued 1- form that is C- linear with respect to σ. The latter form can be
normalized to have the type

ωµ = dz + µ(z)dz̄, |µ| < 1. (2.1.5)

The function µ : D → C is uniquely defined by σ. Vice versa, for an arbitrary complex-valued function
µ with |µ| < 1, the 1- form (2.1.5) defines the unique complex structure for which the form is C- linear.
We denote by σµ the almost complex structure thus defined (whenever the contrary is not specified).
Then σµ is bounded, if and only if the essential supremum of the function |µ| is less than 1.

Definition 2.1.16 The ellipse associated to σµ on the tangent plane at a point z is given by the
equation |dz + µ(z)dz̄| = 1. The dilatation of σµ is the aspect ratio of the ellpise : it is equal to
1+|µ(z)|
1−|µ(z)| .

We will be looking for a differentiable homeomorphism Φ(z) that is holomorphic, i.e., that transforms
σµ to the standard complex structure. This is equivalent to say that the differential of Φ (which is a
closed 1- form) is a C- linear form, i.e., has the type f(z)(dz + µdz̄) :

∂Φ

∂z̄
= µ

∂Φ

∂z
(Beltrami equation).
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Remark 2.1.17 Conversely, let µ be C∞ with |µ| < 1. Then any C∞ closed 1- form f(z)(dz + µdz̄)
is σµ- holomorphic, i.e., is a differential of a complex-valued C∞ function Φ transforming σµ to the
standard complex structure. A form f(dz + µ(z)dz̄) is closed if and only if

∂z̄f = ∂z(µf). (2.1.6)

2.2 Uniformization of almost complex torus. Proof of Theo-
rems 2.1.2 and 2.1.3

First we prove Theorem 2.1.2. At the end of the section we discuss the proof of Theorem 2.1.3
obtained by modifying the proof of Theorem 2.1.2.

2.2.1 Homotopy method. The sketch of the proof of Theorem 2.1.2

Let µ : T2 → C be a C∞ complex-valued function with |µ| < 1. Let σµ be the corresponding almost
complex structure, ωµ = dz + µdz̄ be the corresponding C- linear 1- form, see (2.1.5). Theorem 2.1.2
says that there exists a diffeomorphism transforming (T2, σµ) into appropriate complex torus equipped
with the standard complex structure. We construct a C∞ nowhere vanishing function f : T2 → C

such that the 1- form fωµ be closed or equivalently, f satisfy partial differential Equation (2.1.6).
Then the lifting to the universal cover R2 → T2 of the form fωµ is the differential of the mapping
Ψ : R2 = C → C, Ψ(z) =

∫ z
0
fωµ. The mapping Ψ is a diffeomorphism and transforms the integer

lattice Z2 and its translation images to some lattice G ⊂ C and its appropriate translation images.
This follows from the definition and the local diffeomorphicity of Ψ (f 6= 0). The factorized mapping
T2 → T2

G = C/G is a diffeomorphism that sends σµ to the standard complex structure. This implies
Theorem 2.1.2.

To solve (2.1.6), we use the homotopy method. Namely, we include σµ into the one-parametric
family of complex structures (denoted by σν) defined by their C- linear 1- forms

ων = dz + ν(z, t)dz̄, ν(z, t) = tµ(z), t ∈ [0, 1].

The complex structure corresponding to the parameter value t = 0 is the standard one, the given
structure σµ corresponds to t = 1. We will find a C∞ family f(z, t) : T2× [0, 1] → C of complex-valued
nowhere vanishing C∞ functions on T2 depending on the same parameter t, such that the differential
forms f(z, t)ων be closed, i.e.,

∂z̄f = ∂z(fν), and f(z, 0) ≡ 1. (2.2.1)

Then the function f = f(z, 1) is the one we are looking for.
To construct the above-mentioned family of functions, first we will find a family f(z, t) of functions

that satisfy (2.2.1) and do not vanish identically on T2 for any fixed parameter value t.

Lemma 2.2.1 Let ν(z, t) : T2 × [0, 1] → C be a C∞ family of C∞ functions on T2 with |ν| < 1,
ν(z, 0) ≡ 0, z be the complex coordinate on T2. There exists a C∞ family f(z, t) : T2 × [0, 1] → C of
C∞ functions on T2 that are solutions of differential Equation (2.2.1) (with the boundary condition)
such that for any fixed t ∈ [0, 1] one has f(z, t) 6≡ 0.

The Lemma will be proved in the next subsection.
We show that, in fact, the functions f(z, t) from the lemma vanish nowhere. To do this (and only

in this place) we use the local integrability of a C∞ complex structure :

Proposition 2.2.2 [20, 83, 85, 86]. Let D ⊂ C be a disk centered at 0, µ : D → C be a C∞ function
with |µ| < 1. Let σµ be the corresponding almost complex structure, see (2.1.5). There exists a local
C∞ σµ- holomorphic univalent complex coordinate near 0.



23

The proposition will be proved in Subsection 2.2.3.
Proof of Theorem 2.1.2 modulo Lemma 2.2.1 and Proposition 2.2.2. Let f(z, t) be a family
of functions from Lemma 2.2.1. By the previous discussion, it suffices to show that f(z, t) 6= 0. This
inequality holds for t = 0, where f(x, 0) ≡ 1.

Let us prove that f(z, t) 6= 0 by contradiction. Suppose the contrary. Then the set of the parameter
values t corresponding to the functions f(z, t) having zeroes is nonempty. Denote this set by M . Its
complement [0, 1]\M is open by definition. Let us show that the set M is open as well. This will imply
that the parameter segment is a union of two disjoint open sets, which will bring us to contradiction.
It is sufficient to show that the local presense of a zero of a function f persists under perturbation.

Suppose f(z0, t) = 0 for some z0 and t (let us fix them). It suffices to show that for any t′ close to
t the function f(z, t′) has a zero near z0. Let w be the local σν - holomorphic coordinate on T2 near
z0 from Proposition 2.2.2 with µ(z) replaced by ν(z, t) and w(z0) = 0. We consider that the function
f(z, t) does not vanish identically on T2 locally near z0. One can achieve this by changing z0, since
f(z, t) does not vanish identically on T2. Recall that the 1- form f(z, t)ων(z,t) is a closed C- linear
form on T2 with respect to the complex structure σν(z,t). Hence, it is holomorphic in the coordinate

w. Therefore, f(z, t)ων(z,t) = (wk + higher terms)dw, k ≥ 1. Now by an index argument, the local
presense of zero of f on T2 persists under perturbation. This together with the previous discussion
proves the inequality f(z, t) 6= 0 and Theorem 2.1.2. 2

2.2.2 Variable holomorphic differential : proof of Lemma 2.2.1

We denote by ḟ the partial derivative in t of a function f . Differentiating (2.2.1) in t yields

∂z̄ ḟ − (∂z ◦ ν)ḟ = (∂z ◦ ν̇)f. (2.2.2)

where ∂z ◦ ν (∂z ◦ ν̇) is the composition of the operator of the multiplication by the function ν
(respectively, ν̇) and the operator ∂z . Any C∞ solution f of equation (2.2.2) with the initial condition
f(z, 0) ≡ 1 that does not vanish identically on the torus for any value of t is a one we are looking
for. Let us show that (2.2.2) is implied by a bounded linear differential equation in L2(T

2) and in any
Hilbert Sobolev space. To do this, we use the following properties of the operators ∂z and ∂z̄ .

Remark 2.2.3 Denote z = x1 + ix2, x = (x1, x2) ∈ R2. The operators ∂z, ∂z̄ on T2 have common
eigenfunctions en(x) = ei(n,x), n = (n1, n2) ∈ Z2. The corresponding eigenvalues (denote them by λn
and λ′n respectively) have equal moduli, more precisely,

λ′n = −λn. (2.2.3)

This is implied by the fact that the operator ∂z̄ is conjugated to −∂z in the L2 scalar product, which
follows from definition. In fact,

λn =
i

2
(n1 − in2) and λ′n =

i

2
(n1 + in2).

Corollary 2.2.4 There exists a unique unitary operator U : L2(T
2) → L2(T

2) preserving averages
and such that “U = ∂−1

z̄ ◦∂z” (more precisely, U ◦∂z̄ = ∂z̄ ◦U = ∂z in the sense of distributions). The
operator U commutes with partial differentiations and extends up to a unitary operator to any Hilbert
Sobolev space of functions on T2. In particular, it preserves the space of C∞ functions.

Proof The operator U from the corollary is defined to have the eigenfunctions en with the eigen-
values λn

λ′
n

= n1−in2

n1+in2
if n 6= 0, and 1 if n = 0. Its uniqueness follows immediately from the previous

operator equation on U applied to the functions en. The rest of the statements of the corollary follow
immediately from definition and Sobolev embedding theorem (see [21], p.411). 2
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Let us write down equation (2.2.2) in terms of the new operator U . Applying the “operator” ∂−1
z̄

to (2.2.2) and substituting U = ∂−1
z̄ ◦ ∂z yields

(Id− U ◦ ν)ḟ = (U ◦ ν̇)f.

This equation implies (2.2.2). For any t ∈ [0, 1] the operator Id−U ◦ν in the left-hand side is invertible
in L2(T

2) and the norm of the inverse operator is bounded uniformly in t, since U is unitary and the
modulus |ν| is less than 1 and bounded away from 1 by compactness. Thus, the last equation can be
rewritten as

ḟ = (Id− U ◦ ν)−1(U ◦ ν̇)f, (2.2.4)

which is a linear ordinary differential equation in f ∈ L2(T
2). The operator in its right-hand side

is uniformly bounded in the operator L2- norm. Let us show that the same operator is uniformly
bounded in the Sobolev Hs(T2)- norms. More precisely, for any s ∈ N there exists a cs > 0 such that

||(Id− U ◦ ν)−1||Hs(T2) < cs(1 +
∑

k≤s; ir=1,2

max
T2×[0,1]

|
∂kν

∂xi1 . . . ∂xik
|s). (2.2.5)

Proof Let us prove (2.2.5) for s = 1. For higher s the proof is analogous. Let

δ = max |µ|. Then max
T2×[0,1]

|ν| ≤ δ < 1, ||U ◦ ν||L2 ≤ δ < 1.

Hence, the operator Id− U ◦ ν is invertible in L2 = H0 and

(Id− U ◦ ν)−1 = Id+

∞∑

k=1

(U ◦ ν)k; (2.2.6)

||(U ◦ ν)k||L2 ≤ δk, ||(Id− U ◦ ν)−1||L2 ≤
1

1 − δ
. (2.2.7)

To prove (2.2.5), we use (2.2.6) and estimate the H1- norms of the terms in its sum.
Let f ∈ H1(T2). Let us estimate ||(U ◦ ν)kf ||H1 . We show that for any k ∈ N

||
∂

∂xr
((U ◦ ν)kf)||L2 ≤ ckδk−1||f ||H1 , c = δ + max |

∂ν

∂xr
|, r = 1, 2. (2.2.8)

This together with (2.2.6) and the first inequality in (2.2.7) implies (2.2.5) ; here cs = c1 = 4
∑
k∈N

kδk−1 =
4

(1−δ)2 .

Let us prove (2.2.8), e.g., for r = 1. The derivative in the left-hand side of (2.2.8) equals

(U ◦ ν)k
∂f

∂x1
+

k∑

i=1

(U ◦ ν)k−i ◦ (U ◦
∂ν

∂x1
) ◦ (U ◦ ν)i−1f,

since U commutes with the partial differentiations. The L2- norm of the first term in the previous
formula is no greater than δk||f ||H1 by (2.2.7). Each term in the latter sum has L2- norm no greater
than δk−1 max | ∂ν∂x1

|||f ||L2 by (2.2.7). This proves (2.2.8). Inequality (2.2.5) is proved. 2

Ordinary differential Equation (2.2.4) is bounded in any Sobolev space Hs(T2), by (2.2.5). The-
refore, it has a unique solution f(x, t) with the initial condition f(x, 0) ≡ 1 that belongs to all the
Sobolev spaces. This follows from the existence and uniqueness theorem for solution of ordinary dif-
ferential equation in Banach space with right-hand side having bounded derivative, see [21]. This
solution is C∞ by the Sobolev embedding theorem (see [21], p.411). For any fixed value of t it does
not vanish identically on T2 (the uniqueness of local solution). Lemma 2.2.1 is proved.



25

Remark 2.2.5 The solution of Equation (2.2.4) with the initial condition f |t=0 ≡ 1 admits the
following formula :

f(x, t) = (Id− U ◦ ν)−1(1) = 1 + U(ν) + (U ◦ ν ◦ U)(ν) + . . . (2.2.9)

Indeed, its right-hand side is a well defined C∞ family of C∞ functions on T2, which follows from the
uniform boundedness of the operators (Id−U ◦ν)−1 in any given Hilbert Sobolev space. By definition,
f satisfies the initial condition f(x, 0) ≡ 1. Differentiating (2.2.9) in t yields

ḟ = (Id− U ◦ ν)−1 ◦ (U ◦ ν̇) ◦ (Id− U ◦ ν)−1(1) = (Id− U ◦ ν)−1 ◦ (U ◦ ν̇)f.

Hence, the function (2.2.9) satisfies (2.2.4).

2.2.3 Zero of holomorphic differential. Proof of Proposition 2.2.2

Let us prove the existence of local holomorphic coordinate. Without loss of generality we assume
that µ(0) = 0. One can achieve this by applying a real-linear transformation of the plane R2 = C ⊃ D
that brings the ellipse at 0 associated to σµ to a circle. One can achieve also that µ be arbitrarily
small with derivatives of orders up to 3 by applying a homothety and taking the restriction to a
smaller disk centered at 0. We consider that the disk where µ is defined is embedded into T2 and
extend the function µ smoothly to T2. We assume that the extended function satisfies the inequality
||µ||C3(T2) < δ ; one can make δ arbitrarily small.

Let ν(x, t) = tµ, f(x, t) be the corresponding function family from Lemma 2.2.1 constructed as the
solution of differential equation (2.2.4) with unit initial condition. Put f(x) = f(x, 1). We show in the
next paragraph that f(0) 6= 0, if the previous constant δ is small enough. Then the local coordinate
we are looking for is the function

w(z) =

∫ z

0

f(dz + µdz̄).

Indeed, it is well-defined and holomorphic, since the 1- form f(dz + µdz̄) is closed by construction.
Its local univalence follows from the nondegeneracy of its differential f(0)(dz + µ(0)dz̄) at 0 (the
inequalities |µ| < 1, f(0) 6= 0).

Recall that by (2.2.9),

f(x, t) = (Id− tU ◦ µ)−1(1), where U = (∂z̄)
−1∂z .

The functions f(x, t) are equal to 1, if µ = 0. Let us show that they are C0- close to 1 (and hence,
f(0) = f(0, 1) 6= 0), whenever µ is small enough with derivatives up to order 3. For any t ∈ [0, 1]
consider the operator-valued functional A(µ) = (Id − tU ◦ µ)−1 defined for ||µ||C3 < δ : its value
being an operator acting in H3(T2). (It is well-defined, see Inequality (2.2.5).) The derivative A′(µ)
exists and is uniformly bounded. Indeed, the operators A(µ) are uniformly bounded by some constant
c′ = c′(δ) (Inequality (2.2.5)). Therefore, we can apply the usual formula for the derivative of the
inverse operator : the derivative of A(µ) along a vector h ∈ C3(T2) is equal to

∇hA(µ) = tA(µ) ◦ U ◦ h ◦ A(µ). Hence, ||∇hA(µ)||H3 ≤ ||A(µ)||2H3 ||h||H3 ≤ c′(δ)||h||C3 .

Thus, the operator-valued functional A(µ) is Lipschitz (and hence, continuous) in µ. Therefore, if
||µ||C3 is small enough, then each function f(x, t) is close to 1 in H3 (thus, in C0, by the Sobolev
embedding theorem, and hence, f 6= 0). This proves Proposition 2.2.2. The proof of Theorem 2.1.2 is
complete.

2.2.4 Foliated version : proof of Theorem 2.1.3

Here we present only a proof of the C∞ version of Theorem 2.1.3. The proof of its other (analytic
and measurable) versions is analogous.
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Fix a projection Tn → T2 to appropriate coordinate two-torus whose restriction to each leaf of F
be a local diffeomorphism. The universal covering R2 → T2 lifts under the projection up to a universal
covering of any leaf. Let us introduce an affine complex coordinate z on R2. Its differential dz yields
well-defined complex-valued 1- forms (also denoted by dz) on T2 and on any leaf. Consider the complex
structures on the leaves defined by the metric g. In the local coordinate z they are defined by a 1-
form

ωµ = dz + µdz̄, µ : Tn → C is a C∞ function with |µ| < 1,

as in (2.1.5). Vice versa, each function µ as above yields a C∞ family of almost complex structures
on the leaves that is defined by some C∞ Riemann metric on Tn. Namely let H : Rn → Rn−2 be a
linear vector function whose level planes are the liftings to Rn of the leaves of the foliation F . Then
g = |ωµ|2 + |dH |2 is a C∞ Riemann metric on Tn that is conformal with respect to the given complex
structures along the leaves.

We prove the following more precise version of Theorem 2.1.3.

Theorem 2.2.6 Let F be a linear foliation on Tn. Let µ : Tn → C be an arbitrary C∞ function with
|µ| < 1. Let z, ωµ be as above. There exists a C∞ nowhere vanishing function f : Tn → C such that
the restriction to each leaf of the 1- form fωµ be closed.

The restriction to each leaf of the 1- form fωµ from Theorem 2.2.6 is a nowhere vanishing holo-
morphic differential. Therefore, its squared modulus |fωµ|2 is a flat metric on each leaf. This yields
a C∞ family of flat metrics on the leaves. These metrics are proportional to the restrictions of the
C∞ metric g to the leaves with a positive functional coefficient (which is then also C∞). This implies
Theorem 2.1.3.

Remark 2.2.7 If in the conditions of the previous theorem the leaves of the foliation are dense, then
the corresponding function f is unique up to multiplication by constant.

Proof of Theorem 2.2.6. Without loss of generality we consider that each leaf is dense. In the
opposite case, all the leaves are tori and Theorem 2.2.6 follows from Theorem 2.1.2 with smooth
dependence of the uniformizing diffeomorphism of the almost complex torus on the parameter of the
almost complex structure (see Remark 2.1.5).

The closeness of a 1- form fωµ is equivalent to the partial differential Equation (2.1.6) along the
leaves :

Dz̄f = Dz(µf), Dz =
∂

∂z
, Dz̄ =

∂

∂z̄
: both differentiations are done along the leaves.

The function f is constructed by homotopy method, as before. We include µ into the family of
functions

ν(x, t) = tµ(x), t ∈ [0, 1],

and find a solution f(x, t) of the previous differential equation with µ replaced by ν :

Dz̄f = Dz(νf) with the initial condition f(x, 0) ≡ 1. (2.2.10)

Differentiating in t (we denote ḟ = ∂
∂t ) yields

Dz̄ ḟ = (Dz ◦ ν)ḟ + (Dz ◦ µ)f.

The operators Dz and Dz̄ are differential operators with constant coefficients, for which the Fourier
harmonics eN = ei(N,x), N ∈ Zn, are thus eigenfunctions. The corresponding eigenvalues λN and λ′N
have equal moduli, moreover,

λ′N = −λN ,

since the operators Dz and −Dz̄ are conjugated. One has λN = 0, if and only if N = 0. Indeed, a
smooth function on Tn (anti)holomorphic on the leaves (in the standard complex structure given by
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the coordinate z) is always constant along the leaves (Liouville’s theorem), and hence, is constant
globally (the density of the leaves). Consider the operator U : L2(T

n) → L2(T
n) defined to have the

eigenbase {eN}|N∈Zn with the eigenvalues λN
−λN

if N 6= 0 and 1 if N = 0. The operator U extends up

to a unitary operator to each Hilbert Sobolev space of functions on Tn such that the equality

U ◦Dz̄ = Dz̄ ◦ U = Dz

holds true on smooth functions. The equation

(Id− U ◦ ν)ḟ = (U ◦ µ)f

has a unique smooth solution f(x, t) with unit initial condition, which satisfies (2.2.10) and vanishes
nowhere, as in Subsections 2.2.1 and 2.2.2. The function f = f(x, 1) is a one we are looking for. This
proves Theorems 2.2.6 and 2.1.3. 2

2.3 Holomorphic nonuniformizability

2.3.1 Main result : nonuniformizable universal covering manifolds

Let S be an affine (or projective) smooth algebraic surface of dimension 2, F be a one-dimensional
holomorphic foliation on S (with isolated irremovable singularities) tangent to a rational vector field.
In this case we say briefly that the foliation F is algebraic affine (projective).

Remark 2.3.1 Let S, F be as above, S be affine and its projective closure S be smooth. Then F
extends up to an algebraic foliation on S (called the projective extension, denoted F ).

Roughly speaking, the principal result of the section is the existence of S, F as above such that
the family of leaves intersecting an arbitrary given cross-section does not admit a uniformization
holomorphic in the parameter by a family of simply connected domains in the Riemann sphere. To
state this result precisely, let us introduce the following

Definition 2.3.2 Let S, F be as above,D ⊂ S be a simply connected (may be not global) transversal
cross-section to F containing no singularities. For any z ∈ D denote Lz ⊂ S the leaf of F passing
through z. The universal covering manifold (briefly u.c.m.) associated to D is

MD =
⋃
z∈D(the universal covering of Lz with the base point z).

Theorem 2.3.3 [63, 68] Let S, F , D, MD be as above, S be affine. Then the space MD admits a
natural structure of complex manifold and it is Stein.

Remark 2.3.4 In general, the space MD is a complex manifold, if and only if it is Hausdorff. If S is
projective, then in general MD may be non-Hausdorff. (Such an example was proposed by the referee
of the paper [44] ; the foliation from this example is obtained from another one by blowing up at a
nonsingular point.) But if S is projective and no leaf of F intersecting D is a once punctured sphere,
then MD is a manifold. This follows from a remark of E.Chirka and a version of Gromov compactness
theorem [57]. It is not known in the latter case, whether MD is always Stein whenever it is a manifold.

The manifold MD admits a natural holomorphic projection p : MD → D and a section D → MD

inverse to p defined by taking the base points of the universal coverings.

Definition 2.3.5 A u.c.m. MD is said to be uniformizable, if it admits a biholomorphism (called
uniformization) onto a domain in C × D that forms a commutative diagram with the projections.
It is said to be locally uniformizable at a given point z ∈ D, if its restriction p−1(U) = MU to a
neighborhood U of z is uniformizable.
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Theorem 2.3.6 [44] There exists an affine algebraic foliation with no uniformizable u.c.m.

Corollary 2.3.7 For a foliation from Theorem 2.3.6 each u.c.m. is nowhere locally uniformizable.

Addendum to Theorem 2.3.6 [44]. In Theorem 2.3.6 the affine foliation (denoted by F ) can
be chosen to have the following additional properties :

1) F is transversally affine and admits a Liouvillian first integral (cf. 5) below) ;
2) each leaf is dense and hyperbolic : its universal covering is conformally equivalent to disc ;
3) some leaf contains an attracting cycle (a closed curve with an attracting return mapping) ;
4) the projective extension F is well-defined, each its u.c.m is a manifold and nonuniformizable.
5) F is a rational pullback of the foliation on (C \ ±1) × C with a first integral I(w, z) = z(1 −

w)α + β
∫ w
0

(1−τ)α

τ+1 dτ.
A brief proof of Theorem 2.3.6 and its Addendum is given in the next two Subsections.
In late 1960-s Yu.S.Ilyashenko proposed the conjecture saying that each u.c.m. of any algebraic

foliation is uniformizable. He proved uniformizability of certain u.c.m’s [64]. In 1969 T.Nishino [96]
independently proved the positive answer with u.c.m replaced by abstract holomorphic Stein sur-
face fibered by complex lines (Stein skew cylinder with fiber C, see Definition 2.3.8 below). His and
Ilyashenko’s results [96, 63, 68] together imply the positive answer to Ilyashenko’s conjecture for the
u.c.m’s with fibers C. At the end of 1999 a negative answer in the general case was proved by the
author in [43]. The counterexample constructed there was locally uniformizable at a generic point. In
2001 A.A.Shcherbakov asked the following question : is it true that each u.c.m. of any algebraic folia-
tion with hyperbolic leaves is locally uniformizable ? Theorem 2.3.6, its Corollary and the Addendum
give a negative answer.

The proofs of Theorem 2.3.6 and the results of [43] are based on a key result in several complex
variables due to B.Berndtsson and J.Ransford ([12], see Theorem 2.3.13 below). Their result provides
a very exotic subset K in the product of C and unit disk D with a Stein complement V = (C×D)\K
and infinitely many C- slices of the set K being single points with two distinct C- coordinates. The
universal covering M over V is fibered over D by simply connected Riemann surfaces. It appears that
the fibered manifold M is not uniformizable in the sense of Definition 2.3.5. This was proved in [43] ;
the proof is presented in the next subsection. Afterwards in 2.3.3 we construct a foliation satisfying
the statements of Theorem 2.3.6 and its Addendum by using the nonuniformizability of M , the Stein
nature of V , and approximations of holomorphic functions on Stein manifolds embedded in CN by
polynomials.

2.3.2 Skew annuli and nonuniformizable Stein skew cylinders

Universal covering manifolds are particular cases of skew cylinders, see the following Definition.

Definition 2.3.8 [68] Let D be a simply-connected domain in C, M be a two-dimensional complex
manifold, p : M → D be a holomorphic surjection having nonzero derivative. We say that the triple
(M,p,D) is a skew cylinder with the base D and the total space M , if

1) the level sets of the mapping p are connected and simply connected holomorphic curves ;
2) M has a holomorphic section : a holomorphic mapping i : D →M , p ◦ i = Id.

The definition of a (locally) uniformizable skew cylinder coincides with that of a uniformizable
u.c.m. (Definition 2.3.5). A skew cylinder is said to be Stein, if its total space is Stein. A u.c.m.
corresponding to an algebraic foliation is a skew cylinder, whenever it is a manifold. It is Stein, if the
foliation is affine (Theorem 2.3.3). Denote

π : C ×D → D the product projection.

Definition 2.3.9 A domain V ⊂ C×D is said to be a uniformizable skew annulus (or briefly, u.s.a.),
if it satisfies the following conditions : 1) for any z ∈ D the fiber π−1(z)∩V is either a once punctured
complex line, or a complement of C to a disk ; 2) V ⊃ c×D for any c ∈ C large enough.
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Remark 2.3.10 The universal covering over a uniformizable skew annulus has a natural structure of
skew cylinder.

Theorem 2.3.11 [43] There exists a pseudoconvex u.s.a. whose universal covering is a nonuniformi-
zable Stein skew cylinder.

Remark 2.3.12 It is easy to construct a u.s.a. with nonuniformizable (non-Stein) universal covering
manifold, e.g.,

V = (C ×D) \ {w = z̄}, D being unit disk,

w, z are the coordinates on C and D respectively. Other examples of nonstein nonuniformizable skew
cylinders with fibers C may be found in [73].

We prove the statement of Theorem 2.3.11 for an exotic u.s.a. V given by the following

Theorem 2.3.13 [12] Let D be unit disk in complex line with the coordinate z. Let E+ = { 1
2} ∪

{ n
2n+1}n∈N, E− = −E+ ⊂ D. There exists a closed subset K ⊂ C ×D such that

1) the complement V = (C ×D) \K is pseudoconvex ;

2) for any z 6∈ E+ ∪ E− the fiber K ∩ π−1(z) is a disc ;

3) for any z ∈ E+ K ∩ π−1(z) = 0 × z ;

4) for any z ∈ E− K ∩ π−1(z) = 1 × z.

For the completeness of presentation, we recall the construction of the set K from [12]. Let w
be the coordinate in the fiber C on the direct product C × D. Let u(z) = ln |z − 1

2 | + ln |z + 1
2 | +∑+∞

n=1 2−n(ln |z − n
2n+1 | + ln |z + n

2n+1 |), A ∈ R+. The function u is harmonic, u(E±) = −∞. Let

ψ : D → C be a C∞ function with bounded derivatives (up to the second order) that is constant in a
neighborhood of each set E± so that ψ|E+ = 0, ψ|E− = 1. Define

(1) K = {|w − ψ(z)| ≤ eu(z)+|z|2+A}.

The fibers of K over E+ (E−) are single points where the coordinate w is equal to 0 and 1
respectively. Its other fibers are disks. Thus, V = (C ×D) \K is a uniformizable skew annulus. If A
is large enough, then V is pseudoconvex [12].

Proof of Theorem 2.3.11. Let V = (C × D) \ K be a skew annulus given by Theorem 2.3.13,
pV : M → V be its universal covering. The manifold M is Stein, as is V (the pseudoconvexity
statement in Theorem 2.3.13), since a covering over a Stein manifold is Stein [109]. Let us prove that
the skew cylinder M is nonuniformizable (by contradiction). Suppose the contrary : there exists a
uniformization g : M → C ×D. Let f : M → C be the C- component of g. The fibers of the cylinder
M over E± are conformally equivalent to complex line. Let w be the C- coordinate on C ×D ⊃ V .
Consider the multivalued holomorphic function lnw ◦ pV on M . It provides a well-defined 1-to-1
parametrization by C of the fibers of M over E+. This is not the case for the fibers over E−, where
this function is multivalued and has branch points where w ◦ pV = 0. The function f is univalent on
each fiber of M by definition. Therefore, for any z ∈ E+ the restriction to the fiber of M over z of
the function f is Möbius in the chart lnw ◦ pV , and this is not the case for z ∈ E−. Let Sf be the
Schwartzian derivative of f along the fibers of M in the (multivalued) coordinate lnw ◦ pV . It is a
well-defined holomorphic function on M \ {w = 0}, since any two distinct branches of lnw differ from
each other by constant. It vanishes identically on all the fibers over the set E+, which contains a limit
point 1

2 . Therefore, Sf ≡ 0 on M . On the other hand, Sf does not vanish identically on the fibers
over the set E−, since f is not Möbius in the previous coordinate on these fibers. The contradiction
thus obtained proves that M is nonuniformizable. 2
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2.3.3 Nonuniformizable universal covering manifolds. Proof of Theorem
2.3.6

The proof of Theorem 2.3.6 and its Addendum is based on Propositions 2.3.17, 2.3.20 and Theorem
2.3.18 stated and proved below. Theorem 2.3.18 follows from Proposition 2.3.20 and Lemma 2.3.22,
which is the main technical statement of the subsection. Theorem 2.3.6 will be deduced from them at
the end of the section.

Definition 2.3.14 An affine algebraic foliation is geometrically nice, if it satisfies the statements
1)-3), 5) of the Addendum to Theorem 2.3.6 (in particular, it has a dense leaf with an attracting
cycle).

Definition 2.3.15 Let F be an algebraic foliation, D be a simply connected cross-section such that
some leaf contains an attracting cycle starting at a point 0 ∈ D with a well-defined Poincaré return
mapping h : D → D (then h(0) = 0). Let hD b D. Then we say that D is (h-) contracting. In this
case the corresponding u.c.m. MD is also said to be contracting.

Definition 2.3.16 Two skew cylinders are said to be equivalent, if there exist biholomorphisms of
their total spaces and bases that form a commutative diagram with the projections.

Proposition 2.3.17 Let an algebraic foliation have a nonuniformizable contracting u.c.m. MD, 0 ∈
D be the starting point of the corresponding attracting cycle. Then MD is locally nonuniformizable at
0.

Proof The iterations hn converge to 0 uniformly on D, as n→ +∞ (since hD b D). For any n ∈ N

the u.c.m. MhnD corresponding to the smaller cross-section hnD is equivalent to MD. Since MD is
nonuniformizable by assumption, so is MhnD. This together with the uniform convergence hn → 0
implies Proposition 2.3.17. 2

Theorem 2.3.18 There exists a geometrically nice foliation F having at least one nonuniformizable
contracting u.c.m. MD. The foliation F and the cross-section D may be chosen so that in addition,
all the u.c.m.’s associated to the projective extension F be manifolds, and the one corresponding to D
be nonuniformizable.

For the proof of Theorem 2.3.18 let us introduce the following definition.

Definition 2.3.19 Let (M,p,D) be a skew cylinder, B ⊂M (B b M) be its subdomain. Then B is
called a (compact) subcylinder, if the triple (B, p, p(B)) is a skew cylinder.

Proposition 2.3.20 (by Ilyashenko, see [106]). Let a Stein skew cylinder be exhausted by an increa-
sing sequence of uniformizable subcylinders. Then it is uniformizable.

Remark 2.3.21 A.A.Shcherbakov [106] proved that any Stein skew cylinder can be exhausted by
a growing sequence of compact subcylinders with smooth strictly pseudoconvex boundaries. His re-
sult together with Theorem 2.3.11 and Proposition 2.3.20 imply the existence of a nonuniformizable
compact skew cylinder with a strictly pseudoconvex boundary.

Lemma 2.3.22 For any Stein u.s.a. any compact subcylinder of its universal covering is equivalent
to a subcylinder of a contracting u.c.m. corresponding to a geometrically nice foliation.
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Remark 2.3.23 Yu.S.Ilyashenko had shown (late 1960-ths, unpublished) that any compact subcy-
linder of a Stein skew cylinder is equivalent to a subcylinder of a u.c.m. corresponding to an affine
(projective) algebraic foliation. He proved this by considering the Stein cylinder as embedded to CN

so that its cylinder projection be the restriction of an orthogonal projection p : CN → C, and then
approximating its compact subcylinder by a piece of an algebraic surface S. The foliaton on S we are
looking for is the fibration defined by the same orthogonal projection. The method of the proof of
Lemma 2.3.22 given below was motivated by this Ilyashenko’s method.

Proof of Lemma 2.3.22 (sketch). We consider the auxiliary foliation on (C \ ±1) × C (denoted

by Fα,β) with the first integral I(w, z) = z(1−w)α + β
∫ w
0

(1−τ)α

τ+1 dτ. (The foliation Fα,β tends to the
parallel line fibration z = const, as α, β → 0.)

Proposition 2.3.24 The foliation Fα,β is algebraic and transversally affine. If α /∈ R ∪ iR, β 6= 0,
then all its leaves are dense. Let h+ : 0×C → 0×C be the first return mapping corresponding to Fα,β
and the circuit in C× 0 starting at 0× 0 and going around 1× 0 counterclockwise. The mapping h+ is
affine (i.e., linear nonhomogeneous) with the derivative e−2πiα. If Imα < 0, then h+ is a contraction
and its fixed point is 0 ×O(β), as α, β → 0.

Proposition 2.3.24 easily follows from the definition of the foliation Fα,β . Its statements imply that
the foliation Fα,β becomes geometrically nice after realizing its phase space (C \ ±1)× C as an affine
algebraic surface.

Let V ⊂ C × D be a given Stein u.s.a., M be its universal covering, B ⊂ M be a compact
subcylinder. Denote pV : M → V the covering projection. Recall that w and z are the coordinates on
C and D respectively. Fix a R > 4 such that

pV (B) ⊂ {|w| < R − 4}, {|w| ≥ R− 4} ×D ⊂ V. Put (2.3.1)

VR = (V + (iR, 0)) \ (±1 ×D) ⊂ C ×D, pV,R(B) = pV (B) + (iR, 0) ⊂ VR. (2.3.2)

Fix a disk D′
b D centered at 0 such that π(pV (B)) = π(pV,R(B)) b D′. Replace the parallel line

fibration z = const of VR by the restriction to VR of the foliation Fα,β . Consider auxiliary domains
Σ1, . . . ,Σ4 b (C \ ±1) ×D with the following properties :

Σ1 = {|w − iR| < R} ×D′, Σ1 b Σ2, Σ3 b Σ4 b (VR ∩ Σ2), pV,R(B) b Σ3, 0 ×D′
b Σ3,

the domain Σ2 being a bidisk (whose closure is disjoint from ±1 ×D by definition), the C- fibers of
the domain Σ3,4 being diffeomorphic to an annulus. The existence of the domains Σ2,3,4 follows from
definition : the fibers of the skew annulus V are topological annuli. For any α, β small enough there
exists a biholomorphism

χ : Σ2 → χ(Σ2) b C ×D, χ|0×D′ = 0 × IdD′ , χ(Σ3) b Σ4, (2.3.3)

that transforms the foliation z = const to the foliation Fα,β and preserves the w- coordinate : the
leaves of the foliation Fα,β are uniformly close to the product C- fibers in any closed bidisk disjoint
from ±1 ×D, whenever α and β are small enough.

We fix α and β such that α /∈ R ∪ iR, Imα < 0, β 6= 0. We show that if they are small enough,
then there exist a smooth affine surface S and a rational mapping P : S → (C\±1)×C with nowhere
degenerate Jacobian matrix such that the subcylinder B and the foliation F = P−1

∗ Fα,β on S satisfy
the statements of Lemma 2.3.22.

To construct S, P and F , we consider the Stein manifold VR as a submanifold in some space CN so
that the natural inclusion VR → C2 is the restriction to VR of an orthogonal projection P : CN → C2.
Let V r be the intersection of VR with a ball centered at 0 of a large radius r such that

P (V r) c Σ4. (2.3.4)
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We approximate V r by a compact piece of a smooth affine algebraic surface S′ ⊂ CN using results of
[11] (cf. [43]) and approximation and extension theorems for functions on Stein manifolds. We do the
approximation so that P |S′ has a holomorphic inverse (denoted (P |S′)−1) on Σ4. In what follows, we
identify Σ4 (and hence, Σ3) with its image in S′ under the latter inverse : thus, Σ3 b Σ4 b S′. Let
S = S′ \(Crit(P |S′)∪{w◦P = ±1}), D̃ = (P |S′)−1(0×D′). The foliation F = (P |S)−1

∗ Fα,β is the one

we are looking for, if r is large enough and α, β are small enough : D̃ is a contracting cross-section to
F and B is embedded to MD̃ as a subcylinder. The latter embedding is constructed as follows. Recall
that

Σ4 ⊂ S′, and F |Σ4 = Fα,β , pV,R(B) b Σ3 b Σ4

by construction. Let χ : Σ3 → Σ4 be the mapping (2.3.3). The mapping φ = χ ◦ pV,R : B → Σ4 sends
the fibers of the skew cylinder B to leaves of the foliation Fα,β . Two points in B are mapped by φ to one
and the same point in Σ4, if and only if they lie in one and the same fiber of B and the path connecting
them is transformed by φ to a contractible closed loop in a leaf of the foliation Fα,β . This follows from
construction. Consider the projection ψ : M eD → S, which sends the universal cover of each leaf of F
to the leaf itself. Consider the germ of the inverse ψ−1 sending 0×D′ to the canonical section (a copy

of D̃) of the cylinder M eD. This is a multivalued analytic mapping Σ4 →M eD that extends analytically
along each path in any leaf of Fα,β |Σ4 . This implies that the corresponding composition Q = (ψ)−1 ◦φ
yields a holomorphic mapping of B onto a subset in M eD. The latter mapping is a biholomorphism :
its injectivity follows from construction and the fact that no contractible loop in a leaf of F can be
transformed by P to a noncontractible loop in a leaf of Fα,β (the maximum principle for holomorphic
functions). The foliation F is geometrically nice. This follows from its construction, Proposition 2.3.24
and the discreteness of the preimage of each point in C2 under the mapping P |S , which is a local
biholomorphism. (The latter discreteness statements yields in particular that the density of leaves of
the foliation Fα,β implies the density of leaves of its pullback F .) This proves Lemma 2.3.22. 2

Proof of Theorem 2.3.18. Let V be a Stein u.s.a. with a nonuniformizable universal covering M .
By Proposition 2.3.20, M contains a nonuniformizable compact subcylinder B. By Lemma 2.3.22,
B is equivalent to a subcylinder of a contracting u.c.m. of a geometrically nice foliation. The latter
u.c.m. is nonuniformizable as well. The proof of the second statement of Theorem 2.3.18 (on projective
extension) is relatively easy and is omitted to save the space. 2

Proof of Theorem 2.3.6. Let F , MD be as in Theorem 2.3.18. By assumption, each leaf of F is
dense and the cross-section D is contracting (and hence, intersects an attracting cycle in some leaf).
Let 0 ∈ D be the starting point of this attracting cycle, L be the leaf of F through 0. By Proposition
2.3.17, MD is locally nonuniformizable at 0. For any cross-section D′ intersecting L the u.c.m. MD′ is
locally nonuniformizable at the points of the intersection D′ ∩ L. Now density of L implies Theorem
2.3.6. (Recall that the foliation F is geometrically nice, hence, each its leaf is dense.) Statement 4)
of the Addendum follows analogously from the second statement of Theorem 2.3.18 and Proposition
2.3.17. 2



Chapitre 3

On minimality of horospheric
laminations associated to rational
functions

This chapter deals with iterations of rational functions f(z) = P (z)
Q(z) : C → C of degree at least

two. In 3.1.2 we recall Lyubich-Minsky construction (briefly mentioned in the Introduction), which
associates to each f the following objects : affine Riemann surface lamination Af ; lamination Hf by

hyperbolic three-dimensional varietes (that may have singularities), the lifted dynamics f̂ : Hf →

Hf and the quotient hyperbolic lamination Hf/f̂ . Each leaf of Hf and Hf/f̂ is foliated itself by

horospheres, which form the horospheric laminations of Hf and Hf/f̂ .
In Section 3.2 we present the main results of the papers [48, 49], which concern topological tran-

sitivity and minimality of the horospheric lamination of the quotient Hf/f̂ . The principal Theorem
3.2.3 says that the quotient horospherical lamination (with isolated hyperbolic leaves deleted) is to-
pologically transitive (i.e., at least one horosphere is dense), provided that the map f does not belong
to the following list of exceptions :

z±d, Chebyshev polynomials, Lattès examples. (3.0.1)

In this case, all the horospheres “over the repelling periodic orbits” are dense.

