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Chapitre 1

Introduction

Le 16me probeme de Hilbert concerne les champs de vectes polynomiaux dans le plan eel. Un
cycle limite est une orbite fernee isoke. Le probkme est le suivant :

Est-il vrai que le nombre de cycles limites est toujours maj& par une constante ne dcependant
gue du dege maximal d'une composante du champ ?

Ce probkeme est ouvert et a une histoire riche de plus de 100rs (voir [69]). Le meilleur esultat
connu dit que pour tout champ polynomial, le nombre de cycledimites est ni. Cela fut cemonte
simultarement et incependamment par J. Ecalle [28] et Yu.S.llyashenko [66].

Dans les anrees 1950, I.G.Petrovskii et E.M.Landis [84] ohessaye de esoudre le 16me probeme
de Hilbert. Leur cemonstration s'est aeee fausse [62]. En m&me temps, ils ont suggee une nethode
ineressante : etudier un champ de vecteurs polynomial canplexe sur C? et ses orbites complexes,
qui sont des surfaces de Riemann. Ces derneres orbites fment un feuilletage holomorphe singulier
de C2. Les cycles limites du champ eel sont des cycles limites eoplexes de son complexie : lacets
non contractiles sur des orbites complexes dont I'holononei (I'application de premier retour) est non
triviale.

Il est bien connu, que les racines complexes d'une famille deolyndbmes de méme dege sont
continues en le paranetre, et leur nombre (avec multiplicies) reste constant (il est toujoursegal au
dege). Petrovskii et Landis ont essaye de demontrer que, grosso modo, les cycles complexes d'une
famille de champs polynomiaux ont une propree similair e.

Letude du 16me probkeme de Hilbert et les ickes de Petr ovskii et Landis ont motiwe le developpement
de beaucoup de domaines dans la dynamique, l'analyse et laegnetrie, en particulier,

- les feuilletages par des surfaces de Riemann et l'uniforisation de feuilles;

- les inegrales akeliennes;

- les invariants de classi cation analytique de germes d'aplications conformes et de champs de
vecteurs holomorphes, le ptenonene de Stokes.

Yu.S.llyashenko a commence letude des feuilletages hamorphes singuliers par des surfaces de
Riemanna la n des anrees 1960. Il a camonte qu'un champ de vecteurs polynomial non lireaire
gererique sur C? d'un dege donre a toutes les orbites complexes denses, etn nombre cenombrable
de cycles limites complexes [65, 60].

Dans les anrees 1960 D.V.Anosov a conjectue que pour un cdmp polynomial gererique toutes
les orbites complexes sont simplement connexes (sauf pounuombre cenombrable d'orbites). Cette
conjecture est ouverte.

La plupart de mes travaux concernent les trois themes mentonres ci-dessus. Mes travaux plus
kecents concernent

- les laminations horospleriques en dynamique holomorphg

- les sous-groupes non libres dans les groupes de Lie.
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1.1 Resune des travaux pesenes dans ce nemoire

Ici toutes les citations sont donrees selon les Rekrenesa la n du memoire.

1.1.1 Uniformisation de feuilletages par des surfaces de Ri emann (chapitre
2)

Pouretudier les cycles complexes, llyashenko a commend@ la n des anrees 1960) letude de
l'uniformisation des feuilles (orbites) complexes. Le esultat d'uniformisation d'une feuille e
est donre par le theoeme classique de Poincae et Kebe :

Threoeme d'Uniformisation. Toute surface de Riemann simplement connexe et non compacte
est conformrementequivalente ou biena C, ou bien au disque.

e nition 0. Une surface de Riemann esparabolique (hyperbolique) si son reveétement universel
est conformementequivalenta C (resp. au disque).

A toute section transverseD simplement connexe, llyashenko a assoce la eunion desavétements
universels des feuilles intersectanD : toute revétement universel est celui d'une feuille avec o point
margle dans D. Cette eunion s'appelle la varee de revétement universels. Pour les feuilletages
holomorphes singuliers de dimension un sur une varet deStein (par exempleC"), il a cemonte que
toute varee de revétements universels munie de la structure complexe naturelle est une varee de
Stein [63, 68]. Cette varee est un cylindre tordu : varee bee holomorphiquement au-dessus de D,
dont les bres sont des courbes holomorphes simplement coemnes (revétements universels), et qui
admet une section holomorphe (donree paD elle-méme).

J'avais cemonte dans ma trese [35, 36, 37], quetoutes les feuilles d'un champ de vecteurs po-
lynomial gererique sur C" sont hyperboliques.J'avais aussi cemonte unenon@ analogue pour les
feuilletages sur une varee projective lisse arbitraire. Independamment et presqu'en méme temps,
des cas particuliers ont ee cemontes dans le travail c ommun de A. Candel et X. Gomez-Mont
[19] (plus tot) et par A.Lins Neto [87]. Cela a donre une eponsea une question pose par llyashenko
(n des anrees 60).

Il est important de connatre la cependance de l'uniformisation d'une feuille en le pararetre
transverse. Le treoeme classique de L. Bers [13] sur l'uiformisation simultaree concerne un feilletage
holomorphe par des surfaces de Riemann compactes. Il dit qua varee bee de leurs revétements
universels est toujourssimultarement uniformisable : biholomorphiqguementequivalentea un ouvert
deC D be au-dessus de D par des domaines simplement connexes.

llyashenko a conjectue (n des anrees 1960), que toute vaee de revétements universels (et plus
cereralement, tout cylindre tordu Stein) est simultare ment uniformisable. Il I'avait cemonte dans
un cas particulier, pour un feuilletage par des courbes akgpriques compactes au voisinage d'une
courbe invariantea singularies de Morse [64].

J'ai construit des contre-exemples [43, 44] des varees de revétements universels non simul-
tarement uniformisables. Celle de [43] est assocee au feuilletage d'une surface (ae ou projective)
par des courbes algebriques, pour une section transverseppropree. Dans [44] j'ai monte qu'il existe
des surfaces complexes (tant a nes que projectives) qui adettent un feuilletage holomorphe de di-
mension una singularies isokes, dont aucune varet e de revétements universels n'est simultarement
uniformisable. En plus, un tel feuilletage peut étre chois feuilles denses et avec une structure a ne
transverse.

Les esultats des articles [43, 44] sont pesenes dansa section 2.3.

Presqu'en méme temps j'avais etude un autre probeme sur une autre notion d'uniformisabilie
simultaree, concernant les feuilletages (pas forementholomorphes) par des surfaces de Riemann, a
la structure complexe des feuilles est lisse en le paranetrtransverse. Un exemple de base, introduit
et partiellementetude par E. Ghys [34], est un tore de dimension quelconque, feuilletpar des plans
paraleles et muni d'une netrique riemannienne lisse g arbitraire. La nmetrique induit sur chaque feuille
une structure complexe. Toute feuille est conformrementequivalentea C, et admet donc une netrique



conforme plate et compkte. Plus peciement, il existe sur chaque feuille une fonction positive lisse
(unique a multiplication par une constante pes), telle q ue la nmetrique g de la feuille soit plate et
compekte.

E. Ghys a demanck si la fonction peut &tre choisie sur chaque feuille de sorte qu'elle soitdse en
le paranetre transverse. Il a cemonte une eponse positive en dimension 3 dans des cas particuliers,
guand ou bien les feuilles sont des cylindres, ou bien la peatdu feuilletage \eri e une condition
diophantienne [34].

Je I'ai cemonte dans le cas ereral :

Theoeme [45].  Pour tout feuilletage d'un tore (de dimension quelconque)gr des plans paraléles,
et pour toute netrigue g riemannienne lisse C* sur le tore, il existe une fonction positive et lisse
C! sur le tore, telle que la restrictiona toute feuille de la metrique g soit plate.

Dans le méme article [45] j'ai obtenu d'autres esultats (positifs et regatifs) concernant d'autres
feuilletages. Les esultats principaux de cet article soh pesenes dans Sections 2.1 et 2.2.

La preuve de ce dernier treoeme m'a permis d'obtenir une rouvelle cemonstration du treoeme
de redressement d'une structure presque complexe lisse slgrtore de dimension deux [45, 51]. Avec
des arguments classiques, cela donne une nouvelle cemorstion [51] du treoeme de C.B. Morrey, Jr.
sur I'existence d'une application quasiconforme qui redrese une structure presque complexe borree
mesurable sur la sptere de dimension 2 [4, 94].

1.1.2 Laminations horospleriques en dynamique holomorph e (chapitre 3)

Les laminations (feuilletages topologiques) par des surfaes de Riemann et par des varees hyper-
boliques apparaissent dans dierents domaines des matheatiques, dont la dynamique d'ierations
d'une fonction rationnelle : b

f=—:C! C:
Q

En 1985 D. Sullivan [110] a introduit un dictionnaire entre deux domaines de la dynamique com-

plexe : les ierations de fonctions rationnellesf (z) = 28 : C! C sur la sprere de Riemann et la
treorie des groupes kleiniens. Ces derniers sont les sogseupes discrets du groupe d'automorphismes
conformesP SL,(C) de la sptere de Riemann. Ce dictionnaire a motive beaucop de esultats remar-
guables dans les deux domaines, en commercant par le dire tteoeme de Sullivan sur I'absence de
composantes errantes dans la theorie des ierations de foctions rationnelles.

L'un des objets principaux dans letude des groupes kleinéns est la varee hyperbolique de dimen-
sion trois assoceea un groupe kleinien. C'est le quotiehde I'espace hyperboliqueH?® par I'action du
groupe agissant par isomretries. M. Lyubich and Y. Minsky ont suggee detendre le dictionnaire de
Sullivan par une construction analogue pour les ierations de fonctions rationnelles.A toute fonction
rationnelle f , ils ont assoce unelamination hyperbolique H; (voir [89] et le Chapitre 3 de ce nemaoire).
C'est un espace topologique feuillee par des orbifolds hgerboliques de dimension trois (qui peuvent
avoir des singularies coniques), \eri ant les propre s suivantes :

- tout point non singulier possede un voisinage homeomorge au produit d'une partie d'un ensemble
de Cantor par la boule de dimension trois;

- la nmetriqgue hyperbolique des feuilles est continue en le pranetre transverse;

- il existe une projection naturelleH; ! C, quirekve l'action f : C! C (non inversible)a l'action
par un homeomorphismef": Hs ' H ¢, qui est une isonetrie sur les feuilles ;

- l'action de f" est proprement discontinue.

Le quotient H¢ =f" est donc un \joli" espace topologique lamire par des orbifdds hyperboliques de
dimension trois ; I'espaceH; =f" s'appelle la lamination hyperbolique quotient

La lamination hyperbolique H¢ est construite de la manere suivante. Prenons I'extensio naturelle

f* de la dynamique def a I'espace N de toutes les demi-orbites regatives :

Ni = f2=(20;z 1;2 2;::1)jz ;2C; f(z | 1)=2 ;0
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Nt IN 55 (zoiz 15000) 7! (F(20); 20,2 15030):

Ce dernier espace contient toujours beaucoup de surfaces &emann confornementequivalentesa
C. La eunion de toutes cettes surfaces (noeeA}') est invariante par la dynamique relewee " La
lamination hyperbolique est obtenue par le recollement d'me copie de I'espace hyperboliquédt® et
de chaque surface pecedante (eventuellement e aee), wvi d'un ra nement de la topologie et d'une
completion approprees.

Des travaux kecents sur les varees hyperboliques asse@eesa des groupes kleiniens ont aboutia
la solution de tous les grands probemes de la treorie, y capris une solution positivea la ekbre
conjecture d'Ahlfors sur la mesure de lI'ensemble limite. Caesultat est le fruit des e orts de nombreux
matrematiciens, voir les articles [3, 17] et leurs rekrences. D'un autre coe, tout ecemment, une
conjecture analogue pour la theorie des ierations rationnelles s'est eveke fausse. X. Bu et A. Cleritat
[16] ont construit des exemples de polyndmes quadratiques/ec ensembles de Julia de mesure positive,
en utilisant une nethode compktement dierente, propo e par A. Douady.

Il est espee, que letude des laminations hyperboliques assocees a des fonctions rationnelles
eclairera la dynamique sous-jacente d'une nouvelle marmre.

Jiaietude I'arrangement d' horospleres dans I'espace quotientH; =f* (voir les articles [48, 49]).
Rappelons leur e nition. L'espace hyperbolique H2 avec un point marque \ 1 " sur sa frontere (qui
est la spltere de Riemann) admet pour mocele standard le demespace dans l'espace euclidien de
dimension trois. Ses isonetries xant I'in ni sont exact ement les extensions des transformations af-
nes complexes de la frontere. Un plan horizontal dans le cemi-espace s'appelle urhorosplere. Les
isonetries hyperboliques deH?® xant I'in ni transforment des horospreres en des horospheres. Les
horospleres du quotient deH? par I'action d'un groupe discret de telles isonetries sontles images des
horospreres deH? par la projection naturelle (toutes ces horospreres portet des structures eucli-
diennes induites par la restriction de la metrique hyperbadlique). Ces structures euclidiennes peuvent
avoir des singularies coniques. Les horospleres feuidttent I'orbifold hyperboliqgue ambiant.

Les feuilles des laminationsH; et H¢ = sont aussi des quotients dé43 par un groupe d'isonetries
xant I'in ni. Toutes leurs feuilles sont donc feuilleee s par des horospteres bien c nies.

L'arrangement des horospteres dansH; et dans son quotientH; =f" est le au comportement du
cocycle des ceriveesjDf "(z)j des ierations de la fonction rationnelle f .