Remark 3.0.25 For any exceptional f on the list (3.0.1), each horosphere in a nonisolated leaf of

Hf/f̂ is nowhere dense in Hf/f̂ (see [78] and Corollary 3.2.2).

Theorem 3.2.4 asserts that all the horospheres are dense (outside possible isolated hyperbolic
leaves) for any non-exceptional f which is critically non-recurrent without parabolic periodic points.

In the case when parabolic points are allowed, a more general Theorem 3.2.5 says that all the
horospheres are dense in Hf/f̂ (outside possible isolated hyperbolic leaves), except for the horospheres
“related” to the parabolic points. To prove it, we show (Theorem 3.2.6) that any horosphere in question
accumulates onto some horosphere over an appropriate repelling periodic point (which is dense by
Theorem 3.2.3). Theorem 3.2.7 deals with an arbitrary rational function having a parabolic periodic

point. It says that each horosphere in a leaf associated to this point is closed in Hf/f̂ and does not
accumulate onto itself.

Remark 3.0.26 There exist non-exceptional rational functions (even hyperbolic) such that the cor-
responding hyperbolic lamination Hf has a leaf whose horospheres are nowhere dense in Hf . This is
true, e.g., for real quadratic polynomials fε(z) = z2 + ε with ε < 1

4 , ε 6= 0,−2 (which are hyperbolic,
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e.g., whenever ε is small enough). Moreover, this is true for an open set of complex values of the
parameter ε containing the above real values. The leaf with nowhere dense horospheres is associated
to a repelling fixed point (which is real, if so is ε). These statements are proved in [49].

On the other hand, under some arithmetic assumptions on the multipliers of repelling perio-
dic points, the horospherical lamination of Hf is topologically transitive (private communication by
M. Lyubich and D. Saric).

Example 3.0.27 Let us consider once again the quadratic family fε(z) = z2+ε. It is well-known that

the quotient hyperbolic laminations Hf0/f̂0 and Hfε/f̂ε are homeomorphic for all ε 6= 0 small enough.
(The homeomorphism sends leaves to leaves but not isometrically.) On the other hand, Theorem 3.2.4
implies that if ε 6= 0 is small enough, then each horosphere in the latter lamination is dense, while no
horosphere in the former lamination (with ε = 0) is dense (see Corollary 3.2.2).

The necessary background material is recalled in Section 3.1 : iterates of rational functions, see
3.1.1 ; affine and hyperbolic laminations, see 3.1.2 ; horospheres and their metric properties, see 3.1.3.

Brief proofs of Theorems 3.2.3, 3.2.6 and 3.2.7 are given in Section 3.3. To prove Theorem 3.2.3,
we fix a horosphere in Hf “over” a repelling periodic orbit and show that the orbit of this horosphere

under the forward and the backward iterates of f̂ is dense. To this end, we study the holonomies of
the horosphere along loops based at a repelling periodic point. We show that the images of a point of
the horosphere under consecutively applied dynamics and holonomies are dense in the fiber over the
base point. To do this, we use the description of the holonomy in terms of the basic cocycle introduced
in [78] (its definition and some basic properties are recalled in 3.1.3).

Recall that everywhere below we assume that the rational function f(z) = P (z)
Q(z) : C → C under

consideration has degree at least 2.

3.1 Background material : rational dynamics, laminations and
horospheres

3.1.1 Rational iterations

The basic notions and facts of holomorphic dynamics recalled here are contained, e.g., in [88] and
[89]. Let

f =
P (z)

Q(z)
: C → C be a rational function. Recall that

- its Julia set J = J(f) is the closure of the union of the repelling periodic points, see the next
Definition. An equivalent definition of the Julia set says that its complement C \ J (called the Fatou
set) is the maximal open subset where the iterations fn form a normal family (i.e., are equicontinuous
on compact subsets). One has

f−1(J) = J = f(J).

Definition 3.1.1 A germ of nonconstant holomorphic mapping f : (C, 0) → (C, 0) at a fixed point 0 is
called attracting (repelling / parabolic / superattracting), if its derivative at the fixed point respectively
has nonzero modulus less than 1 (has modulus greater than 1 / is equal to a root of unity and no
iteration of the mapping f is identity / is equal to zero). An attracting (repelling, parabolic or
superattracting) periodic point of a rational mapping is a fixed point (of the corresponding type) of
its iteration.

Definition 3.1.2 A rational function is said to be hyperbolic, if the forward orbit of each its critical
point either is periodic itself (and hence, superattracting), or tends to an attracting (or a superattrac-
ting) periodic orbit.
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Definition 3.1.3 Given a rational function. A point of the Riemann sphere is called postcritical, if
it belongs to the forward orbit of a critical point. A rational function is called critically-finite, if the
number of its postcritical points is finite.

Definition 3.1.4 The ω- limit set ω(c) of a point c ∈ C is the set of limits of converging subsequences
of its forward orbit {fn(c)|n ≥ 0} (the ω- limit set of a periodic orbit is the orbit itself). A point c is
called recurrent, if c ∈ ω(c).

Definition 3.1.5 A rational mapping is called critically-nonrecurrent, if each its critical point is
either nonrecurrent, or periodic (or equivalently, each critical point in the Julia set is nonrecurrent).

Example 3.1.6 The following mappings are critically-nonrecurrent : any hyperbolic mapping ; any
critically-finite mapping ; any quadratic polynomial with a parabolic periodic orbit. A hyperbolic
mapping has no parabolic periodic points.

Theorem 3.1.7 A germ of conformal mapping at an attracting (repelling) fixed point is always confor-
mally linearizable : there exists a local conformal coordinate in which the germ is equal to its linear
part (the multiplication by its derivative at the fixed point).

Remark 3.1.8 Let f(z) = z + zk+1 + . . . be a parabolic germ tangent to the identity. The set
{zk ∈ R+} consists of k rays going out of 0 (called repelling rays) such that

- each repelling ray is contained in an appropriate sector S (called repelling sector) for which there
exists an arbitrarily small neighborhood U = U(0) ⊂ C where f is univalent and such that f(S∩U) ⊃
S ∩ U and each backward orbit of the restriction f |S∩U enters the fixed point 0 asymptotically along
the corresponding repelling ray ;

- there is a canonical 1-to-1 conformal coordinate t on S ∩ U in which f acts by translation :
t 7→ t+1 ; if the previous sector S is chosen large enough, then this coordinate parametrizes S ∩U by
a domain in C containing a left half-plane ; the previous coordinate is well-defined up to translation
and is called Fatou coordinate (see [27], [117]).

For any parabolic germ (not necessarily tangent to the identity) its appropriate iteration is tangent
to the identity. By definition, the repelling rays and sectors of the former are those (defined above) of
the latter.

Let us recall what are Chebyshev polynomials and Lattès examples.
Chebyshev polynomials. For any n ∈ N there exists a unique (real) polynomial pn of degree n

that satisfies the trigonometric identity cosnθ = pn(cos θ). It is called Chebyshev polynomial.
Lattès examples. Consider a one-dimensional complex torus, which is the quotient of C by a

lattice. Consider arbitrary multiplication by a constant λ ∈ C, |λ| > 1, that maps the lattice to
itself. It induces an endomorphism of the torus of degree greater than 1. The quotient of the torus by
the central symmetry z 7→ −z is a Riemann sphere. The previous endomorphism together with the
quotient projection induce a rational transformation of the Riemann sphere called Lattès example.

Remark 3.1.9 Let f be either Chebyshev, or Lattès. Then it is critically finite. More precisely,
the forward critical orbits eventually finish at repelling fixed points. The Julia set of a Chebyshev
polynomial is the segment [−1, 1] of the real line, while that of a Lattès example is the whole Rie-
mann sphere. Chebyshev and Lattès functions have branch-exceptional repelling fixed points, see the
following definition.

Definition 3.1.10 [77] A repelling periodic point of a rational function is called branch-exceptional,
if any its nonperiodic backward orbit contains a critical point. In this case its periodic orbit is also
called branch-exceptional.

Remark 3.1.11 (Lasse Rempe [77]). There exist rational functions with branch-exceptional repelling
fixed points that are neither Chebyshev, nor Lattès.
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3.1.2 Affine and hyperbolic dynamical laminations

The constructions presented here were introduced in [89]. We recall them briefly and send the
reader to [89] for more details.

Recall that a lamination is a “topological” foliation by manifolds, i.e., a topological space that
is split as a disjoint union of manifolds (called leaves) of one and the same dimension so that each
point of the ambient space admits a neighborhood (called “flow-box”) such that each connected
component (local leaf) of its intersection with each leaf is homeomorphic to a ball ; the neighborhood
itself is homeomorphic to the product of the ball and some (transversal) topological space under a
homeomorphism transforming the local leaves to the fibers of the product.

Let f : C → C be a rational function. Denote

Nf = {ẑ = (z0, z−1, . . . ) | z−j ∈ C, f(z−j−1) = z−j}.

This is a topological space equipped with the natural product topology and the projections

π−j : Nf → C, ẑ 7→ z−j .

The action of f on the Riemann sphere lifts naturally up to a homeomorphism

f̂ : Nf → Nf , (z0, z−1, . . . ) 7→ (f(z0), z0, z−1, . . . ), f ◦ π−j = π−j ◦ f̂ .

First of all we recall the construction of the “regular leaf subspace” Rf ⊂ Nf , which is a union of
Riemann surfaces that foliate Rf in a very turbulent way. Afterwards we take the subset An

f ⊂ Rf

of the leaves conformally-equivalent to C. Then we refine the induced topology on An
f to make it

a lamination (denoted Al
f ) by complex lines with a continuous family of affine structures on them.

Afterwards we take a completion Af = Al
f in the new topology. The space Af is a lamination by affine

Riemann surfaces (the new leaves added by the completion may have conical singularities). Then we
discuss the three-dimensional extension of Af up to a lamination Hf by hyperbolic manifolds (with
singularities).

Let ẑ ∈ Nf , V = V (z0) ⊂ C be a neighborhood of z0. For any j ≥ 0 denote

V−j = the connected component of the preimage f−j(V ) that contains z−j .

Then V0 = V, and f j : V−j → V are ramified coverings.

Definition 3.1.12 We say that a point ẑ ∈ Nf is regular, if there exists a disk V containing the
initial point z0 such that the above coverings f j : V−j → V have uniformly bounded degrees. Denote

Rf ⊂ Nf the set of the regular points in Nf .

Example 3.1.13 Let ẑ ∈ Nf be a backward orbit such that there exists a j ∈ N ∪ 0 for which the
point z−j is disjoint from the ω- limit sets of the critical points. Then ẑ ∈ Rf . If the mapping f is
hyperbolic, then this is the case, if and only if ẑ is not a (super) attracting periodic orbit. A mapping
f is critically-nonrecurrent, if and only if

Rf = Nf \ {attracting and parabolic periodic orbits}, see [89].

Definition 3.1.14 Let ẑ ∈ Rf , V , V−j be as in Definition 3.1.12. The local leaf L(ẑ, V ) ⊂ Rf is the
set of the points ẑ′ ∈ Rf such that z′−j ∈ V−j for all j (the local leaf is path-connected by definition).
We say that the previous local leaf is univalent over V , if the projection π0 maps it bijectively onto
V . The global leaf containing ẑ (denoted L(ẑ)) is the maximal path-connected subset in Rf containing
ẑ.
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Remark 3.1.15 Each leaf L(ẑ) ⊂ Rf carries a natural structure of Riemann surface so that the
restrictions to the leaves of the above projections π−j are meromorphic functions. A local leaf L(ẑ, V ) ⊂
L(ẑ) (when well-defined) is the connected component containing ẑ of the preimage (π0|L(ẑ))

−1(V ) ⊂
L(ẑ).

Remark 3.1.16 The above-defined objects Rf , Rfn corresponding to both f and any its forward
iteration fn, are naturally homeomorphic under the mapping that sends a backward orbit ẑ ∈ Nf to
the backward orbit (z0, z−n, z−2n, . . . ) ∈ Nfn . The latter homeomorphism maps the leaves conformally
onto the leaves.

We use the following

Lemma 3.1.17 (Shrinking Lemma) [89] Let f be a rational mapping, V ⊂ C be a domain, V ′
b V

be a compact subset. Then for any sequence of single-valued branches f−n : V → C the diameters of
the images f−n(V ′) tend to 0, as n→ +∞ (except for the cases, when f has either a Siegel disk or a
Herman ring that contains an infinite number of the previous images).

Remark 3.1.18 Parabolic leaves in Rf always exist (see the next two Examples) and are simply
connected ; hence they are conformally equivalent to C [89]. If f is critically-nonrecurrent, then each
leaf is parabolic [89]. On the other hand, there are rational mappings such that some leaves of Rf are
hyperbolic (e.g., if there is either a Siegel disk or a Herman ring, see [89]). J.Kahn proved [77] that if
the postcritical points are dense in the Julia set, then there are always some hyperbolic leaves in Rf .

Example 3.1.19 Let a ∈ C be a repelling fixed point of f , â = (a, a, . . . ) ∈ Nf be its fixed orbit.

Then â ∈ Rf and the leaf L(â) is parabolic (it is f̂ - invariant and the quotient of L(â) \ â by f̂ is a
torus). The linearizing coordinate w of f in a neighborhood of a lifts up to a conformal isomorphism
w ◦ π0 : L(â) → C. Analogously, the periodic orbit of a repelling periodic point is contained in a
parabolic leaf (see Remark 3.1.16).

Example 3.1.20 Let f have a parabolic fixed point a ∈ C, f ′(a) = 1, â = (a, a, . . . ) ∈ Nf be its
fixed orbit. Then â /∈ Rf . On the other hand, for each repelling ray (see Remark 3.1.8) there is a
unique leaf in Rf (denoted La) consisting of the backward orbits that converge to a asymptotically
along the chosen ray. This leaf is parabolic : the Fatou coordinate w on the corresponding repelling
sector lifts up to a conformal isomorphism w ◦π0 : La → C. An analogous statement holds true in the
case, when a is a parabolic periodic point (and not necessarily tangent to the identity).

Definition 3.1.21 The leaves from the two previous examples are called respectively a leaf associated
to a repelling (respectively, parabolic) periodic point.

Proposition 3.1.22 A point ẑ ∈ Nf belongs to a leaf associated to a repelling (or parabolic) fixed
point a, if and only if it is represented by a backward orbit converging to a (and distinct from its fixed
orbit, if the latter is parabolic).

The Proposition follows from the Shrinking Lemma.

Denote

An
f = the union of the parabolic leaves in Rf .

If f is hyperbolic, then An
f is a lamination with a global Cantor transversal section. In general, An

f

is not a lamination in a good sense, since some ramified local leaves can accumulate to a univalent
one in the product topology. The refined topology (defined in [89]) that makes it a “lamination with
singularities” is recalled below. To do this, we use the following
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Remark 3.1.23 Let ẑ ∈ An
f . Fix a conformal isomorphism C → L(ẑ) that sends 0 to ẑ (it is unique up

to multiplication by nonzero complex constant in the source). The natural projections π−j : Nf → C

induce a meromorphic function sequence φ−j,ẑ = π−j |L(ẑ) on the leaf L(ẑ) = C :

φ−j,ẑ : C → C, φ−j+1,ẑ = f ◦ φ−j,ẑ for any j; φ−j,ẑ(0) = z−j . (3.1.1)

The latter function sequence is uniquely defined up to the C∗- action on the source space C (by
multiplication by complex constants). Two points of An

f lie in one and the same leaf, if and only if
the corresponding function sequences are obtained from each other by affine transformation of the
variable.

Denote K̂f the space of the meromorphic function sequences

{φ−j(t)}j∈N∪0, φ−j : C → C, φ−j+1 = f ◦ φ−j for all j. (3.1.2)

This is a subset of the infinite product of copies of the meromorphic function space ; the latter space
is equipped with the topology of uniform convergence on compact sets. The product topology induces
a topology on the space K̂f . The groups Aff(C) (complex affine transformations of C), C∗ ⊂ Aff(C)

and S1 = {|z| = 1} ⊂ C∗ act on the space K̂f by variable changes in the source. Denote

K̂af = K̂f/C
∗, K̂hf = K̂f/S

1. (3.1.3)

(The latters are equipped with the corresponding quotients of the topology of K̂f .) A leaf in K̂af
(respectively K̂hf ) is the quotient projection of an orbit of the previous action Aff(C) : K̂f → K̂f . Each

leaf is naturally identified with a quotient Γ\Aff(C)/C∗ (respectively, Γ\Aff(C)/S1), where Γ is a
discrete group of Euclidean isometries of C. This equips the leaves with affine (respectively, hyperbolic)
structures that vary continuously on K̂af (K̂hf ). There is a natural (not necessarily continuous) inclusion

An
f → K̂af .

Definition 3.1.24 The topological subspace Al
f ⊂ K̂af is the image of the space An

f under the previous

inclusion (or equivalently, the space An
f equipped with the topology induced from K̂af ). The space Af

(which is called the affine orbifold lamination associated to a rational function f) is the closure of Al
f

in the space K̂af . The subspace Hl
f ⊂ K̂hf is the union of the leaves in K̂hf containing the S1- orbits in

K̂f of the function sequences (3.1.1) (which define the points of An
f ). Its closure (denoted Hf = Hl

f )

in K̂hf is called the hyperbolic orbifold lamination associated to f .

Remark 3.1.25 In general, the topology of the space Al
f is stronger than that of An

f . The spaces

Al
f , Af , Hl

f , Hf consist of entire leaves. Each leaf of Af is affine-equivalent either to C (as are the

leaves from Al
f ), or to a quotient of C by a discrete group of affine transformations (in this case the

latters are Euclidean isometries of C). Each leaf of Hf is isometric either to H3 (as are those of Hl
f ),

or to its quotient by a discrete group of isometries of H3 fixing the infinity and an affine Euclidean
metric on C = ∂H3 \∞. The latter affine (hyperbolic) quotients, if nontrivial, may have singularities.
The affine (hyperbolic) structures on the leaves of Af (respectively, Hf ) depend continuously on the
transversal parameter.

There is a natural projection
p : K̂af → An

f

induced by the mapping K̂f → An
f that sends each sequence (3.1.2) of functions to the sequence of

their values at 0. The latter sequence is always a regular backward orbit of f and it lies in a parabolic
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leaf of Rf . The regularity follows from definition. The parabolicity follows from Picard’s theorem.

The composition of p with the natural inclusion An
f → K̂af is the identical mapping An

f → An
f . The

projection

Af → C induced by π0, (φ−j)j∈N∪0 7→ φ0(0), will be also denoted by π0. (3.1.4)

The quotient projection K̂hf = K̂f/S1 → K̂af = K̂f/C∗ induces a natural leafwise projection

πh : Hf → Af , which maps Hl
f onto Al

f , such that (3.1.5)

the projection of each leaf in Hf is a leaf in Af that is canonically identified with its boundary.
The rational mapping f : C → C lifts up to the leafwise homeomorphism

f̂ : K̂f → K̂f , f̂ : (φ0, φ−1, . . . ) 7→ (f ◦ φ0, φ0, φ−1, . . . ), which induces homeomorphisms

f̂ : Af → Af affine along the leaves and f̂ : Hf → Hf isometric along the leaves.

The previous homeomorphisms form a commutative diagram with the projection πh. The action
f̂ : Hf → Hf is proper discontinuous, and its quotient

Hf/f̂ is called the quotient hyperbolic lamination associated to f.

Proposition 3.1.26 [89] A sequence of points ẑm ∈ Al
f converges to a point ẑ ∈ Al

f , as m → ∞, if
and only if

- π−j(ẑ
m) → π−j(ẑ) for any j,

- for any N ∈ N, any connected domain V ⊂ C and any its subdomain U such that U ⊂ V and
π−N (ẑ) ∈ U , if the local leaf L(f̂−N(ẑ), V ) is univalent over V , then the local leaf L(f̂−N (ẑm), U) is
univalent over U , whenever m is large enough.

Remark 3.1.27 The analogous criterion holds true for convergence of a sequence of points in Af to
a point in Al

f with the following Definition of local leaf in Af .

Definition 3.1.28 Let f be a rational mapping, Af be the corresponding affine lamination, L ⊂ Af

be a leaf, ẑ ∈ L, V ⊂ C be a domain containing its projection π0(ẑ). The local leaf L(ẑ, V ) is
the connected component containing ẑ of the projection preimage π−1

0 (V ) ∩ L. A local leaf is called
univalent over V , if it contains no singular points and is bijectively projected onto V .

Everywhere below for any ẑ ∈ Af we denote

L(ẑ) ⊂ Af the leaf containing ẑ, H(ẑ) ⊂ Hf the leaf projected to L(ẑ) by (3.1.5).

Corollary 3.1.29 Let a ∈ C be a repelling fixed point of f , â ∈ Al
f be its fixed orbit. Let V ⊂ C be a

neighborhood of a, {b̂m}m∈N be a sequence of points in Af such that π0(b̂
m) = a and the local leaves

L(b̂m, V ) are univalent over V (see the previous Definition). Then f̂m(b̂m) → â, as m→ +∞.

Definition 3.1.30 A leaf of Af is associated to a repelling (or parabolic) periodic point if it is contai-
ned in Al

f and coincides with a leaf of An
f that is associated to the previous point (see Definition

3.1.21). In this case we also say that the corresponding leaves of Hf and Hf/f̂ are associated to this
point.

Proposition 3.1.31 [89] The laminations Af and Hf are minimal (i.e., each leaf is dense), if and
only if the function f does not have branch-exceptional repelling periodic orbits (see Definition 3.1.10).
If f has branch-exceptional repelling periodic orbits, then each of the previous laminations has a finite
number of isolated leaves (all of them are associated to the latter periodic orbits) and becomes minimal
after removing the isolated leaves.
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Denote
H′
f = Hf \ (isolated hyperbolic leaves). (3.1.6)

One has H′
f = Hf , if and only if f does not have branch-exceptional repelling periodic orbits.

3.1.3 Horospheres : metric properties and basic cocycle

The horospheres in the hyperbolic 3- space with a marked point “infinity” at the boundary (and
in the leaves of the hyperbolic laminations) were defined in Subsection 1.1. We use the following their
well-known equivalent definition. Consider the projection π : H3 → L = ∂H3 \ ∞ to the boundary
plane along the geodesics issued from the infinity. In the model of half-space this is the Euclidean
orthogonal projection to the boundary plane. It coincides with the natural projection H3 = Aff(C)/
S1 → C = Aff(C)/C∗, and its latter description equips the boundary with a natural complex
affine structure : L = C. The boundary admits a Euclidean affine metric (uniquely defined up to
multiplication by constant).

Everywhere below whenever we consider a Riemann metric on a surface, we treat it as a length
element, not as a quadratic form. If we say “two metrics are proportional”, then by definition, the
proportionality coefficient is the ratio of the corresponding length elements.

Consider a global section of the previous projection π : H3 → L : a surface in H3 that is 1-to-1
projected to L. It carries two metrics : the restriction to it of the hyperbolic metric of the ambient
space H3 ; the pullback of the Euclidean metric of L under the projection.

Definition 3.1.32 A previous section is a horosphere, if its latter (Euclidean) metric is obtained from
the former one (the restricted hyperbolic metric) by multiplication by a constant factor. The height
of a horosphere (with respect to the chosen Euclidean metric on L) is the logarithm of the latter
constant factor. The height of a given point in the hyperbolic space is the height of the horosphere
that contains this point.

Remark 3.1.33 The height is a real-valued analytic function H3 → R. In the upper half-space model
the horospheres are horizontal planes, and their previously defined heights are equal to the logarithms
of their Euclidean heights in the ambient Euclidean 3- space. The isometric liftings to H3 of the affine
mappings z 7→ λz + b of the boundary C = ∂H3 \∞ transform the horospheres to the horospheres so
that the height of the image equals ln |λ| plus the height of the preimage.

Now we discuss metric properties of the horospheres in the hyperbolic laminations. Let Af , Hf be
respectively the affine and the hyperbolic laminations associated to a rational function f . Let L ⊂ Af

be a leaf, ẑ ∈ L be a nonsingular point such that the restricted projection π0|L has nonzero derivative
at ẑ. Fix a Hermitian metric on the tangent line to C at π0(ẑ). Its projection pullback to the tangent
line TẑL extends (in unique way) up to a Euclidean affine metric on the whole leaf L. Let H be the
corresponding leaf in Hf . We denote

βẑ : H → R the height with respect to the latter metric, see Definition 3.1.32, (3.1.7)

α = (ẑ, h) ∈ H the point such that πh(α) = ẑ and βẑ(α) = h

(then we say that the point α is situated over ẑ at height h),

Sẑ,h ⊂ H the horosphere containing α, i.e., such that βẑ|Sẑ,h ≡ h. (3.1.8)

Proposition 3.1.34 A sequence of points (ẑk, hk) ∈ Hf converges to a point (ẑ, h) ∈ Hf , if and only
if ẑk → ẑ in Af and hk → h.

The Proposition follows from definition and the continuity of the family of hyperbolic structures
on the leaves of Hf .

When we extend the horospheres along loops in C, their heights may change. The monodromy of
the heights is described by basic cocycle. Let us recall its definition.
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Definition 3.1.35 Let L ⊂ Af be a leaf, ẑ, ẑ′ ∈ L be a pair of nonsingular points projected to one
and the same z = π0(ẑ) = π0(ẑ

′) ∈ C so that the restricted projection π0|L has nonzero derivative
at both points ẑ and ẑ′. Let H = H(ẑ) ⊂ Hf be the corresponding hyperbolic leaf. Fix a Hermitian
metric on TzC, let βẑ, βẑ′ : H → R be the corresponding heights defined in (3.1.7). The basic cocycle
is the difference

β(ẑ, ẑ′) = βẑ′ − βẑ.

Remark 3.1.36 In the conditions of the previous Definition the basic cocycle is a well-defined
constant and depends only on ẑ and ẑ′ (it is independent on the choice of metric). One has

β(ẑ, ẑ) = 0, β(ẑ, ẑ′) = −β(ẑ′, ẑ).

Each horosphere Sẑ,h ⊂ H(ẑ) coincides with the horosphere Sẑ′,h+β(ẑ,ẑ′). The basic cocycle is f̂ -
invariant :

β(ẑ, ẑ′) = β(f̂n(ẑ), f̂n(ẑ′)) for any n ∈ N. (3.1.9)

For any triple of nonsingular points ẑ, ẑ′, ẑ′′ ∈ Af lying in one and the same leaf L and projected by
π0|L to one and the same point z ∈ C with nonzero derivatives one has

β(ẑ′, ẑ′′) = β(ẑ, ẑ′′) − β(ẑ, ẑ′) (the cocycle property). (3.1.10)

The next proposition is well-known and follows immediately from definition.

Proposition 3.1.37 Let L ⊂ Af be a leaf, ĉ, ĉ′ ∈ L, π0(ĉ) = π0(ĉ
′) = c. Let V ⊂ C be a neighborhood

of c such that the local leaves L(ĉ, V ), L(ĉ′, V ) ⊂ L are univalent over V (see Definition 3.1.28). Define

ψĉ,ĉ′ = (π0|L(ĉ′,V ))
−1 ◦ π0|L(ĉ,V ) : L(ĉ, V ) → L(ĉ′, V ). (3.1.11)

Let us fix a Euclidean affine metric on the leaf L, which contains the previous local leaves. Consider
the derivative modulus |ψ′

ĉ,ĉ′ | in the chosen Euclidean metric. Then for any ẑ ∈ L(ĉ, V ), ẑ′ = ψĉ,ĉ′(ẑ),
one has

β(ẑ, ẑ′) = − ln |ψ′
ĉ,ĉ′(ẑ)|. (3.1.12)

Corollary 3.1.38 Let L, ĉ, ĉ′, V be as in the previous proposition. For any z ∈ V put

ẑ = π−1
0 (z) ∩ L(ĉ, V ), ẑ′ = π−1

0 (z) ∩ L(ĉ′, V ). The function

βĉ,ĉ′(z) = β(ẑ, ẑ′) (3.1.13)

is harmonic on V (and hence, real-analytic).

3.2 Main results : density of horospheres

First let us recall the following

Theorem 3.2.1 [78] The affine lamination Af associated to a rational function f (with isolated
leaves deleted) admits a continuous family of Euclidean affine metrics on the leaves, if and only
if f is conformally-conjugated to a function from the list (3.0.1). In the latter case there exists a
unique (up to multiplication by constant) conformal Euclidean metric on C (with isolated singularities)
whose pullback under the projection π0 : Af → C yields the previous Euclidean metric family on the
nonisolated leaves.

Corollary 3.2.2 Let f be a rational function from (3.0.1). Then each horosphere in its quotient

hyperbolic lamination Hf/f̂ (with isolated leaves deleted) is nowhere dense.
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Proof (sketch). Let S be an arbitrary horosphere in a nonisolated leaf of Hf . For the proof of the
corollary it suffices to show that the union of the images of S under forward and backward iterations
of f̂ is nowhere dense. Denote g the singular Euclidean metric on C from the previous theorem. We
measure the heights of the horospheres with respect to this metric. The heights of S over all the
points are all the same (by definition and Theorem 3.2.1). The mapping f has a constant modulus

of derivative in the metric g, since f̂ is leafwise affine. Hence, the heights of the iterated images of S
form an arithmetic progression, thus, a discrete set of real numbers. This proves the corollary. 2

Theorem 3.2.3 [48, 49]. Let f be a rational function that does not belong to the list (3.0.1). Let

Hf/f̂ (H′
f/f̂) be the corresponding quotient hyperbolic lamination (with deleted isolated leaves, if f

has branch-exceptional repelling periodic orbits, see (3.1.6)) ; H ⊂ H′
f/f̂ be a leaf associated to a

repelling periodic point of f (see Definition 3.1.30). Then each horosphere in H is dense in H′
f/f̂ .

Theorem 3.2.3 is the main result of the papers [48, 49]. Its proof is sketched in the next section. As
it is shown below, it implies density of all the horospheres in the critically-nonrecurrent nonparabolic
case and density of “almost” all the horospheres in the general critically-nonrecurrent case, with
parabolics allowed, provided that f /∈ (3.0.1).

Theorem 3.2.4 [48, 49]. Let f : C → C be a critically-nonrecurrent rational function without parabo-
lic periodic points (e.g., a hyperbolic one) that does not belong to the list (3.0.1). Then each horosphere

in Hf/f̂ accumulates to H′
f/f̂ .

Theorem 3.2.5 [48, 49]. Let f be a critically-nonrecurrent rational function that does not belong to
the list (3.0.1). Let H ⊂ Hf be a leaf, L = πh(H) ⊂ Af be its boundary. Let the projection p(L) ⊂ An

f

do not lie in a leaf associated to a parabolic periodic point of f . Let H/f̂ ⊂ Hf/f̂ be the corresponding

leaf of the quotient lamination. Then each horosphere in H/f̂ accumulates to H′
f/f̂ .

Theorem 3.2.4 follows immediately from Theorem 3.2.5. Below we deduce Theorem 3.2.5 from
Theorem 3.2.3 and the following theorem.

Theorem 3.2.6 [48, 49]. Let the conditions of Theorem 3.2.5 hold (but now f is not necessarily

excluded from the list (3.0.1)). Then each horosphere in H/f̂ accumulates to some horosphere in a

leaf in H′
f/f̂ associated to appropriate repelling periodic point.

Proof of Theorem 3.2.5. Each horosphere in H/f̂ accumulates to some horosphere in a leaf in

H′
f/f̂ corresponding to a repelling periodic point (Theorem 3.2.6). The latter horosphere is dense in

H′
f/f̂ (Theorem 3.2.3). Hence, the former horosphere accumulates to H′

f/f̂ . This proves Theorems
3.2.5 and 3.2.4. 2

The following theorem shows the closeness of the horospheres in the leaves associated to parabolic
periodic points, without the critical nonrecurrence assumption.

Theorem 3.2.7 Let f : C → C be an arbitrary rational function with a parabolic periodic point
a. Let Ha ⊂ Hf be a leaf associated to it, Ha/f̂ ⊂ Hf/f̂ be the corresponding leaf of the quotient

hyperbolic lamination. Each horosphere in Ha (Ha/f̂) is closed in Hf (respectively, Hf/f̂) and does
not accumulate to itself.
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3.3 Brief proofs of main results

In the next subsection we prove Theorem 3.2.3. In Subsection 3.3.2 we prove Theorem 3.2.6 (which,
together with Theorem 3.2.3, implies Theorem 3.2.5 on the density of all the horospheres). In Subsec-
tion 3.3.3 we prove Theorem 3.2.7.

For simplicity, everywhere below (including the statements of lemmas and propositions) we assume
that the rational function f under consideration does not have branch-exceptional repelling periodic
orbits, and thus, Hf = H′

f : the proofs of Theorems 3.2.3 and 3.2.5 (given below) remain valid in
the opposite case with obvious changes. Thus, the laminations Af and Hf are minimal (Proposition
3.1.31).

3.3.1 Dense horospheres over repellers. Proof of Theorem 3.2.3

Let a ∈ C be a repelling periodic point of f , â ⊂ Af be its periodic backward orbit, L(â), H(â)
be the respectively the corresponding leaves of the laminations Af and Hf . We fix a horosphere
S ⊂ H(â), denote

S = ∪m∈Zf̂
m(S), and show that the closure of S in Hf contains H(â). (3.3.1)

The leaf H(â) is dense (minimality). This together with the previous statement implies Theorem 3.2.3.
It suffices to prove (3.3.1) with S = Sâ,0. Without loss of generality everywhere below we assume

that the point a is fixed : f(a) = a. One can achieve this by replacing f by its iteration. Then both

leaves L(â) and H(â) are fixed by f̂ , which acts on L(â) by (complex) homothety centered at â with
coefficient f ′(a). Denote

Πa = {b̂ ∈ L(â) \ â | π0(b̂) = a, (π0|L(â))
′(b̂) 6= 0}. (3.3.2)

The set Πa is nonempty and infinite. This follows from the assumption that a is not a branch-
exceptional fixed point and Picard’s theorem.

Each horosphere S ⊂ H(â) is mapped by f̂ to a horosphere in the same leaf H(â) so that

f̂m(Sâ,0) = Sâ,m ln |f ′(a)|, f̂(Sb̂,h) = Sf̂(b̂),h+ln |f ′(a)| for any m ∈ Z, h ∈ R and b̂ ∈ Πa. (3.3.3)

The monodromies of the horospheres (when defined) along loops based at a add appropriate basic

cocycles to the heights (see Definition 3.1.35) so that for any b̂ ∈ Πa, h ∈ R, m ∈ Z

Sâ,h = Sb̂,h+β(â,b̂), thus, f̂m(Sâ,0) = Sb̂,h
b̂,m
, hb̂,m = β(â, b̂) +m ln |f ′(a)|.

The main part of the proof of Theorem 3.2.3 is the next lemma, which implies that the previous
height values hb̂,m are dense in R. Theorem 3.2.3 is then deduced from it by elementary topological

arguments (using Corollary 3.1.29), which are omitted to save the space.

Lemma 3.3.1 Let f be a rational function that does not belong to the list (3.0.1), a be its repelling
fixed point, Πa be as in (3.3.2). The set

Bf = {β(â, b̂) +m ln |f ′(a)| | b̂ ∈ Πa, m ∈ Z} (3.3.4)

is dense in R.

Everywhere below for any z ∈ C (with a chosen local chart in its neighborhood, the latter being
equipped with the standard Euclidean metric) and δ > 0 we denote

Dδ(z) = {|w − z| < δ} ⊂ C, Dδ = Dδ(0).

Lemma 3.3.1 is proved below. In its proof we use the following properties of the points from Πa
and basic cocycles.
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Proposition 3.3.2 Let f be a rational function, a ∈ C be its repelling fixed point, Πa be as in
(3.3.2), b̂, ĉ ∈ Πa. Let δ > 0 be such that the local leaves L(â, Dδ(a)), L(b̂, Dδ(a)), L(ĉ, Dδ(a)) are
univalent over Dδ(a), and moreover, the inverse branch f−1 that fixes a extends up to a univalent
holomorphic function Dδ(a) → Dδ(a) (whose orbits in Dδ(a) thus converge to a). Let j ∈ N be such
that b−k ∈ Dδ(a) for any k ≥ j (see Proposition 3.1.22). Let

y ∈ L(ĉ, Dδ(a)), π0(y) = b−j , d̂ = f̂ j(y), βâ,ĉ be the function from (3.1.13). Then

β(â, d̂) = β(â, b̂) + βâ,ĉ(b−j). (3.3.5)

Proof (sketch). One has d̂ ∈ Πa, which easily follows from definition,

β(â, d̂) = β(â, b̂) + β(b̂, d̂) by (3.1.10), β(b̂, d̂) = βâ,ĉ(b̂−j)

(the two latter equalities imply (3.3.5)). Let us prove the second equality. The points f̂−j(b̂) and y
are projected to one and the same point b−j and lie in the local leaves L(â, Dδ(a)) and L(ĉ, Dδ(a))

respectively by construction. One has β(b̂, d̂) = β(f̂−j(b̂), y) (the invariance of basic cocycle, see

(3.1.9), and the projection coincidence). Now β(f̂−j(b̂), y) = βâ,ĉ(b−j) by definition and the previous
inclusion. 2

Corollary 3.3.3 Let f , a, Πa be as in Proposition 3.3.2. The closure

B = {β(â, b̂) | b̂ ∈ Πa} (3.3.6)

is an additive semigroup in R.

Proof Fix arbitrary b̂, ĉ ∈ Πa. We have to show thatB′ = β(â, b̂)+β(â, ĉ) ∈ B, i.e.,B′ is approximated

arbitrarily well by values β(â, d̂), d̂ ∈ Πa. Let j, d̂ be as in (3.3.5). Then

β(â, d̂) −B′ = βâ,ĉ(b−j) − β(â, ĉ) by (3.3.5). (3.3.7)

The latter difference tends to 0, as j → ∞, since βâ,ĉ(a) = β(â, ĉ) and b−j → a. This proves the
Corollary. 2

We use the following elementary property of additive semigroups.

Proposition 3.3.4 Let B ⊂ R be an additive semigroup such that for any ε > 0 it contains a pair of
at most ε- close distinct elements. Then for any M ∈ R \ 0 the semigroup BM = B + ZM is dense in
R.

By definition, one has

B ⊂ B + Z ln |f ′(a)| ⊂ Bf. (3.3.8)

We show that the semigroup B contains distinct elements arbitrarily close to each other. Then applying
Proposition 3.3.4 to M = ln |f ′(a)| together with the previous inclusion implies Lemma 3.3.1.

As it is shown below, the previous statement on B is implied by (3.3.5) and the following

Lemma 3.3.5 (Main Technical Lemma) Let f be a rational function that does not belong to the
list (3.0.1), a ∈ C be its repelling fixed point, â ∈ Af be its fixed orbit, Πa be the set from (3.3.2).

There exists a pair of points b̂, ĉ ∈ Πa such that for any N ∈ N

βâ,ĉ|{b−j | j≥N} 6≡ const. (3.3.9)
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The proof of Lemma 3.3.5 (sketched below) uses essentially the analyticity of basic cocycle.

Proof of Lemma 3.3.1. It suffices to show that the semigroup B contains pairs of arbitrarily close
distinct elements (see the previous discussion). Let b̂, ĉ ∈ Πa be as in Lemma 3.3.5, j, d̂ be as in

(3.3.5). The values B′ = β(â, b̂) + β(â, ĉ) and β(â, d̂) are both contained in B (Corollary 3.3.3). Their
difference (3.3.7) is arbitrarily small, whenever j is large enough, see the proof of the corollary. It is
nonzero for an infinite number of indices j by (3.3.7) and (3.3.9). This proves Lemma 3.3.1 modulo
Lemma 3.3.5. 2

Proof of Lemma 3.3.5 (sketch). Fix a small neighborhood U of a where f is univalent and such
that f(U) ⊃ U . Then the linearizing chart of f at a extends up to a holomorphic univalent chart on
U . We take U to be convex in the linearizing chart. For any ẑ ∈ L(â) there exists a N > 0 such that
z−j ∈ U for any j ≥ N . Then the backward orbit z−N , z−N−1, . . . is called a tail of ẑ (the previous
number N is not necessarily chosen to be the minimal one satisfying the previous statement). If N is
minimal, then the tail is called complete. The local leaf L(â, U) is well-defined and univalent over U
by definition. It consists precisely of the points of Al

f represented by tails.

We have to show that there exists a basic cocycle βâ,ĉ that is nonconstant along an arbitrary tail

of appropriate point b̂ ∈ Πa. First let us show that if f does not belong to the list (3.0.1), then there
exists a ĉ ∈ Πa such that

βâ,ĉ 6≡ const in a neighborhood of a. (3.3.10)

This is proved by showing that the contrary would imply that f belongs to (3.0.1). For any ĉ ∈ Πa

such that βâ,ĉ ≡ const one has βâ,ĉ ≡ 0. Indeed, the constance of βâ,ĉ implies that the mapping
germ ψ : (L(â), â) → (L(â), ĉ) preserving the projection extends up to an affine automorphism ψ of
L(â) = C such that βâ,ĉ ≡ − ln |ψ′| and π0 ◦ ψ ≡ π0. The latter identity implies that ψ cannot have
attracting (repelling) fixed points ; hence, |ψ′| ≡ 1 and βâ,ĉ ≡ 0. Now let βâ,ĉ ≡ 0 for all ĉ ∈ Πa.
Recall that the lamination Af is minimal by assumption. Fix an affine Euclidean metric on the leaf
L(â). It extends up to a continuous family of affine Euclidean metrics on all the leaves of Af that
are projected to one and the same (singular) metric on C (by density of L(â), the vanishing and the
invariance of basic cocycle). Hence, f belongs to (3.0.1) by Theorem 3.2.1. This proves the existence
of a nonconstant βâ,ĉ.

Fix a ĉ ∈ Πa satisfying (3.3.10). Without loss of generality we consider that the local leaf L(ĉ, U)
is univalent over U (then the function βâ,ĉ is real-analytic on U , see Corollary 3.1.38). We prove the

existence of b̂ satisfying (3.3.9) by contradiction. Suppose the contrary : βâ,ĉ ≡ const on some tail of

each b̂ ∈ Πa (and hence, equals βâ,ĉ(a) there). We show that βâ,ĉ ≡ const on U , - a contradiction to
(3.3.10).

The level set βâ,ĉ = βâ,ĉ(a) is a nontrivial real-analytic subset in U by the analyticity of βâ,ĉ and

(3.3.10). Let A ⊂ U be the minimal analytic subset that contains a tail of each b̂ ∈ Πa. Then A lies
in the previous level set. We show that either A = U (then βâ,ĉ ≡ const), or A is a line interval in the
linearizing chart. In the latter case we also show that βâ,ĉ ≡ const.

The existence of a backward orbit converging to a along a nontrivial analytic set A implies imme-
diately that arg f ′(a) ∈ πQ. We then deduce that A is a finite union of line intervals passing through
a with ends on ∂U . Let us show that then A is a single line interval. To do this, we use the fact, that
A is f−1- invariant and contains the complete tail of each b̂ ∈ Πa. The latter statement is deduced
from the former one and the convexity of U .

Suppose the contrary : the set A contains at least two distinct line intervals (let us fix them
and denote l1 and l2). Fix a N such that ĉ−j ∈ U for any j ≥ N . Consider the inverse branch
f−j |U : a 7→ c−j (which is single-valued by the univalence of L(ĉ, U)). We show that the germs of the
analytic curves f−N (lr), r = 1, 2, at their transversal intersection point c−N 6= a are contained in A.
This implies that A cannot be a finite union of line intervals containing a, - a contradiction. Each lr
contains a subsequence x1, x2, . . . (let us fix it) of a tail of some b̂ ∈ Πa. The previous germ inclusion
follows from analyticity and the fact that for any s large enough the sequence f−N (xs), f

−N−1(xs), . . .
is a tail of some âs ∈ Πa.
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Thus, the previous analytic set A is a single line interval. By definition, βâ,ĉ|A ≡ const. The
function βâ,ĉ, whose constance we have to prove, is equal to minus the logarithm of the modulus of
the derivative of a holomorphic univalent function ψ : U → C. The latter function is defined by the
lifting

ψ : U → L(ĉ, U) ⊂ L(â), π0 ◦ ψ = Id, and the affine identification L(â) = C.

The latter identification is given by the linearizing coordinate of f at a (see Example 3.1.19). The
previous derivative of ψ is taken in the linearizing chart of f on U . The modulus |ψ′| is constant along
A, since βâ,ĉ|A ≡ const. The image ψ(A) lies in a line (the latter line passes through â and near â

it is locally projected to A). This easily follows from the f̂ - invariance of this line by an argument
analogous to the proof of the previous germ inclusion. This together with the following proposition
shows that the derivative (and hence, βâ,ĉ) is constant globally, - a contradiction to (3.3.10). This
proves Lemma 3.3.5.

Proposition 3.3.6 Let ψ be a conformal mapping of one domain of C onto another one. Let ψ map
a line interval A to a line and the modulus of its derivative be constant along A. Then ψ is an affine
mapping.

2

3.3.2 Minimality. Proof of Theorem 3.2.6

Let f : C → C be a critically-nonrecurrent rational mapping. Let L ⊂ Af be a leaf of the
corresponding affine lamination whose projection p(L) ⊂ An

f does not lie in a leaf associated to a
parabolic periodic point. Let H ⊂ Hf be the corresponding hyperbolic leaf. Let us show that there
exists a repelling periodic point a ∈ C of f (denote â ∈ Af its periodic orbit) such that for each

horosphere S ⊂ H the union of its images under forward and backward iterations of f̂ accumulates
to some point of H(â) (and hence, to the horosphere passing through this point). This will prove
Theorem 3.2.6.

Here we prove the previous accumulation statement only in the case, when L ⊂ Al
f . The proof in

the general case is similar but becomes slightly more technical.

Lemma 3.3.7 Let f and L ⊂ Al
f be as above, x̂ ∈ L be such that x0 ∈ J = J(f). There exist

a sequence nk → +∞, a point b ∈ J (that is not a parabolic periodic point) and a neighborhood

V = V (b) ⊂ C such that x−nk → b and for any k ∈ N the local leaf L(f̂−nk(x̂), V ) is well-defined and
univalent over V .

The Lemma is proved by using Mañe’s theorem [89].
Let x̂, nk, b and V be as in the previous lemma. Without loss of generality we consider that

V = D1, b = 0. The disk V intersects the Julia set of f and hence, contains a repelling periodic point
(let us fix it and denote by a). We show that a is a repelling point we are looking for.

For each local leaf L(f̂−nk(x̂), V ) and any w ∈ V denote its lifting to this leaf by

ŵk ∈ L(f̂−nk(x̂), V ), π0(ŵ
k) = w; âk ∈ L(f̂−nk(x̂), V ), π0(â

k) = a.

Fix a horosphere S ⊂ H and denote

Sk = f̂−nk(S) ⊂ H(âk), αk ∈ Sk its point over âk : πh(α
k) = âk.

Let s be the period of a, λ = (fs)′(a). We show that there exists a sequence lk → +∞ such that

the sequence f̂slk(αk) contains a subsequence converging to a point α = (â, h) ∈ H(â). The height of

the point f̂slk(αk) equals lk ln |λ| plus the height of αk (all the heights are measured in the standard
metric on V ). For the proof of the existence of the previous sequence lk we show that the heights of



47

αk tend to −∞, and moreover, the heights of Sk over the local leaves L(f̂−nk(x̂), V ) tend to −∞ (as

functions on V , uniformly on compact sets), as k → ∞. Indeed, the height of Sk over f̂−nk(x̂) (which
is projected to x−nk → b = 0) tends to −∞ : it equals the height of S over x̂ plus ln |(f−nk)′(x0)|,
which tends to −∞ (by the Shrinking Lemma). The previous uniform convergence to −∞ then follows
from the equicontinuity of the heights on compact subsets in V . The equicontinuity follows from the
fact that the heights are equal (up to additive constants) to logarithms of moduli of derivatives of
appropriate univalent functions ψ : V → C (that can be normalized by affine transformations in the
image so that ψ(0) = 0, ψ′(0) = 1) and the compactness of the space of all thus normalized univalent
functions on a disk.

3.3.3 Closeness of the horospheres associated to the parabolic periodic
points

Let us prove Theorem 3.2.7. Let f be a rational function with a parabolic periodic point a ∈ C.
Without loss of generality we consider that a is fixed. Let La ⊂ Af be a leaf associated to a of the
affine lamination, Ha ⊂ Hf be the corresponding hyperbolic leaf. In the proof of Theorem 3.2.7 we
use the following

Proposition 3.3.8 Let f , a, La, Ha be as above. Then each horosphere in Ha is invariant under the
mapping f̂ .

Proof The Fatou coordinate is affine on the leaf La, and f̂ acts by unit translation there. Hence, it
preserves an Euclidean metric on La. This implies the proposition. 2

Fix a horosphere S ⊂ Ha. We show that S is closed in Hf and does not accumulate to itself. This
together with its invariance (Proposition 3.3.8) implies Theorem 3.2.7.

Suppose the contrary : S accumulates to some horosphere S′. Let H ⊂ Hf be the leaf containing

S′, L ⊂ Af be the corresponding affine leaf. Take an arbitrary nonsingular point b̂ ∈ L such that

b = π0(b̂) 6= a, (π0|L)′(b̂) 6= 0 and a neighborhood V = V (b) ⊂ C such that the local leaf L(b̂, V ) is

univalent over V . There exists a sequence b̂k ∈ La converging to b̂ in Af so that the points of S over

b̂k converge to that of S′ over b̂ (by definition), and in addition, b̂k /∈ L(b̂, V ). For any neighborhood
U = U(b), U ⊂ V (let us fix it) the local leaves

Λk = L(b̂k, U) ⊂ La are univalent over U for all k large enough.

This follows from the convergence b̂k → b̂ and the definition of topology in Af . Without loss of
generality we consider that this is true for all k,

U = D1, b = 0 = π0(b̂
k), and the leaves Λk are distinct.

We equip U with the standard Euclidean metric and measure the heights of the horospheres over
the local leaves with respect to this metric. We show that the heights of S over b̂k tend to +∞, - a
contradiction to the convergence of the points of S over b̂k.

For the proof of the previous height asymptotics, we fix a disk Dr(a) where f is univalent, the
branch of f−1 fixing a is single-valued and such that each backward orbit contained there in fact
converges to a (this is true, whenever the disk is small enough). For any fixed k one has bk−j → a,

as j → +∞ ; denote nk ∈ N the minimal number such bk−j ∈ Dr(a) for any j ≥ nk. Passing to a

subsequence of the indices k one can achieve that bk−nk converge ; then f̂−nk(b̂k) converge to some

x̂ ∈ Nf in Nf represented by a backward orbit in Dr(a). One has x̂ ∈ La, by construction and
since it is distinct from the fixed orbit of a (by definition and the inequality 0 = bk0 6= a). Moreover,

f̂−nk(b̂k) → x̂ along a local leaf around x̂. The sequence nk tends to infinity. The height of S = f̂−nk(S)

over f̂−nk(b̂k) (measured in a metric near x0) tends to a finite value, namely, to its height over x̂. On
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the other hand, its difference with the height of S over b̂k is equal to ln |(f−nk)′(0)|, which tends to

−∞ (the Shrinking Lemma). This implies that the height of S over b̂k tends to +∞. Together with
the previous discussion, this proves Theorem 3.2.7.



Chapitre 4

Instability of nondiscrete Lie
subgroups in Lie groups

4.1 Introduction : main results, open problems and history

4.1.1 Main result : instability of liberty. Plan of the chapter

Let G be a nonsolvable Lie group. It is well-known (see [29]) that almost each (in the sense of the
Haar measure) pair of elements (A,B) ∈ G×G generates a free subgroup in G. At the same time in
the case, when G is connected and semisimple, there is a neighborhood U ⊂ G×G of unity in G×G
where a topologically-generic pair (A,B) ∈ U generates a dense subgroup : the latter pairs form an
open dense subset in U . This was proved in [14].

The pairs generating groups with relations form a countable union of surfaces (relation surfaces)
in G×G. We show that the relation surfaces are dense in U .

The main result of the chapter is the following

Theorem 4.1.1 [50] Any nondiscrete free subgroup with two generators in a nonsolvable Lie group G
is unstable. More precisely, consider two elements A,B ∈ G generating a free subgroup Γ =< A,B >.
Let Γ be not discrete. Then there exists a sequence (Ak, Bk) → (A,B) of pairs converging to (A,B)
such that the corresponding groups < Ak, Bk > have relations : there exists a sequence wk = wk(a, b)
of nontrivial abstract words in symbols a, b (and their inverses a−1, b−1) 1 such that wk(Ak, Bk) = 1
for all k.

Remark 4.1.2 The condition that the subgroup under consideration be nondiscrete is natural : one
can provide examples of discrete free subgroups of PSL2(C) (e.g., the Schottky group, see [6]) that
are stably free, i.e., remain free under any small perturbation of the generators.

Remark 4.1.3 The closure of a nondiscrete subgroup in a Lie group is a Lie subgroup of positive
dimension (see [116], p.42). Therefore, in Theorem 4.1.1 without loss of generality we assume that the
subgroup < A,B >⊂ G under consideration is dense in G.

The question of instability of nondiscrete free subgroups was stated by É Ghys, who also suggested
to study the best rate of approximation of the pair (A,B) by pairs having a relation of a length no
greater than a given l (in analogy with the approximations of irrational number by rationals, where
the best approximation rate is well-known ; it is achieved by continued fractions. In our situation the
pair (A,B) plays the role of an irrational number, the pairs with relations play the role of rationals.)

1Everywhere in the chapter, by a word in given symbols we mean a word in the same symbols and their inverses
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We prove an upper bound of the best approximation rate (Theorem 4.1.29 and Corollaries 4.1.30,
4.1.31 stated in 4.1.3 and briefly proved in 4.1.3 and 4.6).

The proof of Corollary 4.1.30 uses Theorem 4.1.16 (stated in 4.1.2), which deals with a semisimple
Lie group and a pair (A,B) of its elements generating a dense subgroup (briefly called an irrational
pair). It provides an upper bound for the rate of approximations of the elements of the unit ball in
the Lie group by words in (A,B) satisfying a bound of derivatives. These and related results and open
problems are discussed in Subsections 4.1.2-4.1.4.

Theorem 4.1.16 follows (see 4.1.2) from Lemma 4.1.25 and Theorem 4.1.26, both stated in 4.1.2 ;
their proofs are omitted here and may be found in [50]. Theorem 4.1.26 proves the statement of
Theorem 4.1.16 for a Lie group whose Lie algebra satisfies the so-called weak Solovay-Kitaev inequality
(see Definition 4.1.23). This inequality means a decomposition (with estimate) of each element of a
Lie algebra as a sum of two Lie brackets. Lemma 4.1.25 shows that the latter inequality holds true
for any semisimple Lie algebra.

Theorem 4.1.21 (recalled in 4.1.2 and proved by R.Solovay and A.Kitaev, see [22, 80, 95]) concerns
the Lie groups whose Lie algebras satisfy the (strong) Solovay-Kitaev inequality (see Definition 4.1.17).
This inequality says that each element of a Lie algebra is a Lie bracket (with estimate). For these
Lie groups Theorem 4.1.21 provides an upper bound for the rate of approximations of its elements
in the unit ball by words in a given irrational pair of elements. The bound given by Theorem 4.1.21
is stronger than that in Theorem 4.1.16. Corollary 4.1.31 follows (see 4.1.2) from Theorems 4.1.21,
4.1.29 and Remark 4.1.22.

Remark 4.1.4 In the case, when the Lie group under consideration is PSL2(R), Theorem 4.1.1 easily
follows from the density of the elliptic elements of finite orders in an open domain of PSL2(R) : the
proof is given in Subsection 4.1.5. The case of PSL2(C) is already nontrivial (in some sense, this is a
first nontrivial case). In this case the previous argument cannot be applied, since the elliptic elements
in PSL2(C) are nowhere dense. At the same time, there is a short proof of Theorem 4.1.1 for dense
subgroups in PSL2(C) that uses holomorphic motions and quasiconformal mappings. We present it
in Section 4.5.

In this chapter we prove Theorem 4.1.1 only for semisimple Lie groups with irreducible adjoint. Its
statement in the general case then follows (relatively easily, see [50]) by arguments using the classical
radical and decomposition theorems for Lie algebras (see [116], pp. 60, 61, 151 ; they are briefly recalled
in Subsection 4.2.1). We treate separately the cases of a Lie group with proximal elements (Section
4.3, whose arguments work, e.g., for G = SLn(R)) and without proximal elements (Section 4.4). A
reader can read the proofs in Section 4.3 assuming everywhere that G = SLn(R).

In 4.1.7 we formulate a more general Theorem 4.1.33 in the case of a semisimple Lie group with
irreducible adjoint representation. We deduce Theorem 4.1.1 from it at the same place. We prove
Theorem 4.1.33 (modulo technical details) in Sections 4.3 and 4.4.

The definition of proximal element and basic properties of groups with proximal elements will be
recalled in 4.2.3.

In 4.1.4 we present a brief historical overview and some open problems.
In 4.1.6 we give a proof of a simplified analogue (Proposition 4.1.32) of Theorem 4.1.1 for the

simplest solvable noncommutative Lie group Aff+(R), which is the group of orientation-preserving
affine transformations of the real line. (The author is sure that Proposition 4.1.32 is well known to
the specialists.) The proof gives a simple illustration of the basic ideas used in the proof of Theorem
4.1.1.

The basic definitions concerning Lie groups (adjoint representation, (semi) simple groups, etc.),
which will be used through the chapter (mostly in proofs), are recalled in 4.2.1 and 4.2.2.

4.1.2 Approximations by values of words.

Definition 4.1.5 Let G be a Lie group. We say that a pair (A,B) ∈ G×G is irrational, if it generates
a dense subgroup in G.
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Proposition 4.1.6 Let G be a semisimple Lie group. The set of irrational pairs in G × G is open.
More generally, the set of M - ples of elements of G generating dense subgroups is open in the product
of M copies of G.

Proof We prove the statement of the proposition for pairs : for M - ples the proof is analogous. Let
(A,B) ∈ G×G be an irrational pair. We have to show that there exists its neighborhood V ⊂ G×G
such that each pair (A′, B′) ∈ V is irrational. Let G0 ⊂ G be the unity component of G. Recall that
there exists a neighborhood U ⊂ G0 × G0 of unity where an open and dense set of pairs generate
dense subgroups in G0 (see the beginning of the chapter and [14]). Thus, there exists an open subset
U ′ = U1 × U2 ⊂ U such that each pair in U ′ generates a dense subgroup in G0. There exist words w1

and w2 such that wj(A,B) ∈ Uj , j = 1, 2. By continuity, there exists a neighborhood V of (A,B) such
that for any (A′, B′) ∈ V one has wj(A

′, B′) ∈ Uj , and thus, the subgroup generated by wj(A
′, B′) is

dense in G0 by definition. The ambient subgroup generated by (A′, B′) is dense in G, since its closure
contains G0 (the previous statement) and each connected component of G contains an element of
< A′, B′ >. (The latter fact holds true for the subgroup < A,B > (which is dense) and remains valid
for < A′, B′ > by continuity.) Thus, each pair (A′, B′) ∈ V is irrational. The proposition is proved. 2

Let us recall the following well-known

Definition 4.1.7 Given a metric space E, a subset K ⊂ E and a δ > 0. We say that a subset in E is a
δ- net on K, if the union of the δ- neighborhoods of its elements coversK, and all these neighborhoods
do intersect K.

Remark 4.1.8 A δ- net on K is always contained in the δ- neighborhood of K.

Everywhere below (whenever the contrary is not specified) for any given point a of the space Rn

(or of a Lie group G equipped with a Riemann metric) we denote

Dr(a) the ball centered at a of radius r, Dr = Dr(0) ⊂ Rn (respectively, Dr = Dr(1) ⊂ G0),

where G0 is the unity component of G. Everywhere below whenever we say about a distance on a
connected component of a Lie group, we measure it with respect to a given left-invariant Riemann
metric on the group (if the contrary is not specified). We use the following property of left-invariant
distance.

Proposition 4.1.9 Let δ1, δ2 > 0, G be a connected Lie group equipped with a left-invariant metric,
K ⊂ G be an arbitrary subset. Let Ω,Ω′ ⊂ G be two subsets such that Ω contains a δ1- net on K, Ω′

contains a δ2- net on the δ1- ball Dδ1 ⊂ G. Then the product ΩΩ′ ⊂ G contains a δ2- net on K.

Proof Take an arbitrary x ∈ K and some its δ1- approximant ω ∈ Ω. Then x′ = ω−1x ∈ Dδ1 (the
left-invariance of the metric). Take a δ2- approximant ω′ ∈ Ω′ of x′. Then ωω′ is a δ2- approximant of
x :

dist(ωω′, x) = dist(ω′, x′) < δ2.

This proves the proposition. 2

Let X > 0,

ε : R+ → R+ be a decreasing function such that ε(cx) < c−1ε(x) for any c > 1, x ≥ X. (4.1.1)

Example 4.1.10 For any κ > 0 the function ε(x) = e−x
κ

satisfies (4.1.1) with appropriate X (de-
pending on κ).
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Definition 4.1.11 Let G be a Lie group (equipped with a Riemann metric). Let (A,B) ∈ G×G be
an irrational pair, K ⊂ G be a bounded set in the unity component G0 of G, ε(x) be a function as in
(4.1.1). We say that G is ε(x)- approximable on K by words in (A,B), if there exist a c = c(A,B,K) >
0, a sequence of numbers lm = lm(A,B,K) ∈ N (called length majorants), lm → ∞, as m → ∞, and
a sequence Ωm,K = Ωm,K,A,B of word collections such that

|w| ≤ lm for any w ∈ Ωm,K and (4.1.2)

the subset Ωm,K(A,B) is contained in G0 and contains a ε(clm) − net on K. (4.1.3)

We say that G is ε(x)- approximable on K by words in (A,B) with bounded derivatives, if Ωm,K
satisfying (4.1.2) and (4.1.3) may be chosen so that the union ∪mΩm,K(A,B) is a bounded subset in
G0 and there exist a ∆ = ∆(A,B,K) > 0 and a neighborhood V ⊂ G × G of the pair (A,B) such
that for any m ∈ N and any w ∈ Ωm,K

the mapping G×G→ G, (a, b) 7→ w(a, b), has derivative of norm less than ∆ on V. (4.1.4)

Definition 4.1.12 We say that a Lie group G is ε(x)- approximable (with bounded derivatives) by
words in (A,B) ∈ G×G, if so it is on any bounded subset of its unity component. We say briefly that
G is ε(x)- approximable (with bounded derivatives), if so it is by words in an arbitrary irrational pair
and on any bounded subset of its unity component.

The following proposition shows that the ε(x)- approximability is equivalent to the ε(x)- approxi-
mability on the unit ball centered at 1.

Proposition 4.1.13 Let ε(x) be as in (4.1.1), G, G0, (A,B) be as in Definition 4.1.11, and let
the metric on G be left-invariant. Let G be ε(x)- approximable by words in (A,B) (with bounded
derivatives) on the unit ball D1 ⊂ G0, c(A,B,D1), lm(D1) = lm(A,B,D1), Ωm,D1 be the corresponding
constant and sequences of length majorants and word collections, see (4.1.2) and (4.1.3). Let R > 1,
ΩR be a finite collection of words whose values at (A,B) form a 1- net on DR ⊂ G0,

l(R) = max
w∈ΩR

|w|.

Then G is ε(x)- approximable on DR by words in (A,B) (with bounded derivatives), where

Ωm,DR = ΩRΩm,D1 , lm(DR) = lm(A,B,DR) = l(R) + lm(D1), c(A,B,DR) =
c(A,B,D1)

l(R)
. (4.1.5)

Proof Let Ωm,DR , lm(DR) be the word collections and numbers given by (4.1.5). For any m ∈ N the
set Ωm,DR(A,B) contains a δ- net on DR,

δ = ε(c1lm(D1)), c1 = c(A,B,D1),

by Proposition 4.1.9 applied to K = DR, Ω = ΩR(A,B), δ1 = 1, Ω′ = Ωm,D1(A,B), δ2 = δ. (The
latter satisfy the conditions of the proposition by definition and the ε(x)- approximability.) One has

|w| ≤ lm(DR) for any w ∈ Ωm,DR ,

δ ≤ ε(c1(inf
m

lm(D1)

lm(DR)
)lm(DR)) ≤ ε(c(A,B,DR)lm(DR)).

This follows by definition, (4.1.5), the inequality lm(D1)
lm(DR) ≥ 1

l(R) and the decreasing of the function ε(x).

If in addition, the set ∪mΩm,D1(A,B) is bounded and the derivatives of the mappings (a, b) 7→ w(a, b),
w ∈ ∪mΩm,D1 , are uniformly bounded on a neighborhood of (A,B) in G × G, then the same holds
true with Ωm,D1 replaced by Ωm,DR and the same neighborhood. This follows by definition and the
finiteness of the collection ΩR. This proves the ε(x)- approximability onDR (with bounded derivatives)
and Proposition 4.1.13. 2
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Corollary 4.1.14 Any Lie group ε(x)- approximable by words in a given irrational pair (with bounded
derivatives) on unit ball, is ε(x)- approximable by words in the same pair (with bounded derivatives)
on any bounded subset.

The next proposition shows that the notion of ε(x)- approximability is independent on the choice
of the metric on G.

Proposition 4.1.15 Let ε(x) be as in (4.1.1), G, A, B, K be as in Definition 4.1.11. Let g1, g2 be two
(complete) Riemann metrics on G. Let the group G equipped with the metric g1 be ε(x)- approximable
on K by words in (A,B) (with bounded derivatives), Ωm,K, lm = lm(A,B,K), c1 = c(A,B,K) be
respectively the corresponding word collections, majorants and constant from (4.1.2) and (4.1.3). Let

p = max
m

ε(c1lm), Kp be the closed p− neighborhood of K in the metric g1.

Then the group G equipped with the metric g2 is also ε(x)- approximable on K by words in (A,B)
(with bounded derivatives), with respect to the same sequences Ωm,K, lm and the new constant

c2 = c2(A,B,K) = ρ−1c1, ρ = max{ sup
x,y∈Kp

dg2(x, y)

dg1(x, y)
, 1}.

Proof Each set Ωm,K(A,B) contains a ε(c1lm)- net on K in the metric g1. The latter net is contained
in Kp by definition, and is a ρε(c1lm)- net on K in the metric g2 (by the definition of ρ). One has

ρε(c1lm) ≤ ε(ρ−1c1lm) = ε(c2lm), whenever m is large enough,

by definition and (4.1.1). This proves the ε(x)- approximability in the metric g2. Let in addition, (G, g1)
(the group G equipped with the metric g1) be ε(x)- approximable with bounded derivatives, i.e., the
set ∪mΩm,K(A,B) be bounded and the derivatives of the mappings (a, b) 7→ w(a, b), w ∈ ∪mΩm,K , be
uniformly bounded on a (bounded) neighborhood V ⊂ G ×G of (A,B) (in the metric g1). Then the

set Ṽ = ∪mΩm,K(V ) is bounded and hence, supx,y∈eV

dg2(x,y)

dg1(x,y) < +∞. The latter inequality together

with the previous uniform boundedness of the derivatives on V (in the metric g1) implies their uniform
boundedness on V in the metric g2. This proves the proposition. 2

The following well-known Question is open. It was stated in [95], p.624 (without bounds of deri-
vatives) for the groups SU(n).

Question 4.1. Is it true that each semisimple Lie group (having at least one irrational pair of
elements) is always ε(x)- approximable with ε(x) = e−x ? If yes, does the same hold true with bounded
derivatives ?

Theorem 4.1.16 Let G be an arbitrary semisimple Lie group (such that there exists at least one
irrational pair (A,B) ∈ G × G). Then the group G is ε(x)- approximable with bounded derivatives,
where

ε(x) = e−x
κ

, κ =
ln 1.5

ln 9
. (4.1.6)

In addition, for any irrational pair (A,B) ∈ G×G the corresponding length majorants lm = lm(A,B,D1)
may be chosen so that

lm+1 = 9lm. (4.1.7)

Theorem 4.1.16 follows from Lemma 4.1.25 and Theorem 4.1.26 (both formulated below).
It appears that for many Lie groups the previous approximation rate can be slightly improved. To

state the corresponding result, let us introduce the following
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Definition 4.1.17 Let g be a Lie algebra with a fixed a positive definite scalar product on it. We say
that g has surjective commutator, if for any z ∈ g \ 0 there exist x, y ∈ g such that

[x, y] = z. (4.1.8)

We say that g satisfies the Solovay-Kitaev inequality, if there exists a c > 0 such that for any z ∈ g \ 0
there exist x, y ∈ g satisfying (4.1.8) and such that

|x| = |y| < c
√
|z| (4.1.9)

Theorem 4.1.18 (G.Brown, [15]). Each complex semisimple Lie algebra and each real semisimple
split Lie algebra (see [116], p.288) have surjective commutator.

Remark 4.1.19 In fact, the latter Lie algebras satisfy the Solovay-Kitaev inequality. The author
did not find a proof of this statement in the literature, but it can be obtained by minor refinement
of Brown’s arguments [15]. The question of the surjectivity of commutator in Lie groups has a long
history, see [15], [59] and the references therein. We would like to mention one of the first results
due to M.Goto [54], who have proved that in any compact semisimple Lie group each element is a
commutator of appropriate two other elements.

Example 4.1.20 The Lie algebras sun satisfy the Solovay-Kitaev inequality [22, 80, 95].

Question 4.2. Is it true that each real semisimple Lie algebra has surjective commutator ? If yes,
is it true that it satisfies the Solovay-Kitaev inequality ?

Theorem 4.1.21 (R.Solovay, A.Kitaev, [22, 80, 95]) Let a Lie group G have a Lie algebra satisfying
the Solovay-Kitaev inequality, and there exist at least one irrational pair (A,B) ∈ G × G. Then the
group G is ε′(x)- approximable with

ε′(x) = e−x
κ′

, κ′ =
ln 1.5

ln 5
. (4.1.10)

In addition, for any irrational pair (A,B) ∈ G×G the corresponding length majorants lm = lm(A,B,D1)
can be chosen so that

lm+1 = 5lm. (4.1.11)

Remark 4.1.22 In fact, in Theorem 4.1.21 the Lie group is ε′(x)- approximable with bounded de-
rivatives (with length majorants lm(A,B,D1) satisfying (4.1.11)). This can be easily derived from
Kitaev’s proof [22, 80, 95]. See [50] for more detail.

Definition 4.1.23 Let g be a Lie algebra with a fixed positive definite scalar product on it. We say
that g satisfies the weak Solovay-Kitaev inequality, if there exists a consant c > 0 such that for any
z ∈ g \ 0 there exist xj , yj ∈ g, j = 1, 2, such that

z = [x1, y1] + [x2, y2], |xj | = |yj | < c
√
|z|. (4.1.12)

Remark 4.1.24 The condition that a Lie algebra satisfies a (weak) Solovay-Kitaev inequality is
independent on the choice of the scalar product. A Lie algebra satisfying the strong Solovay-Kitaev
inequality obviously satisfies the weak one.

Lemma 4.1.25 Each semisimple Lie algebra satisfies the weak Solovay-Kitaev inequality.

Lemma 4.1.25 is easily deduced from basic properties of complex roots of a semisimple Lie algebra.
Some of these properties are recalled in 4.2.2.
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Theorem 4.1.26 Let a Lie group G have a Lie algebra satisfying the weak Solovay-Kitaev inequality.
Let (A,B) ∈ G × G be an irrational pair. Then the group G is ε(x)- approximable with bounded
derivatives, where ε(x), lm = lm(A,B,D1) are the same, as in (4.1.6) and (4.1.7) respectively.

Theorem 4.1.26 is proved analogously to the proof of Theorem 4.1.21 given in [22, 80, 95], see its
proof in [50] for more detail. Together, Lemma 4.1.25 and Theorem 4.1.26 imply Theorem 4.1.16.

4.1.3 Approximations by groups with relations

Fix a Riemann metric on a Lie group G.

Definition 4.1.27 Let G be a Lie group, (A,B) ∈ G × G. Let ε(x) be a function as in (4.1.1). We
say that the pair (A,B) is ε(x)- approximable by pairs with relations, if there exist a c = c(A,B) > 0
and sequences of numbers lk ∈ N (called the length majorants), lk → ∞, as k → ∞, nontrivial words
wk(a, b) of lengths at most lk and pairs (Ak, Bk) → (A,B) such that for any k ∈ N one has

wk(Ak, Bk) = 1 and dist((Ak, Bk), (A,B)) < ε(clk) for any k ∈ N. (4.1.13)

Remark 4.1.28 The previous Definition and the corresponding word sequence wk are independent
on the choice of the metric on G (while the constant c depends on the metric). The proof of this
statement is analogous to the proof of Proposition 4.1.15.

Theorem 4.1.29 Let G be a nonsolvable Lie group, Gss be its semisimple part (see Definition 4.2.5).
Let ε(x) be a function as in (4.1.1). Let A,B ∈ G and A′, B′ ∈ Gss be their projections. Let the pair
(A′, B′) ∈ Gss ×Gss be irrational, and the group Gss be ε(x)- approximable with bounded derivatives
by words in (A′, B′) (see Definition 4.1.12). Then the pair (A,B) is ε(x)- approximable by pairs with
relations.

Addendum to Theorem 4.1.29. In the conditions of Theorem 4.1.29 the group Gss is ε(x)-
approximable by words in (A′, B′) with bounded derivatives. Let lm = lm(A′, B′, D1) be the correspon-
ding word length majorants from (4.1.2). There exist constants q ∈ N and c′′ > 0 depending only on
(A,B) such that the pair (A,B) ∈ G× G is ε(x)- approximable by pairs with relations having length
majorants

l′m = c′′lm, m ≥ q. (4.1.14)

Corollary 4.1.30 Each irrational pair of elements in a nonsolvable Lie group is ε(x) = e−x
κ

- ap-
proximable by pairs with relations, where κ = ln 1.5

ln 9 , see (4.1.6). The corresponding length majorant
sequence lk can be chosen so that lk+1 = 9lk.

Proof Let G be a nonsolvable Lie group, (A,B) ∈ G ×G be an irrational pair. Then its projection
(A′, B′) ∈ Gss × Gss is also irrational. The function ε(x) = e−x

κ

satisfies the conditions of Theorem
4.1.29 and its Addendum with a majorant sequence lk such that lk+1 = 9lk (Theorem 4.1.16 applied
to the semisimple part of G). This together with Theorem 4.1.29 and its Addendum, see (4.1.14),
implies the corollary. 2

Corollary 4.1.31 Let G be a nonsolvable Lie group such that the semisimple part of g satisfies the
Solovay-Kitaev inequality. Then each pair (A,B) ∈ G × G with irrational projection to Gss ×Gss is

ε′(x) = e−x
κ′

- approximable by pairs with relations, where κ′ = ln 1.5
ln 5 , see (4.1.10). The corresponding

length majorant sequence lk can be chosen so that lk+1 = 5lk.

Corollary 4.1.31 follows from Theorem 4.1.29 (with the Addendum), Theorem 4.1.21 and Remark
4.1.22, analogously to the above proof of Corollary 4.1.30. A proof of Theorem 4.1.29 together with
its Addendum is sketched in Section 4.6.



56

Question 4.3. Is it true that in any nonsolvable Lie group each irrational pair of elements is e−x-
approximable by pairs with relations ?

By Theorem 4.1.29, a positive solution of Question 4.1 with bounded derivatives (see 4.1.2) would
imply a positive answer to Question 4.3.

4.1.4 Historical remarks and further open questions

The famous Tits’ alternative [112] says that any subgroup of linear group satisfies one of the two
following incompatible statements :

- either it is solvable up-to-finite, i.e., contains a solvable subgroup of a finite index ;
- or it contains a free subgroup with two generators.
Any dense subgroup of a connected semisimple real Lie group satisfies the second statement : it

contains a free subgroup with two generators.
The question of possibility to choose the latter free subgroup to be dense was stated in [33] and

studied in [14] and [33]. É.Ghys and Y.Carrière [33] have proved the positive answer in a particular
case. E.Breuillard and T.Gelander [14] have done it in the general case.

T.Gelander [32] have shown that in any compact nonabelian Lie group any finite tuple of elements
can be approximated arbitrarily well by another tuple (of the same number of elements) that generates
a nonvirtually free group.

A question (close to Question 4.1) concerning Diophantine properties of an individual pair A,B ∈
SO(3) was studied in [79]. We say that a pair (A,B) ∈ SO(3) × SO(3) is Diophantine (see [79]), if
there exists a constant D > 1 depending on A and B such that for any word wk = wk(a, b) of length
k

|wk(A,B) − 1| > D−k.

A.Gamburd, D.Jakobson and P.Sarnak have stated the following

Question 4.4 [30]. Is it true that almost each pair (A,B) ∈ SO(3) × SO(3) is Diophantine ?

V.Kaloshin and I.Rodnianski [79] proved that almost each pair (A,B) satisfies a weaker inequality

with the latter right-hand side replaced by D−k2

.

Question 4.5. Is there an analogue of Theorem 4.1.1 for the group of
- germs of one-dimensional real diffeomorphisms (at their common fixed point) ?
- germs of one-dimensional conformal diffeomorphisms ?
- diffeomorphisms of compact manifold ?