La lamination de H; par varees hyperboliques est toujours minimale (toute feuille hyperbolique
est dense), sauf pour le cas d'une fonction rationnelle aydrune orbite periodique epulsivel rami -
cation exceptionnelle" (pour exemple, Chebyshev ou Latts, voir la De nition 3.1.10 dans le Chapitre
3). Dans ce dernier cas il y a des feuilles isokes, dont le mibre est toujours ni. Notons

H? = H; n(feuilles hyperboliques isokes)

La lamination hyperbolique de H? est toujours minimale.
M. Lyubich et V. Kaimanovich ont cemonte, que si f appartienta la liste suivante :

Lates, Chebyshev, z ¢;

alors aucune horosprere danH?=f" n'est dense.

J'ai cemonte (en [48, 49]) une sorte de eciproque :

- si f n'appartient pasa la liste ci-dessus, alors il y a une in nit d'horospteres (explicitement
pesentes) denses dans le quotienH?:f" ou autrement dit, la lamination horospterique de H?:f" est
topologiquement transitive.

- si f nappartient pasa la liste ci-dessus, et de plus est critigement non ecurrent et sans or-
bite periodique parabolique, alors la lamination horospérique de Hfozf" est minimale : toutes les ho-
rospleres sont denses.

Lesenonas analogues sout faux pour la lamination horosferique de I'espace non factorieH?,
ep pour des polynémes quadratiques eels [49].
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1.1.3 Sous-groupes non libres dans les groupes de Lie (chapi tre 4)

Il est connu que dans un groupe de Lie dont la composante newdrest non esoluble, un couple
cererique (au sens de la mesure de Haar) dekments engadre un sous-groupe libre [29]. J'ai cemonte
gue si, en plus, ce sous-groupe libre n'est pas discret, albil est instable : il existe des paires arbitrai-
rement proches qui engendrent des sous-groupes non libres.

Tleoeme [50].  Soit G un groupe de Lie non esoluble,(A;B) 2 G G un couple delements
engendrant un sous-groupe libre non discret. Alors il exig une suite(Ax;Bx) ! (A;B) et une suite
de motswy (a;b) non triviaux en deux symboles abstraits (et leurs inversesiels quewy (Ax;Bk) =1
pour tout k.

Ce treoeme eponda une question d' E. Ghys, qui a propos detudier le taux d'approximation
d'une paire (A;B) comme ci-dessus par des gererateurs de sous-groupes ndibres, dont la lon-
gueur minimale d'une relation soit donree. Il y a une conjecure qui dit, que pour une paire (A;B)
\gererique”, le taux optimal d'approximation est expone ntiel en cette dernere longueur.

Dans le m&me article [50] j'ai obtenu une majoration du tauxoptimal, qui est exponentielle en une
puissance de la longueur minimale d'une relation.

1.1.4 Inegrales aleliennes et geonetrie algbrique guantitative (chapitre
5)

Tout champ de vecteurs polynomial sur le plan eel peut sécrire comme un champ de droites de
Zros d'une 1- formea coe cients polynomiaux. Un champ de dro'tes tangentesa un champ vectoriel
hamiltonien polynomial secrit comme

dH =0; ouH est le hamiltonien:

Les orbites fermees d'un champ hamiltonien forment une fanille continue d'ovales : courbes fermees
(non singuleres) dans les courbes de niveau de I'hamiltoien.

Aucune borne uniforme pour le nombre de cycles limites n'estonnue pour les champs polynomiaux
proches des champs hamiltoniens (sauf pour les champs quadigues ; un survol des esultats partiels
avec ekrences est pesent dans [69]), par exemple, dns une famille en un paranetre” du type

dH + " =0; ! = A(X;y)dx + B(x;y)dy; degA;degB < degH:

Un ovale f H = tg du champ hamiltonien (" = 0) peut engendrer un cycle limite du champ
perturke (" 6 0), seulement dans le cas ai le niveau correspondant est un zro d'une fonction I (t)
sreciale : l'inegrale akelienne z

I(t) = I

Cette dernere se prolonge a une fonction holomorphe sur ¢ revétement universel au-dessus du
compkementaire de I'ensemble des valeurs critiques compkes deH .

Dans mon travail commun avec Yu.S.llyashenko ([52, 53]), nos avons obtenu une majoration
explicite du nombre de zros d'une inegrale akelienne pour un hamiltonien polynomial d'un dege
arbitraire, de telle sorte, que :

- les droites complexes de zros de la partie homogene sepieure sont distinctes (i.e. la partie
superieure est non cegereee) et ne sont pas trop proches l'une de l'autre;

- les valeurs critiques complexes sont distinctes, et la diance minimale entre deux n'est pas trop
petite par rapporta la distance maximale.

Cette majoration est exponentielle en @legH)*. C'est la meilleure majoration connue jusqua
pesent.

La preuve de cette majoration est base sur une icke de llyahenko, la theorie de Picard-Lefschetz et
mes esultats [46, 47] obtenus au cours de notre travail. Cg esultats concernent les courbes de niveau
d'un polynéme complexe en deux variables, dont la partie hmogene superieure est non cegereee.
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Le esultat principal de [47] donne une formule explicite pour le determinant d'une matrice
d'inegrales aleliennes des 1- formes monomiales formanune base, le long d'une base des cycles
engendrant I'nomologie d'une courbe de niveau.

Il est connu que les racines et les points critiques d'un polydéme complexe unitaire normalie
admettent une borne superieure explicite. \Normali®" signie, que z2ro est un point critique, et
toutes les valeurs critiques sont dans le disque unike.

Les esultats de [46], qui appartiennenta la \ceorretri e algebrique quantitative”, etendent cet
enone aux polynémes en deux variables (convenablemennhormaliss d'une manere analogue). Le
treoeme principal donne une majoration du rayon minimal d'un bidisque cente en 2ro, qui contient
toute la topologie non triviale d'une courbe de niveau donree.

1.1.5 Con uence de points singuliers et plenonene de Stok es (chapitre 6)

L'holonomie (I'application de premier retour) d'un cycle | imite d'un feuilletage holomorphe de co-
dimension un est un germe d'application conforme C;0) ! (C;0)a point xe 0. Un germe est parabo-
lique s'il est tangeanta l'identie en O et dierent de l'ident ie. La classi cation analytique (i.e. modulo
conjugaison conforme) de germes paraboliques aet obtare simultarement et independamment par
J. Ecalle [27] et S.M. Voronin [117]. Leurs invariants analytques sont la forme normale formelle et
une collection nie de germes conformes(;0)! (C;0). Cette dernere collection s'appelle le module
d'Ecalle-Voronin.

La treorie des invariants d'Ecalle-Voronin est un analogue non lireaire de la theorie classique
(ceveloppee dans les anrees 1970) desequations dierentielles ordinaires lireaires en temps complexe
a points singuliers ireguliers. Consicerons, par exemple, uneequation dierentielle

z=A(t)z; z2 C";

al A(t) est une fonction matricielle meromorphe. Un point singulier d'une telle equation est un pole

de A(t). Il est de type Fuchssi c'est un pole simple. Il estiregulier si une certaine solution crot
exponentiellement le long d'un secteura sommet en le pointsingulier. La classi cation analytique de
germes dequations lireairesa points singuliers ire guliers aee obtenue par W. Balser, W. Jurkat, D.
Lutz, A. Peyerimho, Y. Sibuya [10, 75, 107]. Les invariants analytiques sont la forme normale formelle

et une collection d'operateurs lireaires unipotents agissant dans les espaces de solutions au-dessus de
secteurs appropres. Ces derniers operateurs s'appelld les operateurs de Stokes

Dans les anrees 1980 V.I. Arnold a propos detudier une equationa point singulier iregulier
comme une limite dequationsa points singuliers Fuchsiens, qui con uent. Il avait conjectue que cer-
tains operateurs de monodromie de lequation perturkee (Fuchsienne) convergent vers des operateurs
de Stokes. Une question proche aek posee et partiellemstetudee par J.-P. Ramis [104] (voir I'article
[41] pour un survol de esultats partiels avec egrences).

Dans les articles [38, 40, 41, 42], j'ai obtenu des esultat qui relient la monodromie limite avec
les operateurs de Stokes dans le cas non esonnant gereal et dans certains cas esonnants. Dans [39],
jai obtenu des analogues non lireaires de ces esultatsen particulier pour les germes paraboliques
et leurs invariants d'Ecalle-Voronin. Ces esultats, avec une esquisse de denmstration et un survol
historique, sont pesenes dans chapitre 6.

1.2 Resune des travaux non pesenes dans ce nemoire

Ici toutes les citations sont donrees selon la liste de pubitations personnelles dans la section 1.3.

Dans [1] j'ai obtenu la description combinatoire (analoguea celle de Lyashko et Loojienga) du
revetement de I'espace des polyndmes complexes ‘equikants" en une variable au-dessus des collec-
tions de leurs valeurs critiques.

Les travaux [2], [5], [7] et [22] font partie de ma these de datorat et concernent les feuilletages
holomorphes singuliers de dimension un suC" ou sur une varee projective lisse. J'ai cemonte
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[2,5,22] que pour un feuilletage gererique, toutes les failles sont hyperboliques : leurs revétements
universels sont conformementequivalents au disque. Dars [7], j'ai calcuk la codimension de I'ensemble
des feuilletages surC" et sur CP" qui ne satisfont pas les conditions su santes de [2,5,22] por
I'nyperbolicie de feuilles.

Dans les travaux [3] et [4] j'ai cemonte que si un champ de vecteurs lisse surR? a au moins un
point singulier, et en tout point du plan, toute valeur propr e de sa matrice de Jacobi a une partie
eelle regative, alors le point singulier est unique et globalement attractif. Cela a donre une eponse
positive a la conjecture planaire de Markus et Yamabe. Pregu'en méme temps (mais un peu plus
tot), deux autres solutions ontee obtenues par C. Gutie rrez et R. Fessler par methodes compktement
dierentes. J'ai construit un contre-exemple en dimension 3 dans [23]. Quand jetais en train de le
preparer pour publication, un contre-exemple polynomial sample en dimension 3 aet construit dans
un travail commun par A. Cima, A. van den Essen, A. Gasull, E. Hubbers et F. Manosas.

Dans [6], j'aietude les courbes sur le tore T? sans intersections, dont les relevees sur le revétement
universel R? ne sont pas borrees. On colle un cerclea I'in ni du plan : des rayons dierents partant
de l'origine aboutissenta deux points dierents du cercl e. J'ai donre une description compkte des
ensembles de directions (comme points du cerclea I'in ni) le long desquelles une telle relewee peut
s‘accumuler vers l'in ni. Ces ensembles sont : 1) un point; 2 deux points opposes; 3) un segment
ferme contenu dans un demi-cercle; 4) le cercle tout entier

L'article [12] concerne les equations dierentielles lireairesa point singulier iregulier esonnant du
type cererigue. Les esultats obtenus sont analoguesa ceux pesenes dans la sous-section pecedente
et dans le chapitre 6.

Dans [15] j'ai construit des fractions continues\exotiques" a coe cients eels, qui donnent un
contre-exemplea une a rmation trouvee dans des notes de Ramanujan.

L'article [17] avec son esultat (une formule explicite pour le ceterminant d'une matrice d'inegrales
aleliennes\de base") a cepet mentionre dans la sou s-section 1.1.4. Ce esultat, quietait utilie dans
la majoration du nombre de Zros d'une inegrale akelienne [18, 19], ne sera pas pesent ici.

Les esultats de l'article [9] sont brevement mentionn es dans la sous-section peedente et dans le
chapitre 6. Ceux qui ne sont pas pesenges ici concernent

- les ceformations d'un point xe parabolique et les invari ants d'Ecalle-Voronin;

- les deformations d'un point singulier n ud-col d'un cham p vectoriel holomorphe en dimension
strictement superieurea 2, et ses varees centrales sectorielles.

L'article [27] concerne une equation dierentielle lin eaire satisfaite par les inegrales hy-
pergeonetriques assoceesa un arrangement gererique d'hyperplans eels. Cette equation a un pole
d'ordre deuxa l'in ni, qui est un point singulier iregul ier non esonnant. Nous avons calcuk ses
operateurs de Stokes.

1.3 Liste de publications personnelles

1.3.1 Articles parus

[1] The analogue of Cayley's theorem for the cyclically-symmetric connected graphs with a single cycle
that are related to the gereralized Lyashko - Looijenga coverings - Uspehi Mat.Nauk, 2(1993) 233-234
(version anglaise en Russian Mathematicals Surveys 2(1993182-183).

[2] The hyperbolicity of phase curves of a generic polynomiavector eld in C" - Functsionalnyi Analiz
i iego Prilozheniia, 2(1994), 1-11 (version anglaise en Futional analysis and its Applications, 2(1994),
77-84).

[3] The complete solution of the Jacobian problem for planawvector elds - Uspehi Mat.Nauk, 3(1994),
173-174.

[4] Asymptotic stability of linearizations of planar vector eld with a singular point implies global
stability - Functsionalnyi Analiz i iego Prilozheniia, 4(1 995), 17-30 (version anglaise en Functional
Analysis and its Applications 4(1995), 238-247).
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[5] Hyperbolicity of leaves of a generic one-dimensional hemorphic foliation on a nonsingular pro-
jective algebraic manifold - Trudy Matematicheskogo Instituta im. V.A.Steklova, v.213 (1996), 90-111
(version anglaise en Proceedings of Steklov Mathematicahktitute, v.213 (1996), 83-103).

[6] Limit sets at in nity of liftings to the plane of nonself- intersected curves in the torus - Mathema-
ticheskiie zamietki journal, v.64 (1998), No 5, 667-679 (vsion anglaise in Mathematical Notes, v.64
(1998), No 5, 579-589).

[7] On the codimension of the set of one-dimensional polynoial foliations on C" and CP" that do not

satisfy the su cient conditions for hyperbolicity of leave s (en russe) - Algebra i Analiz, v. 11 (1999),
No 4, 35-63 (la traduction anglaise de ce journal sera SainRetersburg Mathematical Journal, v. 11
(2000), No 4).