The latter question concerning conformal germs is related to study of one-dimensional holomorphic
foliations. A related result was obtained in the joint paper [72] by Yu.S.Ilyashenko and A.S.Pyartli,
which deals with one-dimensional holomorphic foliations on CP

2 with isolated singularities and inva-
riant infinity line. They have shown that for a typical foliation the holonomy group at infinity is free.
Here “typical” means “lying outside a set of zero Lebesgue measure”. It is not known whether this is
true for an open set of foliations.

4.1.5 A simple proof of Theorem 4.1.1 for G = PSL2(R)

Without loss of generality we assume that < A,B > = G. Otherwise, < A,B > would be dense in
a Lie subgroup of dimension at most two, which is solvable, hence, A and B cannot generate a free
subgroup.

The group G = PSL2(R) acts by conformal transformations of unit disk D1. There is an open
subset U ⊂ G formed by nontrivial elliptic transformations, which are conformally conjugated to
nontrivial rotations. The rotation number (which is the rotation angle divided by 2π) is a local
(nowhere zero) analytic function in the parameters of U . An elliptic transformation f has finite order
if and only if its rotation number ρ(f) is rational.
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Let w = w(a, b) be a word such that w(A,B) ∈ U (it exists by density). It suffices to show that the
function (a, b) 7→ ρ(w(a, b)) is not constant near (A,B) : then it follows that there exists a sequence
(an, bn) → (A,B) such that ρ(w(an, bn)) ∈ Q. Hence, w(an, bn) are finite order elements, thus, one
has relations of the type wkn(an, bn) = 1.

The previous function is locally analytic. Suppose the contrary : it is constant. Then by analyticity,
it is constant globally and w(a, b) is elliptic with one and the same nonzero rotation number for all
the pairs (a, b). On the other hand, it vanishes at (a, b) = (1, 1), since w(1, 1) = 1 - a contradiction.
This proves Theorem 4.1.1 for G = PSL2(R).

4.1.6 Case of group Aff+(R).

For any s > 0, u ∈ R denote

gs : x 7→ sx, tu : x 7→ x+ u, Γ(s) =< gs, t1 >⊂ Aff+(R).

Proposition 4.1.32 For any s0 > 0 there exists a sequence sk → s0 such that the corresponding
subgroups Γ(sk) have relations that do not hold identically in s.

Proof It suffices to prove the statement of the proposition for open and dense subset of the values
s0 > 0 (afterwards we pass to the closure and diagonal sequences). Thus, without loss of generality
we assume that s0 6= 1. We also assume that 0 < s0 < 1, since the groups Γ(s) and Γ(s−1) coincide.

For any s the group Γ(s) contains the elements

tsk = gks ◦ t1 ◦ g
−k
s and tmsk , m ∈ Z, k ∈ N ∪ 0.

We construct sequences of numbers sk → s0 and mk ∈ N in such a way that each group Γ(s), s = sk,
has an extra relation tmksk = t1. For obvious reasons this is not a relation that holds identically. This
will prove the Proposition.

For any k take mk = [s−k0 ], thus, mk is the integer number such that mks
k
0 gives a best ap-

proximation of 1, with rate less than sk0 ; mks
k
0 → 1, as k → ∞. The values sk we are looking for

are the positive solutions to the equations mks
k = 1 (they correspond to the previous relations by

definition). Indeed, it suffices to show that sk → s0, or equivalently, that the solutions uk of the equa-
tions ψk(u) = mk(s0 + u)k = 1 converge to 0. The mapping ψk is the composition of the homothety

u 7→ ũ = ku and the mapping ψ̃k : ũ 7→ mk(s0 + k−1ũ)k. One has

ψ̃k(ũ) = mks
k
0(1 + k−1 ũ

s0
)k → ψ(ũ) = e

eu
s0 , as k → ∞. (4.1.15)

The convergence is uniform with derivatives on compact sets. The limit ψ(ũ) is a diffeomorphism

R → R+ with unit value at 0. Hence, the solutions ũk of the equations ψ̃k(ũ) = 1 converge to 0.
Therefore, so do uk = k−1ũk and sk = s0 + uk → s0. The proposition is proved. 2

4.1.7 Generalization in the case of semisimple Lie group with irreducible
adjoint

Theorem 4.1.33 Let G be a semisimple Lie group with irreducible AdG (not necessarily connected).
Consider a family α(u) = (a1(u), . . . , aM (u)), M ∈ N, of M - ples of its elements that depend on
a parameter u from some manifold (say, Rl). Let the family α(u) be conj- nondegenerate at 0 (see
Definition 4.2.12 in 4.2.1). Then there exist arbitrarily small values u such that the mappings ai(0) 7→
ai(u) do not induce group isomorphisms < α(0) >→< α(u) >.

Theorem 4.1.33 and Corollary 4.2.14 (stated below, in 4.2.1) imply immediately Theorem 4.1.1
in the case, when G is semisimple, AdG is irreducible and A, B generate a dense subgroup. Indeed,
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suppose the contrary : each pair (a, b) close to (A,B) generates a free subgroup, hence, the mapping
(A,B) 7→ (a, b) induces an isomorphism of the corresponding subgroups. Consider the family of all the
pairs (a, b) depending on the parameters in G of the elements a and b. By the previous assumption
and Theorem 4.1.33 (applied to the same family), this family is conj- degenerate at (A,B). On the
other hand, it is a priori conj- nondegenerate at (A,B) (Corollary 4.2.14), - a contradiction.

4.2 Background material on Lie groups

4.2.1 Lie groups, basic definitions and properties

Everywhere below the Lie algebra of a Lie group G will be denoted

g = T1G.

Let us firstly recall what is the adjoint action (see [116], p.32). The group G acts on itself by
conjugations (the unity is fixed). The derivative of this action along the vectors of the tangent Lie
algebra g defines a linear representation of G in g called the adjoint representation. The adjoint
representation of an element g ∈ G is denoted Adg. (If G is a matrix group, then the adjoint action is
given by matrix conjugation : Adg(h) = ghg−1.) The adjoint action of a Lie algebra on itself is defined
by the Lie bracket, adx : y 7→ [x, y]. Let G be a Lie group with a given algebra g. One has

Adexp x = exp(adx) for any x ∈ g.

Definition 4.2.1 A Lie group is said to be simple, if it has dimension greater than one and the
adjoint representation of its unity component is irreducible. A Lie group is said to be semisimple, if
its unity component has no normal solvable Lie subgroup of positive dimension.

Remark 4.2.2 A Lie group is (semi)simple, if and only if so is its algebra in the following sense.

Definition 4.2.3 An ideal in a (real or complex) Lie algebra g is a Lie subalgebra I ⊂ g (over the
corresponding field) such that [g, I] ⊂ I. A Lie algebra g is said to be simple, if it has no nonzero ideal
different from itself. A Lie algebra g is said to be semisimple, if it has no nonzero solvable ideal.

Remark 4.2.4 A complex Lie algebra is semisimple, if and only if so is it as a real algebra.

It is well-known (see [116], pp. 60, 61) that each Lie algebra g has a unique maximal solvable
ideal (called radical ; it may be trivial). The factor of g by the radical is a semisimple Lie algebra.
Analogously, each nonsolvable Lie group has a unique maximal solvable normal connected Lie sub-
group and its tangent algebra coincides with the radical of the Lie algebra of the ambient group ; the
corresponding Lie group quotient is a semisimple Lie group.

Definition 4.2.5 The factor of a nonsolvable Lie algebra (group) by its radical (respectively, the
maximal solvable normal connected Lie subgroup) is called its semisimple part.

Remark 4.2.6 The Lie algebra of the semisimple part of a nonsolvable Lie group G is the semisimple
part of g.

Remark 4.2.7 Each semisimple Lie algebra is a finite direct product of simple Lie algebras (the
latter product decomposition is unique, see [116], p.151).
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Example 4.2.8 Let G = SLn(R). The adjoint action of a diagonal matrix

A = diag(a1, . . . , an) ∈ G

is diagonalizable and has the eigenvalues 1, λij = ai
aj

, i 6= j. The eigenvector corresponding to the

eigenvalue λij is represented by the matrix with zeros everywhere except for the (i, j)- th element. The
other (unit) eigenvalues correspond to the diagonal matrices. It is well-known that the group SLn(R)
is simple (see, [116], pp. 150, 177).

Proposition 4.2.9 For any semisimple (not necessary (simply) connected) Lie group G there exists
a collection of semisimple Lie groups H1, . . . , Hs, each one with irreducible adjoint AdHj , and a ho-
momorphism

π : G→ H1 × · · · ×Hs

that is a local diffeomorphism (in particular, g =
∏s
j=1 hj). Moreover, the image π(G) is projected

surjectively onto each group Hj. The kernel of π is contained in the center of the unity component of
G.

Proof If the adjoint AdG is irreducible, we put s = 1, G = H1, and we are done. In general, g is
a product of simple Lie algebras. If the group G is simply connected, then it is the product of the
corresponding simply connected Lie groups (which are simple, and hence, have irreducible adjoints).

Case when G is an arbitrary connected semisimple Lie group. Denote G̃ its universal
covering, C(G̃) the center of G̃ (which is a discrete subgroup in G̃). Then

G = G̃/Γ, Γ ⊂ C(G̃), G̃ = H̃1 × · · · × H̃s, H̃j are simply connected simple groups.

One has C(G̃) =
∏s
j=1 C(H̃j). Therefore, there is a natural projection homomorphism

π : G = G̃/Γ → G̃/C(G̃) = H1 × · · · ×Hs, Hj = H̃j/C(H̃j). (4.2.1)

This is a homomorphism we are looking for.
Case, when G is an arbitrary semisimple Lie group. Denote G0 ⊂ G its unity component.

We assume that AdG is not irreducible (the opposite case was already discussed). Let g = g1×· · ·×gr
be the decomposition of g as a product of simple Lie algebras. The adjoint of each g ∈ G sends
any subalgebra gi to an isomorphic subalgebra gj ; then we say that gi is equivalent to gj . To each
equivalence class of the gj ’ s we associate the product of the algebras from this class. Denote all the
latter products h1, . . . , hs : by definition, g = h1 × · · · × hs. The subalgebras hj are AdG- invariant by
construction, and AdG|hj is irreducible for each j. Indeed, the only AdG0 - invariant subspaces in hj
are the subalgebras gi from the corresponding equivalence class and their products. No one of these
subspaces is AdG invariant, since AdG acts transitively on the subalgebras gi in hj by definition.

Let H̃j be the simply connected Lie groups with algebras hj , Ĥj = H̃j/C(H̃j). Let

π̂ : G0 → Ĥ1 × · · · × Ĥs

be the homomorphism (4.2.1), which is a local diffeomorphism. Consider the subset H ′
j ⊂ G0 of the

elements in G0 whose images under π̂ have unit Ĥj- component : it is the kernel of the composition

of π̂ with the projection to Ĥj . This is a normal Lie subgroup in G0. Denote H0
j ⊂ H ′

j its unity
component. Its Lie algebra is the product of the hi’ s with i 6= j, which is AdG- invariant. Thus, the
subgroup H0

j ⊂ G is normal in G. Denote

Hj = G/H0
j ; π : G→ H1 × · · · ×Hs

the homomorphism whose components are the natural projections. By construction, this is a local
diffeomorphism and the projection of π(G) to each Hj is surjective. Denote Γ ⊂ G the kernel of π,
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which is the intersection of the subgroups H0
j ⊂ G0. It is contained in G0 and is a discrete normal

subgroup there. Hence, it is contained in the center of G0. The image of the adjoint representation
AdHj : hj → hj coincides with that of the previous representation AdG|hj , which is irreducible.
Therefore, AdHj is also irreducible. Proposition 4.2.9 is proved. 2

Definition 4.2.10 Let G be a Lie group, α = (a1, . . . , aM ) ∈ GM . Consider the G- action on GM

by simultaneous conjugations, g : α 7→ gαg−1, and denote Conj(a1, . . . , aM ) ⊂ GM the orbit of
(a1, . . . , aM ) (i.e., the joint conjugacy class).

Proposition 4.2.11 Let G be a semisimple Lie group, n = dimG. Let a pair (or M - ple) of its ele-
ments be irrational, i.e., generate a dense subgroup in G. Then their joint conjugacy class is bijectively
analytically parametrized (as a G- action orbit) by the quotient of the group G by its center. The space
of the conjugacy classes corresponding to all the irrational pairs (M - ples) is an analytic manifold
of dimension n (respectively, (M − 1)n). The mapping (a1, . . . , aM ) 7→ Conj(a1, . . . , aM ) is a local
submersion at the irrational M - ples (a1, . . . , aM ) ∈ GM .

Proof Let A = (A1, . . . , AM ) ∈ GM be an irrational M - ple : the subgroup < A > generated by
A is dense in G. The parametrization g 7→ gAg−1 of the conjugacy class of A by g ∈ G induces its
1-to-1 parametrization by the quotient of G by its center. Equivalently, for any two distinct elements
g, h ∈ G the elements gAg−1, hAh−1 of the conjugacy class of A coincide if and only if g′ = g−1h lies
in the center of G. Indeed, gAg−1 = hAh−1, if and only if g′ commutes with each Ai, or equivalently,
with < A >. The latter commutation is equivalent to the commutation with G = < A >. This proves
the previous statement. The irrational M - ples form an open subset in the product of M copies of G
(Proposition 4.1.6). This together with the previous parametrization statement implies the statements
of Proposition 4.2.11. 2

Definition 4.2.12 Let G be a semisimple Lie group, α(u) = (a1(u), . . . , aM (u)) be a C1- family of
M - ples of its elements depending on a parameter u from some manifiold (say, Rl). We say that α
is conj- nondegenerate at u = u0 if the subgroup < α(u0) >⊂ G is dense in G and the mapping
u 7→ Conj(α(u)) has a rank no less than n = dimG at u = u0. Otherwise we say that the family
α(u) is conj- degenerate at u0. If α(u) is conj- nondegenerate at all u, then we say that α(u) is conj-
nondegenerate.

Remark 4.2.13 Let G be a semisimple Lie group, α(u) be an arbitrary family of M - ples of its
elements. Then the set of the parameter values u at which α(u) is conj- nondegenerate is an open set
(it may be empty). This follows from definition and Proposition 4.1.6.

Corollary 4.2.14 Let G be a semisimple Lie group, (A,B) ∈ G×G be an irrational pair. The family
of all the pairs (a, b) ∈ G×G is conj- nondegenerate at (A,B).

Proof The mapping (a, b) 7→ Conj(a, b) has full rank at (A,B), which is equal to n (Proposition
4.2.11). This implies the Corollary. 2

For any real linear space (Lie algebra) g we denote

gC its complexification,

which is also a linear space (Lie algebra).
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4.2.2 Semisimple Lie algebras and root decomposition

Definition 4.2.15 An element of a Lie algebra is called regular, if its adjoint has the minimal possible
multiplicity of zero eigenvalue.

Definition 4.2.16 Let g be a complex semisimple Lie group. A Cartan subalgebra associated to a
regular element of g is its centralizer : the set of the elements commuting with it.

It is well-known (see, [116], pp. 153, 159) that
- a) any Cartan subalgebra h is a maximal commutative subalgebra ;
- b) all the Cartan subalgebras are conjugated ;
- c) the adjoint action of h on g is diagonalizable in an appropriate basis of g ;
- d) the eigenvalues of the latter adjoint action are linear functionals on h, thus, elements of h∗,

the nonidentically zero ones are called roots ;
- e) the roots are distinct and the corresponding eigenspaces are complex lines ;
- f) if α is a root, then so is −α ;
- g) for any root α the only roots complex-proportional to α are ±α ;
- h) some roots form a complex basis in h∗ and moreover, an integer root basis in the following

sense : each root is an integer linear combination of the basic roots ;
- i) the algebra g is the direct sum (as a linear space) of h and the root eigenlines.
Statement g) follows from the analogous statement in [116] (theorem 6 on p.159) for real-proportional

roots and from statement h).

4.2.3 Proximal elements

Definition 4.2.17 A linear operator Rn → Rn is called proximal, if it has a unique complex eigenvalue
(taken with multiplicity) of maximal modulus (then this eigenvalue is automatically real). An element
of a Lie group is proximal, if its adjoint is.

Remark 4.2.18 The set of proximal operators (elements) is open.

Definition 4.2.19 A maximal R- split torus in a semisimple Lie group G is a maximal connected
Lie subgroup with a diagonalizable adjoint action on g (which is automatically commutative). A
semisimple Lie group is called split (see [116], p. 288), if some its maximal R- split torus is a maximal
connected commutative Lie subgroup.

Example 4.2.20 Each group SLn(R) is split : the diagonal matrices form a maximal R- split torus.
A typical diagonal matrix is a proximal element of SLn(R). The group SO(3) is not split, has trivial
maximal R- split torus and no proximal elements. The group SO(2, 1) is not split and has one-
dimensional maximal R- split torus, whose nontrivial elements are proximal in SO(2, 1).

Lemma 4.2.21 Let a semisimple Lie group contain a proximal element. Then each its maximal R-
split torus contains a proximal element.

The proof of Lemma 4.2.21 is implicitly contained in [1] (p.25, proof of theorem 6.3).

Definition 4.2.22 An element g of a Lie group will be called 1- proximal, if the operator Adg − Id
is proximal.

We use the following equivalent characterization of semisimple Lie groups with proximal elements.

Corollary 4.2.23 A semisimple Lie group contains a proximal element, if and only if its unity com-
ponent contains a 1- proximal element. In this case the 1- proximal elements form an open subset in
G accumulating to the unity.
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In the proof of the corollary we use the following properties of the adjoint representation of a semisimple
Lie group.

Proposition 4.2.24 Let G be a connected semisimple Lie group. For any x ∈ g (g ∈ G) and an
eigenvalue λ of adx (Adg) the number −λ (respectively, λ−1) is also an eigenvalue of the corresponding
adjoint with the same multiplicity, as λ.

Proof It suffices to prove the statement of the proposition for the Lie algebra : this would imply its
statement for any g ∈ G close enough to 1 (belonging to an exponential chart), and then, for any
g ∈ G (the connectedness of G and the analytic dependence of the operator family Adg on g ∈ G). For
any regular element x ∈ g the nonzero eigenvalues of adx are split into pairs of opposite eigenvalues
with equal multiplicities. This follows from the central symmetry of the root system of the complex
Cartan subalgebra in gC containing x (see 4.2.2, statement f)). The regular elements are dense in g.
This implies that the previous statement remains valid for any x ∈ g. This proves the proposition. 2

Corollary 4.2.25 Any 1- proximal element of a connected semisimple Lie group is proximal.

Proof Let g be a 1- proximal element, λ ∈ R be the eigenvalue of Adg − Id with maximal modulus
(which is simple, and hence, nonzero). Then (λ+ 1)±1 are simple eigenvalues of Adg (by Proposition
4.2.24). We claim that (λ+1)±1 is the eigenvalue of Adg with maximal modulus, if λ ∈ R±. Indeed, it
follows from definition (in both cases) that (λ+1)±1 ≥ |λ|+ 1. For any eigenvalue λ′ 6= λ of Adg − Id
one has |λ′| < |λ| (1- proximality). This together with the previous and triangle inequalities implies
that

(λ+ 1)±1 ≥ |λ| + 1 > |λ′| + 1 ≥ |λ′ + 1|.

This proves the previous statement on the maximality of the eigenvalue (λ + 1)±1 and thus, the
proximality of Adg. Corollary 4.2.25 is proved. 2

Proposition 4.2.26 Let G be a semisimple Lie group, T ⊂ G be a maximal R- split torus. Let g ∈ T
be a proximal element of G. Then g is also 1- proximal.

Proof The eigenvalues of Adg (which are real, since AdT : g → g is diagonalizable) are positive, since
this is true for Ad1 = Id and the torus T is connected. The nonunit eigenvalues are split into pairs
of inverses (Proposition 4.2.24). Hence, we can order them as follows (distinct indices correspond to
distinct (may be multiple) eigenvalues) :

0 < λ−1
1 < λ−1

2 < · · · < λ−1
k < 1 < λk < · · · < λ1. (4.2.2)

The eigenvalue λ1 is simple (proximality). One has

λ1 − 1 > λ−1
1 (λ1 − 1) = 1 − λ−1

1 , since 0 < λ−1
1 < 1

by (4.2.2). This together with (4.2.2) implies that λ1 − 1 is a simple eigenvalue of Adg − Id with
maximal modulus. Hence, the operator Adg − Id is proximal. Proposition 4.2.26 is proved. 2

Proof of Corollary 4.2.23. Let the unity component of G contain a 1- proximal element. Then
this element is proximal (Corollary 4.2.25). Conversely, let G contain proximal elements. Let T ⊂ G
be a maximal R- split torus, g ∈ T be a proximal element of G (which exists by Lemma 4.2.21). Then
g is 1- proximal (Proposition 4.2.26) and lies in the unity component of G.

Now let us prove the last statement of Corollary 4.2.23. To do this, consider the 1- parameter
subgroup Γ ⊂ T passing through the previous proximal element g. The elements gr ∈ Γ, r > 0,
are proximal, since Adg is proximal and any positive power of a proximal operator is also proximal.
Therefore, they are 1- proximal (Proposition 4.2.26) and accumulate to 1. This together with Remark
4.2.18 proves the corollary. 2
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4.3 Proof of Theorems 4.1.1 and 4.1.33 for semisimple Lie
groups with irreducible adjoint and proximal elements

Here and in Section 4.4 we prove Theorem 4.1.33, which deals with semisimple Lie groups having
irreducible adjoint representation. For those Lie groups Theorem 4.1.1 follows from Theorem 4.1.33
(see 4.1.7). In the present section we treate the case of Lie group with proximal elements. The opposite
case is treated in the next section.

4.3.1 Motivation and the plan of the proof

Let G be a semisimple Lie group with irreducible adjoint and proximal elements, n = dimG,
α(u) = (a1, . . . , aM )(u) be a conj- nondegenerate at u = 0 family of M - ples of elements of G
depending on parameter u (see Definition 4.2.12). Recall that the subgroup < α(0) >⊂ G is dense.
Without loss of generality we assume that

- the parameter space has the same dimension n, as G : u ∈ Rn (we can restrict our family to
appropriate generically embedded copy of Rn in the parameter space, along which the family remains
conj- nondegenerate).

We construct a sequence wk of words in M elements such that there exists a sequence uk ∈ Rn for
which

wk(α(uk)) = 1, uk → 0, as k → ∞, (4.3.1)

and the relations wk(α(u)) = 1 do not hold true identically in a neighborhood of 0. Then the mapping
α(0) 7→ α(u) does not extend up to a group isomorphism < α(0) >→< α(u) > for arbitrarily small
values of u. Indeed, the relations wk = 1 hold true in the group < α(u) > for the values u = uk (which
tend to 0), and do not hold for some other values of u (which can be chosen arbitrarily small as well).
This will prove Theorem 4.1.33.

First let us motivate the proof of Theorem 4.1.33. A natural way to construct the previously
mentioned words wk is to achieve that wk(α(0)) → 1. Then to guarantee the existence of a sequence
uk → 0 of solutions to the equations wk(α(u)) = 1, we have to show that there exists a sequence
δk → 0 such that 1 ∈ wk(α(Dδk )), whenever k is large enough. To do this, we have to prove an
appropriate lower bound for derivatives of the mappings wk(α(u)) near 0 ; in particular, to show that
certain derivatives will be greater than δ−1

k dist(wk(α(0)), 1).

By density, we can always construct a sequence of words wk so that wk(α(0)) → 1. In the case,
when ai(0) are close enough to unity, it suffices to take wk to be a sequence of appropriate successive
commutators

w1 = []1 = [a1, a2], w2 = []2 = [a1, [a1, a2]], . . .

On the other hand, the derivatives of the corresponding mappings wk(α(u)) do not admit a satisfactory
lower bound : the values at α(0) of the commutators converge exponentially to 1, and the previous
derivatives (taken at 0) converge exponentially to zero.

In order to construct words wk with large derivatives, we use the following observation. Fix a small
∆ > 0. Then dist([]k(α(0)), 1) < ∆, whenever k is large enough. Consider all the powers []mk of the
previous commutators. Put

mk = min{m ∈ N, dist([]mk (α(0)), 1) ≥ ∆}.

(The numbers mk are well-defined provided that []k(α(0)) 6= 1.) Then ∆ ≤ dist([]mkk (α(0)), 1) < 2∆,
whenever k is large enough, by definition, the previous inequality and the left invariance of the metric
on G. We claim that if a1(0) and a2(0) are close enough to 1 and the family α(u) satisfies appropriate
genericity assumption, then the derivative at 0 in certain directions of the mapping u 7→ []mkk (α(u)) ∈ G
grows linearly in k, as that of the mappings ψk in the proof of Proposition 4.1.32.

In what follows we construct
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- appropriate words g1, . . . , gn, h, w and define recurrently the iterated commutators

wi0 = h, wik = giwi(k−1)g
−1
i w−1

i(k−1), (4.3.2)

- a sequence of collections

Mk = (m1k, . . . ,mnk), mik ∈ N, and put

ωk = wm1k

1k . . . wmnknk , wk = w−1ωk. (4.3.3)

We show that the latter words wk satisfy (4.3.1). To do this, we introduce the rescaled parameter

ũ = ku,

as in Proposition 4.1.32, and show that

ωk(α(k−1ũ)) → Ψ(ũ), as k → ∞; Ψ : Rn → G is a local diffeomorphism at 0, (4.3.4)

the previous convergence is uniform with derivatives on compact subsets in Rn. Theorem 4.1.33 will
be then deduced from (4.3.4) at the end of the subsection.

For a fixed g ∈ G consider the corresponding commutator mapping

φg : G→ G, φg(y) = gyg−1y−1. One has φg(1) = 1, φ′g(1) = Adg − Id : g → g,

wik(α(u)) = φkgi(α(u))(h(α(u))). (4.3.5)

For any 1- proximal element g ∈ G (see Definition 4.2.22) denote

s(g) = the eigenvalue of Adg − Id with maximal modulus, Lg ⊂ g its eigenline. (4.3.6)

The function s(g) is analytic on the (open) subset of 1- proximal elements, by the simplicity of the
eigenvalue s(g). Denote

Π = {1- proximal elements g ∈ G | |s(g)| < 1}. (4.3.7)

Remark 4.3.1 Let G be an arbitrary semisimple Lie group with proximal elements. The above set
Π is open and nonempty (Corollary 4.2.23).

The choice of the words gj and h will be specified at the end of the subsection. It will be done so
that

gj(α(0)) ∈ Π for any j = 1, . . . , n.

The following Proposition 4.3.2 describes the asymptotic behavior of the iterated commutators φkg(y),
as k → ∞, for arbitrary g ∈ Π and y ∈ G close enough to 1. Using Proposition 4.3.2, we show
(Corollary 4.3.3) that for appropriately chosen word h and arbitrary given ε > 0 one can choose
appropriate exponents mjk (which depend on gj and ε, see (4.3.11)) so that the mapping sequence
ωk(α(k−1ũ)) converges to some mapping Ψ(ũ), which depends only on gj , h and ε. The mapping Ψ is
explicitly given by formula (4.3.12) below. The main technical part of the proof of Theorem 4.1.33 is
to show that one can adjust gj, h and ε so that the limit Ψ be a local diffeomorphism at 0 (Lemmas
4.3.4, 4.3.6 and the Main Technical Lemma 4.3.5 below). Lemmas 4.3.4 and 4.3.6 easily follow from
Lemma 4.3.5. Theorem 4.1.33 will be deduced from Lemma 4.3.6 and Proposition 4.3.2 at the end of
the subsection. The proofs of Lemma 4.3.6 and Proposition 4.3.2 are omitted here. A sketch-proof of
Lemma 4.3.5 will be given in 4.3.2.
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Proposition 4.3.2 Let G be a Lie group with proximal elements, Π be as in (4.3.7). There exist an
open subset

Π′ ⊂ Π ×G, Π′ ⊃ Π × 1, (4.3.8)

and a g- valued vector function vg(y) analytic in (g, y) ∈ Π′, vg(1) = 0 (denote dvg : g → g its
differential in y at y = 1) such that for any (g, y) ∈ Π′ one has

vg(y) ∈ Lg, dvg|Lg = Id : Lg → Lg, φ
k
g(y) = exp(sk(g)(vg(y) + o(1))), as k → +∞, (4.3.9)

s(g) and Lg are the same, as in (4.3.6). The latter ”o” is uniform with derivatives in (g, y) on compact
subsets in Π′.

Corollary 4.3.3 Let G, n, M , α(u) be as at the beginning of the subsection, Π be as in (4.3.7), Π′,
vg be as in Proposition 4.3.2. Let g1, . . . , gn, h be words in M elements such that

(gj(α(0)), h(α(0))) ∈ Π′ for any j = 1, . . . , n. Put

sj(u) = s(gj(α(u))), ν̃j(u) = vgj(α(u))(h(α(u))) ∈ g, νj = ν̃j(0). (4.3.10)

Let ε > 0. For any k ∈ N and j = 1, . . . , n put

mjk = [ε|sj |
−k(0)]. (4.3.11)

Let ωk be the corresponding commutator power product (4.3.3). Then

ωk(α(k−1ũ)) → Ψ(ũ) = exp(εe(d ln s1(0))euν1) . . . exp(εe(d ln sn(0))euνn), as k → ∞, (4.3.12)

uniformly with derivatives on compact subsets in Rn.

Proof One has

w
mjk
jk (α(k−1ũ)) → exp(εe(d ln sj(0))euνj) (4.3.13)

uniformly with derivatives on compact sets in Rn. Indeed, by (4.3.5) and (4.3.9), one has

w
mjk
jk (α(k−1ũ)) = exp(mjks

k
j (k

−1ũ)(ν̃j(k
−1ũ) + o(1))), ν̃j(k

−1ũ) → νj , (4.3.14)

mjks
k
j (k

−1ũ) → εe(d ln sj(0))eu, since (4.3.15)

skj (k
−1ũ) = (sj(0) + k−1(dsj(0))ũ+ o(k−1))k

= skj (0)(1 + k−1(d ln sj(0))ũ+ o(k−1))k = skj (0)e(d ln sj(0))eu(1 + o(1)) (4.3.16)

and mjks
k
j (0) → ε by (4.3.11). Substituting (4.3.15) to (4.3.14) yields (4.3.13), which implies (4.3.12).

The corollary is proved. 2

Lemma 4.3.4 Let G, n, α(u), M be as at the beginning of the subsection, Π be as in (4.3.7). There
exists a collection g1, . . . , gn of words in M elements such that gi(α(0)) ∈ Π for all i = 1, . . . , n and
the system of n functions si(u) = s(gi(α(u))) (which are well-defined in a neighborhood of 0) has the
maximal rank n at 0. Moreover, given any collection A1, . . . , An ∈ Π one can achieve that in addition,
the elements gi(α(0)) be arbitrarily close to Ai.

For the proof of Theorem 4.1.33 in the general case, without the assumption that G has proximal
elements, we use the following generalization of Lemma 4.3.4.
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Lemma 4.3.5 (Main Technical Lemma). Let G be an arbitrary semisimple Lie group with ir-
reducible adjoint representation (not necessarily with proximal elements), dimG = n. Let α(u) =
(a1(u), . . . , aM (u)) be a conj- nondegenerate at 0 family of M - ples of its elements depending on a
parameter u ∈ Rn. Let U ⊂ G be an arbitrary open subset, and let σ : U → R be a smooth locally non-
constant function. Then there exist n abstract words gi(a1, . . . , aM ), i = 1, . . . , n, such that the system
of n functions si(u) = σ(gi(α(u))) is well-defined (locally near 0) and has the maximal rank n at 0.
Moreover, for any given A1, . . . , An ∈ U one can achieve that in addition, the elements gi(α(0)) ∈ G
be arbitrarily close to Ai.

Lemma 4.3.4 follows from Lemma 4.3.5 applied to U = Π and the function σ(g) = s(g).

Lemma 4.3.6 Let G, n, M , α(u) be as at the beginning of the subsection, Π′ ⊂ G × G be as in
Proposition 4.3.2. There exist words g1, . . . , gn, h such that (gj(α(0)), h(α(0))) ∈ Π′ for all j and for
any ε > 0 small enough the corresponding mapping Ψ(ũ) from (4.3.12) is a local diffeomorphism at 0.

Proof of Theorem 4.1.33 modulo Proposition 4.3.2 and Lemmas 4.3.5 and 4.3.6. Let gj ,
h, ε be as in Lemma 4.3.6, sj(u) be as in (4.3.10), mjk be as in (4.3.11). Let ωk be the corresponding
commutator power product from (4.3.3), Ψ be the mapping from (4.3.12). Let δ > 0 be such that
Ψ : Dδ → Ψ(Dδ) ⊂ G be a diffeomorphism (it exists by Lemma 4.3.6). Let w be an arbitrary word
such that

w(α(0)) ∈ Ψ(Dδ), wk = w−1ωk. Then

wk(α(k−1ũ)) → ψ(ũ) = w−1(α(0))Ψ(ũ), ψ : Dδ → ψ(Dδ) ⊂ G is a diffeomorphism, (4.3.17)

1 ∈ ψ(Dδ)

(Corollary 4.3.3). Therefore, for any k large enough the image wk(α(k−1Dδ)) also contains 1, and
hence, wk(α(k−1ũk)) = 1 for some ũk ∈ Dδ. Put

uk = k−1ũk; one has wk(α(uk)) = 1, uk → 0.

The relation wk(α(u)) = 1, which holds for u = uk, does not hold identically in u ∈ Dk−1δ′ for any
0 < δ′ ≤ δ, because of the diffeomorphicity of the mappings ũ 7→ wk(α(k−1ũ)) on Dδ for large k (see
(4.3.17) ; the convergence is uniform with derivatives on Dδ there). Thus, the words wk satisfy (4.3.1).
This proves Theorem 4.1.33. 2

4.3.2 Sketch-proof of the Main Technical Lemma

Denote Û = Rn the parameter u space under consideration. By assumption, the family α(u) is
conj- nondegenerate. This together with the equality of the dimensions of G and Û implies that the
derivative along each nonzero vector v ∈ T0Û of the function u 7→ Conj(α(u)) is nonzero. (Fix a
v ∈ T0Û \ 0.) The derivatives along v of the mappings u 7→ w(α(u)) (where w is an arbitrary word)
form a vector field on the dense subgroup Γ =< α(0) >⊂ G (we extend it to 1 by 0). This vector field is
well-defined (single-valued), if Γ is free. In general, if there are relations in Γ, it is single-valued, if and
only if for any word w giving a relation (i.e., w(α(0)) = 1) the corresponding mapping u 7→ w(α(u))
has zero derivative along v.

The maximal rank statement of Lemma 4.3.5 is equivalent to the statement that for any given
v ∈ T0Û \ 0 there exists an index j such that the corresponding vector at gj(α(0)) of the previous
field is nonzero and transversal to the level hypersurface of the function σ. To prove that, we show
that the previous vector field (if well-defined) is not Lipschitz at 1. Moreover, we show that for any
line Λ ⊂ g there exists a sequence of words wk(a1, . . . , aM ), wk(α(0)) → 1, as k → ∞, such that

|dwk(α(u))
dv |

dist(wk(α(0)), 1)
→ ∞, as k → ∞, (4.3.18)
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the tangent line in Twk(α(0))G generated by the latter derivative tends to Λ. (4.3.19)

First we prove (by contradiction) that statement (4.3.18) holds true for some word sequence wk.
Suppose the contrary : the previous vector field on the dense subgroup Γ ⊂ G is Lipschitz at 1. Then we
show that it extends up to a vector field on the whole G that defines a flow of automorphisms of G. The
latter automorphisms preserve conjugacy classes (semisimplicity). This contradicts the nonvanishing
of the derivative along v of Conj(α(u)).

Given any word sequence wk satisfying (4.3.18), passing to a subsequence one can achieve that
the tangent lines in Twk(α(0))G generated by the (big) derivatives from (4.3.18) converge to some line
Λ ⊂ g, i.e., statement (4.3.19) holds true for this Λ. The union of all these possible limit lines Λ is
closed and AdG- invariant. This follows by definition and the density of the subgroup Γ ⊂ G. We show
that the latter union of limit lines is the whole g, by using the irreducibility of the adjoint.

The existence (for arbitrary Λ) of words satisfying (4.3.18) and (4.3.19) implies the following

Corollary 4.3.7 Let G, n, α(u), U ⊂ G, σ : U → R be the same, as in the Main Technical Lemma
4.3.5. Let v ∈ T0Rn, v 6= 0. For any g ∈ U there exists a sequence of words w̃k(a1, . . . , aM ), hk =

w̃k(α(0)) → g, such that the derivatives d ewk(α(u))
dv are transversal to the level hypersurfaces σ = σ(hk).

Proof (sketch). It suffices to prove the statement of the corollary for any g belonging to a dense
subset in U . We prove it for those g ∈ U ∩ Γ at which dσ(g) 6= 0. Inclusion g ∈ Γ means that

g = w(α(0)) for some word w. If already the derivative ν = dw(α(u))
dv is transversal to the hypersurface

σ = σ(g), then we put w̃k = w and we are done. Now suppose that the latter derivative is tangent
to the hypersurface σ = σ(g). We fix an arbitrary line Λ ⊂ g whose image in TgG under the left
multiplication by g is transversal to the same hypersurface. Let wk be a word sequence satisfying
(4.3.18) and (4.3.19) for this Λ. We show that the words w̃k = wwk satisfy the statements of the

Corollary. The derivative ν̃k = d ewk(α(u))
dv is the sum of the two following vectors :

- the vector ν′k ∈ ThkG, which is the image of ν = dw(α(u))
dv under the right multiplication by

wk(α(0)) ;

- the vector νk ∈ ThkG, which is the image of dwk(α(u))
dv under the left multiplication by w(α(0)).

An elementary calculation shows that dσ
dν′
k

= O(dist(hk, g)), as k → ∞ (by construction : dσ
dν =

0), while the derivative dσ
dνk

asymptotically dominates O(dist(hk, g)) (this follows from (4.3.18) and

(4.3.19)). Thus, the latter derivative dominates the former one and dσ
deνk

6= 0 for any k large enough.
This proves the corollary. 2

Proof of Lemma 4.3.5. Given a ε > 0 and A1, . . . , An ∈ U , let us construct words gi(α), gi(α(0))
being ε- close to Ai, such that the values si(u) = σ(gi(α(u))), i = 1, . . . , n, are functions of joint rank
n at 0. This will prove Lemma 4.3.5.

Given a tangent vector v1 ∈ T0Û \ 0, there exists a word g1 (denote s1(u) = σ(g1(α(u)))) such

that g1(α(0)) is ε- close to A1 and ds1(u)
dv1

6= 0 (conj- nondegeneracy and Corollary 4.3.7 applied to
g = A1). Take another vector v2 6= 0 tangent to the level hypersurface of the function s1 at 0. Again
applying the corollary to v = v2, one can find a word g2 with g2(α(0)) being ε- close to A2 such that
the derivative along v2 of the function s2 : u 7→ σ(g2(α(u))) does not vanish. Now take a vector v3 6= 0
tangent to the level surface of the vector function (s1, s2) and construct a word g3 similarly etc. This
yields the words gi we are looking for : by construction, the system of functions si : u 7→ σ(gi(α(u)))
has rank n at 0. Lemma 4.3.5 is proved. 2

4.4 Case of semisimple Lie groups with irreducible adjoint
and without proximal elements

In the case mentioned in the title of the section the proof (given below) of Theorem 4.1.33 is
essentially the same, as before, but it becomes slightly more technical.
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Everywhere below in this section, whenever the contrary is not specified, we consider that G is a
semisimple Lie group with irreducible adjoint and no proximal elements. Let α(u) = (a1(u), . . . , aM (u))
be a conj- nondegenerate family of M - ples of its elements. As in Section 4.3, we consider that u ∈ Rn,
n = dimG. We construct appropriate sequence of words wr and a sequence ur ∈ Rn such that

wr(α(ur)) = 1, ur → 0, as r → ∞, (4.4.1)

and the relations wr(α(u)) = 1 do not hold identically in a neighborhood of 0. This will prove Theorem
4.1.33.