[8] Stokes operators via limit monodromy of a generic deforrmation. - Journal of Dynamical and Control
Systems, v.5 (1999) No 1, 101-135.

[9] Con uence of singular points and the nonlinear Stokes Penomena - Trudy Moskovskogo Ma-
tematicheskogo Obshchestva, v.62 (2000), p.54-104 (en rees, la version anglaise de ce journal est
\Proceedings of Moscow Mathematical Society").

[10] Nonuniformizable skew cylinders : a counterexample téhe simultaneous uniformization problem.
- C.R.Acad.Sci.Paris, Srie 1 Math., t.332 (2001), p.209214.

[11] On simultaneous uniformization and local nonuniformiability. - C.R.Acad.Sci.Paris, Serie 1
Math., t.334 (2002), p.489-494.

[12] Resonant con uence of singular points and Stokes phemeena. - Journal of Dynamical and Control
Systems, vol. 10 (2004), No. 2 (April), pp. 253{302.

[13] Simultaneous metric uniformization of foliations by Riemann surfaces" Commentarii Mathematici
Helvetici, vol. 79, Issue 4 (2004), pp.704-752.

[14] On the monodromy group of con uenting linear equations - Moscow Math. J., 5 (2005), no. 1,
67-90.

[15] On convergence of generalized continued fractions ariRamanujan conjecture. - C. R. Math. Acad.
Sci. Paris 341 (2005), no. 7, 427{432.

[16] Upper bounds of topology of complex polynomials in two @riables. - Mosc. Math. J. 5 (2005),
no. 4, 781{828.

[17] An explicit formula for period determinant. - Ann. Inst . Fourier (Grenoble) 56 (2006), no. 4,
887{917.

[18] (Avec Yu.S.llyashenko). Restricted in nitesimal Hil bert sixteenths problem. - Doklady Academii
Nauk, 2006, v. 407, No 2, 154-159 (in Russian). English tramation in Doklady Mathematics, 20086,
vol. 73, No 2, 185-189.

[19] (Avec Yu.S.llyashenko). Restricted version of the infitesimal Hilbert 16-th problem. - Moscow
Math. J. 7 (2007), no. 2, 281-325.

1.3.2 Actes de colloques

[20] Con uence of singular points and Stokes phenomena. - RPiceedings of NATO Advanced Study
Institute "Normal Forms, Bifurcations and Finiteness Prob lems in Di erential Equations”, Montreal,
July 6-19 2002 (C. Rousseau and Yu. llyashenko, eds.), NATO @ence Series Il Math. Phys. Chem.,
(2004), vol.137, pp. 267-294. Kluwer Academic Publisherd)ordrecht.

[21] A survey on minimality of horospheric laminations assaiated to rational functions. - Dans Fields
Institute Communications 2007, Vol : 51, pp. 269-287. Pocedings of the Partially hyperbolic dynamics,
laminations, and Teichmuller ow Workshop, January 5-9, 2006.
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[22] Uniformization of leaves of one-dimensional holomorpic foliations - These Ph.D., Departement
de Mattematiques, Universie d' Etat de Moscou, 1996 (en russe).

[23] Asymptotic stability of linearizations of a vector el d in R3 with a singular point does not imply
global stability - preprint in Communicaciones del CIMAT, G uanajuato, Mexico, 1996.

[24] Simple proofs of uniformization theorems. -A paratre dans Fields Institute Communications.
Disponible sur l'archive :
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Chapitre 2

Uniformization of Riemann surface
foliations

The present Chapter deals with foliations by Riemann surfaes. The main question studied here is
the dependence of the uniformization of a leaf on the transveal parameter. We study this question
with respect to two di erent notions of simultaneous unifor mizability : the metric uniformizability
in the sense ofE Ghys (Sections 2.1, 2.2) and the holomorphic simultaneousniformizability of
holomorphic foliations in the sense of Yu.S.llyashenko (Saion 2.3). We present positive and negative
results. The main positive result is Theorem 2.1.3 stated in2.1.2 and proved in Section 2.2. Its proof
yields a new proof of the integrability of smooth almost compex structure on two-torus (Theorem
2.1.2 stated in 2.1.1 and proved in Section 2.2).

2.1 Metric uniformizability

2.1.1 Introduction : at metrics and uniformization

The (almost) complex structureon a two-dimensional real surface is a family of complex strotures
on the tangent planes at the points of the surface. A Riemann srface with its standard complex
structure carries a lot of nonstandard almost complex strutures. We say that a (nonstandard) complex
structure on a Riemann surface isboundedif it has uniformly bounded dilatation with respect to the
standard complex structure (see 2.1.5).

It is well-known that each measurable bounded almost compbe structure is locally integrable.
This was proved in [94] and earlier under additional regulaity conditions (Helder or continuous)
in [83, 86, 85]. Each measurable bounded almost complex stcture on C is globally integrable, see
the next theorem proved by M.A.Lavrentiev [85] for continuous almost complex structures and by
C.Morrey Jr. [94] in the general case.

Theorem 2.1.1 ([5, 94]). For any measurable (C* ) bounded almost complex structure on C there
exists a quasiconformal homeomorphism@* di eomorphism) C! C that transforms to the stan-
dard complex structure.

The de nition of a quasiconformal homeomorphism may be foum in [4]. Theorem 2.1.1 implies
that for any C! metric g on R? with bounded dilatation there exists aC! positive function :R?!
R+ such that the metric g is at and complete (the function is unique up to multiplication by
constant). This statement remains valid with R? replaced by an arbitrary parabolic Riemann surface
(see De nition 0).

In this section we present foliated versions of Theorem 2.1. Namely, we consider a real two-
dimensional foliation on a compact Riemann manifold M; g). The metric g induces an almost complex

17
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structure on each leaf. We suppose that the latter complex sucture is parabolic. (This property is
independent on the choice of the metric, by compactness and Reorem 2.1.1.) By the same theorem,
on each individual leafL there exists aC! function :L ! R. such that the metric g of the leaf
L is at and complete. We study the following questions.

Question 1. Is it possible to nd a C! function :M ! R, such that the restriction to each
leaf of the metric g be at and complete? In other words, is it true that the previo us functions
may be chosen to depend smoothly on the transversal paramet@

Question 2. If yes, is it possible to nd a Euclidean metric g° on the ambient manifold M that
coincides with g along the leaves, and for which each leaf be totally geodesikc

Positive and negative results were obtained in [45]. We premt some of them here (Subsections
2.1.2-2.1.4). The main positive results (Theorems 2.1.3,.2.11 and 2.1.12) concern linear planar fo-
liations on torus of arbitrary dimension equipped with a nonstandard Riemann metric (Subsections
2.1.2, 2.1.3). Counterexamples to Question 1 are discusséd 2.1.4.

The proof of Theorem 2.1.3 is based on a new proof (presented [45, 51]) of the following classical
Theorem. Both proofs are given in Section 2.2.

Theorem 2.1.2 ([Ab]) For any C! almost complex structure on T? = R2=2 Z? there exists aC*
di eomorphism of T2 onto appropriate complex torus (the latter torus depends on) that transforms
to the standard complex structure.

Theorem 2.1.2 is proved by showing the existence of a globalowhere vanishing - holomorphic
di erential. To do this, we use the homotopy method for the Beltrami equation with parameter.
This method reduces the proof to solving a linear ordinary dierential equation in L»(T?). We prove
regularity of its solution by showing that the equation is bounded in any Sobolev spacéd $(T2).

As is shown in [51] (by classical arguments), Theorem 2.1.2riplies the Poincae-Kebe Uniformiza-
tion Theorem (modulo the contractibility of a simply connected surface) and Theorem 2.1.1. Another
short proof of Theorem 2.1.1 using a di erent method (Fourier transformation) was earlier obtained
by A.Douady and X.Bu [23].

Analogues of Question 1 were studied by A.Verjovsky [115], ACandel and X.Gomez-Mont [19],
A.Lins Neto [87] for some holomorphic foliations with singdarities by hyperbolic Riemann surfaces.
A.Candel [18] completely answered the analogue of Questiohfor laminations by hyperbolic Riemann
surfaces, with at metric replaced by Poincae metric. In 1 995 E.Ghys [34] proposed and patrtially
studied Question 1. He proved the positive answer for lineafoliations on T2 under certain Diophantine
condition on the slope of the leaves. He noticed [34] that Rdefoliation of the three-sphere provides a
counterexample to Question 1. Moreoverthe foliated manifold (sphere) admits no bounded Riemann
metric whose restriction to each leaf be EuclideanTheorems 2.1.14 and 2.1.15 stated in 2.1.4 provide
counterexamples to Question 1 in the class o€! foliations on compact manifolds for which at least
one latter Riemann metric exists and is analytic. In these eamples we construct some other Riemann
metric g on the foliated manifold for which there is no positive smooh function such that the metric
g be at along the leaves.

2.1.2 Uniformizability of linear folations

Denote T" = R"=2 Z". Consider a two-dimensional parallel plane foliation onR". The standard
projection R" ! T" induces a foliation on the torus T". This foliation is called linear. Take a (non-
standard) metric g on T" and consider the corresponding complex structures on the &es. Then each
leaf is parabolic, by Theorem 2.1.1 and since the metrig has a bounded dilatation with respect to
the standard Euclidean metric (by compactness argument).

Theorem 2.1.3 [45]. Let F be an arbitrary linear foliation on T", g be a Riemann metric onT" that
is analytic (respectively, C1 /measurable and uniformly bounded from below oril™ with uniformly
bounded dilatation along the leaves oF ). There exists an analytic (respectively, C* /L) positive
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function : T" ! R, such that the restriction of the metric g to each leaf (almost each in the
measurable case) of the foliatiorF is at (in the sense of distributions in the third case) and complete.

Remark 2.1.4 In the previous theorem in the smooth and analytic cases the @ampleteness of the
metric g follows from the nonvanishing of the function and compactness argument.

Remark 2.1.5 For any linear foliation on T" either all the leaves are tori, or each leaf is dense. In
the simplest case, when all the leaves are tori, Theorem 2.3 follows from Theorem 2.1.2 with smooth
(analytic) dependence of the uniformization of the almost @mplex torus on the parameter of the
almost complex structure, see [2]. The proof of Theorem 2.2.given in 2.2 also works to prove the
regular dependence on the parameter. Thus, the interestingase of Theorem 2.1.3 is when the leaves
are dense : then all they are either planes, or cylinders.

2.1.3 Existence of conformal Euclidean metric for which lea ves are totally
geodesic

Here we present positive answers to Question 2 for linear fi@tions on T" satisfying some (sharp)
Diophantine conditions on the slope. These are two di erent Diophantine conditions (see De nition
2.1.7) corresponding to the cases, when the metric of the tars is smooth (respectively, analytic).

Denition 2.1.6  We say that a number 2 R nQ is Diophantine, if there exist constants C > 0,
s 1 such that for any pair m;k 2 Z, k 6 0, the following inequality holds :

. m._ c

J kJ jkjstt :

De nition 2.1.7  Consider a foliation onR" by parallel planes : level planes of a linear vector function
ofrank n 2. Let F be the corresponding factorized linear foliation onT". Let W  R" be then 2-

space passing through the origin and orthogonal to the plange Say that F is Diophantine, if there

exist constantsC > 0, s 1 such that forany N =(Ng;:::;Ny) 22" n0

dist(N; W c iN j X iNij
ist(N; )>jN7. INj = | iNij:
Say that F is weakly Diophanting if
My oz, iy (dist(N; W) T =1 (2.1.1)

Remark 2.1.8 Let n = 3, x = (X1;X2;X3) be coordinates in the spaceR3. Consider the foliation
on R® by level planes of the linear functionl(x) = a;x; + axX2 X3. Then the corresponding linear
foliation F on T2 is Diophantine, if and only if there exist constants C > 0, s 1 such that for any
N =(N1;N2;N3) 2 Z3n0 the following inequality holds :

jN1+ a1N3sj + jN2 + apN3j > W; JNJ = jNaj + jN2j + N3j: (2.1.2)
It is weakly Diophantine, if and only if
limy o3 jnjn (JN2+ @Ngj+ jN2 + aNgj) 7 =1: (2.1.3)

Example 2.1.9 In the notations of the previous remark let the additive subgroup in R generated by
a; and a, contain a Diophantine number. Then the foliation F is Diophantine. It is not known to the
author, whether the converse is true.
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Remark 2.1.10 The limit (2.1.1) is always less than or equal to 1. A Diophantne foliation is always
weakly Diophantine.

Theorem 2.1.11 [45]. Let F be a Diophantine foliation on T" (see De nition 2.1.7), g be aC*
Riemann metric on T". There exists aC! Euclidean metricgon T" and aC? function :T"! R.
such that

each leafL of the foliation F is totally geodesic andgj. = gj.: (2.1.4)

Or equivalently, let be the family of almost complex structures induced by the nt& g on the
leaves of F. There exist a discrete rank n additive subgroupG R" and a C! di eomorphism
T" I Tg = R"=G that transforms F to a linear foliation and sends to the standard complex
structure induced by the standard Euclidean metric. Convesely, if a linear foliation on T" is not
Diophantine, then there exists aC! metric g on the torus such that there is noC? Euclidean metric
g on T" satisfying (2.1.4).

Theorem 2.1.12 [45]. Let F be a weakly Diophantine foliation onT" (see De nition 2.1.7). Then

for any analytic metric gon T" there exists an analytic Euclidean metricg on T" that satis es (2.1.4).

Conversely, if F is not weakly Diophantine, then there exists an analytic metc g on T" such that
there is no C? Euclidean metric g on T" that satis es (2.1.4).

Let us justify the equivalence of the two statements of Theoem 2.1.11. Clearly, the second one
implies the rst one : the Euclidean metric from the rst stat ement is the pull-back of the standard
one under the di eomorphism from the second statement. Let s prove the converse. Any Euclidean
metric on a torus is transformed under appropriate di eomorphism into the standard Euclidean metric
on another torus (that is a quotient of the space by another ldtice in general). Consider the images
of leaves of the foliation. Their liftings to the space are panes, since the leaves are totally geodesic.
They are parallel. Indeed, the liftings to the space of any two leaves of the initial foliation remain on a
bounded distance from each other. Therefore, the same is teufor the liftings of their images (by the
compactness ofT"). Hence, they are parallel. Thus, the leaves of are transformed to the leaves of
a linear foliation. This shows that statement (2.1.4) of Theorem 2.1.11 implies its second statement.

Remark 2.1.13 Earlier A.Hae iger [58] have obtained a result implying that under an a priori stron-
ger Diophantine condition the metric g on the leaves extends up to a global metric on the torus for
which all the leaves are minimal surfaces.

2.1.4 Nonuniformizability. Counterexamples to Question 1

Theorem 2.1.14 [45]. There exists a two-dimensional analytic foliationF on T3 = T2 S! with the
following properties.
1) F is invariant under the translations of T2.
2) Any leaf is locally 1-to-1 projected to T2.
3) There are exactly two leaves that are horizontal tori; anyother leaf is homeomorphic to the cylinder
st R.
4) There exists an analytic family of almost complex structees on the leaves satisfying the two follo-
wing statements :

a) there is a unique continuous family of conformal at metrics on the leaves up to multiplication
by constant; it is analytic outside the previous toric leave;

b) the latter family of at metrics is not di erentiable in th e transversal parameter at one of the
toric leaves.

Theorem 2.1.15 [45]. There exists a two-dimensionalC! foliation F on T? S? with the following
properties.
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1) F is invariant under the translations of T2.

2) Any leaf is locally 1-to-1 projected to T2.

3) There is a big circle S S? such that the productT? St is a union of leaves ofF ; each of these
leaves is a horizontal torusT?> a, a2 St.

4) Any other leaf is di eomorphic to R?, and its accumulation set is the previous producfr? S,

5) There exists aC' metric g on T? S? such that on each non-toric leafL there exists a unique
function :L! R+ (up to multiplication by constant) such that the metric g j_ is at and complete.
The function (x) tends to innity, as x!1

Let us describe brie y the construction of the foliation and the metric from Theorem 2.1.15. The
foliation F is the suspension over the torusT? under appropriate action of its fundamental group Z?
by sphere di eomorphismsS? | S2. Any of these di eomorphisms xes only the points of the equator
S! S?andis atly tangent to the identity at these points. Thus, th e product T2 St is an invariant
set foliated by horizontal tori. Any other leaf L is canonically identi ed with R? and embedded to
T? S? by the pair of projections ( 1; 2): L ! T? S2 The mapping »:L = R?! S?isa
di eomorphism onto a hemisphere bounded by the equator. It ®@mmutes with the rotations of R?
around the origin and those of the hemisphere around its cemtr. The projection ; :L ! T?is a
universal covering : the composition of the group quotient mapping R? | T2 with a translation of
the torus. To de ne the metric g, we construct its restriction to the leaves and then extend t to the
transversal direction in an arbitrary way. The metric on the horizontal toric leaves is the lifting of the
standard Euclidean metric on T2. Any other leaf L = R? is equipped with an appropriate rotation-
invariant metric that tends to the standard Euclidean metri ¢, as the point where it is taken tends to
in nity.

For any rotation-invariant metric g on R? with uniformly bounded dilatation the corresponding
function :R?! R., for which the metric g is at and complete, is also rotation-invariant. The
latter function  can be nd by an explicit formula. It appears that one can achieve appropriate
asymptotic behaviors at in nity of the mapping , and the metric g so that the function (x) tend
toinnity, as x!1 , andgextends upto aC! family of metrics on all the leaves of the foliation F .

2.1.5 Complex structures and Beltrami equations. Basic not ations

To a (nonstandard) almost complex structure (denoted by ) on a subsetD C we put into
correspondence aC- valued 1- form that is C- linear with respect to . The latter form can be
normalized to have the type

! =dz+ (2)dz;jj< L (2.1.5)

The function :D ! Cis uniquely de ned by . Vice versa, for an arbitrary complex-valued function

with j j < 1, the 1- form (2.1.5) de nes the unique complex structure fo which the form is C- linear.
We denote by  the almost complex structure thus de ned (whenever the contary is not speci ed).
Then is bounded, if and only if the essential supremum of the fundbn j j is less than 1.

Denition 2.1.16  The ellipse associated to  on the tangent plane at a point z is given by the

equation jdz + (z)dzj = 1. The dilatation of is the aspect ratio of the ellpise : it is equal to
1+j (2)j
1j @i

We will be looking for a di erentiable homeomorphism ( z) that is holomorphic, i.e., that transforms
to the standard complex structure. This is equivalent to saythat the di erential of (which is a
closed 1- form) is aC- linear form, i.e., has the typef (z)(dz+ d z) :

@_ @ i equation)
@ = @Z(Beltraml equation):
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Remark 2.1.17 Conversely, let be C! with j j< 1. Then any C* closed 1- formf (z)(dz+ d z2)
is - holomorphic, i.e., is a di erential of a complex-valued C* function transforming to the
standard complex structure. A form f (dz+ (z)dz) is closed if and only if

@f = @(f ): (2.1.6)

2.2 Uniformization of almost complex torus. Proof of Theo-
rems 2.1.2 and 2.1.3

First we prove Theorem 2.1.2. At the end of the section we disass the proof of Theorem 2.1.3
obtained by modifying the proof of Theorem 2.1.2.

2.2.1 Homotopy method. The sketch of the proof of Theorem 2.1 2

Let :T?! CbeaC! complex-valued functionwithj j< 1.Let be the corresponding almost
complex structure,! = dz+ d z be the correspondingC- linear 1- form, see (2.1.5). Theorem 2.1.2
says that there exists a di eomorphism transforming (T?; ) into appropriate complex torus equipped
with the standard complex structure. We construct a C! nowhere vanishing functionf : T21 C
such that the 1- form fI  be closed or equivalently,f satisfy partial di erential Equation (2.1.6).
Then the lifting to the univgysal cover R? ! T2 of the form f! is the di erential of the mapping

R2=C! C, (2= Ozf! . The mapping is a di eomorphism and transforms the integer
lattice Z? and its translation images to some lattice G~ C and its appropriate translation images.
This follows from the de nition and the local di eomorphici ty of ( f 6 0). The factorized mapping
T2! TZ% = C=Gis a di eomorphism that sends  to the standard complex structure. This implies
Theorem 2.1.2.

To solve (2.1.6), we use the homotopy method. Namely, we inade into the one-parametric
family of complex structures (denoted by ) de ned by their C- linear 1- forms

I =dz+ (z;t)dz; (z;t)=1t (2); t2[0;1]:

The complex structure corresponding to the parameter valuet = 0 is the standard one, the given
structure  correspondstot = 1. We will nda C*! family f (z;t): T? [0;1]! C of complex-valued
nowhere vanishingC! functions on T2 depending on the same parametet, such that the di erential
formsf (z;t)! be closed, i.e.,

@f = @(f ); andf(z;0) L (2.2.1)

Then the function f = f (z;1) is the one we are looking for.
To construct the above-mentioned family of functions, rst we will nd a family f (z;t) of functions
that satisfy (2.2.1) and do not vanish identically on T2 for any xed parameter value t.

Lemma 2.2.1 Let (z;t): T2 [0;1]! C be aC! family of C! functions on T2 with j j < 1,

(z;0) 0, z be the complex coordinate orir?. There exists aC! family f (z;t): T2 [0;1]! C of
C! functions on T? that are solutions of di erential Equation (2.2.1) (with th e boundary condition)
such that for any xed t 2 [0; 1] one hasf (z;t) 6 O.

The Lemma will be proved in the next subsection.
We show that, in fact, the functions f (z;t) from the lemma vanish nowhere. To do this (and only
in this place) we use the local integrability of aC! complex structure :

Proposition 2.2.2  [20, 83, 85, 86]. LetD  C be a disk centered at 0, : D! C be aC! function
with j j < 1. Let be the corresponding almost complex structure, see (2.1.5Yhere exists a local
ct - holomorphic univalent complex coordinate near O.
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The proposition will be proved in Subsection 2.2.3.

Proof of Theorem 2.1.2 modulo Lemma 2.2.1 and Proposition 2. 2.2. Let f (z;t) be a family
of functions from Lemma 2.2.1. By the previous discussion,tisu ces to show that f (z;t) 6 0. This
inequality holds for t = 0, where f (x; 0) 1.

Let us prove that f (z; t) 6 O by contradiction. Suppose the contrary. Then the set of the parameter
valuest corresponding to the functionsf (z;t) having zeroes is honempty. Denote this set byM . Its
complement [Q 1]nM is open by de nition. Let us show that the set M is open as well. This will imply
that the parameter segment is a union of two disjoint open se$, which will bring us to contradiction.
It is su cient to show that the local presense of a zero of a furction f persists under perturbation.

Supposef (zo;t) = 0 for some zo and t (let us x them). It su ces to show that for any t° close to
t the function f (z;t% has a zero nearzy. Let w be the local - holomorphic coordinate onT? near
zo from Proposition 2.2.2 with  (z) replaced by (z;t) and w(zy) = 0. We consider that the function
f (z;t) does not vanish identically on T? locally near zy. One can achieve this by changingz, since
f (z;t) does not vanish identically on T2, Recall that the 1- form f (z;t)! (zit) 1S a closedC- linear
form on T2 with respect to the complex structure (z:t)- Hence, it is holomorphic in the coordinate
w. Therefore, f (z;t)! (z.1) = (wX + higher terms)dw, k 1. Now by an index argument, the local
presense of zero of on T? persists under perturbation. This together with the previous discussion
proves the inequality f (z;t) 6 0 and Theorem 2.1.2. 2

2.2.2 Variable holomorphic di erential : proof of Lemma 2.2 A

We denote by f_the partial derivative in t of a function f . Di erentiating (2.2.1) in t yields

@f- (@ )Y=(@ Jf (2.2.2)

where @ (@ ) is the composition of the operator of the multiplication by the function
(respectively, ) and the operator @. Any C! solution f of equation (2.2.2) with the initial condition
f(z;0) 1 that does not vanish identically on the torus for any value d t is a one we are looking
for. Let us show that (2.2.2) is implied by a bounded linear dierential equation in L»(T?) and in any
Hilbert Sobolev space. To do this, we use the following proprties of the operators @ and @.

Remark 2.2.3 Denote z = X + iX2, X = (X1;X2) 2 R2. The operators @, @ on T2 have common
eigenfunctionse, (x) = €(™) n =(ny;ny) 2 Z2. The corresponding eigenvalues (denote them by,
and ¢ respectively) have equal moduli, more precisely,

0= 5 (2.2.3)

This is implied by the fact that the operator @ is conjugated to @ in the L, scalar product, which
follows from de nition. In fact,

0
n

=Lin, inyand 0= '§(n1+in2):

"2
Corollary 2.2.4 There exists a unique unitary operatorU : L(T?) ! L,(T?) preserving averages
and suchthat\U = @ @" (more precisely, U @ = @ U = @ in the sense of distributions). The

operator U commutes with partial di erentiations and extends up to a uritary operator to any Hilbert
Sobolev space of functions off2. In particular, it preserves the space ofC! functions.

Proof The operator U from the corollary is de ned to have the eigenfunctionse, with the eigen-
values &+ = 2;:2; if n 60, and 1 if n = 0. Its uniqueness follows immediately from the previous
operator equation onU applied to the functions e,. The rest of the statements of the corollary follow
immediately from de nition and Sobolev embedding theorem (ee [21], p.411). 2
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Let us write down equation (2.2.2) in terms of the new operata U. Applying the \operator" @ *
to (2.2.2) and substituting U= @' @ yields

(Id U )_=(U )f:

This equation implies (2.2.2). For anyt 2 [0; 1] the operatorld U in the left-hand side is invertible
in L»(T?) and the norm of the inverse operator is bounded uniformly int, sinceU is unitary and the
modulusj j is less than 1 and bounded away from 1 by compactness. Thus, ¢hlast equation can be
rewritten as

f=(ld U ) Yu )Hf (2.2.4)

which is a linear ordinary di erential equation in f 2 L,(T?). The operator in its right-hand side
is uniformly bounded in the operator L,- norm. Let us show that the same operator is uniformly
bounded in the SobolevH 3(T?)- norms. More precisely, for anys 2 N there exists acs > 0 such that

X
iad U ) Yiksere <cs(@+
k s;ir=1;2

j——x—j°): 2.2.5
sz%);(llj@&iii@ﬁj) ( )

Proof Let us prove (2.2.5) fors = 1. For higher s the proof is analogous. Let

= j j:Th i < 1 jju < 1
max ] | en sz%);(uj J ] e,
Hence, the operatorld U is invertible in L, = HY and

X
(d U )l=1d+ (U )k (2.2.6)
k=1

iU )i S d0d U fie (2.2.7)
To prove (2.2.5), we use (2.2.6) and estimate théH - norms of the terms in its sum.
Let f 2 H(T?). Let us estimate jj(U  )*f jj;1. We show that for any k 2 N

) K o K Lig o L@ .
—((U f ck fjjguz; ¢c= +maxj—j; r=1;2 2.2.8
JJ@X(( ) H)ijc, it i oy (2.2.8)
P
This together with (2.2.6) and the rstinequality in (2.2.7 ) implies (2.2.5); herecs = ¢; =4,k k1=
4

a =
Let us prove (2.2.8), e.g., forr = 1. The derivative in the left-hand side of (2.2.8) equals

Xk ) )
U )k@g)} CHB NG, @%) ORI

i=1

since U commutes with the partial di erentiations. The L,- norm of the rst term in the previous
formula is no greater than Kjjf jj41 by (2.2.7). Each term in the latter sum has L - norm no greater
than k ! maxj%jjjfij2 by (2.2.7). This proves (2.2.8). Inequality (2.2.5) is prowed. 2

Ordinary di erential Equation (2.2.4) is bounded in any Sobolev spaceH $(T?), by (2.2.5). The-
refore, it has a unique solutionf (x;t) with the initial condition f(x;0) 1 that belongs to all the
Sobolev spaces. This follows from the existence and uniquess theorem for solution of ordinary dif-
ferential equation in Banach space with right-hand side haing bounded derivative, see [21]. This
solution is C! by the Sobolev embedding theorem (see [21], p.411). For anyxed value oft it does
not vanish identically on T2 (the uniqueness of local solution). Lemma 2.2.1 is proved.
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Remark 2.2.5 The solution of Equation (2.2.4) with the initial condition fji=o 1 admits the
following formula :

fct)=(ld U ) YQ)=1+ U()+(U U)( )+ ::: (2.2.9)

Indeed, its right-hand side is a well de nedC! family of C! functions on T2, which follows from the
uniform boundedness of the operatorsid U ) ! in any given Hilbert Sobolev space. By de nition,
f satis es the initial condition f (x;0) 1. Dierentiating (2.2.9) in t yields

f=(ld U ) W ) ad U )W=@d U )Y (U OHf

Hence, the function (2.2.9) satis es (2.2.4).