We construct appropriate words g1, . . . , gn, h, w, a collection

l = (l1, . . . , ln) ∈ Zn, a sequence of numbers kr ∈ N, kr → ∞, as r → ∞,

a collection of sequences

mjr ∈ N, j = 1, . . . , n, r ∈ N, and put

ωr = wm1r

1,kr+l1
. . . wmnrn,kr+ln

, wr = w−1ωr, (4.4.2)

where wj,kr+lj are the iterated commutators given by the recurrent formula (4.3.2). We consider the
rescaled parameter

ũ = kru and show that

ωr(α(k−1
r ũ)) → Ψ(ũ), Ψ : Rn → G is a local diffeomorphism at 0, (4.4.3)

the latter convergence is uniform with derivatives on compact sets in Rn. This implies Theorem 4.1.33
analogously to the discussion at the end of Subsection 4.3.1. The implication is proved at the end of
the present section.

In the proof of Theorem 4.1.33 we use Proposition 4.4.8 stated below. It describes the asymptotic
behavior of iterated commutators

φkg(y) = [g . . . [g, y] . . . ],

as k → ∞. This is an analogue of Proposition 4.3.2 from Section 4.3. In the case under consideration the
unity component of G contains no 1- proximal elements (for which Proposition 4.3.2 was formulated).
We introduce so-called C-1-proximal elements (see the next definition). We show that their set contains
an open dense subset in the unity component (Proposition 4.4.1 and its Corollary 4.4.4, both stated
below). We state Proposition 4.4.8 for the C-1-proximal elements g such that the derivative φ′g(1) is
contracting. To do this, we show (Proposition 4.4.5 below) that for each C-1-proximal element g ∈ G
there exists a unique φ′g(1)- invariant plane L(g) ⊂ g equipped with a natural φ′g(1)- invariant complex
structure such that the restriction φ′g(1) : L(g) → L(g) is multiplication by a complex eigenvalue s(g)
of the operator φ′g(1) : g → g with maximal modulus.

The words gj will be chosen at the end of the subsection, in particular, so that each element
g = gj(α(0)) be C-1-proximal and |s(g)| < 1. For any collection of words gj satisfying the latter
statements and any given ε > 0, Proposition 4.4.9 and Corollary 4.4.10 (both stated below) provide
sequences kr,mjr → ∞ such that for any word h with h(α(0)) close enough to the unity and any
collection l = (l1, . . . , ln) ∈ Zn the corresponding sequence of G- valued functions ωr(α(k−1

r ũ)), see
(4.4.2), converges to some mapping Ψ : Rn → G uniformly with derivatives on compact sets in Rn.
The limit mapping Ψ is given explicitly by formula (4.4.11) below, which depends only on the words
gj , h, the collection l ∈ Zn and ε. Lemma 4.4.11 stated below shows that one can adjust gj, h and
l so that Ψ be a local diffeomorphism at 0, whenever ε is small enough. This is the main technical
part of the proof of Theorem 4.1.33. The proof of Lemma 4.4.11 uses the Main Technical Lemma from
Section 4.3.

At the end of the section we deduce Theorem 4.1.33 from the technical statements listed above
(Propositions 4.4.1, 4.4.8 and Lemma 4.4.11 ; their proofs are given in [50] and omitted here).
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Proposition 4.4.1 Let G be a connected semisimple Lie group. There exists a nonempty subset U ⊂
G such that the subset AdU ⊂ AdG ⊂ End(g) is Zariski open in AdG and the adjoint of each g ∈ U
satisfies the following statements :

1) the number of its nonunit complex eigenvalues is maximal and nonempty, and all they are
simple ;

2) if there is a pair of distinct eigenvalues Λ1,Λ2 6= 1 with |Λ1 − 1| = |Λ2 − 1|, then Λ1 = Λ2.

Definition 4.4.2 An element g of a Lie group is called C-1-proximal, if the operator Adg − Id has a
pair of simple nonreal complex-conjugated eigenvalues that are the unique eigenvalues with maximal
modulus.

Proposition 4.4.3 Any element of a semisimple Lie group whose adjoint satisfies the previous sta-
tements 1) and 2) is either 1- proximal (see Definition 4.2.22) or C-1-proximal.

Proof Let Adg satisfy 1) and 2), λ be its eigenvalue for which the modulus |λ − 1| is the maximal
possible. Then λ− 1 6= 0 and λ is a simple eigenvalue (statement 1)). For any eigenvalue λ′ 6= λ, λ̄ one
has |λ− 1| > |λ′ − 1| (statement 2)). Therefore, g is 1- proximal, if λ ∈ R and C-1-proximal otherwise.
Proposition 4.4.3 is proved. 2

Corollary 4.4.4 Let G be a semisimple Lie group without proximal elements. The set of C- 1- proxi-
mal elements in G is open and contains a dense subset U ⊂ G0 of its unity component G0.

Proof The openness of the set of C-1-proximal elements follows from definition. The subset U ⊂ G0

from Proposition 4.4.1 is open and dense (since AdU is nonempty and Zariski open in a smooth
variety AdG0 , by Proposition 4.4.1). The set U consists of C-1-proximal elements (Proposition 4.4.3
and absense of 1- proximal elements in G0). Indeed, otherwise, a 1- proximal element of G0 would
be proximal (Corollary 4.2.25), - a contradiction to the conditions of Corollary 4.4.4. This proves
Corollary 4.4.4. 2

We use the following properties of the adjoint of a C-1-proximal element.

Proposition 4.4.5 Let A : Rn → Rn be a linear operator with a pair of simple complex-conjugated
eigenvalues s, s̄ /∈ R. There exists a unique A- invariant plane L ⊂ Rn whose complexification is
the sum of the complex eigenlines corresponding to the eigenvalues s and s̄. The plane L carries an
A- invariant linear complex structure (i.e., a structure of complex line compatible with its real linear
structure), unique up to complex conjugation. The restriction A : L → L acts by multiplication by
either s or s̄ in the latter complex structure (dependently on double choice of the complex structure).

Proof By basic linear algebra, the previous plane L exists, unique and there exists a R- linear
nondegenerate operator H : L → C such that HAH−1(z) = sz. The H- pullback of the standard
complex structure on C (or of its conjugate) is an A- invariant complex structure on L such that the
restriction A : L → L acts by multiplication by s (respectively, s̄). These are the only A- invariant
linear complex structures on L. Or equivalently, the standard complex structure on C is the unique
linear complex structure (up to complex conjugation) invariant under the multiplication by a number
s ∈ C \ R. Indeed, each linear complex structure on a plane defines an ellipse centered at 0 (up to
homothety) : the latter ellipse is an orbit of a vector under the multiplication by the complex numbers
with unit modulus. Vice versa, an ellipse determines a linear complex structure uniquely up to complex
conjugation. The only ellipse in C sent to a homothetic one by multiplication by a s ∈ C\R is a circle.
This proves the previous uniqueness statement and Proposition 4.4.5. 2

Definition 4.4.6 Let G be a Lie group, g ∈ G be a C-1-proximal element. Let s(g) be an eigenvalue
of Adg − Id with the maximal modulus. Let L(g) ⊂ g be the Adg − Id- (and hence, Adg- ) invariant

plane corresponding to the eigenvalues s(g), s(g) (see Proposition 4.4.5). The corresponding Adg−Id-
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invariant complex structure on L(g), in which Adg − Id : L(g) → L(g) acts by multiplication by s(g),
will be called the s(g)- complex structure.

Proposition 4.4.7 Let G be a Lie group, V ⊂ G be a connected component of the subset of the
C-1-proximal elements (which is open by definition). The values s(g), s(g) from Definition 4.4.6 yield
two real-analytic complex-conjugated functions s, s̄ : V → C = R2.

Proof The local real analyticity of the previous values follows from the simplicity of the eigenvalues
s(g), s(g). The global real analyticity (say, of s(g)) follows from the fact that its analytic extension
along any closed loop in V does not change the analytic branch. Indeed, the result of analytic extension
of s(g) remains an eigenvalue of Adg − Id with the maximal modulus, by definition and the previous
local analyticity statement. Therefore, given a g0 ∈ V and a loop γ ⊂ V based at g0, the result of the
analytic extension of s(g) along γ is either s(g0), or s(g0). In the latter case there exists a g′ ∈ γ where
s(g′) ∈ R, by continuity. It follows from definition and the local analyticity that s(g′) is a double
eigenvalue of Adg′ − Id with maximal modulus, - a contradiction to the C-1- proximality. Proposition
4.4.7 is proved. 2

In what follows, everywhere below in this section, we fix a real-analytic branch of the eigenvalue
function s(g) from Proposition 4.4.7, defined on the open set of all the C-1-proximal elements. The
corresponding family of planes L(g) ⊂ g and the s(g)- complex structures on them (see the previous
definition) also depend analytically on g. We define the multiplication of vectors in L(g) by complex
numbers in the sense of the s(g)- complex structure. Denote

ΠC,1 = {C − 1 − proximal elements g ∈ G with |s(g)| < 1} (4.4.4)

This is a nonempty open subset in G, by Corollary 4.4.4.

Proposition 4.4.8 Let G be a Lie group such that ΠC,1 6= ∅, s(g), L(g) and the complex structures
on the planes L(g) be as above. There exists an open subset

Π′
C,1 ⊂ ΠC,1 ×G, ΠC,1 × 1 ⊂ Π′

C,1, (4.4.5)

and a g- valued vector function vg(y) analytic in (g, y) ∈ Π′
C,1, vg(1) = 0 (denote dvg : g → g its

differential in y at y = 1) such that

vg(y) ∈ L(g) for any (g, y) ∈ Π′
C,1, dvg|L(g) = Id : L(g) → L(g), (4.4.6)

φkg(y) = exp(sk(g)vg(y) + o(|sk(g)|)), as k → ∞, (4.4.7)

the latter “o” is uniform with derivatives on compact subsets in Π′
C,1.

Given a collection of words gj , j = 1, . . . , n, with gj(α(0)) ∈ ΠC,1, we denote

ζj = arg s(gj(α(0))).

Proposition 4.4.9 For any real vector ζ = (ζ1, . . . , ζn) ∈ Rn there exists a sequence of numbers
kr ∈ N, kr → ∞, as r → ∞, such that

krζj → 0(mod2π), as r → ∞, for any j = 1, . . . , n. (4.4.8)

Proof Consider ζ as an element of the torus Tn = Rn/2πZn. The subgroup < ζ >⊂ Tn either is
discrete, or accumulates to 0. In both cases there exists a sequence of numbers kr ∈ N, kr → ∞,
such that krζ → 0 in Tn (the latter statement is equivalent to (4.4.8)). In the second case this follows
from definition. In the first case the group < ζ > is finite cyclic by compactness. Denote m its order,
kr = rm. Then krζ = 0 in Tn for all r ∈ N. This proves Proposition 4.4.9. 2



71

Corollary 4.4.10 Let G, n, M , α(u) be as at the beginning of the Subsection, ΠC,1 be as in (4.4.4),
Π′

C,1 be as in (4.4.5). Let g1, . . . , gn, h be words in M elements such that

(gj(α(0)), h(α(0))) ∈ Π′
C,1 for any j = 1, . . . , n. (4.4.9)

Let kr ∈ N, kr → ∞, be a sequence satisfying (4.4.8) with ζj = arg s(gj(α(0))). Let ε > 0, put

mjr = [ε|s|−kr(gj(α(0)))], sj(u) = s(gj(α(u))), νj = vgj(α(0))(h(α(0))) ∈ L(gj(α(0))), (4.4.10)

see (4.4.6). Let l = (l1, . . . , ln) ∈ Zn be an arbitrary collection of n integers, ωr be the corresponding
product (4.4.2) of iterated commutator powers. Then

ωr(α(k−1
r ũ)) → Ψ(ũ) = exp(εsl11 (0)e(d ln s1(0))euν1) . . . exp(εslnn (0)e(d ln sn(0))euνn), (4.4.11)

as r → ∞, uniformly with derivatives on compact sets in Rn. (The multiplication of the vectors
νj ∈ L(gj(α(0))) by complex numbers is defined in terms of the s(gj(α(0)))- complex structures on
L(gj(α(0))).)

Proof One has (as r → ∞)

wj,kr+lj (α(k−1
r ũ)) = exp(s

kr+lj
j (k−1

r ũ)ν̃j(ũ) + o(|s
kr+lj
j (k−1

r ũ)|)), where (4.4.12)

ν̃j(ũ) = vgj(α(k−1
r eu))(h(α(k−1

r ũ))) → νj ,

by definition and (4.4.7),

s
kr+lj
j (k−1

r ũ) = s
kr+lj
j (0)e(d ln sj(0))eu(1 + o(1)), as in (4.3.16),

mjrs
kr
j (0) → ε by (4.4.8) and (4.4.10). Hence, w

mjr
j,kr+lj

(α(k−1
r ũ)) → exp(εs

lj
j (0)e(d ln sj(0))euνj), as

r → ∞, by (4.4.12) and the latter asymptotics. This implies (4.4.11). 2

Lemma 4.4.11 Let G, n, M , α(u) be as at the beginning of the subsection. There exist words
g1, . . . , gn, h satisfying (4.4.9) and a l = (l1, . . . , ln) ∈ Zn such that for any ε > 0 small enough
the corresponding mapping Ψ(ũ) from (4.4.11) be a local diffeomorphism at 0.

Proof of Theorem 4.1.33 modulo Propositions 4.4.1, 4.4.8 and Lemma 4.4.11. Let g1, . . . , gn,
h, l, ε be as in Lemma 4.4.11, sj(u) = s(gj(α(u))), ζj = arg sj(0). Let kr → ∞ be a natural sequence
satisfying (4.4.8). Let mjr be the numbers from (4.4.10). Let ωr be the corresponding iterated com-
mutator power product (4.4.2), Ψ be the corresponding mapping from (4.4.11). Let δ > 0 be such
that

Ψ : Dδ → Ψ(Dδ) ⊂ G be a diffeomorphism.

It exists by Lemma 4.4.11. Fix an arbitrary word w in M elements such that

w(α(0)) ∈ Ψ(Dδ). Put wr = w−1ωr.

For any r large enough the image wr(α(k−1
r Dδ)) contains 1. This follows from the convergence

wr(α(k−1
r ũ)) → ψ(ũ) = w−1(α(0))Ψ(ũ) (4.4.13)

(which takes place by definition and (4.4.11)) and the fact that

ψ : Dδ → ψ(Dδ) ⊂ G is a diffeomorphism, and 1 ∈ ψ(Dδ),

as at the end of Subsection 4.3.1. Therefore, for any r large enough there exists a parameter value

ũr ∈ Dδ ⊂ Rn, put ur = k−1
r ũr, such that wr(α(ur)) = 1.

The sequence ur satisfies (4.4.1). The relations wr(α(u)) = 1 do not hold identically in u for any r
large enough, as at the end of 4.3.1. This proves Theorem 4.1.33 modulo Propositions 4.4.1, 4.4.8 and
Lemma 4.4.11. 2
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4.5 A short proof of Theorem 4.1.1 for dense subgroups in
G = PSL2(C)

Let A,B ∈ PSL2(C) generate a free dense subgroup. We prove Theorem 4.1.1 by contradiction.
Suppose there is a (simply connected) neighborhood V ⊂ PSL2(C) × PSL2(C) of the pair (A,B)
such that each pair (a, b) ∈ V generates a free subgroup. Thus, each word w(a, b) is a holomorphic
function in (a, b) ∈ PSL2(C)× PSL2(C) with values in PSL2(C) ; distinct words define holomorphic
functions with disjoint graphs over V . Using holomorphic motion of the fixed points of the elements
w(a, b) ∈ PSL2(C), we construct a nonstandard measurable almost complex structure on C invariant
under the action of < A,B > (and hence, under the action of the whole group PSL2(C) by density).
But the only measurable almost complex structure preserved under the action of PSL2(C) on C is
the standard complex structure, - a contradiction.

Remark 4.5.1 The author’s initial proof of Theorem 4.1.1 in the case, when G = PSL2(C), followed
a similar scheme (using the holomorphic motion of fixed points) but was longer than the one pre-
sented below. The final quasiconformal mapping and invariance argument, which simplified the proof
essentially, is due to Étienne Ghys.

Recall that an element b ∈ PSL2(C) is called elliptic, if its action on C is conjugated to a rotation.
It is called hyperbolic, if it has two fixed points : one attracting and the other one repelling. Otherwise
it is parabolic, i.e., has a unique fixed point and is conjugated to the translation. If b has two fixed
points, then their multipliers are inverse to each other. The half-sum of their multipliers (denoted
ν(b)) is a holomorphic function ν : PSL2(C) → C.

Proposition 4.5.2 Let V ⊂ PSL2(C) × PSL2(C) be an open set such that each pair (a, b) ∈ V
generates a free subgroup in PSL2(C). Then each element of the latter subgroup is hyperbolic.

Proof Suppose the contrary : there exists a pair (a, b) ∈ V and a nontrivial word w such that the
multiplier of the transformation w(a, b) at some its fixed point has unit modulus. This is equivalent
to say that ν(w(a, b)) ∈ [−1, 1]. There exists a pair (c, d) ∈ PSL2(C) × PSL2(C) arbitrarily close
to (a, b) (in particular, lying in V ) such that the multiplier of w(c, d) at some its fixed point be a
root of unity, or equivalently, ν(w(c, d)) = cos θ, θ ∈ πQ. This follows from the nonconstance of
the holomorphic function (c, d) 7→ ν(w(c, d)) and openness of holomorphic mappings. (The function
ν(w(c, d)) is nonconstant on PSL2(C) × PSL2(C), since w(1, 1) = 1 and the value of the word w
on the generators of a Schottky group is hyperbolic.) By construction, the transformation w(c, d) is
elliptic of finite order, - a contradiction to the liberty of the group < c, d >. The proposition is proved.

2

Thus, each element w(a, b) ∈ PSL2(C), (a, b) ∈ V , is hyperbolic, hence, its fixed points are analytic
functions in (a, b) ∈ V . The graphs of the fixed point functions are disjoint. Indeed, otherwise, if two
distinct hyperbolic elements of PSL2(C) have one common fixed point, then their commutator is
parabolic : the latter fixed point is its unique fixed point. This contradicts the hyperbolicity of the
commutator. If two hyperbolic elements have two common fixed points, then they commute, - a
contradiction to the liberty.

For any (a, b) ∈ V denote Fix(a, b) ⊂ C the set of fixed points of all the elements of the group
< a, b >. The set Fix(A,B) is dense in C, since the subgroup < A,B > is dense. The previous disjoint
graphs of fixed point functons form a holomorphic motion over V of the sets Fix(a, b), (a, b) ∈ V .
They can be extended up to a global holomorphic motion : filling the whole product V × C by a
union of disjoint graphs of holomorphic functions V → C. This follows immediately from the density
of Fix(A,B) by the disjointness and elementary normal family argument (e.g., a version of Montel’s
theorem, see [88]).
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Remark 4.5.3 The well-known Slodkowski theorem [108] says that any holomorphic motion in D×C

of any subset of the Riemann sphere over unit disk D extends up to a holomorphic motion of the
whole Riemann sphere. Here we do not use this theorem in full generality.

For any (a, b) ∈ V denote ha,b : C → C the mapping of the C- fiber (a, b)×C ⊂ V ×C to the fiber
(A,B)×C defined by the holonomy of the previous holomorphic motion. In more detail, take any path
in V from (a, b) to (A,B) and lift it to each one of the previous disjoint graphs in V ×C. By definition,
the mapping ha,b sends the starting point of a lifted path to its end-point. The mapping ha,b does not
depend on the choice of path by simple connectivity of V . It is a quasiconformal homeomorphism :
any holomorphic motion has a quasiconformal holonomy [111]. The homeomorphism ha,b conjugates
the actions on C of the groups < A,B > and < a, b >, since it conjugates them on the dense invariant
subsets Fix(A,B) and Fix(a, b) in C, by construction. The quasiconformal homeomorphism ha,b
transforms the standard complex structure on C to a measurable almost complex structure (denoted
by σ(a, b)). The latter structure is invariant under the action of the group < A,B > (by definition
and the previous conjugacy statement), and hence, under PSL2(C), by density. Now to prove the
theorem, it suffices to show that for a generic pair (a, b) the almost complex structure σ(a, b) is not
standard.

For any (a, b) ∈ V the elements a and b are hyperbolic with distinct fixed points ; the latters form
a quadruple denoted Q(a, b) of points in C. If the cross-ratios of two quadruples Q(a, b) and Q(A,B)
are distinct, then the quasiconformal homeomorphism ha,b, which sends Q(a, b) to Q(A,B), is not
conformal ; hence, σ(a, b) is not standard. This together with the discussion at the beginning of the
section proves Theorem 4.1.1.

4.6 Sketch-proof of Theorem 4.1.29

For simplicity we sketch the proof of Theorem 4.1.29 only in the case, when G is a semisimple Lie
group with irreducible adjoint and proximal elements. In the case, when G is the same but without
proximal elements, the proof is analogous. In the case, when G is arbitrary semisimple Lie group,
Theorem 4.1.29 is deduced from its statements in the previously mentioned cases and Proposition
4.2.9. In the general case Theorem 4.1.29 is then deduced from its statement for semisimple groups
and the existence of the factorization G→ Gss (see 4.2.1).

Thus, we assume that G is semisimple, with irreducible adjoint and with proximal elements. Recall
that G is ε(x)- approximable with bounded derivatives. Let (A,B) ∈ G×G be an irrational pair,

lm = lm(D1) = lm(A,B,D1)

be the corresponding length majorant sequence for approximations by words in (A,B) on the unit
ball D1 ⊂ G, see Definition 4.1.11. We show that there exist a sequence w′

m(a, b) of nontrivial words,
a sequence of pairs (Am, Bm) ∈ G×G, (Am, Bm) → (A,B), and constants c′, c′′ > 0 (depending only
on (A,B)) such that

w′
m(Am, Bm) = 1, |w′

m| ≤ l′m = c′′lm, (4.6.1)

dist((Am, Bm), (A,B)) < ε(c′l′m). (4.6.2)

This means that the pair (A,B) is ε(x)- approximable by pairs with relations, and Theorem 4.1.29
with its Addendum then follow immediately.

For the proof of (4.6.1) and (4.6.2) we fix an arbitrary conj- nondegenerate family

α(u) = (a(u), b(u)) ∈ G×G, u ∈ Rn, n = dimG, α(0) = (A,B).

As it was shown in Section 4.3 (see (4.3.17)), there exist a sequence of words wk, a mapping ψ : Rn → G
and a δ > 0 such that

wk(α(k−1ũ)) → ψ(ũ), ψ : Dδ → ψ(Dδ) ⊂ G is a diffeomorphism, 1 ∈ ψ(Dδ), (4.6.3)
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the previous convergence is uniform with derivatives on compact sets in Rn. Fix a R > 0 such that

ψ(0) ∈ DR = DR(1) ⊂ G. (4.6.4)

Let l(R) be as in (4.1.5),

Ωm,DR , l̃m = lm(DR) = lm + l(R), cR = c(A,B,DR)

be respectively the word collection and length majorant sequences and the constant, corresponding
to the ε(x)- approximations on DR by words in (A,B) with bounded derivatives, see Definition
4.1.11 and (4.1.5). For any k large enough one has wk(α(0)) ∈ DR, by (4.6.3) and (4.6.4). We fix

a sequence of words νk,m ∈ Ωm,DR such that the elements νk,m(A,B) be ε(cR l̃m)- approximants of
wk(α(0)) = wk(A,B). We show that if we fix a k large enough, then the words

w′
m = ν−1

k,mwk

satisfy statements (4.6.1) and (4.6.2). The existence of a pair sequence (Am, Bm) = α(um), um ∈ Rn,
satisfying (4.6.1) and (4.6.2) is deduced from (4.1.5) and the following statements :

dist(w′
m(A,B), 1) < ε(cR l̃m) (by definition); (4.6.5)

ψkm(ũ) = w′
m(α(k−1ũ)) = (ν−1

k,mwk)(α(k−1ũ)) → ψ̃(ũ) = (ψ(0))−1ψ(ũ) (4.6.6)

uniformly with derivatives on compact sets, as k,m → ∞. Statement (4.6.6) follows from defini-
tion, (4.6.3) and the uniform boundedness of the derivatives of the words νk,m on one and the same
neighborhood of (A,B) (ε(x)- approximability with bounded derivatives).

In more detail, fix a k ∈ N for which there exists a constant K > 0 such that for any m large
enough (dependently on k)

ψkm : Dδ → ψkm(Dδ) ⊂ G is a diffeomorphism and 1 = ψ̃(0) ∈ ψkm(Dδ), (4.6.7)

||(ψ′
km(x))−1|| < K for any x ∈ Dδ. (4.6.8)

The existence of the previous k follows from (4.6.6). Put

um = k−1ψ−1
km(1), (Am, Bm) = α(um). By definition, w′

m(Am, Bm) = 1,

dist((Am, Bm), (A,B)) = O(um) = O(dist(ψrm(0), 1)) = O(dist(w′
m(A,B), 1)) = O(ε(cR l̃m)),

by (4.6.5). Thus, there exists a constant C > 1 such that

dist((Am, Bm), (A,B)) < Cε(cR l̃m) (4.6.9)

for any m large enough (that is, for which the previous pair (Am, Bm) is well-defined). One has

|w′
m| ≤ |νk,m| + |wk| ≤ l̃m + |wk| = lm + ∆, ∆ = |wk| + l(R). Therefore,

|w′
m| ≤ l′m = c′′lm, c

′′ = max
m

lm + ∆

lm
,

dist((Am, Bm), (A,B)) < Cε(cR l̃m) < ε(c′l′m), where c′ = C−1cR inf
m

l̃m
l′m

=
cR
Cc′′

.

This proves (4.6.1), (4.6.2) and Theorem 4.1.29.



Chapitre 5

Restricted version of the
infinitesimal Hilbert 16-th problem

5.1 Introduction : zeros of Abelian integrals

5.1.1 Restricted Infinitesimal Hilbert 16th Problem

The original Infinitesimal Hilbert 16th Problem is stated as follows. Consider a real polynomial H
in two variables of degree n+ 1. The space of all such polynomials is denoted by Hn.

Connected components of closed level curves of H are called ovals of H. Ovals form continuous
families, see Fig. 5.1. Fix one family of ovals, say Γ, and denote by γ(t) an oval of this family that
belongs to the level curve {H = t}.

t 0

  

                                   

   

                                                              

  

               

A3
A2A1

            a                 t      a                   a     1                 0      2                   3

H=H(A  )2

γ(    )

Fig. 5.1 – Families of ovals ; an oval around A1 that belongs to the level curve H = H(A2) is
distinguished.

Consider a polynomial one-form
ω = Adx +Bdy

75
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with polynomial coefficients A(x, y) and B(x, y) of degree at most n. The set of all such forms is
denoted by Ω.n The main object to study below is the integral

I(t) =

∫

γ(t)

ω. (5.1.1)

Infinitesimal Hilbert 16th Problem . Let H and ω be as above. Find an upper bound of the
number of isolated real zeros of integral (5.1.1) for a polynomial H ∈ Hn and any family Γ of real
ovals of H. The estimate should be uniform in ω and H, thus depending on n only.

This problem stated more than 30 years ago is not yet solved. The existence of such a bound was
proved by A.N.Varchenko [113] and A.G.Khovanskii [81]. A weaker version of the problem is called
restricted. In order to formulate it we need the following

Definition 5.1.1 A polynomialH ∈ Hn is ultra-Morse provided that it has n2 complex Morse critical
points with pairwise distinct critical values, and the sum h of its higher order terms has no multiple
linear factors.

Denote by Un the set of all ultra-Morse polynomials in Hn. The complement to this set is denoted
by Σn and called the discriminant set. The integral (5.1.1) may be identically zero. The following
theorem shows that for ultra-Morse polynomials this may happen by a trivial reason only.

Theorem 5.1.2 (Exactness theorem [61, 62, 102]) Let H be a real ultra-Morse polynomial of
degree higher than 2. Let the integral (5.1.1) be identically zero for some family of real ovals of the
polynomial H. Then the form ω is exact : ω = df.

Denote by Ω∗
n the set of all non-exact polynomial one-forms from Ωn.

Restricted version of the Infinitesimal Hilbert 16th Problem (RIHP) . For any compact
subset K of the set of ultra-Morse polynomials find an upper bound of the number of all real zeros of
the integral (5.1.1) over the ovals of a polynomial H ∈ K. The bound should be uniform with respect
to H ∈ K and ω ∈ Ω∗

n. It may depend on n and K only.

This problem is solved in papers [52, 53] (joint with Yu.S.Ilyashenko). The solution is based on
the results of papers [46], [47] and [70]. Each one of the papers [46], [47],[70] is independent on the
others. The paper [53] is the main one in the series. It contains the survey of results of all the four
papers, as well as the solution of the RIHP.

Numerous results obtained during more than 30 years of the study of the infinitesimal Hilbert
problem are presented in section 7 of a survey paper [69]. Partial solution of the RIHP (given in our
preliminary, unpublished joint paper with Yu.S.Ilyashenko) was claimed in that survey paper. The
paper [53] contains a complete solution to RIHP (modulo [46], [47], [70]). Its results with a brief proof
were announced in [52].

The main results of the papers [46, 53, 70] are presented in this chapter.

5.1.2 Main results

To measure a gap between a compact set K ⊂ Un and the discriminant set Σn, let us first normalize
ultra-Morse polynomials by an affine transformation in the target space. This transformation does not
change the ovals of H , thus the number of zeros of the integral (5.1.1) remains unchanged.

Say that two polynomials G and H are equivalent iff

G = aH + b, a > 0, b ∈ C.

Definition 5.1.3 A polynomial is balanced if all its complex critical values belong to the closed disk
of radius 2 centered at zero, and there is no smaller disk that contains all the critical values.
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Remark 5.1.4 Any polynomial with at least two distinct complex critical values is equivalent to
one and unique balanced polynomial. If the initial polynomial has real coefficients, then so does the
corresponding balanced polynomial.

Let us define two positive functions on Un such that at least one of them tends to zero as H tends
to Σn. For any compact set K ⊂ Un the minimal values of these functions on K form a vector in
R+ × R+ that is taken as a size of the gap between K and Σn.

Definition 5.1.5 For any H ∈ Un let c1(H) be n multiplied by the smallest distance between two
lines in the zero locus of h, the higher order form of H. The distance between two lines is taken in
sense of the Fubini-Study metric on the projective line CP

1. Let c′(H) = min(c1(H), 1).

Denote by Vn the set of all polynomials with more than one critical value and more than one line in
the locus of the higher order homogeneous form. By Definition 5.1.1, Un ⊂ Vn.

Definition 5.1.6 For any H ∈ Vn, let G be the balanced polynomial equivalent to H. Let c2(H) be
the minimal distance between two critical values of G multiplied by n2. Let c′′(H) = min(c2(H), 1).

Note that inequality c′(H)c′′(H) > 0 is equivalent to the statement that H is ultra-Morse.
In what follows, we deal with balanced ultra-Morse polynomials only. This may be done without

loss of generality : any ultra-Morse polynomial is equivalent to a balanced one ; equivalent polynomials
have the same number of zeros of the integral (5.1.1) over the corresponding families of ovals.

Theorem A. [53] Let H be a real ultra-Morse polynomial of degree n + 1. Let Γ = {γ(t)} be an
arbitrary continuous family of real ovals of H. There exists a universal positive c such that the integral

(5.1.1) has at most (1 − log c′(H))e
c

c′′(H)
n4

isolated zeros.

Appendix. The statement of Theorem A holds with c = 5.000.

An approach to the Infinitesimal Hilbert 16th Problem itself presented below motivates the follo-
wing complex counterpart of Theorem A, namely, Theorem B that gives an estimate of the number
of zeros of the integral (5.1.1) in the complex domain. Consider an ultra-Morse polynomial H and let

ν = ν(H) :=
c′′(H)

4n2
. (5.1.2)

Fix any real noncritical value t0 of H,
|t0| < 3,

whose distance to the complex critical values ofH is no less than ν. Consider a real oval γ0 ⊂ {H = t0}.
We suppose that such an oval exists. Let a = a(t0) < t0 < b(t0) = b (or a(H, t0), b(H, t0) for variable
H) be the nearest real critical values of H to the left and to the right from t0 respectively ; or −∞,+∞
if there are none. Denote by σ(t0) the interval (a(t0), b(t0)) and let Γ(γ0) be the continuous family of
ovals that contains γ0 :

Γ(γ0) = {γ(t) |t ∈ σ(t0), γ(t0) = γ0}. (5.1.3)

The following cases for (a, b) = σ(t0) are possible :

(a, b), b > a,−∞ < a < b < +∞; (a,+∞); (−∞, b).

If a is finite, and lim top t→aγ(t) contains a saddle critical point of H, then a is a logarithmic branch
point of I. If lim top t→aγ(t) is a singleton, or contains no critical point of H , then a is called an
apparent singularity. The same for b.

Denote by B = BH the set of all noncritical values of H :

B = C \ {a1. . . . , aµ}, µ = n2, aj are the complex critical values of H.
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Let W be the universal cover over B with the base point t0 and the projection

π : W → B ⊂ C.

For any t ∈ C denote

St = {H = t} ⊂ C2.

Definition 5.1.7 Any point t̂ ∈ W is represented by a class [λ] of curves in B starting at t0 and
terminating at t = πt̂; all the curves of the class are homotopic on B. Any cycle γ from H1(St0 ,Z)
may be continuously extended over λ as an element of the homology groups of level curves of H ; the
resulting cycle γ(t̂) from H1(St,Z) is called an extension of γ corresponding to t̂.

This construction allows us to extend the integral (5.1.1) to W : for any t̂ ∈W,

I(t̂) =

∫

γ(t̂)

ω. (5.1.4)

For any 0 < r ≤ ν denote by a+ reiϕ ∈ W a point represented by a curve Γ1Γ2 ⊂ B, where Γ1 is
an oriented segment from t0 to t1 = a+ r ∈ σ(t0), Γ2 = {a+ reiθ | θ ∈ [0, ϕ]}; Γ2 is oriented from t1
to t. In the same way b− reiϕ ∈ W is defined. Let

Π(a) = {a+ reiϕ ∈W | 0 < r ≤ ν, |ϕ| ≤ 2π}, for a 6= −∞ (5.1.5)

Π(b) = {b− reiϕ ∈W | 0 < r ≤ ν, |ϕ| ≤ 2π}, for b 6= +∞

Let

D(l, a) = {a+ reiϕ ∈W | a+ re
iϕ
l ∈ Π(a)}

D(l, b) = {b− reiϕ ∈ W | b− re
iϕ
l ∈ Π(b)},

D(l, a) = ∅, if a = −∞; D(l, b) = ∅, if b = +∞.

Let DPR = DPR(H, t0) be the disk of radius R in the Poincaré metric of W centered at t0.

For any real polynomial H, the choice of a cycle γ0 determines a family of ovals (5.1.3) over which
the integral (5.1.1) is taken. When we want to specify this choice we write IH,γ0 or IH instead of I.
The integral IH,γ0 may be analytically extended not only as a function of t̂ ∈W, but also as a function
of H.

An analytic extension of the integral I to W is denoted by the same symbol I. For any positive R
and natural l denote by G = G(l, R,H, t0) the domain

G = DPR(H, t0) ∪ D(l, a(H, t0)) ∪ D(l, b(H, t0)), see Figure 5.2.

Theorem B. [53] For any real ultra-Morse polynomial H, any real oval γ0 of H, any natural l and any

positive R > 288n4

c′′(H) , the number of zeros of the integral IH,γ0 in G = G(l, R,H, t0), where t0 = H | γ0,

is estimated as follows :

#{t̂ ∈ G(l, R,H, t0)|IH,γ0(t̂) = 0} ≤ (1 − log c′(H)) ·
(
e7R +A4800e

481l
c′′(H)

)
, A = e

n4

c′′(H) . (5.1.6)

The lower bound on R in the statement of the theorem is motivated by the remark in Subsection
5.2.4 below.
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Fig. 5.2 – The domains DPR(H, t0), D(l, a), D(l, b) ⊂W ; the domain G is their union

5.1.3 An approach to a solution of the Infinitesimal Hilbert 16th Problem

Conjecture (Yu.S.Ilyashenko). For any n there exist δ(n), l(n), R(n) with the following pro-
perty. Let H0 be an arbitrary real polynomial from Hn, t0 be its real noncritical value and γ0 be a
real oval of H0 that belongs to {H0 = t0} (we suppose that such an oval exists). Let IH be the integral
(5.1.1). The integral IH depends on H as a parameter. Let t1 ∈ σ(t0), IH0 (t1) = 0 and t(H) be a germ
of an analytic function defined by the equation IH(t(H)) ≡ 0, t(H0) = t1. The required property is
the following. There exists a path λ ⊂ Hn depending on H0 only starting at H0 and ending at some
H1 ∈ Hn such that :

c′(H1) ≥ δ(n), c′′(H1) ≥ δ(n); (5.1.7)

the analytic extension t(H1) of the function t(H) along λ starting at the value t1 belongs to the domain
G(l(n), R(n), H1, t0).

The conjecture above implies the solution of the Infinitesimal 16th Problem. Indeed, suppose that
the conjecture is true. Let N(n) be the right hand side of the inequality (5.1.6) with c′(H) and c′′(H)
replaced by δ(n) ; R and l replaced by R(n) and l(n) respectively. Then the number of real zeros
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of integral IH0 can not exceed N(n). If not, any of real zeros of IH0 would be extended along λ up
to a zero of an integral IH1 located in G = G(l(n), R(n), H1, t0), for some polynomial H1 satisfying
inequalities (5.1.7). Thus the number of zeros of the integral IH1 in G will exceed N(n). But Theorem
B implies that the number of zeros of H1 in G is no greater than N(n), a contradiction.

The chapter is structured as follows. In Section 5.2 we present the main ideas of the proof of
Theorem A. Section 5.2 contains also a survey of the previous investigations and describes some
results of [46] ; these results may be called “quantitative algebraic geometry”. Moreover, we prove in
this section a part of Theorem A, namely, Theorem A1, modulo the Main Lemma. In Section 5.3
we sketch the proof of the Main Lemma. The proof relies upon two statements : formula for the
determinant of periods, and upper estimates of Abelian integrals provided by quantitative algebraic
geometry. These two statements are proved in two separate papers, [47] and [46] respectively. The
proof of Theorem A (modulo Theorems A1 and A2) will be given in Subsection 5.2.5. Theorem A2 is
written in [53] and is due to Yu.S.Ilyashenko. It will be proved in Section 5.4. The Main Lemma is an
important tool for both Theorems A and B.

5.2 Main ideas of the proof and survey of the related results

5.2.1 Historical remarks

A survey of the history of the Infinitesimal Hilbert 16th Problem may be found in [69], and we will
not repeat it here. In particular, a much weaker version of Theorem A is claimed there as Theorem
7.7. The first solution to restricted Hilbert problem was suggested in [100]. An explicit upper bound
for the same numbers of zeros as in Theorem A was suggested there as a tower of four exponents
with coefficients “that may be explicitly written following the proposed constructive solution.” It
is unclear how much efforts is needed to write these constants down. Moreover, exponential of a
polynomial presented in Theorem A is much simpler (though still very excessive) than the tower of
four exponentials.

The result of [100] is a crown of a series of papers [97] - [99]. Solution to the restricted version of
the Infinitesimal Hilbert 16th Problem presented there is only one application of a vast theory. This
theory presents an upper bound of the number of zeros of solutions to linear systems of differential
equations. Similar results for components of vector solutions to linear systems are obtained. Abelian
integrals are considered as solutions to Picard-Fuchs equations. Using the above-mentioned theory,
A. Grigoriev [55, 56] have proved another upper bound for the number of zeros of Abelian integrals
in domains distant from the critical values. His estimate is given by double exponent of the sum
of two terms : a power of the degree of the hamiltonian and a constant term. The latter power is
universal : its exponent is a constant independent on the hamiltonian and the form. The previous
constant term depends on the minimal gap between the domain under consideration and the critical
values. In difference to our result, Grigoriev’s bound depends only on the latter gap and does not
depend on the higher terms of the hamiltonian.

On the contrary, our presentation is focused on the study of Abelian integrals given by formula
(5.1.1) “as they are” and not as solutions of differential equations.

5.2.2 Quantitative algebraic geometry

Everywhere below for any r > 0 and w ∈ C we denote

Dr(w) = {|z − w| < r} ⊂ C, Dr = Dr(0).

Our main tool is Growth-and-Zeros theorem for holomorphic functions stated in the next subsec-
tion. It requires, in particular, an upper bound of the integral under consideration. We fix an integrand,
say w = xkyn−kdx. Depending on a scale in C2, a cycle γ in the integral

∫
γ ω may be located in a

small or in a large ball. According to this, the integrand will be small or large. We want to estimate
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the integral at a certain point of the universal cover W represented by an arc that connects a base
point t0 with some point, say t, with |t| ≤ 3. To make this restriction meaningful, the scale in the
range of the polynomial should be chosen ; in other words, the polynomial should be balanced. The
argument above shows that it should be also rescaled in sense of the following definitions.

Definition 5.2.1 The norm of a homogeneous polynomial h is the maximal value of its modulus on
the unit sphere ; this norm is denoted by ‖h‖max.

Definition 5.2.2 A balanced polynomial H ∈ C[x, y] is rescaled provided that the norm of its higher
order form h equals one : ||h||max = 1, and the origin is a critical point for H. Briefly, a balanced
rescaled polynomial will be called normalized.

Remark 5.2.3 Any ultra-Morse polynomial may be transformed to a normalized one by homotheties
and shifts in the source and target spaces (not in the unique way). The functions c′ and c′′ remain
unchanged under such transformations.

Definition 5.2.4 We say that the topology of a complex level curve St = H−1(t) of a polynomial
H ∈ Hn is located in a bidisk

DX,Y = {(x, y) ∈ C2 | |x| ≤ X, |y| ≤ Y }

provided that the difference St \DX,Y consists of n+ 1 = degH punctured topological disks, and the
restriction of the projection (x, y) 7→ x to any of these disks is a biholomorphic map onto {x ∈ C|X <
|x| <∞}.

Theorem C [46]. For a normalized polynomial, the Hermitian basis in C2 may be so chosen that
the topology of all level curves St for |t| ≤ 5 will be located in a bidisk DX,Y with

X ≤ Y ≤ (c′(H))
−14n3

n65n3

= R0.

This theorem is of independent interest, providing one of the first results in quantitative algebraic
geometry. On the other hand, it implies upper estimates of Abelian integrals used in the proof of
Theorem A and required by the Growth-and-Zeros theorem below.

In the rest of this section, we describe the main ideas of the proof of a simplified version of
Theorem A, namely Theorem A1 stated below. It provides an upper bound for the number of zeros
of the integral (5.1.1) on a real segment that is ν-distant from critical values of H and belongs to the
disk D3, thus being distant from infinity ; recall that ν = ν(H) is given by (5.1.2).

Together with the use of Theorem A1, we get an estimate of the number of zeros of the integral
IH,γ0 near the endpoints of σ(t0), as well as near infinity (Theorem A2 stated in 5.2.5). Together
with Theorem A1, this completes the proof of Theorem A. The tools used in the proof of Theorem
A2 include Petrov method and a so called KRY theorem. The latter one is a recent result in one-
dimensional complex analysis [82, 105]. Its improved version is proved by Yu.S.Ilyashenko in a separate
paper [70]. In this form it provides a powerful tool to estimate the number of zeros of analytic functions
near logarithmic singularities.

5.2.3 Growth-and-Zeros Theorem for Riemann surfaces

The idea of the proof of Theorem A1 is to consider an analytic extension of the integral (5.1.1) to
the complex domain and to make use of the following Growth-and-Zeros theorem. The symbol diamint

used in the statement of the theorem denotes the intrinsic diameter, see Definition 5.2.6 below. We
need a notion of a π-gap between a set and its subset on a Riemann surface.
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Definition 5.2.5 Let W be a Riemann surface, π : W → C be a holomorphic function (called
projection) with non-zero derivative. Consider the metric on W lifted from C by projection π. Let
U ⊂ W be a connected domain, and K ⊂ U be a compact set. For any p ∈ U let ε(p, ∂U) be the
supremum of radii of disks centered at p, located in U and such that π is bijective on these disks. The
π-gap between K and ∂U, is defined as

π-gap (K, ∂U) = min
p∈K

ε(p, ∂U).

Growth-and-zeros theorem. Let W,π be the same as in Definition 5.2.5. Let U ⊂ W be a
domain conformally equivalent to a disk. Let K ⊂ U be a path connected compact subset of U (different
from a single point). Suppose that the following two assumptions hold :

Diameter condition :
diam intK ≤ D;

Gap condition :
π-gap(K, ∂U) ≥ ε.

Let I be a bounded holomorphic function on U. Then

#{z ∈ K|I(z) = 0} ≤ e
2D
ε log

maxU |I|

maxK |I|
(5.2.1)

The definition of the intrinsic diameter is well known ; yet we recall it for the sake of completeness.

Definition 5.2.6 The intrinsic distance between two points of a path connected set in a metric space
is the infinum of the lengths of paths in K that connect these points (if exists). The intrinsic diameter
of K is the supremum of intrinsic distances between two points taken over all the pairs of points in
K.

Definition 5.2.7 The second factor in the right-hand side of (5.2.1) is called the Bernstein index of
I with respect to U and K and denoted BK,U (I) :

BK,U (I) = log
M

m
, M = sup

U
|I|, m = max

K
|I|. (5.2.2)

Proof of the Growth-and-Zeros theorem. The above theorem is proved in [74] for the case when
W = C, π = Id. In fact, in [74] another version of (5.2.1) is proved with (5.2.1) replaced by

#{z ∈ K|I(z) = 0} ≤ BK,U (I)eρ, (5.2.3)

where ρ is the diameter of K in the Poincaré metric of U. In this case it does not matter whether U
belongs to C or to a Riemann surface.

Proposition 5.2.8 Let K,U be two sets in the Riemann surface W from Definition 5.2.5, and let
the Diameter and Gap conditions from the Growth-and-Zeros theorem hold. Then the diameter of K
in the Poincaré metric of U admits the following upper estimate :

ρ ≤ 2D/ε. (5.2.4)

Proof Denote by |v|PU the length of a vector v in sense of the Poincaré metric of U . By the
monotonicity property of the Poincaré metric, the length |v|PU of any vector v attached at any point
p ∈ K is no greater than two times the Euclidean length of v divided by the π-gap between K and
∂U. This implies (5.2.4) 2

Together with (5.2.3), this proves (5.2.1). 2
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5.2.4 Theorem A1 and Main Lemma

In what follows, H will be an ultra-Morse polynomial unless the converse is stated. Consider a
normalized polynomial H . Let aj be its complex critical values, j = 1, . . . , n2; ν, t0, W and π be the
same as in 5.1.2. Let I be the integral (5.1.1) as in Theorem A (well defined for t = t0). It admits an
analytic extension to W , which will be denoted by the same symbol I.

Let a = a(t0), b = b(t0) be the same as in 5.1.2, and ν be from (5.1.2). Let

l(t0) =

{
a+ ν for a 6= −∞

−3 for a = −∞,

r(t0) =

{
b− ν for b 6= +∞

3 for b = +∞.

Let
σ(t0, ν) = [l(t0), r(t0)], see Figure 5.2.

We identify σ(t0, ν) ⊂ C with its lift to W that contains t0.

Theorem A1. In the assumptions stated at the beginning of the subsection, for any complex form
ω ∈ Ω∗

n,

#{t ∈ σ(t0, ν) | I(t) = 0} < (1 − log c′(H))A578, A = e
n4

c′′(H) . (5.2.5)

This theorem is an immediate corollary of the Growth-and-Zeros theorem and the Main Lemma
stated below. Let

L±(t0) =

{
{a+ νe±iϕ ∈ W | ϕ ∈ [0, 2π]} for a 6= −∞

{−3e±iϕ ∈W | ϕ ∈ [0, 2(n+ 1)π]}, for a = −∞,
(5.2.6)

R±(t0) =

{
{b− νe±iϕ ∈W | ϕ ∈ [0, 2π]} for b 6= +∞

{+3e±iϕ ∈W | ϕ ∈ [0, 2(n+ 1)π]}, for b = +∞,
(5.2.7)

Γa = L+(t0) ∪ L
−(t0), Γb = R+(t0) ∪R

−(t0), Σ = Γa ∪ Γb ∪ σ(t0, ν).

Main Lemma. Let H be a normalized polynomial of degree n+1 ≥ 3 with critical values aj : j =
1, ..., n2, ω be a complex polynomial 1-form of degree no greater than n. Let W, ν,Σ be the same as
at the beginning of this subsection. Then there exists a path connected compact set K ⊂ W , K ⊃ Σ,
πK ⊂ D3, with the following properties :

diamintK < 36n2; (5.2.8)

dist(πK, aj) ≥ ν for any j = 1, ..., n2. (5.2.9)

Moreover, let U be the minimal simply connected domain in W that contains the ν/2 neighborhood of
K. Then the Bernstein index of the integral (5.1.1) admits the following upper bound :

BK,U (I) < (1 − log c′(H))A2. (5.2.10)

The proof of the Main Lemma is sketched in Section 5.3. This Lemma is used also in the estimate of
the number of zeros of the integral in the intervals (a, l(t0)), (r(t0), b). In fact, a much better estimate
for the Bernstein index holds :

BK,U (I) <
2700n18

c′′(H)
− 30n6 log c′(H) := B(n, c′, c′′). (5.2.11)
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Together with the elementary inequality

B(n, c′, c′′) < (1 − log c′)A2, (5.2.12)

it implies (5.2.10).
Proof of Theorem A1. Let us apply Growth-and-Zeros theorem to the function I in the domain
U in order to estimate the number of zeros of I in K; note that K ⊃ σ(t0, ν). The intrinsic diameter
of K is estimated from above by (5.2.8). The gap condition for U and K has the form

π − gap (K, ∂U) = ε =
ν

2
=

c′′

8n2

by the definition of U. Hence,

e
2D
ε < e

72n2

c′′
8n2

= A576.

The Bernstein index BK,U (I) is estimated from above in (5.2.10). By Growth-and-Zeros theorem

#{t ∈ σ(t0) | I(t) = 0} < BK,U (I)A576 < (1 − log c′)A578.

This proves (5.2.5). 2

The following remark motivates the restriction on R in Theorem B.

Remark 5.2.9 Let K be the set from the Main Lemma, ρWK be its diameter in the Poincaré metric
of W . Then

ρWK < (c′′)−1288n4. (5.2.13)

Indeed, ρWK is no greater than the ratio of the double intrinsic diameter of K divided by its minimal
distance to the critical values of H (Proposition 5.2.8). Together with (5.2.8) and (5.2.9) this implies
(5.2.13). On the other hand, in the proof of Theorem B, we apply Growth-and-Zeros theorem in the
case, when the Poincaré disk DPR(H, t0) is large enough, namely, contains the set K. Hence, the
maximum of |I| over the disk is no less than max |I| over K. The latter maximum is estimated from
below in the proof of the Main Lemma.

5.2.5 Theorem A2 and proof of Theorem A

Theorem A2. Let H, t0, a = a(t0), b = b(t0), l(t0), r(t0) be the same as in the previous subsection.
Let ω be a real 1- form in Ω∗

n. Then, in assumptions of Theorem A1,

#{t ∈ (a, l(t0)) ∪ (r(t0), b) | I(t) = 0} < (1 − log c′)A4800 (5.2.14)

Proof of Theorem A. By Theorems A1 and A2

#{t ∈ (a, b), I(t) = 0} < (1 − log c′)A578 + (1 − log c′)A4800 < 2(1 − log c′)A4800. (5.2.15)

This implies the estimate of the number of zeros given by Theorem A on the interval (a, b).
Let σ′ ⊂ R be the maximal interval of continuity of the family Γ of real ovals that contains γ0.

Then σ′ is bounded by a pair of critical values, at most one of them may be infinite. In general,
the interval σ′ may contain critical values (see Fig. 5.1, which presents a possible arrangement of
level curves of H in this case : A1, A2, A3 are critical points of H , aj = H(Aj), a2 ∈ σ′ = (a1, a3),
t0 ∈ (a1, a2)). In this case σ′ 6= (a, b) = (a1, a2). Let us estimate the number of zeros on σ′. The
interval σ′ is split into at most n2 subintervals bounded by critical values. On each subinterval the
number of zeros of I is estimated by (5.2.15), as before. Therefore, the number of zeros of I on σ′ is
less than 2n2(1 − log c′)A4800 < (1 − log c′)A4801. This proves Theorem A. 2
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5.3 An upper bound for the number of zeros on a real segment
distant critical values. Proof of the Main Lemma

In this section we prove the Main Lemma (modulo technical details) and hence Theorem A1. We
also prove the Modified Main Lemma, see Subsection 5.3.8 below, and prepare necessary tools for the
proof of Theorem A2.

5.3.1 The plan of the proof of the Main Lemma

The proof of the Main Lemma is based on the following idea. The integral (5.1.1) is extended onto
the universal cover W of the set of noncritical values of the real ultra-Morse polynomial H ; the base
point of this cover belongs to (−3, 3). The upper estimate of the Bernstein index of this integral in
the pair of domains U,K requires an upper bound of the maximal modulus of the integral in U, and
a lower bound in K. When we consider these maxima instead of their ratio, we have to normalize the
form ω, multiplying it by an appropriate complex factor.

Definition 5.3.1 A polynomial 1-form is normalized if the maximal magnitude of its coefficients
equals 1, and some coefficients equal 1.

The upper bound of the integral is provided by the quantitative algebraic geometry. The main
difficulty is to obtain the lower bound. For this we consider µ2 integrals instead of a single one ; recall
that µ = n2. Namely, we introduce a special set of µ monomial 1- forms ωi, i = 1, . . . , µ and a special
set of vanishing cycles on the level curves St = {H = t} : δ1(t), . . . , δµ(t). The matrix I(t) with the
entries Iij(t) =

∫
δj(t)

ωi is called a matrix of periods. The determinant ∆(t) = det I(t) is single-valued.

The first step is to evaluate this determinant and to provide a lower bound for ∆(t) when t is distant
from the critical values of H. This is done in [47] and [46]. The second step is to give an upper estimate
for the entries of I. This estimate is based on the results of [46] (see Theorem C stated in 5.2.2). The
main step is to construct the set K ⊂ W. This set is constructed in such a way that the assumption
“m := maxK |I|, I(t) =

∫
γ(t)

ω, is small” implies that all the integrals
∫
δj(t0)

ω, j = 1, ..., µ are small.

This implication makes use of the Picard-Lefschets theorem, and the connectedness of the intersection
graph of the special system of vanishing cycles.

The implication above is used in the following way. For a normalized form ω, one may replace
some row of the matrix I by the row

∫
δ1(t)

ω, . . . ,
∫
δµ(t)

ω without changing the main determinant.

All the entries of I are estimated from above ; the determinant of I is estimated from below. This
implies that none of the rows of I may be too small, and thus provides a lower bound for m. The
domain U is chosen as a slightly modified ε-neighborhood of K for appropriate ε. The upper estimate
of M = maxU |I| is obtained by quantitative algebraic geometry [46], as the upper bound of the |Iij ||U
above, and a Geometric lemma stated in 5.3.4. Upper estimate of M and lower bound for m imply an
upper estimate of the Bernstein index BU,K(I) and thus prove the Main Lemma.

5.3.2 Special set of vanishing cycles and modified Main Lemma

All along this section H is a real normalized ultra-Morse polynomial of degree n + 1 ≥ 3, µ =
n2; a1, . . . , aµ are the critical values of H, ν is the same as in (5.1.2), ε = ν/2. For t close to aj , δj(t)
is a local vanishing cycle corresponding to aj on a level curve

St = {H = t}.

Recall the definition of this cycle.
Consider an ultra-Morse polynomial in C2 having a (Morse) critical point with a critical value a.

An intersection of a level curve of this function corresponding to a value close to a with an appropriate
neighborhood of the critical point is diffeomorphic to an annulus. This follows from the Morse lemma.
The annulus above may be called a local level curve corresponding to the a critical value a.
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Definition 5.3.2 A generator of the first homology group of the local level curve corresponding to a
is called a local vanishing cycle corresponding to a.

A local vanishing cycle is well defined up to change of orientation.

A path αj : [0, 1] → C is called regular provided that

αj(0) = t0, αj(1) = aj , αj [0, 1) ⊂ B (5.3.1)

Definition 5.3.3 Let αj be a regular path, s ∈ [0, 1] be close to 1, δj(t), t = αj(s), be a local
vanishing cycle on St corresponding to aj . Consider the extension of δj along the path α up to a
continuous family depending on s of cycles δj(αj(s)) in complex level curvesH = αj(s). The homology
class δj = δj(t0) ∈ H1(St0 ,Z) (corresponding to s = 0) is called a cycle vanishing along αj .

Definition 5.3.4 Consider a set of regular paths α1, . . . , αµ, see (5.3.1). Suppose that these paths
are not pairwise and self intersected. Then the set of cycles δj ∈ H1(St0 ,Z) vanishing along αj , j =
1. . . . , µ, is called a marked set of vanishing cycles on the level curve H = t0.

Recall that the intersection graph of a set of cycles in H1(St,Z) is the graph whose vertices are
the elements of the set ; two vertices are connected by an edge, if and only if the corresponding cycles
have nonzero intersection index.

Theorem 5.3.5 [9] Let H be a ultra-Morse polynomial. For any noncritical value t any marked set of
vanishing cycles in H1(St,Z) is a basis in the same homology group and has a connected intersection
graph.

Recall that W = W (t0, H) is the universal cover over the set of noncritical values of H with the
base point t0 and the projection π : W → C.

Let δ1, ..., δµ be a marked set of vanishing cycles. For any cycle δl from this set, consider an integral

Il(t) =

∫

δl(t)

ω,

over local vanishing cycles, for t close to al. This integral is holomorphic at al, and takes zero value
at al. Denote by Wl the Riemann surface of the analytic extension of this integral. Note that the
Riemann surface Wl contains the disk Dν(a).

Lemma 5.3.6 (Modified Main Lemma). The Main Lemma from Subsection 5.2.4 holds true pro-
vided that the real oval γ(t) of integration (1.1) is replaced by a local vanishing cycle δl(t) close to the
corresponding critical value al, W is replaced by Wl and Σ is replaced by the disk Dν(al).

This lemma is proved in 5.3.8.

5.3.3 Matrix of periods

Consider and fix an arbitrary marked set of vanishing cycles δj , j = 1, . . . , µ. For any t̂ ∈ W, let
δj(t̂) be the extension of δj corresponding to t̂ (as in Definition 5.1.7).

Definition 5.3.7 Consider a set Ω of µ forms ωj of the type

ωi = yxkyldx, k, l ≥ 0, k + l ≤ 2n− 2, (5.3.2)

(k, l) depends on i, such that all the forms with k+ l ≤ n− 1 are included in the set, and the number
of forms with monomials of degree 2n− k equals k for 1 ≤ k ≤ n. In what follows, such a set is called
standard.
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A matrix of periods I = (Iij), 1 ≤ i ≤ µ, 1 ≤ j ≤ µ, is the matrix function defined on W by the
formula :

Iij(t̂) =

∫

δj(t̂)

ωi, I(t̂) = (Iij(t̂)) (5.3.3)

where δj , j = 1, . . . , µ, form a marked set of vanishing cycles ; {ωi | i = 1, . . . , µ} is a standard set of
forms (5.3.2).

When we want to specify dependence on H , we write I(t̂, H) instead of I(t̂).

5.3.4 Upper estimates of integrals

Denote by |λ| the length of a curve λ, and by Uε(A) the ε-neighborhood of a set A.
The main result of the quantitative algebraic geometry that we need is the following

Theorem 5.3.8 Let δj be a vanishing cycle from a marked set, see Definition 5.3.4, corresponding to
a curve αj , |αj | ≤ 9 (recall that |t0| ≤ 3). Let λ ⊂ B be a curve starting at t0 (denote by t its endpoint)
such that

|λ| ≤ 36n2 + 1, |t| ≤ 5. (5.3.4)

Let the curve αj ∩ Uε(aj) be a connected arc of αj, and the curves αj \ Uε(aj) and λ have an empty
intersection with ε-neighborhoods of the critical values ak, where ε = ν/2, ν is from (5.1.2). Let ω be
a form (5.3.2), t̂ ∈ W corresponds to [λ], and δj(t̂) be the extension of δj to t̂. Then

|

∫

δj(t̂)

ω| < 2
2600n16

c′′(H) (c′(H))−28n4

:= M0 (5.3.5)

This result is based on Theorem C from 5.2.2. Both results are proved in the paper [46].
We have to give an upper bound of the integral not over a vanishing cycle, but over a real oval.

The following lemma shows that the real oval is always a linear combination of some (at most µ)
vanishing cycles with coefficients ±1.

Lemma 5.3.9 (Geometric lemma). Let H be a real ultra-Morse polynomial and γ be a real oval of
H. Let H |γ = t0. Denote by s the number of critical points of H located inside γ in the real plane. Let
a1, . . . , as be the corresponding critical values. Let αj , j = 1, . . . , s, be nonintersecting and nonself-
intersecting paths that connect t0 with these critical values and satisfy assumption (5.3.1). Moreover,
suppose that all these paths belong to the upper halfplane and for any aj (which is real), an open
domain bounded by a path αj and a real segment (connecting the endpoints of αj) contains no critical
value of H (see Figures 5.3 and 5.4). Let δj be the vanishing cycles that correspond to the paths αj .
Then

[γ] = Σs1εjδj , where εj = ±1. (5.3.6)

A proof of Lemma 5.3.9 (given in [53] and omitted here) is based on Picard-Lefschetz theorem [9].
Upper estimates of the integrals of monomial forms over vanishing cycles are provided by Theorem

5.3.8. When we replace a monomial form by a polynomial one, the following changes are needed. Let
ω ∈ Ω∗

n be the form in the integral I. There exists another form of type

ω′ =
∑

k+l≤n−1

aklx
kyl+1dx, (5.3.7)

such that the difference ω−ω′ is exact. We may replace the form ω by ω′ in (5.1.1) ; the integral I will
be preserved. Moreover, we can replace the form ω′ by a normalized form αω′, α ∈ C, see Definition
5.3.1. Hence, we may assume that the form ω in the integral I has the type (5.3.7) and is normalized
from the very beginning. When we replace a polynomial form by a normalized one, the previous upper

bound of the integral should be multiplied by the number of monomials, namely, by n(n+1)
2 . When

the vanishing cycle is replaced by a real one, the integral is replaced by a sum of s ≤ n2 integrals over
vanishing cycles, by the Geometric Lemma. This results in another multiplication by n2.
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Fig. 5.3 – The cycle γ = γ(t0) and local vanishing cycles δj = δj(tj) ; the points tj close to aj are
marked at Fig.4.
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Fig. 5.4 – The paths for the extension of the local vanishing cycles δj(t).

Corollary 5.3.10 In the condition of Theorem 5.3.8 let H be a real polynomial, γ(t̂) be the extension
to t̂ of a real oval, ω be a normalized form (5.3.7). Then

|Iγ(t̂)ω| ≤
n3(n+ 1)

2
M0. (5.3.8)

5.3.5 Determinant of periods

The determinant of the matrix of periods (5.3.3) is called the determinant of periods. It appears
that this determinant is single-valued on B, thus depending not on a point of the universal cover W,
but rather on the projection of this point to B. Let

∆(t) = det I(t̂), t = πt̂.

The main determinant is single-valued ; this follows from the Picard-Lefschetz theorem. Indeed, a
circuit around one critical value adds the multiple of the correspondent column to some other columns
of the matrix of periods. Thus the determinant remains unchanged.

When we want to specify the dependence of the main determinant on H, we write ∆H(t). This
function is a polynomial in t, and an algebraic function in the coefficients of H. The formula for
the main determinant (with ωi of appropriate degrees) with a sketch of the proof was claimed by
A.Varchenko [114] ; this formula is given up to a constant factor not precisely determined. The complete
answer (under the same assumption on the degrees of ωi) is obtained in [47], with the latter constant
factor calculated explicitly. Moreover, the following lower estimate holds :

Theorem 5.3.11 For any normalized ultra-Morse polynomial H, the tuple Ω of standard forms
(5.3.2) may be so chosen that for any t ∈ C lying outside the ν = c′′

4n2 - neighborhoods of the cri-
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tical values of H the following lower estimate holds :

|∆(t,H)| ≥ (c′(H))
6n3

(c′′(H))
n2

n−62n3

:= ∆0 (5.3.9)

This result is proved in [46] with the use of the explicit formula for the Main Determinant mentioned
before, and results of the quantitative algebraic geometry.

5.3.6 Construction of the set K

We can now pass to the construction of the setK mentioned in the Main Lemma. We first construct
a smaller set K ′.

Lemma 5.3.12 (Construction lemma). Let γ ⊂ St0 be a real oval of an ultra-Morse polynomial.
Then there exist :

a set of regular paths αj , j = 1, . . . , µ, (see (5.3.1)), such that |αj | ≤ 9, and the paths αj are not
pairwise and self intersected ;

a path connected set K ′ ⊂ W, t0 ∈ K ′, πK ′ ⊂ D3, such that for any cycle δj ∈ H1(St0 ,Z)
vanishing along αj there exist two points τ1, τ2 ∈ K ′ ∩ π−1(t0) with the property

[γ(τ1)] − [γ(τ2)] = lj [δj ], lj ∈ Z \ 0. (5.3.10)

Moreover,
diamintK

′ < 19n2, (5.3.11)

and πK ′ is disjoint from the ν-neighborhoods of the critical values aj, j = 1, . . . , µ.

The next modification of this lemma will be used in the proof of the Modified Main Lemma.

Lemma 5.3.13 (Construction lemma for vanishing cycles). Construction lemma holds true if
γ ⊂ St0 is replaced by any vanishing cycle δl = δl(t0) from an arbitrary marked set of vanishing cycles,
and W is replaced by Wl (see 5.3.2). In the conclusion, (5.3.10) should be replaced by

[δl(τ1)] − [δl(τ2)] = lj [δj(t0)], for j 6= l, lj ∈ Z \ 0.

Both lemmas are purely topological. Their proof is given in [53] and omitted here. It is based
on Picard-Lefschetz theorem [9] and the connectivity of the intersection graph of marked basis of
vanishing cycles (Theorem 5.3.5). In what follows we deduce the Main Lemma from Lemma 5.3.12
and Theorems 5.3.8, 5.3.11.

Corollary 5.3.14 (of Lemma 5.3.12). For any form ω (not necessarily of type (5.3.2)) and any
marked set of vanishing cycles consider the vector function

Iω : W → Cµ, t̂ 7→

(∫

δ1(t̂)

ω, . . . ,

∫

δµ(t̂)

ω

)
. (5.3.12)

Let || · || denote the Euclidean length in Cµ. Then

m0 := max
t̂∈K′∩π−1(t0)

|I(t̂)| ≥
1

2n
||Iω(t0)||. (5.3.13)

Proof Consider a component of the vector Iω(t0) with the largest magnitude. Let its number be j.
Then ∣∣∣∣∣

∫

δj(t0)

ω

∣∣∣∣∣ ≥
1

n
||Iω(t0)||. (5.3.14)
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By Lemma 5.3.12, there exist τ1, τ2 ∈ K ′ ∩ π−1(t0) such that

I(τ1) − I(τ2) = lj

∫

δj(t0)

ω, lj ∈ Z \ 0.

Hence, at least one of the integrals I(τl) in the left hand side, say I(τl), l ∈ {1, 2}, admits a lower
estimate :

|I(τl)| ≥
1

2

∣∣∣∣∣

∫

δj(t0)

ω

∣∣∣∣∣ . (5.3.15)

Together with (5.3.14) this proves the corollary. 2

Let us now take
K = K ′ ∪ Σ,Σ = σ(t0) ∪ L

±(t0) ∪R
±(t0), (5.3.16)

see (5.2.6), (5.2.7).
In the following section we will check that this K satisfies the requirements of the Main Lemma.

5.3.7 Proof of the Main Lemma

Let us take K as in (5.3.16). Let ν be the same as in (5.1.2). Let U be the smallest simply connected
set that contains the ε-neighborhood of K, ε = ν/2. Then (5.2.8) follows from (5.3.11), (5.3.16). The
last statement of Lemma 5.3.12 implies (5.2.9).

Let us now check (5.2.10), that is, estimate from above the Bernstein index BK,U (I) for the integral
(5.1.1).

Let the form ω in the integral (5.1.1) be normalized, and let, as before, M = maxŪ |I|, m =
maxK |I|. By Corollary 5.3.10,

M ≤
n3(n+ 1)

2
M0 := M ′

0

where M0 is from (5.3.5). Let us now estimate m from below, following the ideas presented at the
beginning of the section.

Let in (5.3.7) |ak0l0 | = 1, ωi = yxk0yl0dx. Without loss of generality we may assume that ak0l0 = 1.
Let us now replace the ith row of the matrix I by the vector Iω. This transformation is equivalent to
adding a linear combination of rows of I to the ith row, so the determinant ∆(t0) remains unchanged.

By Theorem 5.3.8 and (5.2.8), all the entries in other rows are estimated from above by M0, see
(5.3.5). (The corresponding paths αj used in the construction of K are chosen as in Lemma 5.3.12,
so, the inequality |αj | ≤ 9 of Theorem 5.3.8 holds true.) Hence, all the vector-rows except for the ith
one have the length at most nM0. By (5.3.13), the ith row has the length at most 2nm0. We can now
obtain a lower bound for m. Indeed, m ≥ m0. On the other hand,

∆0 ≤ |∆(t0)| ≤ 2m0M
µ−1
0 nµ, µ = n2,

where ∆0 is the same as in (5.3.9). Therefore,

m ≥ m0 ≥
1

2
∆0M

1−µ
0 n−µ. (5.3.17)

We can now estimate BK,U (I) from above. Indeed,

BK,U (I) = logM − logm ≥ logM ′
0 − logm0.

Elementary estimates (together with (5.3.17)) imply that

logM ′
0 − logm0 > (1 − log c′)A2. (5.3.18)

This proves the Main Lemma.
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5.3.8 Modified Main Lemma and zeros of integrals over (complex) vani-
shing cycles

Proof of the Modified Main Lemma. The arguments of the previous subsection work almost
verbatim. The previous corollary for the integral I = Il taken over δl instead of γ, is stated and proved
in the same way.

Let K ′ be the same as in Lemma 5.3.13. Instead of (5.3.16), let

K = K ′ ∪ αl ∪Dν(al).

Let U be the smallest simply connected set that contains the ε-neighborhood of K.
By Theorem 5.3.8,

max
V

|Il| ≤M0, where V = U \Dν(al).

But Il is holomorphic inDν(al). Hence, by the maximum modulus principle, the previous inequality
holds in U instead of V. After that, the rest of the arguments of the previous subsection work. This
proves the Modified Main Lemma. 2

The following theorem will be used in the next section.

Theorem 5.3.15 The number of zeros of the integral Il in the disk Dν(al) satisfies the inequality :

#{t̂ ∈ Dν(al) | Il(t̂) = 0} ≤ (1 − log c′(H))A578. (5.3.19)

The proof is the same as for Theorem A1, section 5.2.4.

5.4 Estimates of the number of zeros of Abelian integrals near
critical values

In this section we give a proof (due to Yu.S.Ilyashenko) of Theorem A2, see 5.2.5. Together with
Theorem A1 (whose proof was given in Section 5.2), Theorem A2 implies Theorem A.

We split the proof of Theorem A2 into three cases : 1) a, b 6= ∞ ; 2) a = −∞ ; 3) b = +∞. First
we prove Theorem A2 in Case 1 (Subsections 5.4.1-5.4.5). Cases 2 and 3 are treated in 5.4.6.

5.4.1 Argument principle, KRY theorem and Petrov’s method

All the three cases are treated in a similar way. We want to apply the argument principle.
The estimates near infinity are based on the argument principle only. The estimates near finite

critical points use the Petrov’s method that may be considered as a generalization of the argument
principle for multivalued functions. The increment of the argument is estimated through the Bernstein
index of the integral, bounded from above in the previous sections. The relation between these two
quantities is the subject of the Khovanskii-Roitman-Yakovenko (KRY) theorem and Theorem 5.4.3
stated below. It seems surprising that these theorems were not discovered in the classical period of
the development of complex analysis. The latter theorem is proved in [70] ; the proof is based on the
KRY theorem and methods of [82] and [105].

At this spot we begin the proof of Theorem A2 in case 1. Recall the statement of the theorem in
case 1.

Theorem A2 (Case 1). Let a 6= ∞, b 6= ∞. Then

#{t ∈ (a, l(t0)) ∪ (r(t0), b) | I(t) = 0} < (1 − log c′)e
4700
c′′

n4

,

where l(t0) and r(t0) are the same as at the beginning of 5.2.4.
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We will prove that

#{t ∈ (a, l(t0)) | I(t) = 0} <
1

2
(1 − log c′)e

4700
c′′

n4

. (5.4.1)

Similar estimate for (r(t0), b) is proved in the same way. These two estimates imply Theorem A2.

Let Π = Π(a) be the same as in (5.1.5), namely

Π = {t ∈W | 0 < |t− a| ≤ ν, | arg(t− a)| ≤ 2π}.

Lemma 5.4.1 Inequality (5.4.1) holds provided that in (5.4.1) the interval (a, l(t0)) is replaced by Π.

Lemma 5.4.1 implies (5.4.1) because (a, l(t0)) ⊂ Π. Let

Πψ = {t ∈ Π | ψ ≤ |t− a| ≤ ν}

Lemma 5.4.2 Lemma 5.4.1 holds provided that in (5.4.1) the domain Π is replaced by Πψ.

Lemma 5.4.2 implies Lemma 5.4.1, because

Π = ∪ψ>0Πψ.

The proof of Lemma 5.4.2 occupies this and the next four Subsections. We have

∂Πψ = Γ1Γ2Γ3Γ4.

As sets, the curves Γj are defined by the formulas below ; the orientation is defined separately :

Γ1 = {t | |t− a| = ν, |arg(t− a)| ≤ 2π} = Γa

Γ3 = {t | |t− a| = ψ, |arg(t− a)| ≤ 2π}

Γ2,4 = {t | ψ ≤ |t− a| ≤ ν, arg(t− a) = ±2π}.

The curve Γ1 is oriented counterclockwise, Γ2 is oriented from the right to the left, Γ3 is oriented
clockwise, Γ4 is oriented from the left to the right.

Let #{t ∈ (a + ψ, l(t0)) | I(t) = 0} = Nψ. Denote by RΓ(f) the increment of the argument of a
holomorphic function f along a curve Γ (R of Rouchet),

VΓ(f) = the variation of the argument of f along Γ. Obviously, | RΓ(f) |≤ VΓ(f).

In assumption that I 6= 0 on ∂Πψ, the argument principle implies that

Nψ ≤
1

2π
R∂Πψ (I) =

1

2π

4∑

1

RΓj (I). (5.4.2)

The first term in this sum is estimated by the modified KRY theorem, the second and the forth one
by the Petrov method, the third one by the Mardesic theorem. The case when the above assumption
fails is treated in 5.4.3.
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5.4.2 Bernstein index and variation of argument

The first step in establishing a relation between variation of argument and the Bernstein index
was done by the following KRY theorem.

Let U be a connected and simply connected domain in C, Γ ⊂ U be a (nonoriented compact)
curve, f be a bounded holomorphic function on U .

KRY theorem, [82] For any tuple U,Γ ⊂ U as above and a compact set K ⊂ U there exists a
geometric constant α = α(U,K,Γ), such that

VΓ(f) ≤ αBK,U (f).

In [82] an upper estimate of the Bernstein index through the variation of the argument along
Γ = ∂U is given ; we do not use this estimate. On the contrary, we need an improved version of the
previous theorem with α explicitly written and U being a domain on a Riemann surface. These two
goals are achieved in the following theorem.

Let |Γ| be the length, and κ(Γ) be the total curvature of a curve on a surface endowed with a
Riemann metric.

Theorem 5.4.3 [70] Let Γ b U ′′
b U ′

b U ⊂ W be respectively a curve, and three open sets in a
Riemann surface W. Let f : U → C be a bounded holomorphic function, f |Γ 6= 0. Let π : W → C be a
projection which is locally biholomorphic, and the metric on W be a pullback of the Euclidean metric
in C. Let ε < 1

2 and the following gap conditions hold :

π-gap (Γ, U ′′) ≥ ε, π-gap (U ′′, U ′) ≥ ε, π-gap (U ′, U) ≥ ε. (5.4.3)

Let D > 1 and the following diameter conditions hold :

diam intU
′′ ≤ D, diam intU

′ ≤ D (5.4.4)

Then

VΓ(f) ≤ BU ′′,U (f)(
| Γ |

ε
+ κ(Γ) + 1)e

5D
ε . (5.4.5)

Recall that intrinsic diameter and π-gap are defined in 5.2.3.

We can now estimate from above the first term in the sum (5.4.2). The estimate works in both
cases when a is finite or infinite.

Lemma 5.4.4 Let H be a normalized polynomial of degree n+1 ≥ 3. Let I be the same integral as in
(5.1.1). Let K be a compact set mentioned in the Main Lemma, and Γ1 = Γa be the same as in this
lemma (a may be infinite). Then

VΓ1(I) < (1 − log c′(H))A4600, A = e
n4

c′′ . (5.4.6)

In what follows, we write c′, c′′ instead of c′(H), c′′(H).

The lemma follows easily from Theorem 5.4.3 and the Main Lemma, see [53] for more detail.

Remark 5.4.5 Lemma 5.4.4 remains valid if in its hypothesis the integral I is replaced by an integral
J over the cycle vanishing at the critical value a of H . The proof of this modified version of Lemma
5.4.4 repeats that of the original one with the following change : we use the Modified Main Lemma
instead of the Main Lemma.



94

Corollary 5.4.6 Suppose that the integral J with a real integrand ω is taken over a local vanishing
cycle δt corresponding to the real critical value a. Then the number of zeros of J in the disk centered
at a of radius ν = c′′

4n2 admits the following upper estimate :

NJ := #{t ∈ C | |t− a| < ν, J(t) = 0} <
1

2π
(1 − log c′)A4600 (5.4.7)

This follows from the modified Lemma 5.4.4 and the argument principle.

5.4.3 Application of the Petrov’s method

The Petrov’s method applied below is based on the remark that the magnitude of the increment
of the argument of a nonzero function along an oriented curve is no greater than the number of zeros
of the imaginary part of this function increased by 1 and multiplied by π. Indeed, at any half circuit
around zero, a planar curve crosses an imaginary axis at least once. The method works when the
imaginary part of a function appears to be more simple than the function itself.

Let δ(t) ∈ H1(t) be the local vanishing cycle at the point a. Let ω be the same real form as in
integral (5.1.1). Let J be the germ of integral J(t) =

∫
δ(t)

ω along the cycle δ(t), which is a local

vanishing cycle at t = a. Note that J is single-valued in any simply connected neighborhood of a that
contains no other critical values of H. Let l0 = (γ(t), δ(t)) 6= 0 be the intersection index of the cycles
γ(t) and δ(t). As the cycle γ(t) is real and H is ultra-Morse, l0 may take values ±1,±2 only. This is
implied by the following lemma.