2.2.3 Zero of holomorphic di erential. Proof of Propositio n222

Let us prove the existence of local holomorphic coordinateWithout loss of generality we assume
that (0) = 0. One can achieve this by applying a real-linear transbrmation of the planeR>= C D
that brings the ellipse at 0 associated to  to a circle. One can achieve also that be arbitrarily
small with derivatives of orders up to 3 by applying a homothday and taking the restriction to a
smaller disk centered at 0. We consider that the disk where is de ned is embedded into T? and
extend the function smoothly to T2. We assume that the extended function satis es the inequaly
Ji Jics(rsy < 5 one can make arbitrarily small.

Let (x;t)=1 ,f(x;t) be the corresponding function family from Lemma 2.2.1 consucted as the
solution of di erential equation (2.2.4) with unit initial condition. Put f (x) = f (x; 1). We show in the
next paragraph that f (0) 6 0, if the previous constant is small enough. Then the local coordinate

we are looking for is the function z
z

w(z) = f(dz+ dz):
0

Indeed, it is well-de ned and holomorphic, since the 1- formf (dz+ d z) is closed by construction.
Its local univalence follows from the nondegeneracy of its ikerential f (0)(dz + (0)dz) at O (the
inequalitiesj j < 1, f (0) 6 0).

Recall that by (2.2.9),

f(;t)y=(ld tU ) (1); whereU = (@) '@:

The functions f (x;t) are equal to 1, if = 0. Let us show that they are C°- close to 1 (and hence,
f(0) = (0;1) 6 0), whenever is small enough with derivatives up to order 3. For anyt 2 [0;1]

consider the operator-valued functional A( ) = (Id tU ) ! dened for jj jjcs < :its value

being an operator acting in H3(T?). (It is well-de ned, see Inequality (2.2.5).) The derivative A% )

exists and is uniformly bounded. Indeed, the operatorsA( ) are uniformly bounded by some constant
® = X ) (Inequality (2.2.5)). Therefore, we can apply the usual famula for the derivative of the

inverse operator : the derivative of A( ) along a vectorh 2 C3(T?) is equal to

rnA()=tA() U h A():Hencejir nA( Jiins GiA (iifsiihiine X )ijhiics:

Thus, the operator-valued functional A( ) is Lipschitz (and hence, continuous) in . Therefore, if
ji Jics is small enough, then each functionf (x;t) is close to 1 inH?2 (thus, in C°, by the Sobolev
embedding theorem, and hencef 6 0). This proves Proposition 2.2.2. The proof of Theorem 2.12 is
complete.

2.2.4 Foliated version : proof of Theorem 2.1.3

Here we present only a proof of theC! version of Theorem 2.1.3. The proof of its other (analytic
and measurable) versions is analogous.
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Fix a projection T" | T2 to appropriate coordinate two-torus whose restriction to each leaf of F
be a local di eomorphism. The universal coveringR? ! T2 lifts under the projection up to a universal
covering of any leaf. Let us introduce an a ne complex coordinate z on R?. Its di erential dz yields
well-de ned complex-valued 1- forms (also denoted bydz) on T? and on any leaf. Consider the complex
structures on the leaves de ned by the metricg. In the local coordinate z they are de ned by a 1-
form

I =dz+ dz; :T"! CisaC?! function with j j< 1;

as in (2.1.5). Vice versa, each function as above yields aC® family of almost complex structures
on the leaves that is de ned by someC! Riemann metric on T". Namely letH : R" ! R" ? be a
linear vector function whose level planes are the liftings © R" of the leaves of the foliationF. Then
g=j! j?+jdHj?isaC! Riemann metric onT" thatis conformal with respect to the given complex
structures along the leaves.

We prove the following more precise version of Theorem 2.1.3

Theorem 2.2.6 Let F be a linear foliation on T". Let :T"! C be an arbitrary C! function with
jj< 1 Letz,! be as above. There exists £ nowhere vanishing functionf : T" I C such that
the restriction to each leaf of the 1- formf!  be closed.

The restriction to each leaf of the 1- formf!  from Theorem 2.2.6 is a nowhere vanishing holo-
morphic di erential. Therefore, its squared modulus jf! j? is a at metric on each leaf. This yields
a C! family of at metrics on the leaves. These metrics are propotional to the restrictions of the
C! metric g to the leaves with a positive functional coe cient (which is then alsoC* ). This implies
Theorem 2.1.3.

Remark 2.2.7 If in the conditions of the previous theorem the leaves of thefoliation are dense, then
the corresponding functionf is unique up to multiplication by constant.

Proof of Theorem 2.2.6.  Without loss of generality we consider that each leaf is dens. In the
opposite case, all the leaves are tori and Theorem 2.2.6 follvs from Theorem 2.1.2 with smooth
dependence of the uniformizing di eomorphism of the almostcomplex torus on the parameter of the
almost complex structure (see Remark 2.1.5).

The closeness of a 1- forni!  is equivalent to the partial di erential Equation (2.1.6) a long the
leaves :
—@; D, = —@ . both di erentiations are done along the leaves
@z @

The function f is constructed by homotopy method, as before. We include into the family of
functions

D,f = D,(f ); D, =

(xt) =t (x); t2[0;1];
and nd a solution f (x;t) of the previous di erential equation with  replaced by
D,f = D,(f ) with the initial condition f(x;0) 1 (2.2.10)
Di erentiating in t (we denotef_= @@t) yields
D,f=(D, ){+(D, )f:

The operators Dzland D, are di erential operators with constant coe cients, for wh ich the Fourier
harmonicsey = €N*) N 2 Z", are thus eigenfunctions. The corresponding eigenvaluesy and ¢
have equal moduli, moreover,

% = N s
since the operatorsD, and D, are conjugated. One has y = 0, if and only if N = 0. Indeed, a
smooth function on T" (anti)holomorphic on the leaves (in the standard complex stucture given by
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the coordinate z) is always constant along the leaves (Liouville's theorem) and hence, is constant
globally (the density of the leaves). Consider the operatorU : L,(T") ! L»(T") de ned to have the

eigenbasef ey gjn 2zn With the eigenvalues NT if N 60 and 1if N =0. The operator U extends up
to a unitary operator to each Hilbert Sobolev space of functons onT" such that the equality

U D,=D, U=D,
holds true on smooth functions. The equation
(Id U HYf=(uU )

has a unique smooth solutionf (x;t) with unit initial condition, which satis es (2.2.10) and v anishes
nowhere, as in Subsections 2.2.1 and 2.2.2. The functioh = f (x; 1) is a one we are looking for. This
proves Theorems 2.2.6 and 2.1.3. 2

2.3 Holomorphic nonuniformizability

2.3.1 Main result : nonuniformizable universal covering ma nifolds

Let S be an a ne (or projective) smooth algebraic surface of dimersion 2,F be a one-dimensional
holomorphic foliation on S (with isolated irremovable singularities) tangent to a rational vector eld.
In this case we say brie y that the foliation F is algebraic a ne (projective) .

Remark 2.3.1 Let S, F be as above,S be ane and its projective closure S be smooth. ThenF
extends up to an algebraic foliation onS (called the projective extension denoted F).

Roughly speaking, the principal result of the section is theexistence ofS, F as above such that
the family of leaves intersecting an arbitrary given crosssection does not admit a uniformization
holomorphic in the parameter by a family of simply connecteddomains in the Riemann sphere. To
state this result precisely, let us introduce the following

Denition 2.3.2 Let S, F be asaboveD S be a simply connected (may be not global) transversal
cross-section toF containing no singularities. For any z 2 D denoteL, S the leaf of F passing
through z. The universal cgvering manifold (brie y u.c.m.) associated toD is

Mp = ,p (the universal covering ofL, with the base point z):

Theorem 2.3.3 [63, 68] Let S, F, D, Mp be as aboveS be ane. Then the space Mp admits a
natural structure of complex manifold and it is Stein.

Remark 2.3.4 In general, the spaceMp is a complex manifold, if and only if it is Hausdor . If Sis
projective, then in generalMp may be non-Hausdor . (Such an example was proposed by the refee
of the paper [44]; the foliation from this example is obtainel from another one by blowing up at a
nonsingular point.) But if S is projective and no leaf of F intersecting D is a once punctured sphere,
then Mp is a manifold. This follows from a remark of E.Chirka and a vesion of Gromov compactness
theorem [57]. It is not known in the latter case, whetherMp is always Stein whenever it is a manifold.

The manifold Mp admits a natural holomorphic projection p: Mp ! D and a sectionD ! Mp
inverse to p de ned by taking the base points of the universal coverings.

De nition 2.3.5 A u.c.m. Mp is said to be uniformizable, if it admits a biholomorphism (called
uniformization) onto a domain in C D that forms a commutative diagram with the projections.
It is said to be locally uniformizable at a given point z 2 D, if its restriction p 1(U) = My to a
neighborhoodU of z is uniformizable.
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Theorem 2.3.6 [44] There exists an a ne algebraic foliation with no unifor mizable u.c.m.

Corollary 2.3.7 For a foliation from Theorem 2.3.6 each u.c.m. is nowhere loally uniformizable.

Addendum to Theorem 2.3.6 [44]. In Theorem 2.3.6 the a ne foliation (denoted by F) can
be chosen to have the following additional properties :

1) F is transversally a ne and admits a Liouvillian rst integra | (cf. 5) below);

2) each leaf is dense and hyperbolic : its universal covering ionformally equivalent to disc;

3) some leaf contains an attracting cycle (a closed curve withraattracting return mapping) ;

4) the projective extensionF is well-de ned, each its u.c.m is a manifold and nonuniformizable.

5) FFés a rational pullback of the foliation on (Cn 1) C with a rst integral 1(w;z) = z(1

w (1 ) .
w) +  =5d:

A brief proof of Theorem 2.3.6 and its Addendum is given in thenext two Subsections.

In late 1960-s Yu.S.llyashenko proposed the conjecture sayg that each u.c.m. of any algebraic
foliation is uniformizable. He proved uniformizability of certain u.c.m's [64]. In 1969 T.Nishino [96]
independently proved the positive answer with u.c.m replaed by abstract holomorphic Stein sur-
face bered by complex lines (Stein skew cylinder with ber C, see De nition 2.3.8 below). His and
llyashenko's results [96, 63, 68] together imply the posiite answer to Ilyashenko's conjecture for the
u.c.m's with bers C. At the end of 1999 a negative answer in the general case wasqgwed by the
author in [43]. The counterexample constructed there was loally uniformizable at a generic point. In
2001 A.A.Shcherbakov asked the following question : is it tue that each u.c.m. of any algebraic folia-
tion with hyperbolic leaves is locally uniformizable ? Theaem 2.3.6, its Corollary and the Addendum
give a negative answer.

The proofs of Theorem 2.3.6 and the results of [43] are basech@ key result in several complex
variables due to B.Berndtsson and J.Ransford ([12], see Tlwrem 2.3.13 below). Their result provides
a very exotic subsetK in the product of C and unit disk D with a Stein complementV =(C D)nK
and in nitely many C- slices of the setK being single points with two distinct C- coordinates. The
universal coveringM overV is bered over D by simply connected Riemann surfaces. It appears that
the bered manifold M is not uniformizable in the sense of De nition 2.3.5. This wes proved in [43];
the proof is presented in the next subsection. Afterwards in2.3.3 we construct a foliation satisfying
the statements of Theorem 2.3.6 and its Addendum by using thenonuniformizability of M, the Stein
nature of V, and approximations of holomorphic functions on Stein manfolds embedded inCN by
polynomials.

2.3.2 Skew annuli and nonuniformizable Stein skew cylinder S

Universal covering manifolds are particular cases of skewytinders, see the following De nition.

De nition 2.3.8  [68] Let D be a simply-connected domain inC, M be a two-dimensional complex
manifold, p: M ! D be a holomorphic surjection having nonzero derivative. We ay that the triple
(M; p; D) is a skew cylinderwith the base D and the total spaceM, if

1) the level sets of the mappingp are connected and simply connected holomorphic curves;

2) M has a holomorphic section : a holomorphic mapping :D! M, p i= Id.