Lemma 5.4.7 Consider a maximal family of real ovals that contains γ(t0). The union of the ovals
of the family forms an open domain. The boundary of this domain consists of one or two connected
components. Any of these components belongs to a critical level of H and contains a unique critical
point. Fix any of these critical points and denote by δ the corresponding local vanishing cycle. Then the
cycle δ may be extended to a cycle δ(t0) that belongs to a marked set of vanishing cycles constructed
above. Moreover,

(δ(t0), γ(t0)) 6= 0, more precisely, it is equal to ± 1, ±2.

Let

Γ0 = {t ∈ R | te2πi ∈ Γ2}.

Then by the Picard-Lefschetz theorem

I |Γ2= (I + l0J) |Γ0 , I |Γ4= (I − l0J) |Γ0 .

Proposition 5.4.8 The integral J is purely imaginary on the real interval (a, b).

Proof Recall that the form ω and the polynomial H are real. Then

J(t) = −J(t).

Indeed, ω = Q(x, y)dx. The involution i : (x, y) 7→ (x, y) brings the integral J(t) =
∫
δ(t)

Qdx to

∫
iδ(t)

Qdx =
∫

−δ(t)

Qdx = −
∫
δ(t̄)Qdx = −J(t). On the other hand, for real t we have t = t and thus,

J(t) = J(t). Hence, J(t) = −J(t) for t ∈ (a, b). This implies Proposition 5.4.8. 2

Corollary 5.4.9 Let, as above, l0 6= 0 be the intersection index of the cycles γ(t) and δ(t). Then

ImI |Γ2,4= ±l0J |Γ0 .
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Proof This follows from Proposition 5.4.8, Picard-Lefschetz theorem and the reality of I on Γ0. 2

Suppose first that I has no zeros on Γ2 and Γ4. Then

∣∣RΓ2,4(I)
∣∣ ≤ π(1 +N), where N = #{t ∈ Γ0 | J(t) = 0}. (5.4.8)

Obviously, N ≤ NJ , see (5.4.7). The right hand side of this inequality is already estimated from above
in Corollary 5.4.6. Hence,

∣∣RΓ2,4(I)
∣∣ ≤ π +

1

2
(1 − log c′)A4600.

Suppose now that I has zeros on Γ2 (hence on Γ4, by Proposition 5.4.8). Indeed, its real part is the
same at the corresponding points of Γ2,Γ0,Γ4, and the imaginary parts of I|Γ2 and I|Γ4 are opposite
at these points. In this case we replace the domain Πψ by Π′

ψ defined as follows.

The curves Γ2,4 should be modified. A small segment of Γ2 centered at zero point of I that contains
no other zeros of J, should be replaced by an upper half-circle having this segment as a diameter and
containing no zeros of J. A similar modification should be done for Γ4 making use of lower half-circles.
Denote the modified curves by Γ′

2,4. Let Π′
ψ be the domain bounded by the curve

∂Π′
ψ = Γ1Γ

′
2Γ3Γ

′
4. (5.4.9)

It contains Πψ, and we will estimate from above the number of zeros of I in Π′
ψ still using the argument

principle. The increment of arg I along Γ1 is already estimated in 5.4.2. Here we give an upper bound
for the increment of arg I along Γ′

2,4. The increment along Γ3 is estimated in the next subsection.

Proposition 5.4.10 Let N be the same as in (5.4.8). Then

| RΓ′
2,4

(I) |≤ π(2N + 1). (5.4.10)

Proof We will prove the proposition for Γ′
2; the proof for Γ′

4 is the same. Let I have zeros bj ∈
Γ2, j = 1, ..., k, the number of occurrences of bj in this list equals its multiplicity. Note that

Im I|Γ2 = l0J (5.4.11)

Hence, at the points bj , J has zeros of no less multiplicity than I. Hence, the total multiplicity k′ of
zeros of J at the points bj ∈ Γ2, j = 1, ..., k, is no less than k. Let J have s zeros on Γ′

2. We have :
k′ ≥ k, s ≤ N−k′ ≤ N−k. Let σ1, ..., σq, q ≤ k+1, be the open intervals, the connected components
of the difference of Γ′

2 and the half-circles constructed above. Let sj be the number of zeros of J on
σj ,

∑q
1 sj = s. Let

Rj = Rσj (I).

Then

Rj ≤ π(sj + 1).

Hence,

| RΓ′
2
(I) |≤ π(k +

q∑

1

(sj + 1)) ≤ π(2k + 1 + s) ≤ π(2k′ + 1 + s) ≤ π(2N + 1), (5.4.12)

where N ≤ NJ <
1
2π (1 − log c′)A4600, see (5.4.7). 2
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5.4.4 Application of the Mardesic theorem

Proposition 5.4.11 Let I be the integral (5.1.1), and Γ3 be the same as in Subsection 5.4.1. Then
for ψ small enough,

|RΓ3(I)| ≤ π(4n4 + 1). (5.4.13)

Proof Let J and l0 be the same as in the previous subsection. Let a = 0, and I(e2πit) means the result
of the analytic extension of I from a value I(t) along a curve e2πiϕt, ϕ ∈ [0, 1]. By the Picard-Lefshetz
theorem, for small t

I(e2πit) = I(t) + l0J(t).

Consider the function

Y (t) = I(t) − l0
log t

2πi
J(t).

This function is single-valued because the increments of both terms I and l0
log t
2πi J(t) under the analytic

extension over a circle centered at 0 cancel. The function I is bounded along any segment ending at
zero, and J is holomorphic at zero, with J(0) = 0. Hence, Y is holomorphic and grows no faster
than log |t| in a punctured neighborhood of zero. (In fact, it is bounded in the latter neighborhood :
|J(t) log t| ≤ c|t|| log t| → 0, as t → 0.) By the Removable Singularity Theorem, it is holomorphic at
zero. Hence,

I(t) = Y (t) + l0
log t

2πi
J(t) (5.4.14)

with Y and J holomorphic. We claim that the increment of the argument of I along Γ3 for ψ small is
bounded from above through ord0J, the multiplicity of zero of J at zero. The latter order is estimated
from above by the following theorem by Mardesic :

Theorem 5.4.12 [90]. The multiplicity of any zero of the integral I (or J) taken at a point where
the integral is holomorphic does not exceed n4.

The function (5.4.14) is multivalued. The proof of Proposition 5.4.11 is based on the following
simple remark. Let f1, f2 be two continuous functions on a segment σ ⊂ R, and |f1| ≥ 2|f2|. Then
|Rσ(f1 + f2)| ≤ |Rσ(f1)| + π

3 . Indeed, the value Rσ(f1 + εf2) cannot change more than by π
3 , as ε

ranges over the segment [0, 1].
To complete the proof of Proposition 5.4.11, we need to consider three cases. Let ν = ord0Y, µ =

ord0J, f(ϕ) = Y (ψe2πiϕ), g(ϕ) = l0

(
J log t

2πi

)
(ψe2πiϕ). Note that µ ≤ n4.

Case (i) : ν < µ. Then, for ψ small, 2|g| ≤ |f |. By the previous remark, applied to f1 = f, f2 = g,
we get

|RΓ3(I)| ≤ π(4ν + 1) ≤ π(4µ+ 1) ≤ π(4n4 + 1).

Case (ii) : ν = µ. Then, for ψ small, 2|f | ≤ |g|, because of the logarithmic factor in g. In the same
way as before, we get

|RΓ3(I)| ≤ π(4µ+ 1) ≤ π(4n4 + 1).

Case (iii) : ν > µ. In the same way, as in Case (ii), we get (5.4.13). 2

5.4.5 Proof of Theorem A2 in case 1 (endpoints of the interval considered
are finite)

Proof It is sufficient to prove Lemma 5.4.2. We prove a stronger statement

N(I,Π′
ψ) := #{t ∈ Π′

ψ | I(t) = 0} <
1

2
(1 − log c′)A4600 (5.4.15)

By the argument principle

2πN(I,Π′
ψ) ≤ V (Γ1)+ | RΓ′

2
(I) | + | RΓ3(I) | + | RΓ′

4
(I) | (5.4.16)
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The first term in the r.h.s is estimated in (5.4.6). The second and the fourth terms are estimated from
above in (5.4.10) (the N in the r.h.s. of (5.4.10) is estimated from above by NJ , see (5.4.7)). The
third term is estimated in (5.4.13). Altogether this proves (5.4.15), hence, Lemma 5.4.2 and implies a
stronger version of (5.4.1) :

N(I,Π′
ψ) <

1

2
(1 − log c′)A4600.

This proves Theorem A2 in case 1. 2

5.4.6 Proof of Theorem A2 in Case 2 (near an infinite endpoint)

Here we prove Theorem A2 for a segment with one endpoint, say, b, infinite.

Proposition 5.4.13 The integral I has an algebraic branching point at infinity of order n+ 1.

Proof of Theorem A2 near infinity. We consider the case b = +∞ only ; the case a = −∞ is
treated in the same way. Let WI be the Riemann surface of the integral I. Let Γ ⊂WI be the degree
n+ 1 cover of the circle |t| = 3 with the base point t1 = +3. This is a closed curve on WI . This curve
is a boundary of a domain on WI that covers n+ 1 times a neighborhood of infinity on the Riemann
sphere. Let us denote this domain by W∞

I . We will estimate from above

N∞ = {t ∈W∞
I | I(t) = 0}.

This will give an upper estimate to the number of zeros of I on σ+ = (3,+∞) because σ+ ⊂ W∞
I .

We will use the argument principle in the form

N∞ ≤
1

2π
VΓ(I) + n+ 1. (5.4.17)

This follows from the argument principle and the fact that the infinity is the only pole of I|W∞
I

, and
its order is at most n+ 1. The latter bound on the order follows from the condition that the 1- form
under the integral (1.1) has degree at most n, and the fact that the integration oval γ(t) has size (and

length) of the order O(|t|
1

n+1 ), as t → ∞, t ∈ R.
The variation in the right hand side will be estimated by Theorem 5.4.3. To apply this theorem

we need to define all the entries like in the previous subsection.
We have : Γ = ∂W∞

I . Without loss of generality we consider that I|Γ 6= 0 (one can achieve this by
slight contraction of the circle |t| = 3). Let K be the same as in the Main Lemma. Denote by U0 the
set U from that Lemma : both K and U0 are taken projected to the Riemann surface of the integral
I. By (5.2.7), K ⊃ Γ. Let ε = ν

6 = c′′

24n2 , U ′′, U ′, U be respectively the minimal simply connected
domain containing ε-, 2ε-, 3ε- neighborhood of K. One has K,Γ b U ′′

b U ′
b U . Then U coincides

with the projection of U0 to WI (up to filling holes, if there are any). Therefore, maxU0
|I| = maxU |I|

(the maximum principle). Hence,

BU ′′,U (I) ≤ BK,U0(I) < (1 − log c′)A2.

The latter inequality is (5.2.10). This provides the estimate of the Bernstein index from inequality
(5.4.5) in Theorem 5.4.3. Other ingredients are the following.

By (5.2.8), the diameter condition (5.4.4) holds with

D = 36n2 + 1.

The gap condition (5.4.3) for Γ , U ′′, U ′, U holds with the above ε = c′′

24n2 . Hence,

e
5D
ε ≤ A4600
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Moreover,
| Γ |= 6π(n+ 1), | κ(Γ) |= 2π(n+ 1).

Altogether, by Theorem 5.4.3, this implies :

VΓ(I) ≤ (1 − log c′)C(n, c′′)A4602,

with C(n, c′′) = 6π(n+1)
ε + 2π(n+ 1) + 1 < A90. Together with (5.4.17) this proves Theorem A2, Case

2. 2



Chapitre 6

Confluence of singular points and
Stokes phenomena

6.1 Introduction : Stokes phenomena and main results

6.1.1 Brief statements of results, plan of the chapter and historical remarks

Consider a linear analytic ordinary differential equation

ż =
A(t)

tk+1
z, z ∈ Cn, |t| ≤ 1, k ∈ N (6.1.1)

with a nonresonant irregular singularity of order (the Poincaré rank) k at 0 (or briefly, an irregular
equation). This means that A(t) is a holomorphic matrix function such that the matrix A(0) has
distinct eigenvalues (denote them by λi). Then the matrix A(0) is diagonalizable, and without loss of
generality we suppose that it is diagonal.

Definition 6.1.1 Two equations of type (6.1.1) are analytically (formally) equivalent, if there exists
a change z = H(t)w of the variable z, where H(t) is a holomorphic invertible matrix function (res-
pectively, a formal invertible matrix power series), that transforms one equation into the other.

The analytic classification of irregular equations (6.1.1) is well known [8, 10, 71, 75, 107] : the
complete system of invariants for analytic classification consists of a formal normal form (6.1.4) and
Stokes operators (6.1.6) defined in Subsection 6.1.2 ; the latter are linear operators acting in the
solution space of (6.1.1) comparing appropriate “sectorial canonical solution bases”.

On the other hand, an irregular equation (6.1.1) can be regarded as a result of confluence of
Fuchsian singular points (recall that a Fuchsian singular point of a linear equation is a first order pole
of its right-hand side). Namely, consider a deformation

ż =
A(t, ε)

f(t, ε)
z, f(t, ε) =

k∏

i=0

(t− αi(ε)), (6.1.2)

of equation (6.1.1) that splits the irregular singular point 0 of the nonperturbed equation into k + 1
Fuchsian singularities αi(ε) of the perturbed equation, i.e., αi(ε) 6= αj(ε) for i 6= j. The family (6.1.2)
depends on a parameter ε ∈ R+ ∪ 0, f(t, 0) ≡ tk+1, A(t, 0) ≡ A(t).

The monodromy group of a Fuchsian equation acts linearly in its solution space by analytic ex-
tensions of solutions along closed loops. The analytic equivalence class of a Fuchsian equation is
completely determined by the local types of its singularities and the action of its monodromy group.
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Everywhere in what follows we denote by Mi the monodromy operator of the perturbed equation
(6.1.2) along a loop going around the singular point αi (the choice of the corresponding loops will
be specified later). The monodromy group of the perturbed equation is generated by appropriately
chosen operators Mi.

In 1984, V. I. Arnold proposed the following question. Consider a generic deformation (6.1.2). Is
there an operator

Md1
i1
. . .Mdl

il
(6.1.3)

from the monodromy group of the perturbed equation that converges to a Stokes operator of the
nonperturbed equation ?

A version of this question was proposed independently by J.-P. Ramis in 1988.
It appears that already in the simplest case of dimension 2 and Poincaré rank k = 1 generically

each operator from the monodromy group (except for that along a circuit around both singularities
(and its powers)) tends to infinity, and none tends to a Stokes operator. In other terms, no word
(6.1.3) with di ∈ Z tends to a Stokes operator. But if k = 1, then appropriate words (6.1.3) with
noninteger powers di tend to Stokes operators (Theorem 6.2.12 in Subsection 6.2.2). The last two
statements are proved in [42].

The previous question and its nonlinear analogue for parabolic mappings were studied by J.-P.
Ramis, B. Khesin, A. Duval, C. Zhang and J. Martinet (see the historical overview in Subsection 6.1.3
and that of recent results below). It was proved by the author [38] in the general case that appropriate
branches of the eigenfunctions of the monodromy operators Mi of the perturbed equation tend to
appropriate canonical solutions of the nonperturbed equation (Theorem 6.2.5). In the case of Poincaré
rank k = 1 this implies (Corollary 6.2.6 stated in the two-dimensional case) that Stokes operators of
the nonperturbed equation are limits of transition operators between appropriate eigenbases of the
monodromy operators Mi. This corollary has a generalization for higher Poincaré rank and dimension
[38]. These results are also extended to a generic resonant case [40].

The conjecture saying that Stokes operators are limit transition operators between monodromy
eigenbases of the perturbed equation was first proposed by A. A. Bolibrukh in 1996.

Nonlinear analogues of the previous statements for parabolic mappings (i.e., one-dimensional
conformal mappings tangent to identity) and their Écalle-Voronin moduli, saddle-node singularities
of two-dimensional holomorphic vector fields and their Martinet-Ramis invariants (sectorial central
manifolds in higher dimensions) were obtained by the author in [39] (see Theorem 6.4.17 in Section 6.4
for two-dimensional saddle-nodes). Generalizations and other versions of the statement on parabolic
mappings were later obtained in the paper [91] by P. Mardesic, R. Roussarie, C. Rousseau, and in two
papers by the following authors : (1) X. Buff and Tan Lei (unpublished) ; (2) A. Douady, F. Estrada,
P. Sentenac [24].

In Subsection 6.1.2 we recall the analytic classification of irregular equations (6.1.1) and the defi-
nitions of sectorial canonical solution bases and Stokes operators. Subsection 6.1.3 contains a survey
of previous results.

In Subsection 6.2.1 we state the results on the representation of Stokes operators as limit transition
operators between monodromy eigenbases (Theorem 6.2.5 and Corollary 6.2.6). In Subsection 6.2.2
we state Theorem 6.2.12 on convergence of appropriate word (6.1.3) to a Stokes operator. Its proof is
given in Section 6.3.

In Section 6.4 we state the results from [39] concerning two-dimensional saddle-nodes. One of them
(Corollary 6.4.22) is used in the proof of Theorem 6.2.5 given in Subsection 6.4.3. Corollary 6.4.22 is
proved in Subsection 6.4.4.

6.1.2 Analytic classification of irregular equations. Canonical solutions and
Stokes operators

Let (6.1.1) be an irregular equation.
One can ask the following question : is it true that the variables z = (z1, . . . , zn) in the equation can

be separated, more precisely, that (6.1.1) is analytically equivalent to a direct sum of one-dimensional



101

linear equations, i.e., a linear equation with a diagonal matrix function on the right-hand side ? Ge-
nerically, the answer is “no”. At the same time any irregular equation (6.1.1) is formally equivalent
to a unique direct sum of the type

ẇi =
bi(t)

tk+1
wi, i = 1, . . . , n, (6.1.4)

where bi(t) are polynomials of degree at most k, bi(0) = λi. The normalizing series bringing (6.1.1) to
(6.1.4) is unique up to left multiplication by a constant diagonal matrix. The system (6.1.4) is called
the formal normal form of (6.1.1) [8, 10, 71, 75, 107].

Generically the normalizing series diverges. At the same time there exists a finite covering
⋃N
j=0 Sj

of a punctured neighborhood of zero in the t-line by radial sectors Sj (i.e., those with the vertex
at 0) that have the following property. There exists a unique change of variables z = Hj(t)w over
each Sj that transforms (6.1.1) to (6.1.4), where Hj(t) is an analytic invertible matrix function on
Sj that can be C∞-smoothly extended to the closure Sj of the sector so that its asymptotic Taylor
series at 0 coincides with the normalizing series. The preceding statement on existence and uniqueness
of sectorial normalization holds in any good sector (see the two following Definitions) ; the covering
consists of good sectors [8, 10, 71, 75, 107].

Case k = 1, n = 2, λ1 − λ2 ∈ R.

Definition 6.1.2 A sector in C with the vertex at 0 is said to be good, if it contains only one imaginary
semiaxis iR±, and its closure does not contain the other one (see Fig. 6.1).

General case.

Definition 6.1.3 Let k ∈ N , Λ = {λ1, . . . , λn} ⊂ C be an n-tuple of distinct numbers, t be the coordi-
nate on C. For a given pair λi 6= λj the rays in C starting at 0 and forming the set Re((λj − λi)/t

k) = 0
are called the (k,Λ)-imaginary dividing rays corresponding to the pair (λi, λj). A radial sector is said
to be (k,Λ)-good, if for any pair (λi, λj), j 6= i, it contains exactly one corresponding imaginary
dividing ray and so does its closure.

Remark 6.1.4 In the case, when k = 1, n = 2, λ1 − λ2 ∈ R, the imaginary dividing rays are the
imaginary semiaxes, and the notions of “good” sector and (k,Λ)-good sector coincide.

Remark 6.1.5 The ratio wi
wj

(t) of solutions of equations from (6.1.4) tends either to zero or to

infinity, as t tends to zero along a ray distinct from the imaginary dividing rays corresponding to the
pair (λi, λj). Its limit changes exactly when the ray under consideration jumps over one of the latter
imaginary dividing rays.

Consider a covering
⋃N
j=0 Sj of a punctured neighborhood of zero by good (or (k,Λ)-good) sectors

numbered counterclockwise, and put SN+1 = S0. The standard splitting of the normal form (6.1.4)
into the direct sum of one-dimensional equations defines a canonical base in its solution space (uniquely
up to multiplication of the base functions by constants) with a diagonal fundamental matrix. Denote
the latter fundamental matrix by

W (t) = diag(w1, . . . , wn).

Together with the normalizing changes Hj in Sj , it defines the canonical bases (fj1, . . . , fjn) in the
solution space of (6.1.1) in the sectors Sj with the fundamental matrices

Zj(t) = Hj(t)W (t), j = 0, . . . , N + 1, (6.1.5)
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where for any j = 0, . . . , N the branch (“with index j + 1”) of the fundamental matrix W (t) in Sj+1

is obtained from that in Sj by the counterclockwise analytic extension for any j = 0, . . . , N . (We put
SN+1 = S0. The corresponding branch of W “with index N + 1” is obtained from that “with index
0” by right multiplication with the monodromy matrix of the formal normal form (6.1.4).) In the
connected component of the intersection Sj ∩Sj+1 there are two canonical solution bases coming from
Sj and Sj+1. Generically, they do not coincide. The transition between them is defined by a constant
matrix Cj :

Zj+1(t) = Zj(t)Cj . (6.1.6)

The transition operators (matrices Cj) are called Stokes operators (matrices) (see [8, 10, 71, 75, 107]).
The nontriviality of Stokes operators yields the obstruction to analytic equivalence of (6.1.1) and its
formal normal form (6.1.4).

Remark 6.1.6 The Stokes matrices (6.1.6) are well defined up to simultaneous conjugation by one
and the same diagonal matrix.

��

� �

�

Fig. 6.1 – Case λ1 − λ2 ∈ R+. A covering by two good sectors

Example 6.1.7 Let k = 1, n = 2. In this case we may assume without loss of generality that
λ1 − λ2 ∈ R+ (one can achieve this by linear change of the time variable). Then the above covering
consists of two sectors S0 and S1 (Fig. 6.1). The former contains the positive imaginary semiaxis and
its closure does not contain the negative one ; the latter has the same properties with respect to the
negative (respectively, positive) imaginary semiaxis. There are two components of the intersection
S0∩S1. So, in this case we have a pair of Stokes operators. The Stokes matrices (6.1.6) are unipotent :
the one corresponding to the left intersection component is lower-triangular ; the other one is upper-
triangular [8, 10, 71, 75, 107].

Remark 6.1.8 Stokes operators of an irregular equation (6.1.1) with a diagonal matrix in the right-
hand side are identity operators. In this case, (6.1.1) is analytically equivalent to its formal normal
form. In general, two irregular equations are analytically equivalent, if and only if they have the same
formal normal form and the corresponding Stokes matrix tuples are obtained from each other by simul-
taneous conjugation by one and the same diagonal matrix, cf. the previous remark. Thus, the formal
normal form and the Stokes matrix tuple taken up to the previous conjugation present the complete
system of invariants for analytic classification of irregular equations (see [8, 10, 71, 75, 107]).
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6.1.3 Previous results

Earlier, in 1919, R. Garnier [31] had studied some particular deformations of some class of linear
equations with nonresonant irregular singularity. He obtained some analytic classification invariants
for these equations by studying their deformations. The complete system of analytic classification
invariants (Stokes operators and formal normal form) for general irregular nonresonant differential
equations was obtained later in the 70’s in the papers by Jurkat, Lutz, Peyerimhoff [75], Sibuya [107]
and Balser, Jurkat, Lutz [10]. Later Jurkat, Lutz and Peyerimhoff extended their results to some reso-
nant cases [76]. In 1985, J.-P. Ramis proved that the Stokes operators and the monodromy operators
of a linear ordinary differential equation belong to its Galois group ([103], see also [71]). In 1989 he
considered the classical confluenting family of hypergeometric equations and proved convergence of
appropriate branches of monodromy eigenfunctions of the perturbed equation to canonical solutions
of the nonperturbed one by direct calculation [104]. In the late 80’s, B. Khesin also proved a version
of this statement, but his result was not published. In 1991, A. Duval [25] proved this statement for
the biconfluenting family of hypergeometric equations (where the nonperturbed equation is equivalent
to Bessel’s equation) by direct calculation. In 1994, C. Zhang [119] had obtained the expression of
Garnier’s invariants via Stokes operators (for the class of irregular equations considered by Garnier).

The analytic classification of germs of parabolic mappings was obtained separately by J. Écalle [26]
and S. M. Voronin [117]. The orbital analytic classification of germs of two-dimensional saddle-node
holomorphic vector fields was obtained by J. Martinet and J.-P. Ramis in their joint paper [93]. The
analytic classification of two-dimensional saddle-nodes of multiplicity two was recently obtained in the
joint paper [118] by S. M. Voronin and Yu. I. Meshcheryakova.

A particular case of the result from [39] concerning parabolic mappings (analogous to the previously
mentioned statements on linear equations) was obtained by J. Martinet [92]. For other related results
concerning parabolic mappings see also [91] and the references therein.

6.2 Main results. Stokes operators and limit monodromy

In the present section we formulate the statements expressing the Stokes operators as limit transi-
tion operators between monodromy eigenbases of the confluenting Fuchsian equation (Theorem 6.2.5
and Corollary 6.2.6) and as limits of some words (6.1.3) of noninteger powers of monodromy operators
(Theorem 6.2.12).

6.2.1 Stokes operators as limit transition operators between monodromy
eigenbases

We formulate the result from the title of this subsection only in the case when k = 1, n = 2
(see [38] in the general case). Let λi, i = 1, 2, be the eigenvalues of the matrix A(0). Without loss of
generality we assume that λ1 − λ2 ∈ R+ : one can achieve this by linear change of the time variable.

We consider a deformation of (6.1.1),

ż =
A(t, ε)

f(t, ε)
z, f(t, ε) = (t− α0(ε))(t− α1(ε)), f(t, 0) ≡ t2, A(t, 0) = A(t), (6.2.1)

where A(t, ε) and f(t, ε) depend continuously on a parameter ε ≥ 0 so that α0(ε) 6= α1(ε) for ε > 0.
Without loss of generality we assume that α0 + α1 ≡ 0. We formulate the statement from the title of
the subsection for a generic deformation (6.2.1), see the following Definition.

Definition 6.2.1 A family of quadratic polynomials f(t, ε) depending continuously on a nonnegative
parameter ε, f(t, 0) ≡ t2, with roots αi(ε), i = 0, 1, α0 + α1 ≡ 0, is said to be generic, if α0(ε) 6=
α1(ε) for ε 6= 0, and the line passing through α0(ε) and α1(ε) intersects the real axis at an angle
bounded away from 0 uniformly in ε. A family (6.2.1) of linear equations is said to be generic, if the
corresponding family of polynomials f(t, ε) is generic.
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Recall the following :

Definition 6.2.2 A singular point t0 of a linear analytic ordinary differential equation ż = B(t)
t−t0

z is
said to be Fuchsian, if it is a first order pole of the right-hand side (i.e., the corresponding matrix
function B(t) is holomorphic at t0). The characteristic numbers of a Fuchsian singularity are the
eigenvalues of the corresponding residue matrix B(t0) (which are equal to the logarithms divided by
2πi of the eigenvalues of the corresponding monodromy operator).

Remark 6.2.3 A family (6.2.1) of linear equations is generic if and only if the difference of the
characteristic numbers at α0(ε) (or equivalently, at α1(ε)) of the perturbed equation is not real for
small ε and, moreover, has argument bounded away from πZ uniformly in ε small enough. The latter
condition implies that the monodromy operator of the perturbed equation around each singular point
αi has distinct eigenvalues (moreover, their moduli are distinct), and hence, a well-defined eigenbase
in the solution space (for small ε).

The singularities of the perturbed equation from a generic family have imaginary parts of constant
(and opposite) signs (by definition). Without loss of generality we assume in what follows that

Imα0 > 0, Imα1 < 0 (see Fig. 6.2).

��
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� � ���

Fig. 6.2 – Two generically confluenting singularities

Definition 6.2.4 Let (6.2.1) be a generic family of linear equations (see the previous definition)
whose singularity families satisfy the previous inequalities. Let Sj, j = 0, 1, be a pair of good sectors
in the t-line such that αj(ε) ∈ Sj , j = 0, 1, iR+ ⊂ S0, iR− ⊂ S1 (see Fig. 6.1). The sector Sj is said
to be the sector associated to the singularity family αj , j = 0, 1.

We show that appropriate branches of the eigenfunctions of the monodromy operator Mi around
αi of the perturbed equation converge to canonical solutions of the nonperturbed equation in the
corresponding sector Si. This will imply the statement from the title of this subsection.

To formulate the latter statement precisely, consider the auxiliary domain

S′
i = Si \ [α0(ε), α1(ε)], (6.2.2)

which is simply-connected, and the canonical branches of the monodromy eigenfunctions on the domain
S′
i. In more detail, consider a small circle going around αi, and take a base point on it outside the

segment [α0(ε), α1(ε)]. In the space of local solutions of the perturbed equation at the base point
consider the monodromy operator Mi acting by the analytic extension of a solution along the circle
from the base point to itself in the counterclockwise direction. The eigenfunctions of Mi have well-
defined branches (up to multiplication by constants) in the corresponding disc with the segment
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[α0(ε), α1(ε)] deleted. Their immediate analytic extension yields their canonical branches on S′
i. In

other terms, we identify the space of local solutions with the space of solutions on S′
i by immediate

analytic extension, consider Mi as an operator acting in the latter space and take its eigenfunctions.
The canonical basic solutions of the nonperturbed equation are numbered by the indices 1 and

2, which correspond to the eigenvalues λ1, λ2 of A(0). To state the results previously mentioned, let
us define an analogous numbering of the monodromy eigenfunctions at αi(ε). The monodromy eigen-
functions are numbered by the eigenvalues of the corresponding residue matrix. The latter eigenvalues
are proportional to those of the matrix A(αi(ε), ε), which tend to λ1 and λ2, as ε → 0. This induces
the numbering of the monodromy eigenfunctions with the indices 1 and 2 corresponding to the limit
eigenvalues λ1 and λ2.

Theorem 6.2.5 Let (6.2.1) be a generic family of linear ordinary differential equations (see Defini-
tion 6.2.1), αi(ε) its singularity family, let Si be the corresponding sector (see the previous definition),
and S′

i the domain (6.2.2). Consider the eigenbase on S′
i of the monodromy operator of the perturbed

equation around αi(ε). The appropriately normalized eigenbase (by multiplication of the basic functions
by constants) converges to the canonical solution base (6.1.5) on Si of the nonperturbed equation.

Corollary 6.2.6 Let (6.2.1) be a generic linear equation family (see Definition 6.2.1), αi its sin-
gularity families, let Si be the corresponding sectors (see the previous definition) chosen to cover a
punctured neighborhood of zero, and S′

i the corresponding domains (6.2.2). Let C0, C1 be the corres-
ponding Stokes matrices (6.1.6) of the nonperturbed equation in the left (respectively, right) component
of the intersection S0 ∩ S1. Consider the eigenbase on S′

i of the monodromy operator of the perturbed
equation around αi(ε). Denote by Ziε(t) the fundamental matrix of this eigenbase. Let C0(ε) (C1(ε))
be the transition matrix between the monodromy eigenbases Ziε(t), i = 0, 1, in the left (respectively,
right) component of the intersection S′

0 ∩ S
′
1 :

Z1
ε (t) = Z0

ε (t)C0(ε) for Re t < 0;

Z0
ε (t) = Z1

ε (t)C1(ε) for Re t > 0.
(6.2.3)

For any i = 0, 1 and appropriately normalized monodromy eigenbases Zjε , j = 0, 1 (the normalization
of Z0

ε (only) depends on the choice of i), Ci(ε) → Ci as ε→ 0.

Remark 6.2.7 Theorem 6.2.5 and Corollary 6.2.6 extend to the general case of arbitrary Poincaré
rank k and dimension n [38], as do the notions of a generic family of linear equations and a sector
associated to a singularity family. The statement of Corollary 6.2.6 in the case of k = 1 and arbitrary
n remains the same. But for higher k (when the number k + 1 of transition matrices is less than
that of Stokes matrices) it says that appropriate products of subsequent Stokes matrices (not all the
Stokes matrices themselves) are limit transition matrices between appropriate branches of monodromy
eigenbases. These limit products of Stokes matrices cover all the Stokes matrices. On the other hand,
each element of a Stokes matrix in a limit product can be expressed as a polynomial in the product
elements ; so, all the Stokes matrices can be recovered from the limit transition matrices.

6.2.2 Stokes operators as limits of commutators of appropriate powers of
the monodromy operators

The Stokes and monodromy operators act in different linear spaces : in the solution spaces of the
nonperturbed (respectively, perturbed) equations. To formulate the statement from the title of the
subsection, let us first identify these solution spaces and specify the loops defining the monodromy
operators.

Let (6.2.1) be a generic family of linear equations. Take the “base point”

t0 = −
1

2
.
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Remark 6.2.8 The space of local solutions of a linear equation at a nonsingular point t0 ∈ C is
identified with the space of initial conditions at t0 (which is common for the nonperturbed and the
perturbed equations). This identifies the solution spaces of the latter. The space thus obtained will be
denoted by Ht0 .

Remark 6.2.9 Let (6.1.1) be an irregular equation with k = 1, n = 2, λ1 − λ2 ∈ R, and let S0, S1

be good sectors covering a punctured neighborhood of zero in the t-line, both containing R− and R+

(see Fig. 6.1). Let C0, C1 be the Stokes operators (6.1.6) corresponding to the left (respectively, right)
intersection component of the sectors. The operator C0 (C1) is well defined in the space Ht0 of local
solutions of (6.1.1) at any point t0 ∈ R− (respectively, t0 ∈ R+).

Now let us define the monodromy operators acting in the previous space Ht0 .

Definition 6.2.10 Let (6.2.1) be a generic family of linear equations, αi(ε), i = 0, 1, be its singularity
families. Fix a point t0 ∈ R (independent of ε). Let li be a small circle centered at αi(ε) whose closed
disc is disjoint from −αi(ε), ai = [t0, αi]∩ li, with the segment [t0, ai] oriented from t0 to ai. Consider
the closed path ψi = [t0, ai] ◦ li ◦ [t0, ai]

−1, i = 0, 1, which starts and ends at t0 (see Fig. 6.3). Define
Mi : Ht0 → Ht0 to be the corresponding monodromy operator of the perturbed equation.

�
���
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�� �
� �	


��
�
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Fig. 6.3 – The loops for the monodromy operators

We show that commutators of appropriate noninteger powers of the operatorsMi (see the following
definition) tend to the Stokes operators.

Definition 6.2.11 Let d ∈ R, and let M : H → H be a linear operator in a finite-dimensional linear
space having distinct eigenvalues. The d-th power of M is the operator having the same eigenlines as
M , whose corresponding eigenvalues are some values of d-th powers of those of M .

Theorem 6.2.12 Let (6.2.1) be a generic family of linear equations (see Definition 6.2.1) and αi(ε),
i = 0, 1, its singularity families. Let t0 = ±1/2, Ht0 the corresponding local solution space (see
Remark 6.2.8). Let Mi : Ht0 → Ht0 be the corresponding monodromy operators from Definition 6.2.10.
Let Si, i = 0, 1, be the corresponding associated sectors (see Definition 6.2.4) forming a covering of
a punctured neighborhood of zero, and let C0, C1 be the Stokes operators (6.1.6) of the nonperturbed
equation corresponding to the left (respectively, right) component of the intersection S0∩S1 (acting in
the spaces H−1/2 and H1/2 respectively, see Remark 6.2.9). Then for any pair of numbers d0, d1 > 0
such that d0 + d1 < 1

M−d1
1 Md0

0 Md1
1 M−d0

0 → C0 in the space H−1/2,

M−d0
0 Md1

1 Md0
0 M−d1

1 → C1 in the space H1/2 as ε→ 0.
(6.2.4)
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Theorem 6.2.12 is proved in the next section.

Remark 6.2.13 The statements of Theorem 6.2.12 imply the same statements in any space Ht0 ,
Re t0 < 0 (respectively, Re t0 > 0). Theorem 6.2.12 extends to the case of k = 1 and arbitrary
dimension [42].

6.3 Convergence of the commutators to Stokes operators. Proof
of Theorem 6.2.12

6.3.1 Projectivization. The plan of the proof of Theorem 6.2.12

Let us prove convergence of the first commutator in (6.2.4) ; the proof of the convergence of the
other commutator is analogous.

Thus, from now on, we put t0 = −1/2.
For the proof of Theorem 6.2.12 we consider the projectivization of the space Ht0 = C2. The

projectivizations of the monodromy and Stokes operators are Möbius transformations C → C (denote
by mi : C → C the projectivizations of the monodromy operators Mi, and by σ the projectivization
of the Stokes operator C0).

Let d0, d1 > 0, d0 + d1 < 1. Denote
m′
i = mdi

i .

For the proof of (6.2.4) we show (below and in subsections 6.3.2, 6.3.3) that

(m′
1)

−1m′
0m

′
1(m

′
0)

−1 → σ as ε→ 0. (6.3.1)

This means that the commutator (6.2.4) multiplied by an appropriate constant (depending on the
parameter) converges to C0. The commutator (6.2.4) has unit determinant, as does any commutator
and the operator C0 (which is unipotent, see Example 6.1.7). This together with (6.3.1) implies that
its limit exists and is equal to either C0 or −C0. The fact that it is really equal to C0 will be proved
in subsection 6.3.4.

To sketch the proof of (6.3.1), let us first recall the following :

Definition 6.3.1 ([6]) A Möbius transformation is said to be hyperbolic, if it has two fixed points
one of which is attracting (then the other is repelling). It is said to be parabolic, if it has only one
fixed point. (Otherwise, it is said to be elliptic.)

In what follows, we represent hyperbolic and parabolic transformations by figures as follows. The
Riemann sphere C will be drawn in the form of a circle. A hyperbolic transformation with fixed points
a and b, a being repelling, will be represented by marking a and b at the circle (representing C) and
an oriented segment going from a to b (see Fig. 6.4(a)). A parabolic transformation with fixed point
a, sending b to c, will be represented by marking the points a, b, c and the arrow from b to c on the
circular arc joining them and disjoint from the fixed point a (see Fig. 6.4(b)).

Remark 6.3.2 The projectivization of a Stokes operator of an irregular equation is parabolic, since
a Stokes operator is unipotent (see Example 6.1.7). The projectivization of a two-dimensional linear
operator having eigenvalues with distinct modulus is hyperbolic : its repelling fixed point corresponds
to the eigenfunction with the eigenvalue of the smallest modulus ; its multiplier at the repelling fixed
point is equal to the ratio of the eigenvalues. Each monodromy operator Mi from Theorem 6.2.12 has
eigenvalues of distinct moduli (see Remark 6.2.3), so, its projectivization mi is hyperbolic.

For the proof of (6.3.1) we state and prove its analogue (Lemma 6.3.11 below) for commutators of
families of hyperbolic transformations generalizing m′

i = m′
i(ε). To do this and to motivate the proof,

let us first describe the arrangement of the fixed points of m0, m1 and σ.
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a

b

a)

a

b

cb)

Fig. 6.4 – Hyperbolic and parabolic transformations

Proposition 6.3.3 Let (6.1.1) be a two-dimensional irregular equation, λ1, λ2 be the eigenvalues of
the corresponding matrix A(0), and λ1 − λ2 > 0. Let S0, S1 be the sectors from Example 6.1.7 (see
Fig. 6.1), C0 be the Stokes operator (6.1.6) corresponding to the left component of their intersection,
and let σ be the projectivization of C0. Let fi1, fi2 be the canonical solutions of (6.1.1) on the sectors
Si, i = 0, 1, pi1, pi2 be their projectivizations. Then σ is a parabolic transformation with the fixed point
p02,

p02 = p12, σ(p02) = p02, σ(p01) = p11, (see Fig. 6.5(b)).