The de nition of a (locally) uniformizable skew cylinder coincides with that of a uniformizable
u.c.m. (De nition 2.3.5). A skew cylinder is said to be Stein, if its total space is Stein. A u.c.m.
corresponding to an algebraic foliation is a skew cylinderwhenever it is a manifold. It is Stein, if the
foliation is a ne (Theorem 2.3.3). Denote

:C D! D the product projection.

Denition 2.3.9 AdomainV C D is said to be auniformizable skew annulugor brie y, u.s.a.),
if it satis es the following conditions : 1) for any z 2 D the ber  (z)\ V is either a once punctured
complex line, or a complement ofC to a disk; 2) V ¢ D for any c2 C large enough.
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Remark 2.3.10 The universal covering over a uniformizable skew annulus h&a natural structure of
skew cylinder.

Theorem 2.3.11 [43] There exists a pseudoconvex u.s.a. whose universal eowng is a nonuniformi-
zable Stein skew cylinder.

Remark 2.3.12 It is easy to construct a u.s.a. with nonuniformizable (non-Stein) universal covering
manifold, e.qg.,

V =(C D)nfw= zg; D being unit disk,

w, z are the coordinates onC and D respectively. Other examples of nonstein nonuniformizalg skew
cylinders with bers C may be found in [73].

We prove the statement of Theorem 2.3.11 for an exotic u.s.aV given by the following

Theorem 2.3.13 [12] Let D be unit disk in complex line with the coordinatez. Let E. = f%g[
fs—70noni E = E+  D. There exists a closed subsék C D such that

1) the complementV = (C D) nK is pseudoconvex ;

2) forany z62&. [ E the ber K\  (z)is a disc;

3)forany z2 E. K\ (2=0 z;

4)forany z2 E K\ (z0=1 =z

For the completeness of presentation, we recall the constation of the set K from [12]. Let w
e the coordinate in the ber C on the direct product C D. Let u(z) = In jz %j +1In jz + %j +

;é 2 "(Injz g+ Injz+ 40), A 2 RT. The function u is harmonic, u(E ) = 1 . Let
:D! CbeaC?! function with bounded derivatives (up to the second order) that is constant in a

neighborhood of each seE sothat jg, =0, jg =1.Dene
(1) K=fiw (2)j e@idxAg

The bers of K over E. (E ) are single points where the coordinatew is equal to 0 and 1
respectively. Its other bers are disks. Thus,V =(C D) nK is a uniformizable skew annulus. IfA
is large enough, thenV is pseudoconvex [12].
Proof of Theorem 2.3.11. LetV = (C D)nK be a skew annulus given by Theorem 2.3.13,
pv : M | 'V be its universal covering. The manifold M is Stein, as isV (the pseudoconvexity
statement in Theorem 2.3.13), since a covering over a Stein anifold is Stein [109]. Let us prove that
the skew cylinder M is nonuniformizable (by contradiction). Suppose the contary : there exists a
uniformization g: M ! C D.Letf :M ! C be the C- component ofg. The bers of the cylinder
M over E are conformally equivalent to complex line. Letw be the C- coordinate onC D V.
Consider the multivalued holomorphic function Inw py on M. It provides a well-de ned 1-to-1
parametrization by C of the bers of M over E. . This is not the case for the bers overE , where
this function is multivalued and has branch points wherew py = 0. The function f is univalent on
each ber of M by de nition. Therefore, for any z 2 E. the restriction to the ber of M over z of
the function f is Mebius in the chart In w py, and this is not the case forz 2 E . Let Sf be the
Schwartzian derivative of f along the bers of M in the (multivalued) coordinate In w py. Itis a
well-de ned holomorphic function on M nfw = 0g, since any two distinct branches of Inw di er from
each other by constant. It vanishes identically on all the bers over the setE. , which contains a limit
point % Therefore, Sf 0 on M. On the other hand, Sf does not vanish identically on the bers
over the setE , sincef is not Mebius in the previous coordinate on these bers. The contradiction
thus obtained proves that M is nonuniformizable. 2
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2.3.3 Nonuniformizable universal covering manifolds. Pro of of Theorem
2.3.6

The proof of Theorem 2.3.6 and its Addendum is based on Propdtions 2.3.17, 2.3.20 and Theorem
2.3.18 stated and proved below. Theorem 2.3.18 follows frorRroposition 2.3.20 and Lemma 2.3.22,
which is the main technical statement of the subsection. Therem 2.3.6 will be deduced from them at
the end of the section.

De nition 2.3.14  An ane algebraic foliation is geometrically nice if it satis es the statements
1)-3), 5) of the Addendum to Theorem 2.3.6 (in particular, it has a dense leaf with an attracting
cycle).

De nition 2.3.15 Let F be an algebraic foliation,D be a simply connected cross-section such that
some leaf contains an attracting cycle starting at a point 02 D with a well-de ned Poincae return
mappingh : D! D (then h(0) =0). Let hD b D. Then we say that D is (h-) contracting. In this
case the corresponding u.c.mMp is also said to becontracting.

De nition 2.3.16 ~ Two skew cylinders are said to beequivalent if there exist biholomorphisms of
their total spaces and bases that form a commutative diagramwith the projections.

Proposition 2.3.17  Let an algebraic foliation have a nonuniformizable contrating u.c.m. Mp, 02
D be the starting point of the corresponding attracting cycle Then Mp is locally nonuniformizable at
0.

Proof The iterations h" converge to 0 uniformly onD, asn! +1 (sincehD b D). Forany n2 N
the u.c.m. Mpnp corresponding to the smaller cross-sectiomn"D is equivalent to Mp. Since Mp is
nonuniformizable by assumption, so isMunp . This together with the uniform convergenceh™ ! 0
implies Proposition 2.3.17. 2

Theorem 2.3.18 There exists a geometrically nice foliationF having at least one nonuniformizable
contracting u.c.m. Mp. The foliation F and the cross-sectionD may be chosen so that in addition,
all the u.c.m.'s associated to the projective extensiofr be manifolds, and the one corresponding t®
be nonuniformizable.

For the proof of Theorem 2.3.18 let us introduce the followirg de nition.

De nition 2.3.19  Let (M;p;D) be a skew cylinder,B. M (B b M) be its subdomain. ThenB is
called a (compact) subcylinder, if the triple ( B; p; p(B)) is a skew cylinder.

Proposition 2.3.20  (by llyashenko, see [106]). Let a Stein skew cylinder be exinsted by an increa-
sing sequence of uniformizable subcylinders. Then it is ufdrmizable.

Remark 2.3.21 A.A.Shcherbakov [106] proved that any Stein skew cylinder an be exhausted by
a growing sequence of compact subcylinders with smooth stifly pseudoconvex boundaries. His re-
sult together with Theorem 2.3.11 and Proposition 2.3.20 inply the existence of a nonuniformizable
compact skew cylinder with a strictly pseudoconvex bounday.

Lemma 2.3.22 For any Stein u.s.a. any compact subcylinder of its univershcovering is equivalent
to a subcylinder of a contracting u.c.m. corresponding to a gometrically nice foliation.
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Remark 2.3.23 Yu.S.llyashenko had shown (late 1960-ths, unpublished) tat any compact subcy-
linder of a Stein skew cylinder is equivalent to a subcylindeof a u.c.m. corresponding to an a ne
(projective) algebraic foliation. He proved this by considering the Stein cylinder as embeddetb CN
so that its cylinder projection be the restriction of an orth ogonal projectionp : CN ! C, and then
approximating its compact subcylinder by a piece of an algehaic surfaceS. The foliaton on S we are
looking for is the bration de ned by the same orthogonal pro jection. The method of the proof of
Lemma 2.3.22 given below was motivated by this llyashenko'snethod.

Proof of Lemma 2.3.22 (sketch). We consider theRauiniary foliation on (Cn 1) C (denoted
. . i _ w (1 ) . L.

by F. ) with the rstintegral I(w;z)=2z(1 w) +  =3—d: (The foliation F. tends to the

parallel line bration z= const,as; ! 0)

Proposition 2.3.24  The foliation F. is algebraic and transversally ane. If 2 R[ iR; 6 0;
then all its leaves are dense. Leh, : 0 C! 0O C be the rst return mapping corresponding to F .
and the circuit in C 0 starting at 0 0 and going around1l O counterclockwise. The mappingh. is
ane (i.e., linear nonhomogeneous) with the derivative e 27 . If Im < 0, then h, is a contraction
and its xed pointis 0 O( ),as; ! O.

Proposition 2.3.24 easily follows from the de nition of the foliation F. . Its statements imply that
the foliation F. becomes geometrically nice after realizing its phase spa¢€n 1) C as anane
algebraic surface.

Let V C D be a given Stein u.s.a.,M be its universal covering, B M be a compact
subcylinder. Denotepy : M ! V the covering projection. Recall that w and z are the coordinates on
C and D respectively. Fix a R > 4 such that

pv(B) fi wj<R 4g; fijiwj R 49 D V:Put (2.3.1)

VR =(V+(iIR;0)n( 1 D) C D; pvr(B)=pv(B)+(iR;0) Vr: (2.3.2)

Fix a disk D°b D centered at 0 such that (pyv(B)) = (pvr(B)) b D% Replace the parallel line
bration z = const of Vr by the restriction to Vg of the foliation F. . Consider auxiliary domains
1;::7; 4b (Cn 1) D with the following properties :

1=fiw iIRj<Rg D% 1b 5 3b 4b (Vs\ 2); pvr(B)b 3,0 D% g3

the domain , being a bidisk (whose closure is disjoint from 1 D by de nition), the C- bers of
the domain 3.4 being di eomorphic to an annulus. The existence of the domams ;.34 follows from
de nition : the bers of the skew annulus V are topological annuli. For any , small enough there
exists a biholomorphism

_2| (_2) bC D, jo po=0 Idpo; ( 3) b 4 (233)

that transforms the foliation z = const to the foliation F. and preserves thew- coordinate : the
leaves of the foliationF. are uniformly close to the product C- bers in any closed bidisk disjoint
from 1 D, whenever and are small enough.

We x and suchthat 2 R[ iR;Im < 0, 6 0.We show that if they are small enough,
then there exist a smooth a ne surface S and a rational mappingP : S! (Cn 1) C with nowhere
degenerate Jacobian matrix such that the subcylinderB and the foliation F = P 'F. on S satisfy
the statements of Lemma 2.3.22.

To construct S, P and F, we consider the Stein manifoldVg as a submanifold in some spac€N so
that the natural inclusion Vg ! C? is the restriction to Vg of an orthogonal projectionP : CN | C2.
Let V' be the intersection of Vg with a ball centered at 0 of a large radiusr such that

P(V)c 4 (2.3.4)
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We approximate V' by a compact piece of a smooth a ne algebraic surfaces® CN using results of
[11] (cf. [43]) and approximation and extension theorems fofunctions on Stein manifolds. We do the
approximation so that Pjso has a holomorphic inverse (denotedRjso) 1) on 4. In what follows, we

identify 4 (and hence, 3) with its image in S° under the latter inverse : thus, 3 b 4 b S° Let

S = SOn(Crit (Pjso)[f w P = 1g), D =(Pjso) (0 D9. The foliation F = (Pjs) F. isthe one
we are looking for, ifr is large enough and , are small enough :D is a contracting cross-section to
F and B is embedded toM; as a subcylinder. The latter embedding is constructed as fédws. Recall
that

4+ S%andFj ,=F, ;pyr(B)b 3sb 4

by construction. Let : 3! 4 be the mapping (2.3.3). The mapping = pvr : B! 4 sends
the bers of the skew cylinder B to leaves of the foliationF . . Two points in B are mapped by to one
and the same pointin 4, if and only if they lie in one and the same ber of B and the path connecting
them is transformed by to a contractible closed loop in a leaf of the foliationF. . This follows from
construction. Consider the projection :Mg ! S, which sends the universal cover of each leaf df
to the leaf itself. Consider the germ of the inverse * sending 0 D°to the canonical section (a copy
of B) of the cylinder M 5. This is a multivalued analytic mapping 4! M that extends analytically
along each path in any leaf ofF . j ,. This implies that the corresponding compositionQ =( ) !
yields a holomorphic mapping ofB onto a subset inM . The latter mapping is a biholomorphism :
its injectivity follows from construction and the fact that no contractible loop in a leaf of F can be
transformed by P to a noncontractible loop in a leaf of F.  (the maximum principle for holomorphic
functions). The foliation F is geometrically nice. This follows from its construction, Proposition 2.3.24
and the discreteness of the preimage of each point i€? under the mapping Pjs, which is a local
biholomorphism. (The latter discreteness statements yials in particular that the density of leaves of
the foliation F. implies the density of leaves of its pullbackF .) This proves Lemma 2.3.22. 2

Proof of Theorem 2.3.18. Let V be a Stein u.s.a. with a nonuniformizable universal coverig M .
By Proposition 2.3.20, M contains a nonuniformizable compact subcylinderB. By Lemma 2.3.22,
B is equivalent to a subcylinder of a contracting u.c.m. of a gemetrically nice foliation. The latter
u.c.m. is nonuniformizable as well. The proof of the secondtatement of Theorem 2.3.18 (on projective
extension) is relatively easy and is omitted to save the spas 2

Proof of Theorem 2.3.6. Let F, Mp be as in Theorem 2.3.18. By assumption, each leaf d&f is
dense and the cross-sectiod is contracting (and hence, intersects an attracting cycle m some leaf).
Let 0 2 D be the starting point of this attracting cycle, L be the leaf of F through 0. By Proposition

2.3.17,Mp is locally nonuniformizable at 0. For any cross-sectiorD ° intersecting L the u.c.m. Mpo is
locally nonuniformizable at the points of the intersection D°\ L. Now density of L implies Theorem
2.3.6. (Recall that the foliation F is geometrically nice, hence, each its leaf is dense.) Statent 4)
of the Addendum follows analogously from the second statem of Theorem 2.3.18 and Proposition
2.3.17. 2



Chapitre 3

On minimality of horospheric
laminations associated to rational
functions

This chapter deals with iterations of rational functions f (z) = gg; : C! C of degree at least

two. In 3.1.2 we recall Lyubich-Minsky construction (brie y mentioned in the Introduction), which
associates to eacti the following objects : a ne Riemann surface lamination A; ; lamination H¢ by
hyperbolic three-dimensional varietes (that may have singlarities), the lifted dynamics " : H¢ !
H: and the quotient hyperbolic lamination Hj =f". Each leaf of H¢ and H;=f" is foliated itself by
horospheres, which form the horospheric laminations oH and H; =

In Section 3.2 we present the main results of the papers [48,93, which concern topological tran-
sitivity and minimality of the horospheric lamination of th e quotient H¢ =" The principal Theorem
3.2.3 says that the quotient horospherical lamination (with isolated hyperbolic leaves deleted) is to-
pologically transitive (i.e., at least one horosphere is dese), provided that the mapf does not belong
to the following list of exceptions :

z 9; Chebyshev polynomials, Lates examples. (3.0.1)

In this case, all the horospheres \over the repelling perio@t orbits" are dense.

Remark 3.0.25 For any exceptional f on the list (3.0.1), each horosphere in a nonisolated leaf of
H: =f" is nowhere dense irH¢ =f" (see [78] and Corollary 3.2.2).

Theorem 3.2.4 asserts that all the horospheres are dense (side possible isolated hyperbolic
leaves) for any non-exceptionaff which is critically non-recurrent without parabolic perio dic points.

In the case when parabolic points are allowed, a more generdlheorem 3.2.5 says that all the
horospheres are dense ikl =" (outside possible isolated hyperbolic leaves), except fahe horospheres
\related" to the parabolic points. To prove it, we show (Theo rem 3.2.6) that any horosphere in question
accumulates onto some horosphere over an appropriate repielg periodic point (which is dense by
Theorem 3.2.3). Theorem 3.2.7 deals with an arbitrary ratianal function having a parabolic periodic
point. It says that each horosphere in a leaf associated to tis point is closed inH; =f* and does not
accumulate onto itself.

Remark 3.0.26 There exist non-exceptional rational functions (even hypebolic) such that the cor-
responding hyperbolic lamination H; has a leaf whose horospheres are nowhere denseHp. This is
true, e.g., for real quadratic polynomialsf-(z) = z2+ " with " < %, "60; 2 (which are hyperbolic,
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e.g., whenever" is small enough). Moreover, this is true for an open set of coplex values of the
parameter " containing the above real values. The leaf with nowhere dereshorospheres is associated
to a repelling xed point (which is real, if so is "). These statements are proved in [49].

On the other hand, under some arithmetic assumptions on the nltipliers of repelling perio-
dic points, the horospherical lamination of H; is topologically transitive (private communication by
M. Lyubich and D. Saric).

Example 3.0.27 Let us consider once again the quadratic familyf-(z) = z2+". It is well-known that
the quotient hyperbolic laminations HfO:f'\o and H;. =f* are homeomorphic for all" 6 0 small enough.
(The homeomorphism sends leaves to leaves but not isometady.) On the other hand, Theorem 3.2.4
implies that if " 6 0 is small enough, then each horosphere in the latter lamin#on is dense, while no
horosphere in the former lamination (with " = 0) is dense (see Corollary 3.2.2).

The necessary background material is recalled in Section B.: iterates of rational functions, see
3.1.1; a ne and hyperbolic laminations, see 3.1.2; horospkres and their metric properties, see 3.1.3.

Brief proofs of Theorems 3.2.3, 3.2.6 and 3.2.7 are given ine$tion 3.3. To prove Theorem 3.2.3,
we X a horosphere in H; \over" a repelling periodic orbit and show that the orbit of t his horosphere
under the forward and the backward iterates off" is dense. To this end, we study the holonomies of
the horosphere along loops based at a repelling periodic pui We show that the images of a point of
the horosphere under consecutively applied dynamics and henomies are dense in the ber over the
base point. To do this, we use the description of the holonomyn terms of the basic cocycle introduced
in [78] (its de nition and some basic properties are recalld in 3.1.3).

Recall that everywhere below we assume that the rational funtion f (z) = ggg :C! C under
consideration has degree at least 2.

3.1 Background material : rational dynamics, laminations a nd
horospheres

3.1.1 Rational iterations

The basic notions and facts of holomorphic dynamics recall® here are contained, e.g., in [88] and
[89]. Let

G

Q(2)

- its Julia set J = J(f) is the closure of the union of the repelling periodic points see the next
De nition. An equivalent de nition of the Julia set says tha t its complement C nJ (called the Fatou
set) is the maximal open subset where the iterationd " form a normal family (i.e., are equicontinuous
on compact subsets). One has

:C! C be a rational function. Recall that

f 13)=3=1Q):

De nition 3.1.1 A germ of nonconstant holomorphic mappingf : (C;0)! (C;0)ata xed point0 is

called attracting (repelling / parabolic / superattracting) , if its derivative at the xed point respectively

has nonzero modulus less than 1 (has modulus greater than 1 siequal to a root of unity and no
iteration of the mapping f is identity / is equal to zero). An attracting (repelling, pa rabolic or
superattracting) periodic point of a rational mapping is a xed point (of the corresponding type) of
its iteration.

De nition 3.1.2 A rational function is said to be hyperbolig if the forward orbit of each its critical
point either is periodic itself (and hence, superattracting), or tends to an attracting (or a superattrac-
ting) periodic orbit.
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De nition 3.1.3  Given a rational function. A point of the Riemann sphere is cdled postcritical, if
it belongs to the forward orbit of a critical point. A rationa | function is called critically- nite , if the
number of its postcritical points is nite.

De nition 3.1.4  The! - limit set ! (c) of a point ¢ 2 C is the set of limits of converging subsequences
of its forward orbit ff"(c)jn  0Og (the ! - limit set of a periodic orbit is the orbit itself). A point cis
called recurrent, if c2 ! (c).

De nition 3.1.5 A rational mapping is called critically-nonrecurrent , if each its critical point is
either nonrecurrent, or periodic (or equivalently, each citical point in the Julia set is nonrecurrent).

Example 3.1.6 The following mappings are critically-nonrecurrent : any hyperbolic mapping ; any
critically- nite mapping; any quadratic polynomial with a parabolic periodic orbit. A hyperbolic
mapping has no parabolic periodic points.

Theorem 3.1.7 A germ of conformal mapping at an attracting (repelling) xed point is always confor-
mally linearizable : there exists a local conformal coordiate in which the germ is equal to its linear
part (the multiplication by its derivative at the xed point ).

Remark 3.1.8 Let f(z) = z+ zK*' + ::: be a parabolic germ tangent to the identity. The set
fzX 2 R, g consists ofk rays going out of O (calledrepelling rays) such that

- each repelling ray is contained in an appropriate sectofS (called repelling secto for which there
exists an arbitrarily small neighborhoodU = U(0) C wheref is univalent and such that f (S\ U)
S\ U and each backward orbit of the restrictionf js\ y enters the xed point 0 asymptotically along
the corresponding repelling ray;

- there is a canonical 1-to-1 conformal coordinatet on S\ U in which f acts by translation :
t 7! t +1; if the previous sector S is chosen large enough, then this coordinate parametrizeS\ U by
a domain in C containing a left half-plane ; the previous coordinate is w#-de ned up to translation
and is called Fatou coordinate (see [27], [117]).

For any parabolic germ (not necessarily tangent to the idenity) its appropriate iteration is tangent
to the identity. By de nition, the repelling rays and sector s of the former are those (de ned above) of
the latter.

Let us recall what are Chebyshev polynomials and Lates exanples.

Chebyshev polynomials.  For any n 2 N there exists a unique (real) polynomialp, of degreen
that satis es the trigonometric identity cos n = pp(cos ). It is called Chebyshev polynomial

Lates examples. Consider a one-dimensional complex torus, which is the quant of C by a
lattice. Consider arbitrary multiplication by a constant 2 C,jj > 1, that maps the lattice to
itself. It induces an endomorphism of the torus of degree gmer than 1. The quotient of the torus by
the central symmetry z 7!z is a Riemann sphere. The previous endomorphism together wit the
guotient projection induce a rational transformation of th e Riemann sphere calledates example.

Remark 3.1.9 Let f be either Chebyshev, or Lates. Then it is critically nite . More precisely,
the forward critical orbits eventually nish at repelling xed points. The Julia set of a Chebyshev
polynomial is the segment [ 1;1] of the real line, while that of a Lates example is the whole Rie-
mann sphere. Chebyshev and Lates functions have branch-eceptional repelling xed points, see the
following de nition.

De nition 3.1.10  [77] A repelling periodic point of a rational function is called branch-exceptional
if any its nonperiodic backward orbit contains a critical point. In this case its periodic orbit is also
called branch-exceptional.

Remark 3.1.11 (Lasse Rempe [77]). There exist rational functions with branch-exceptional repelling
xed points that are neither Chebyshev, nor Lates.
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3.1.2 Ane and hyperbolic dynamical laminations

The constructions presented here were introduced in [89]. & recall them briey and send the
reader to [89] for more details.

Recall that a lamination is a \topological" foliation by manifolds, i.e., a topological space that
is split as a disjoint union of manifolds (called leaveg of one and the same dimension so that each
point of the ambient space admits a neighborhood (called \ ow-box") such that each connected
component (local leaf) of its intersection with each leaf ishomeomorphic to a ball; the neighborhood
itself is homeomorphic to the product of the ball and some (tansversal) topological space under a
homeomorphism transforming the local leaves to the bers ofthe product.

Let f :C! C be a rational function. Denote

Ni =f2=(20;2 1;::1)jz j2C f(z ;] 1)=2z @
This is a topological space equipped with the natural produt topology and the projections
jiNf! C 271z :
The action of f on the Riemann sphere lifts naturally up to a homeomorphism
Nt I'N ¢; (zo;Z 1;:::) 7V (f(20);20;2 1;::3); f i= f*

First of all we recall the construction of the \regular leaf subspace"R¢s N ¢, which is a union of
Riemann surfaces that foliateR¢ in a very turbulent way. Afterwards we take the subset A} R ¢
of the leaves conformally-equivalent toC. Then we re ne the induced topology on Af to make it

a lamination (denoted A}) by complex lines with a continuous family of a ne structure s on them.

Afterwards we take a completionA; = A} in the new topology. The spaceA; is a lamination by a ne
Riemann surfaces (the new leaves added by the completion mayave conical singularities). Then we
discuss the three-dimensional extension ofA\s up to a lamination H; by hyperbolic manifolds (with
singularities).

Let 22 N¢,V = V(z) C be a neighborhood ofzy. For any j 0 denote

V ; =the connected component of the preimagef J(V) that contains z i
Then Vo= V; and fi :V i !V are ramied coverings:

De nition 3.1.12  We say that a point 2 2 N is regular, if there exists a disk V containing the
initial point zo such that the above coveringsf! : V ; !V have uniformly bounded degrees. Denote

Rt N ; the set of the regular points in N :

Example 3.1.13 Let 2 2 Nt be a backward orbit such that there exists aj 2 N[ 0 for which the
point z ; is disjoint from the ! - limit sets of the critical points. Then Z 2 R¢. If the mapping f is
hyperbolic, then this is the case, if and only if2\is not a (super) attracting periodic orbit. A mapping
f is critically-nonrecurrent, if and only if

R: = N nfattracting and parabolic periodic orbitsg; see [89].

De nition 3.1.14 Let 22 Ry, V, V j be as in De nition 3.1.12. The local leafL(2;V) R ¢ is the
set of the pointsZ°2 R such thatz®, 2 V ; for all j (the local leaf is path-connected by de nition).
We say that the previous local leaf isunivalent over V, if the projection ¢ maps it bijectively onto
V. The global leafcontaining 2 (denoted L (2)) is the maximal path-connected subset inR containing
2.
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Remark 3.1.15 Each leafL(2) R ¢ carries a natural structure of Riemann surface so that the
restrictions to the leaves of the above projections ; are meromorphic functions. A local leafl (2; V)

L (2) (when well-de ned) is the connected component containing2 of the preimage ( oj. (2)) Lv)
L(2).

Remark 3.1.16 The above-de ned objectsR¢, R¢n corresponding to both f and any its forward
iteration f", are naturally homeomorphic under the mapping that sends a lackward orbit 2 2 N to
the backward orbit (zp;z ;z 2n;:::) 2 N¢n. The latter homeomorphism maps the leaves conformally
onto the leaves.

We use the following

Lemma 3.1.17 (Shrinking Lemma) [89] Let f be a rational mapping,V  C be a domain,V°b V
be a compact subset. Then for any sequence of single-valugdrithesf " :V | C the diameters of
the imagesf "(V9 tendto 0, asn! +1 (except for the cases, wheri has either a Siegel disk or a
Herman ring that contains an in nite number of the previous images).

Remark 3.1.18 Parabolic leaves inR; always exist (see the next two Examples) and are simply
connected ; hence they are conformally equivalent tcC [89]. If f is critically-nonrecurrent, then each
leaf is parabolic [89]. On the other hand, there are rationaimappings such that some leaves dr; are
hyperbolic (e.g., if there is either a Siegel disk or a Hermanming, see [89]). J.Kahn proved [77] that if
the postcritical points are dense in the Julia set, then thee are always some hyperbolic leaves iR+ .