Proposition 6.3.3 follows from the definition, the unipotence and the lower triangularity of the
Stokes matrix C0 (see Example 6.1.7).

Proposition 6.3.4 Let (6.2.1) be a generic family of linear equations, t0 ∈ R, Mi be the monodromy
operators of the perturbed equation from Definition 6.2.10, fi1,ε, fi2,ε be their basic eigenfunctions,
and λi1, λi2 the corresponding eigenvalues. Then

µ0 =
λ01

λ02
→ ∞, µ1 =

λ12

λ11
→ ∞, as ε→ 0. (6.3.2)

Corollary 6.3.5 Under the conditions of Proposition 6.3.4, let mi : C → C be the projectivizations of
Mi, pij,ε be those of fij,ε. Then mi are hyperbolic transformations with fixed points pi1,ε, pi2,ε. More
precisely, p02,ε is the repelling point of m0, p11,ε is that of m1 (see Fig 6.5(a)), the corresponding
multipliers are equal to µ0, µ1, see (6.3.2) : they tend to infinity. Let Si be the sectors associated to
the singularities αi of the perturbed equation (see Definition 6.2.4), pij be the projectivizations of the
canonical sectorial solutions on Si of the nonperturbed equation. Then

pij,ε → pij as ε→ 0 (see Fig. 6.5(b)). (6.3.3)

Statement (6.3.3) follows from Theorem 6.2.5.
To motivate the proofs of the convergence of the commutators in (6.2.4) and (6.3.1), consider the

simplest case, where in the family of equations (6.2.1) the matrix function family A(t, ε) is lower-
triangular. Then the line z1 = 0 is invariant for each equation of the family. This implies that the
monodromy operators M0 and M1 have a common eigenfunction (whose graph lies in the invariant
line z1 = 0) and their projectivizations mi have the common fixed point p02,ε = p12,ε, repelling for
m0 and attracting for m1 (see Fig. 6.6(a) below). In this case not only does the commutator in (6.3.1)
converge : it does so with arbitrary powers mdi

i , di > 0, in particular, m−1
1 m0m1m

−1
0 → σ. This is

implied by (6.3.2), (6.3.3) and a more general Proposition 6.3.6 stated below. To formulate it, let us
introduce the following notation :

ha,b,ν : C → C (6.3.4)

is the hyperbolic transformation of the Riemann sphere fixing points a, b ∈ C ; a is repelling with the
multiplier ν.
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m0

m1

P01,ε

P11,ε

P12,ε

P02,ε

a)

P01

P11

P12 = P02

σb)

Fig. 6.5 – The projectivizations of the monodromy and Stokes operators

Proposition 6.3.6 Let p, p01, p11 be three distinct points of the Riemann sphere, and let σ : C → C

be the parabolic transformation fixing p and sending p01 to p11. Consider three arbitrary families of
points a, b0, b1 ∈ C converging to pij (see Fig. 6.6) :

a→ p, b0 → p01, b1 → p11.

Then in the notation (6.3.4)

h−1
b1,a,ν1

ha,b0,ν0hb1,a,ν1h
−1
a,b0,ν0

→ σ as (a, b0, b1) → (p, p01, p11), ν0, ν1 → ∞.

b0

b1

a

hb1,a,ν1

ha,b0,ν0

a)

P01

P11

P

σb)

Fig. 6.6 – Degenerating hyperbolic transformations with a common fixed point

The proof of Proposition 6.3.6 is straightforward and can be done by hand (e.g., multiplying the
(triangular) matrices of the h’ s explicitly). It is omitted to save space.

In the previous case of the lower-triangular matrix A(t, ε) the families mi of hyperbolic transfor-
mations (and also mdi

i with arbitrary di > 0) satisfy the conditions of Proposition 6.3.6 by (6.3.2),
(6.3.3). This together with the proposition implies (6.3.1).

In the general case, the transformations mi have distinct fixed points : p02,ε 6= p12,ε. On the
other hand, the latter fixed points are confluent to the fixed point p = p02 of σ. For the proof
of (6.3.1) in the general case we show first that the distance dist(p02,ε, p12,ε) is not too large : it
decreases as O(µ−1

1 ) (Corollary 6.3.8). Then we state and prove a generalization (Lemma 6.3.11) of
Proposition 6.3.6 for families of hyperbolic transformations ha0,b0,ν0 , hb1,a1,ν1 that have no common
fixed point, but confluenting families of fixed points a0, a1 → p such that the distance dist(a0, a1)
between them decreases fast enough, more precisely, as o(|ν0ν1|

−1). We apply Lemma 6.3.11 to the
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hyperbolic transformations m′
i = mdi

i and νi = µdii . To show the possibility of applying Lemma 6.3.11
to m′

i, it suffices to prove that dist(p02,ε, p12,ε) = o(|ν0ν1|−1). This is the place where we use the
inequalities on the exponents di from Theorem 6.2.12.

To estimate the distance dist(p02,ε, p12,ε), we use the following

Lemma 6.3.7 Let (6.2.1) be a generic family of linear equations (see Definition 6.2.1), αi be its
singularity families, Si be the corresponding sectors (see Definition 6.2.4) chosen to cover a punctured
neighborhood of zero, S′

i be the corresponding domains from (6.2.2). Let C0, C1 be the Stokes matrices
(6.1.6) of the nonperturbed equation (corresponding to the left (respectively, right) component of the
intersection S0 ∩ S1),

C0 =

(
1 0
c0 1

)
, C1 =

(
1 c1
0 1

)
(see Example 6.1.7). (6.3.5)

Let Mi be the monodromy operator of the perturbed equation around αi(ε) acting in the space of
solutions on S′

i. Let Ziε be (the fundamental matrix of ) its eigenbase. Let C0(ε) be the transition
matrix (6.2.3) between the bases Ziε that converges to C0, as ε → 0, see Corollary 6.2.6 (we consider
the transition in the left component of the intersection S′

0 ∩ S
′
1) :

C0(ε) =

(
1 + o(1) u(ε)
c0 + o(1) 1 + o(1)

)
, u(ε) → 0.

Let λ11, λ12 be the eigenvalues of M1 at α1(ε), µ1 = λ12/λ11 be the corresponding multiplier of its
projectivization. Then the upper triangular element u(ε) of the matrix C0(ε) has the asymptotics

u(ε) = (−c1 + o(1))µ−1
1 as ε→ 0, (6.3.6)

where c1 is the upper triangular element of the Stokes matrix C1 in (6.3.5).

Lemma 6.3.7 is proved in subsection 6.3.2.

Corollary 6.3.8 Let (6.2.1) be a generic family of linear equations, t0 = −1/2, Mi be the monodromy
operators from Definition 6.2.10, mi be their projectivizations, p02,ε be the repelling fixed point of m0,
p12,ε be the attracting fixed point of m1, and let µ−1

1 be the multiplier of the latter attracting fixed
point. Then

dist(p02,ε, p12,ε) = O(µ−1
1 ) as ε→ 0.

Remark 6.3.9 The multipliers of a hyperbolic transformation at its fixed points are inverse. In
particular, in the preceding corollary, µ1 is the multiplier of m1 at its repelling fixed point p11,ε.

Proposition 6.3.10 Let Mi be the monodromy operators from Definition 6.2.10, mi their projectivi-
zations, and µi the multipliers at their repelling fixed points. Then

|µ0| = |µ1|
1+o(1) as ε→ 0.

Proof Recall that appropriate logarithms of the eigenvalues of the monodromy operators around
singularities are equal to 2πi times the corresponding eigenvalues of the residue matrices (i.e., the
characteristic numbers). The characteristic numbers at α0(ε) are equal to −(1 + o(1)) times those
at α1(ε). This together with (6.3.2) implies that ln |µ0| = (1 + o(1)) ln |µ1|, which proves Proposi-
tion 6.3.10. 2

As is shown below, (6.3.1) is implied by Corollary 6.3.8, Proposition 6.3.10, the inequalities on di
from Theorem 6.2.12, and the following lemma.
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Lemma 6.3.11 Let p, p0, p1 be three distinct points of the Riemann sphere, and σ : C → C the
parabolic transformation fixing p and sending p0 to p1. Consider four arbitrary families of points
a0, a1, b0, b1 ∈ C converging to p, p0 and p1 (see Fig. 6.7) :

a0, a1 → p, b0 → p0, b1 → p1.

Then in the notations (6.3.4)

h−1
b1,a1,ν1

ha0,b0,ν0hb1,a1,ν1h
−1
a0,b0,ν0

→ σ, (6.3.7)

as a0, a1 → p, (b0, b1) → (p0, p1), ν0, ν1 → ∞ so that dist(a0, a1) = o(|ν0ν1|−1).

b0

b1

a0

a1

o(|ν0ν1|
−1)

hb1,a1,ν1

ha0,b0,ν0

a)

P0

P1

P

σb)

Fig. 6.7 – Degenerating hyperbolic transformations with a pair of rapidly confluenting fixed points

Lemma 6.3.11 is proved in subsection 6.3.3.

Proof of (6.3.1) Let us show that the families of hyperbolic transformations m′
i = mdi

i satisfy the
conditions of Lemma 6.3.11. Their fixed points converge to pij by (6.3.3). Their multipliers at the

repelling fixed points are equal to νi = µdii . Now it suffices to prove the last asymptotic formula

in (6.3.7) saying in our case that dist(p02,ε, p12,ε) = o(|µd00 µ
d1
1 |−1). The latter formula follows from

Corollary 6.3.8, Proposition 6.3.10, positivity of the powers di and the inequality d0 + d1 < 1 from
the conditions of Theorem 6.2.12. This together with Lemma 6.3.11 proves (6.3.1). 2

6.3.2 The upper triangular element of the transition matrix. Proof of
Lemma 6.3.7

The transition matrix C0(ε), which converges to the Stokes matrix C0, Z
1
ε = Z0

εC0(ε), compares
the monodromy eigenbases Z0

ε and Z1
ε in the left component of the intersection S′

0 ∩S
′
1, in particular,

on a real interval in R−. It is not changed when we extend the basic functions analytically from R− to
R+ along the real line. Denote by Ziε,+ the corresponding branch on R+ of the extended fundamental

matrix Ziε, i = 0, 1. By construction, Z0
ε,+ is obtained from Z0

ε |R+ by applying the monodromy operator

M0 ; Z1
ε,+ is obtained from Z1

ε |R+ by applying the inverse monodromy operator M−1
1 :

Z1
ε,+ = Z1

ε |S′
1
M−1

1 ; the matrix M1 is diagonal (6.3.8)

On the other hand, we can choose a renormalization of the eigenbase Z0
ε,+ by multiplication of the

basic functions by constants (i.e., changing it to Z0
ε,+Λ(ε), Λ(ε) = diag(l1(ε), l2(ε)) so that in the right

component of the intersection S′
0 ∩ S

′
1 the transition matrix C1(ε) between Z0

ε,+Λ(ε) and Z1
ε tends to

the Stokes matrix C1 :
Z0
ε,+Λ(ε) = Z1

ε |S′
1
C1(ε), C1(ε) → C1.
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Substituting (6.3.8) and (6.2.3) in the latter formula yields

C0(ε) = Λ(ε)C−1
1 (ε)M−1

1 . (6.3.9)

The matrices Ci(ε) tend to the Stokes matrices Ci, which are unipotent. The matrices Λ(ε), M1 are
diagonal and depend on ε. This implies that

Λ(ε) = M1(1 + o(1)) as ε→ 0.

This together with (6.3.9) implies (6.3.6).

6.3.3 Commutators of hyperbolic transformations with close fixed points.
Proof of Lemma 6.3.11

Lemma 6.3.11 can be proved “by hand” by multiplying explicitly the matrices of the hyperbolic
transformations in the commutator (6.3.7).

Denote the latter commutator by ∆. For the proof of Lemma 6.3.11 it suffices to show that

∆(a0) → p, (6.3.10)

∆′(a0) → 1, ∆(b0) → p1 :

these statements imply that ∆ does not tend to infinity and each of its limit points is a Möbius
transformation having fixed point p with unit multiplier and sending p0 to p1 (thus, coinciding with
σ), hence ∆ → σ.

Let us prove (6.3.10) (the proof of the other two statements is analogous). Recall the last asymptotic
condition from Lemma 6.3.11 :

dist(a0, a1) = o(|ν0ν1|
−1). (6.3.11)

Consider the orbit of the point a0 under consecutive hyperbolic transformations forming the commu-
tator (6.3.7). Applying h−1

a0,b0,ν0
does not move a0. Applying hb1,a1,ν1 moves a0 to a point (denoted by

a′0) close to a1 ; more precisely,

dist(a′0, a1) = ν−1
1 dist(a0, a1)(1 + o(1)) = o(ν−1

0 ν−2
1 ) (6.3.12)

(by (6.3.11)). Put

a′′0 = ha0,b0,ν0a
′
0, a′′′0 = h−1

b1,a1,ν1
a′′0 .

For the proof of (6.3.10) it suffices to show that

a′′′0 → p, or equivalently, dist(a′′′0 , a1) → 0. (6.3.13)

By (6.3.11), (6.3.12),

dist(a′0, a0) = o(|ν0ν1|
−1).

Applying ha0,b0,ν0 to a′0 yields : dist(a′′0 , a0) = o(ν−1
1 ) → 0, hence by (6.3.11),

dist(a′′0 , a1) = o(ν−1
1 ).

Applying h−1
b1,a1,ν1

to a′′0 and using the previous formula yields dist(a′′′0 , a1) → 0. This proves (6.3.13)
and (6.3.10).



113

6.3.4 Convergence of projectivizations versus convergence of linear
operators. The end of the proof of Theorem 6.2.12

We have already proved that the projectivization of the first commutator in (6.2.4) converges to
that of the Stokes matrix C0. Let us show that the commutator itself converges to C0. This is implied
by Lemma 6.3.11 and the following :

Proposition 6.3.12 Under the conditions of Lemma 6.3.11 consider two-dimensional linear opera-
tors whose projectivizations are the hyperbolic transformations hx,y,ν from the commutator (6.3.7).
Then the corresponding commutator of linear operators converges to a unipotent operator.

Proof The transformation σ is parabolic ; thus, it is the projectivization of a (unique) unipotent
operator (denote that operator by C). The convergence of projectivizations means that the commu-
tator of the linear operators under consideration multiplied by appropriate constant converges to C.
The commutator has unit determinant, as a commutator, and so does C. Therefore, the commutator
converges either to C, or to −C. Let us show that it converges to C.

Let a0, a1 be the confluenting fixed points of the hyperbolic transformations. In the case where
a0 ≡ a1, this statement holds by definition : the operators in the commutator have a common eigenline,
hence, the corresponding eigenvalue of the commutator is equal to 1, not −1, so, the limit is C.

In the general case we can consider without loss of generality that the families of points a0, a1

meet infinitely many times while confluenting. The commutators of linear operators corresponding to
the meeting places tend to C by the previous statement. This proves the proposition. 2

Thus, by Lemma 6.3.11 and the above proposition, the commutator (6.2.4) converges to a unipotent
operator whose projectivization is the same as that of the Stokes operator C0, which is also unipotent.
Hence, the limit operator coincides with C0. This finishes the proof of Theorem 6.2.12.

6.4 Nonlinear analogues and proof of Theorem 6.2.5

In the present section we state the nonlinear analogues of Theorem 6.2.5 and Corollary 6.2.6
for two-dimensional saddle-node holomorphic vector fields and their Martinet-Ramis moduli (subsec-
tion 6.4.2). We consider a two-dimensional holomorphic vector field with an elementary degenerate
singular point (saddle-node). We study its generic deformation under which the degenerate singu-
larity of the nonperturbed field splits into nondegenerate linearizable singularities of the perturbed
field. The Martinet–Ramis invariant (of the orbital analytic classification) of the nonperturbed field is
expressed in terms of the limit transition functions between the linearizing charts of the singularities
of the perturbed field in [39]. Here we state this result only in the case of multiplicity two (see [39] for
its statement for higher multiplicities). The linearizing charts determine the canonical first integrals
of the perturbed field. Theorem 6.4.17 says that appropriate branches of the canonical first integrals
of the perturbed field converge to appropriate sectorial canonical integrals of the nonperturbed field.
This implies that the components of the Martinet-Ramis invariant are the limit transition functions
between the canonical integrals of the perturbed field (Corollary 6.4.18).

The main result on saddle-nodes (Theorem 6.4.17) implies Corollary 6.4.22 saying that the “hori-
zontal” separatrices of the perturbed field converge to the sectorial central manifolds (zeros of canonical
integrals) of the nonperturbed field.

The main result on linear equations (Theorem 6.2.5) is related to its nonlinear analogue for saddle-
nodes. Namely, the projectivization transforms the nonperturbed linear equation (6.1.1) to a holomor-
phic vector field on C×{|t| < 1} having two saddle-node singularities. A generic deformation of (6.1.1)
is transformed to a generic deformation of the pair of saddle-nodes. It appears that Theorem 6.2.5
reformulated in terms of the projectivization follows from the previously mentioned Corollary 6.4.22
on the convergence of the horizontal separatrices of generically perturbed saddle-nodes.

The previously mentioned results concerning saddle-nodes are stated in Subsection 6.4.2. Theo-
rem 6.2.5 and Corollary 6.4.22 are proved in Subsections 6.4.3 and 6.4.4, respectively.
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The basic definitions (canonical first integrals and Martinet-Ramis moduli of saddle-nodes), which
may be found in [67, 93], are recalled in Subsection 6.4.1.

6.4.1 Two-dimensional saddle-node singularities and their Martinet-Ramis
invariants

Definition 6.4.1 We say that an isolated singular point of a holomorphic vector field is of complex
saddle-node type, if the corresponding linearization operator has exactly one zero eigenvalue.

Definition 6.4.2 Two holomorphic vector fields are said to be orbitally analytically equivalent, if there
exists a biholomorphic diffeomorphism of the corresponding phase spaces that maps the complex phase
curves of the first vector field into the phase curves of the second one. Orbital analytic equivalence
of germs of holomorphic vector fields is defined similarly. The formal orbital equivalence of germs is
defined analogously with a formal diffeomorphism, i.e., a two-dimensional formal power series invertible
under composition. More precisely, two germs are said to be formally orbitally equivalent, if there exists
a formal diffeomorphism transforming the first germ to the second one multiplied by a formal nonzero
function, i.e., a formal power series with nonzero free term.

Remark 6.4.3 Any germ of a holomorphic vector field in (C2, 0) with a saddle-node singularity at
the origin is orbitally analytically equivalent to the germ at the origin of a vector field of the form

{
ṗ = p+O(|p|2 + |t|k+1),

ṫ = tk+1.
(6.4.1)

Definition 6.4.4 Let S be a radial sector on a complex line with coordinate t. For any r > 0, we set
Sr = S ∩ {|t| < r}.

One can ask the following question : Is it possible to separate variables in the differential equation
corresponding to the vector field (6.4.1) or, more precisely, is it true that the germ of (6.4.1) is
locally orbitally analytically equivalent to the germ of a field corresponding to a differential equation
with separated variables ? Generally, this question has a negative answer. At the same time, the
answer is positive for the formal equivalence. Namely, any saddle-node field (6.4.1) is formally orbitally
equivalent to a unique vector field of the form

{
˙̃p = p̃(1 + λtk),

ṫ = tk+1,
λ ∈ C. (6.4.2)

The corresponding vector field (6.4.2) is called the formal normal form of (6.4.1) (see [67, 93]).
Generically, the normalizing power series is divergent. On the other hand, there are neighborhoods

Up and Ut of the origin on the axes p and t, respectively, and a covering of the punctured neighborhood
Ut by 2k radial sectors Sj (i.e., sectors with vertex at the origin), j = 0, . . . , 2k − 1, possessing the

following property : for appropriate r > 0 in each of the domains S̃j = Up×Srj , there is a holomorphic
coordinate transformation

H̃j : (p, t) 7→ (p̃ = Hj(p, t), t) (6.4.3)

that transforms (6.4.1) to its normal form (6.4.2) ; furthermore, at the origin Hj(p, t) possesses an
asymptotic power series in z and t coinciding with the normalizing series (see [67, 93]).

The “nontriviality” of the transition from one normalizing chart (6.4.3) to another (over the in-
tersection of the sectors of the covering) gives rise to an obstruction for orbital analytic equivalence
between the vector field (6.4.1) and its formal normal form (6.4.2), and is called the nonlinear Stokes
phenomenon. This obstruction is the nontriviality of the Martinet-Ramis invariant. We now give its
definition. To this end, consider the canonical first integral

I(p̃, t) = p̃t−λ exp

{
1

ktk

}
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of the formal normal form (6.4.2). The integral I, together with the sectorial normalizing coordinate

transformations H̃j , induces the first integrals

Ij = I ◦ H̃j (6.4.4)

of (6.4.1) over the sectors Sj (more precisely, in the domains S̃rj ). These integrals are called the sectorial

canonical integrals. We set S2k = S0, H̃2k = H̃0. In the definitions of all the integrals Ij = I ◦ H̃j ,
j = 0, . . . , 2k, we choose the branches of the (multivalued) function I so that for each j ≤ 2k − 1
its branch over Sj+1 (corresponding to the index j + 1) be the analytic extension of its branch
over Sj when moving counterclockwise in the t-plane. We introduce 2k transition functions φj(τ),
j = 0, . . . , 2k− 1, comparing the canonical integrals Ij and Ij+1 over components of the intersections
of the corresponding sectors Sj and Sj+1 :

Ij+1 = φj ◦ Ij . (6.4.5)

Remark 6.4.5 The system of functions φj in (6.4.5) is determined uniquely up to conjugation by
multiplication by a constant, i.e., up to transformations of the form

φj(τ) 7→ cφj(c
−1τ), where c ∈ C \ 0 does not depend on j. (6.4.6)

The vector field (6.4.1) is orbitally analytically equivalent to its formal normal form (6.4.2) if and
only if φj(τ) ≡ τ for all j. More generally, two germs of vector fields of the form (6.4.1) are orbitally
analytically equivalent if and only if they have the same formal normal form and the corresponding
systems of functions φj from (6.4.5) are obtained one from the other by applying successively a
transformation of the form (6.4.6) and a cyclic shift of order k of the 2k indices j (see [67, 93]).

Example 6.4.6 Consider the case of multiplicity two, i.e., when k = 1 in (6.4.1), (6.4.2). Then the
previous covering consists of the same two good sectors S0 and S1, as in subsection 6.1.2, in the
case of linear equations (see Example 6.1.7 and Fig. 6.1). The previous collection {φj} consists of
two functions φ0 and φ1. The function φ1(τ) is holomorphic on C and has the form φ1(τ) = τ + c1,
c1 ∈ C. The function φ0(τ) is holomorphic in a neighborhood of the origin and has unit derivative at
0 : φ0(τ) = τ + o(τ), as τ → 0.

Definition 6.4.7 The equivalence class of a collection of functions φj in (6.4.5) under transformations
(6.4.6) (and cyclic shifts of order k of the indices, if k > 1) is called the Martinet-Ramis orbital analytic
classification invariant of the vector field (6.4.1).

6.4.2 Confluence of singular points and Martinet-Ramis invariant

We state the result on expressing the Martinet-Ramis invariant via limit transitions between li-
nearizing charts only in the case of multiplicity two, i.e., k = 1 (its statement in the general case may
be found in [39]). To do this, we introduce some notations and recall the theorem on linearizability of
a generic nondegenerate singular point of a two-dimensional holomorphic vector field.

Definition 6.4.8 A singular point of a holomorphic vector field is said to be linearizable if the
corresponding germ of the field is orbitally analytically equivalent to its linear part.

Definition 6.4.9 The characteristic number of a two-dimensional holomorphic vector field at its
singular point is the ratio of the eigenvalues of the corresponding linearization operator.

Theorem 6.4.10 ([8]) A singular point of a two-dimensional holomorphic vector field with a finite
nonreal characteristic number is linearizable.
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Definition 6.4.11 A singular point of a two-dimensional holomorphic vector field is said to be typical
if in suitable coordinates the corresponding linear part has the form

{
ṗ = λp,

ṫ = µt,
|λ| > |µ|,

µ

λ
/∈ R.

The canonical integral of this linear vector field is its first integral pt−λ/µ. The canonical integral of
a two-dimensional vector field at its typical singular point is obtained from the canonical integral of
the corresponding linear part by applying the linearizing coordinate transformation.

Remark 6.4.12 If a singular point of a two-dimensional holomorphic vector field is typical in the
sense of the preceding definition, then it is linearizable (Theorem 6.4.10). The corresponding canonical
integral is determined uniquely up to a constant factor.

We consider the following continuous one-parameter deformation (depending on the parameter
ε ≥ 0) of the saddle-node (6.4.1) (which corresponds to ε = 0) in the class of holomorphic vector
fields :

{
ṗ = p(1 +R(p, t, ε)) + g(t, ε)f(t, ε),

ṫ = f(t, ε),
f(t, ε) = (t− α0(ε))(t− α1(ε)), (6.4.7)

f(t, 0) = t2, R(0, 0, 0) = 0, α0 + α1 ≡ 0,

where g and R are continuous families of holomorphic functions. Assume that the degenerate singular
point 0 of the nonperturbed field splits into two typical singularities (0, αi(ε)) of the perturbed field,
αi(ε) 6= αl(ε) for i 6= l, ε 6= 0. For a generic deformation (6.4.7) (see the next definition) we shall express
the Martinet-Ramis invariant of the nonperturbed field in terms of the limit transition functions
comparing the canonical integrals of the perturbed field.

Remark 6.4.13 When we restrict ourselves to deformations of the type (6.4.7) only, we do not loose
generality (see [39]).

Definition 6.4.14 A vector field family (6.4.7) is said to be a generic saddle-node family, if the
corresponding family of polynomials f(t, ε) is generic (see Definition 6.2.1).

Remark 6.4.15 Suppose that (6.4.7) is a generic saddle-node family. Then the arguments of the
characteristic numbers of the singular points of the perturbed vector field are uniformly bounded
away from πZ for all sufficiently small values of the parameter. In particular, for small ε the singular
points of the perturbed field are typical : one eigenvalue of the corresponding linearized operator
tends to zero and the other eigenvalue tends to one. Thus the corresponding canonical integrals (see
Definition 6.4.11) are well defined for small ε 6= 0. Conversely, if the characteristic numbers of the
perturbed field in a continuous family of vector fields (6.4.7) satisfy the above estimate, then the
families f(t, ε) and (6.4.7) are generic.

Recall that the roots αi(ε) of a generic family f(t, ε) of polynomials have imaginary parts of
constant sign. Without loss of generality we assume that Imα0 > 0, then Imα1 < 0.

A sector in the t-line associated to a root family αi(ε) of f(t, ε), i = 0, 1, is defined in the same
way as in Definition 6.2.4.

For a typical family (6.4.7), we shall show that a branch of the appropriately normalized canonical
integral of the perturbed field at the singular point (0, αi(ε)) converges to the sectorial integral of the
nonperturbed field over the corresponding sector Si.
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Definition 6.4.16 Suppose that V is a domain on the Riemann sphere, Vε is a one-parameter family
(depending on the parameter ε ≥ 0) of domains on the sphere. We say that the family Vε converges
to V as ε → 0, if it converges to V in the Hausdorff sense, i.e., if the maximal distance from a point
of the boundary ∂Vε to the boundary ∂V tends to zero, and the same is true for the boundaries ∂V
and ∂Vε interchanged. By convergence of a family of functions holomorphic in Vε depending on the
same parameter ε we mean uniform convergence of these functions on compact subsets of V .

Theorem 6.4.17 Suppose that (6.4.7) is a generic saddle-node family of vector fields (see Defini-
tion 6.4.14), α = αi(ε) is a continuous family of t-coordinates of their singularities, S = Si is a
sector associated to it (see Definition 6.2.4). There exist an r > 0, a neighborhood Up of the origin on
the p-axis, and a family Ωε of simply connected domains on the t-axis that contain α(ε) and do not
contain −α(ε) (this family depends on the same parameter ε and is defined for all small values ε 6= 0)
such that the following statements hold :

(1) The connected component containing α(ε) of Ωε ∩ (Sr \ [0,−α(ε)]) converges to Sr as ε → 0
(see Definition 6.4.16).

(2) Let Ω′
ε = Ωε\[α0(ε), α1(ε)]. The canonical integral Iε of the perturbed field (6.4.7) at the singular

point (0, α(ε)) (see Definition 6.4.11) is a multivalued holomorphic function on Ω̃ε = Up×Ωε branched

along the line t = α(ε). This function has a single-valued branch on Ω̃ε
′
= Up×Ω′

ε. This branch, when
appropriately normalized (see Remark 6.4.12), converges to the sectorial canonical integral (6.4.4) of

the nonperturbed field on S̃r = Up × Sr.

This theorem is proved in [39] for saddle-nodes of arbitrary multiplicity (but for a less general class
of deformations (6.4.7) in the case of multiplicity two). In fact, its version from [39] in the latter case
is equivalent to Theorem 6.4.17.

Corollary 6.4.18 Let (6.4.7) be a generic saddle-node family of vector fields, (0, αi(ε)) its singulari-
ties, i = 0, 1, and Si the corresponding sectors (see Definition 6.2.4). Accordingly, suppose that r > 0,
Up, and Ωε(i) are the constant, the neighborhood, and the domains Ωε corresponding to α = αi from
the preceding theorem, Ω′

ε(i) = Ωε(i) \ [α0(ε), α1(ε)], Ii,ε(t) is the canonical integral of the perturbed
field at the singular point (0, αi(ε)) (see Definition 6.4.11). More precisely, we take its single-valued

branch in the domain Ω̃ε
′
(i) = Up × Ω′

ε(i) ; we set I2,ε = I0,ε. Let Cj be the connected component
of Sr0 ∩ Sr1 , j = 0, 1 (we assume that C0 ⊃ R−, C1 ⊃ R+), and let φj be the corresponding com-
ponent (6.4.5) of the Martinet-Ramis invariant of the nonperturbed field. There exists a family C(ε)
of connected components of Sr0 ∩ Sr1 ∩ Ω′

ε(0) ∩ Ω′
ε(1) that converges to Cj as ε → 0 and possesses

the following property : the transition function Φε between appropriately normalized integrals Il,ε in

C̃(ε) = Up × C(ε), Ij+1,ε = Φε ◦ Ij,ε, is holomorphic in a domain (depending on ε) that converges to
the domain of φj , and Φε → φj as ε→ 0.

Corollary 6.4.18 and its extension to higher multiplicities are contained in [39].

Now we formulate another corollary of Theorem 6.4.17, on convergence of appropriate separatrices
of the perturbed field to the sectorial central manifolds of the saddle-node. We use this corollary
further in the proof of Theorem 6.2.5.

Definition 6.4.19 The sectorial separatrix of a saddle-node (6.4.1) over a good sector S is the zero
curve of the corresponding canonical sectorial integral (or equivalently, the image of the central mani-
fold of the formal normal form under the inverse of the normalizing change of variables). The horizontal
separatrix of a typical singular point of a two-dimensional holomorphic vector field is the zero curve
of the corresponding canonical integral (see Definition 6.4.11).
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Remark 6.4.20 Let (6.4.1) be a saddle-node vector field, S a good sector (see Definition 6.1.2), and
Γ the corresponding sectorial separatrix (see the preceding definition). There exists an r > 0 such that
Γ contains the graph

p = q(t) (6.4.8)

of a function q(t) with the following properties :

(i) q is holomorphic in Sr and continuous in its closure ;

(ii) this is the unique function satisfying (i) whose graph is tangent to the field.

Remark 6.4.21 Consider a two-dimensional holomorphic vector field in coordinates (p, t) with a
typical singularity. Let the eigenline of its linearization operator with the largest eigenvalue be parallel
to the p-axis. Then the corresponding horizontal separatrix (see Definition 6.4.19) contains the graph

p = q(t) (6.4.9)

of a holomorphic function, the graph contains the singularity. This is the unique graph of a holomorphic
function tangent to the field and passing through the singularity.

Corollary 6.4.22 Let (6.4.7) be a generic saddle-node family. Then the horizontal separatrices at
the singularities of the perturbed field converge to the sectorial separatrices of the saddle-node over
the corresponding sectors (see the previous Definition). More precisely, let b(ε) = (0, α(ε)) be a sin-
gularity family, S be the sector associated to α (see Definition 6.2.4). Let q(t) be the function whose
graph (6.4.8) is contained in the sectorial separatrix over S, and qε(t) the function with graph (6.4.9)
contained in the horizontal separatrix of the perturbed field at b(ε). There exist an r > 0 and a family
Ωε of domains in the t-line, α(ε) ∈ Ωε, −α(ε) /∈ Ωε, satisfying the following statements :

(1) the connected component containing α(ε) of the intersection (Sr \ [0,−α(ε)]) ∩ Ωε converges to
Sr, as ε→ 0 (see Definition 6.4.16) ;

(2) the function q(t) is holomorphic in Sr, qε is holomorphic in Ωε, and qε → q.

The generalization of the corollary to arbitrary dimension and multiplicity is stated and proved in
[39].

6.4.3 Projectivization. Proof of Theorem 6.2.5

For the proof of Theorem 6.2.5 we projectivize all the linear equations involved. The projectiviza-
tion of a linear equation is a tangent line field on the product P1 × {|t| < 1} that is the pushforward
of the linear equation under the tautological projection C2 \ 0 → P1 (or a holomorphic vector field on
the latter product contained in the tangent line field).

The projectivization of a two-dimensional irregular equation (6.1.1) is a holomorphic vector field
on P1 × {|t| < 1} having a pair of singularities on the fiber P1 × 0 (which correspond to the eigen-
lines of the matrix A(0), the coordinate lines in our case). These singularities are saddle-nodes of the
same order k as the Poincaré rank of the equation under consideration (k = 1). The projectivization
transforms the graphs of the canonical sectorial solutions of (6.1.1) to the sectorial separatrices of the
corresponding saddle-node singularities of the projectivization (and hence, the solutions themselves
to the corresponding functions (6.4.8)). Indeed, the images of the canonical solutions under the tau-
tological projection are functions holomorphic in the corresponding sectors and continuous in their
closures (by construction), and their graphs are tangent to the projectivization. By uniqueness (see
Remark 6.4.20), they coincide with those defining the corresponding sectorial separatrices.

The projectivization of a perturbed equation from a generic family (6.2.1) is a holomorphic vector
field on the same space P1 × {|t| < 1} with four typical singularities : a pair of singularities in each
fiber P1 × αi(ε), i = 0, 1. Analogously, the projectivization transforms the graphs of the monodromy
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eigenfunctions at the singularities of the perturbed linear equation to the horizontal separatrices of
the projectivization.

The projectivization of a generic family of linear equations becomes a generic saddle-node family
(locally near each saddle-node singularity of the projectivization of the nonperturbed equation) after
applying an appropriate family of changes of the space variable. Now the preceding corollary applied
to the family of projectivizations says that the horizontal separatrices converge to the sectorial se-
paratrices of the projectivized nonperturbed equation. This means that the branches in S′

i of the
monodromy eigenfunctions (taken up to multiplication by constants) converge to the canonical ba-
sic solutions of the nonperturbed equation (also taken up to multiplication by constants). Therefore,
appropriately normalized monodromy eigenfunctions converge to appropriately normalized canonical
basic solutions. This proves Theorem 6.2.5 modulo Corollary 6.4.22.

6.4.4 Convergence of the horizontal separatrices. A brief proof of
Corollary 6.4.22

We give a brief proof of Corollary 6.4.22 independent on Theorem 6.4.17 (the complete text of the
proof may be found in [39]).

Let us prove the statements of Corollary 6.4.22, say, for

α = α0, S = S0 : let us show that qε → q.

To do this, we show that the functions qε are holomorphic in domains Ωε large enough (satisfying
statement (1) of Corollary 6.4.22) and form a normal family (i.e., precompact in the topology of
uniform convergence on compact sets in Sr) : more precisely,

|q′ε(t)| < 1, |qε(t)| ≤ |t− α0(ε)| for any t ∈ Ωε. (6.4.10)

(Recall that by definition, qε(α0(ε)) = 0.) Then the limit of any convergent sequence qεn , εn → 0, is
a function holomorphic in the sector Sr and continuous in its closure that vanishes at 0. Its graph is
tangent to the saddle-node field. Therefore, by the uniqueness statement of Remark 6.4.20, the limit
coincides with q. This together with normality proves the convergence qε → q.

For the proof of the bounds (6.4.10) we consider the following family K of tangent cones at the
points of the phase plane and the corresponding cone K ′ :

K = {|ṗ| < |ṫ|}, K ′ = {|p| < |t− α0(ε)|}.

The inequalities (6.4.10) are equivalent to the inclusions

TΓqε ⊂ K, Γqε ⊂ K ′, (6.4.11)

where Γqε is the graph of the function qε.
For the proof of the inclusions (6.4.11), we consider an appropriate constant multiple

vθ(ε) = eiθ(6.4.7), θ ∈ R is independent on ε,

of the vector field family (6.4.7). We choose the number θ so that the singular point b0(ε) = (0, α0(ε)) of
the perturbed field vθ(ε) from the new family is hyperbolic with the stable manifold W s = {t = α0(ε)}
and the unstable manifold being locally the horizontal separatrix Wu = Γqε. More precisely,

(1) the eigenvalue of the linearization operator of vθ(ε) at b0(ε) at the eigenline tangent to the line
{t = α0(ε)} has a negative real part ;

(2) the other eigenvalue has a positive real part ;

(3) the previous conditions hold “uniformly” : the real part of the former eigenvalue is bounded
away from zero ; the argument of the latter eigenvalue is bounded away from π/2 + πZ.
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The above conditions will be satisfied if, e.g., θ < −π/2 and θ is close enough to −π/2.
In the proof of (6.4.11) we use the fact that for any θ satisfying (1)–(3)) there exists a bidisc U

in the phase space (independent of ε) such that for any ε small enough the tangent cone field K is
invariant under the real flow of the perturbed field vθ(ε) : each cone of K is mapped under a positive
time flow map strictly inside the cone of K at the image of the point under consideration. This implies
that the cone K ′ is also vθ(ε)-invariant.

The inclusions (6.4.11) hold a priori at the singular point b0(ε), and hence in its neighborhood
(whose size depends on the parameter). By invariance of K, they remain valid in all the trajectories
of the field vθ(ε) in the unstable manifold Γqε that go out from the singular point. These trajectories
saturate a domain in Γqε bijectively projected onto some domain in the t-line (denoted by Ωε). If the
bidisc U is chosen in an appropriate way (say, centered at 0 and so that its height in the coordinate
p is at least two times greater than its width in the coordinate t ; denote by V its projection to the
t-line), then the previous domain Ωε is saturated by the real trajectories of the quadratic vector field

ṫ = eiθ(t− α0(ε))(t− α1(ε))

in the disc V that go out from its repelling singular point α0(ε) (see Fig. 6.8(a)). The family of the
domains Ωε thus constructed satisfies statement (1) of Corollary 6.4.22, at least for some sector S
associated to α0. (In fact one can achieve this for an arbitrary given sector S associated to α0 by
appropriate choice of θ.) This proves Corollary 6.4.22.

In fact, the domain Ωε converges to a domain (denoted Ω, see Fig. 6.8(b)) bounded by a cardioid-
like curve having a “cusp” at 0 with tangency to the ray arg t = π − θ. Recall that the closure of the
sector S0 is disjoint from iR−. One can achieve that the latter cusp ray be arbitrarily close to iR− (so
that the limit domain Ω contains the sector Sr0 for appropriate r > 0) by choosing a θ < −π/2 close
enough to −π/2.
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Fig. 6.8 – The domains Ωε and Ω, where the separatrices have bounded slopes
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no. 4, 489–516.
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