Example 3.1.19 Let a 2 C be a repelling xed point of f, &= (a;a;:::) 2 N¢ be its xed orbit.
Then 42 R and the leaf L (4) is parabolic (it is - invariant and the quotient of L(a) na by f"is a
torus). The linearizing coordinate w of f in a neighborhood ofa lifts up to a conformal isomorphism
w o :L(&) ! C: Analogously, the periodic orbit of a repelling periodic pont is contained in a
parabolic leaf (see Remark 3.1.16).

Example 3.1.20 Let f have a parabolic xed point a2 C,f%a) =1, &= (a;a;:::) 2 N¢ be its
xed orbit. Then "a 2 R ;. On the other hand, for each repelling ray (see Remark 3.1.8}here is a
unique leaf in R¢ (denoted L ;) consisting of the backward orbits that converge toa asymptotically
along the chosen ray. This leaf is parabolic : the Fatou coorithate w on the corresponding repelling
sector lifts up to a conformal isomorphismw ¢ : L, ! C. An analogous statement holds true in the
case, whena is a parabolic periodic point (and not necessarily tangent b the identity).

De nition 3.1.21  The leaves from the two previous examples are called respéetly a leaf associated
to a repelling (respectively, parabolic) periodic point.

Proposition 3.1.22 A point 2 2 N¢ belongs to a leaf associated to a repelling (or parabolic) ed
point a, if and only if it is represented by a backward orbit convergig to a (and distinct from its xed
orbit, if the latter is parabolic).

The Proposition follows from the Shrinking Lemma.
Denote
A{ = the union of the parabolic leaves inR¢ :

If f is hyperbolic, then Af is a lamination with a global Cantor transversal section. In general, Af
is not a lamination in a good sense, since some rami ed locakhves can accumulate to a univalent
one in the product topology. The re ned topology (de ned in [ 89]) that makes it a \lamination with
singularities” is recalled below. To do this, we use the folbwing
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Remark 3.1.23 Let2 2 A}. Fix a conformal isomorphismC ! L (2) that sends 0 to 2 (it is unique up

to multiplication by nonzero complex constant in the source. The natural projections ; :N¢ ! C
induce a meromorphic function sequence j» =  jj_(z) onthe leafL(2)= C:
2:C1 Cy jap=f g2 foranyj; 20)=z ;: (3.1.1)

The latter function sequence is uniquely de ned up to the C - action on the source spaceC (by
multiplication by complex constants). Two points of A} lie in one and the same leaf, if and only if
the corresponding function sequences are obtained from eamther by a ne transformation of the
variable.

Denote K; the space of the meromorphic function sequences
f j(Mgano; j:C! C  ju=f j forall j: (3.1.2)

This is a subset of the in nite product of copies of the meromaphic function space; the latter space
is equipped with the topology of uniform convergence on comgct sets. The product topology induces
a topology on the spaceX; . The groupsAff (C) (complex a ne transformations of C), C  Aff (C)
and S'=fijzj=1g C acton the spaceK; by variable changes in the source. Denote

a=Ry=C; RP = Ry=st: (3.1.3)

(The latters are equipped with the corresponding quotientsof the topology of K;.) A leaf in IQ?
(respectively IQP) is the quotient projection of an orbit of the previous action Aff (C): K¢ | K;.Each
leaf is naturally identi ed with a quotient  nAff (C)=C (respectively, nAff (C)=S!), where is a
discrete group of Euclidean isometries o€. This equips the leaves with a ne (respectively, hyperbolic)
structures that vary continuously on IQ? (IQP). There is a natural (not necessarily continuous) inclusiam

De nition 3.1.24  The topological subspaceA! IQ? is the image of the spaceé\{' under the previous
inclusion (or equivalently, the spaceA} equipped with the topology induced from IQ?). The spaceA;

(which is called the a ne orbifold lamination associated to a rational function f) is the closure ofAl

in the spaceR2. The subspaceH} R is the union of the leaves inK} containing the S*- orbits in

K¢ of the function sequences (3.1.1) (which de ne the points ofAf). Its closure (denotedH¢ = W)
in RP is called the hyperbolic orbifold lamination associated tof .

Remark 3.1.25 In general, the topology of the spaceA! is stronger than that of Af'. The spaces
Al, A¢, H}, H¢ consist of entire leaves. Each leaf oA\; is a ne-equivalent either to C (as are the
leaves fromA} ), or to a quotient of C by a discrete group of a ne transformations (in this case the
latters are Euclidean isometries ofC). Each leaf of H; is isometric either to H® (as are those oﬂ—l} ),
or to its quotient by a discrete group of isometries ofH® xing the in nity and an a ne Euclidean
metric on C = @3n1 . The latter a ne (hyperbolic) quotients, if nontrivial, ma y have singularities.
The a ne (hyperbolic) structures on the leaves of A; (respectively, Hs ) depend continuously on the
transversal parameter.

There is a natural projection
p:REIA T

induced by the mapping K; ! A { that sends each sequence (3.1.2) of functions to the sequenof
their values at 0. The latter sequence is always a regular b&evard orbit of f and it lies in a parabolic
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leaf of R¢. The regularity follows from de nition. The parabolicity f ollows from Picard's theorem.
The composition of p with the natural inclusion Af ! IQ? is the identical mapping A} ' A . The
projection

At ! Cinduced by o; ( j)i2no 7! 0(0); will be also denoted by o: (3.1.4)
The quotient projection R} = R¢=S'! R2 = R;=C induces a natural leafwise projection
h:Ht A ¢; which mapsH} onto A} ; such that (3.1.5)

the projection of each leaf inH¢ is a leaf in A¢ that is canonically identi ed with its boundary.
The rational mapping f : C! C lifts up to the leafwise homeomorphism

f Ri ! Ri: f'\:( 0, 1;:)THA(f 0, 0, 1;::%); which induces homeomorphisms

f:A; 'A ¢ ane along the leaves andf*:H; 'H  isometric along the leaves.

The previous homeomorphisms form a commutative diagram wih the projection . The action
f'Hi 'H ¢ is proper discontinuous, and its quotient

H; =f"is called the quotient hyperbolic lamination associated tof:

Proposition 3.1.26  [89] A sequence of point22™ 2 A} converges to a point2 2 Al,asm!1 | if
and only if

- j(2m)! j(2) foranyj,

- for any N 2 N, any connected domainV ~ C and any its subdomainU such thatU V and

N (2) 2 U, if the local leaf L(f’\ N (2);V) is univalent over V, then the local IeafL(f'\ N(2M);U) is
univalent over U, wheneverm is large enough.

Remark 3.1.27 The analogous criterion holds true for convergence of a segace of points inA; to
a point in A'f with the following De nition of local leaf in  Ag.

De nition 3.1.28 Let f be a rational mapping, A; be the corresponding a ne lamination, L A ;

be a leaf,222 L, V C be a domain containing its projection o(2). The local leaf L(2;V) is
the connected component containingz"of the projection preimage LvV)\ L. A local leaf is called
univalent over V, if it contains no singular points and is bijectively projected onto V.

Everywhere below for anyz*2 At we denote

L(2) A ; the leaf containing?; H(2) H ¢ the leaf projected to L(2) by (3.1.5):

Corollary 3.1.29 Let a2 C be a repelling xed point off, 82 A} be its xed orbit. Let V. C be a
neighborhood ofa, f"gn.n be a sequence of points if\; such that o(B™) = a and the local leaves
L(fi";V) are univalent overV (see the previous De nition). Then f’\m(i‘\i“) I 4,asm! +1.

De nition 3.1.30 A leaf of A; is associated to a repelling (or parabolic) periodic pointif it is contai-
ned in A} and coincides with a leaf of Al that is associated to the previous point (see De nition

3.1.21). In this case we also say that the corresponding leag ofH; and H¢ =f" are associated to this
point.

Proposition 3.1.31  [89] The laminations A and H; are minimal (i.e., each leaf is dense), if and
only if the function f does not have branch-exceptional repelling periodic orlsit(see De nition 3.1.10).

If f has branch-exceptional repelling periodic orbits, then e of the previous laminations has a nite
number of isolated leaves (all of them are associated to thatter periodic orbits) and becomes minimal
after removing the isolated leaves.
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Denote
H? = H; n(isolated hyperbolic leaves) (3.1.6)

One hasH? = Hy, if and only if f does not have branch-exceptional repelling periodic orb.

3.1.3 Horospheres : metric properties and basic cocycle

The horospheres in the hyperbolic 3- space with a marked potniin nity" at the boundary (and
in the leaves of the hyperbolic laminations) were de ned in Sibsection 1.1. We use the following their
well-known equivalent de nition. Consider the projection :H3! L = @3n1 to the boundary
plane along the geodesics issued from the in nity. In the moe! of half-space this is the Euclidean
orthogonal projection to the boundary plane. It coincides with the natural projection H3 = Aff (C)=
St I C = Aff (C)=C, and its latter description equips the boundary with a natural complex
ane structure : L = C. The boundary admits a Euclidean a ne metric (uniquely den ed up to
multiplication by constant).

Everywhere below whenever we consider a Riemann metric on audace, we treat it as a length
element, not as a quadratic form. If we say \two metrics are pioportional”, then by de nition, the
proportionality coe cient is the ratio of the correspondin g length elements.

Consider a global section of the previous projection : H®! L : a surface inH?® that is 1-to-1
projected to L. It carries two metrics : the restriction to it of the hyperbo lic metric of the ambient
spaceH?; the pullback of the Euclidean metric of L under the projection.

De nition 3.1.32 A previous section is ahorosphere if its latter (Euclidean) metric is obtained from
the former one (the restricted hyperbolic metric) by multip lication by a constant factor. The height
of a horosphere (with respect to the chosen Euclidean metrion L) is the logarithm of the latter
constant factor. The height of a given pointin the hyperbolic space is the height of the horosphere
that contains this point.

Remark 3.1.33 The height is a real-valued analytic function H® ! R. In the upper half-space model
the horospheres are horizontal planes, and their previouglde ned heights are equal to the logarithms
of their Euclidean heights in the ambient Euclidean 3- spaceThe isometric liftings to H® of the a ne
mappingsz 7! z + bof the boundary C = @°n1 transform the horospheres to the horospheres so
that the height of the image equals Inj j plus the height of the preimage.

Now we discuss metric properties of the horospheres in the Iperbolic laminations. Let A¢, H¢ be
respectively the a ne and the hyperbolic laminations assodated to a rational function f.LetL A ;
be a leaf,2*2 L be a nonsingular point such that the restricted projection j_ has nonzero derivative
at 2. Fix a Hermitian metric on the tangent line to C at (2). Its projection pullback to the tangent
line T,L extends (in unique way) up to a Euclidean a ne metric on the whole leafL. Let H be the
corresponding leaf inH¢ . We denote

» : H ! R the height with respect to the latter metric, see De nition 3.1.32, (3.1.7)
=(“z;h) 2 H the pointsuch that ( )="2and »( )= h
(then we say that the point s situated over2 at height h),

Sxh  H the horosphere containing ; i.e., such that ,js,, h: (3.1.8)

Proposition 3.1.34 A sequence of pointg2¥; hy) 2 H; converges to a point(2;h) 2 H¢ , if and only
if 21 2in Ay andhg! h.

The Proposition follows from de nition and the continuity o f the family of hyperbolic structures
on the leaves ofH;s .

When we extend the horospheres along loops i€, their heights may change. The monodromy of
the heights is described by basic cocycle. Let us recall itsednition.
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De nition 3.1.35 Let L A ¢ be aleaf,2}2°2 L be a pair of nonsingular points projected to one
and the samez = ((2) = (29 2 C so that the restricted projection j_ has nonzero derivative
at both points 2 and 2°. Let H = H(2) H ; be the corresponding hyperbolic leaf. Fix a Hermitian
metric on T,C, let »; s :H ! R be the corresponding heights de ned in (3.1.7). Thebasic cocycle
is the di erence

(2:29= 0 5

Remark 3.1.36 In the conditions of the previous De nition the basic cocycle is a well-de ned
constant and depends only orz”and 2° (it is independent on the choice of metric). One has

(2:9=0; (2,29= (2%2):

Each horosphereS;.y, H (2) coincides with the horosphereSyop . (2;20. The basic cocycle isf'-
invariant :

(2:29= (f"(2);f"(29) forany n 2 N: (3.1.9)

For any triple of nonsingular points 2;2%2%°2 A lying in one and the same leafL and projected by
ojL to one and the same pointz 2 C with nonzero derivatives one has

(2%2%9 = (2;2%  (2;29 (the cocycle property): (3.1.10)
The next proposition is well-known and follows immediately from de nition.

Proposition 3.1.37 LetL A ¢ be aleaf,¢;t°2 L, o(8)= o) = c LetV C be a neighborhood
of ¢ such that the local leaves (€;V);L(¢%V) L are univalent overV (see De nition 3.1.28). De ne

s =( oieew)) 1 oiLew) TLEV) T LERV): (3.1.11)

Let us x a Euclidean a ne metric on the leaf L, which contains the previous local leaves. Consider
the derivative modulus; g;eoj in the chosen Euclidean metric. Then for any2 2 L(€;V), 2°=  s.e0(2),
one has

(2;29=  Inj 20(2)i: (3.1.12)

Corollary 3.1.38 Let L, ¢ ¢° V be as in the previous proposition. For anyz 2 V put
2= Y2\ L&;V); 2°= ,(2)\ L(¢%V): The function

ceo(2) = (2:29 (3.1.13)

is harmonic on V (and hence, real-analytic).

3.2 Main results : density of horospheres

First let us recall the following

Theorem 3.2.1 [78] The ane lamination Af associated to a rational function f (with isolated
leaves deleted) admits a continuous family of Euclidean are metrics on the leaves, if and only
if f is conformally-conjugated to a function from the list (3.0.1). In the latter case there exists a
unique (up to multiplication by constant) conformal Euclidean metric on C (with isolated singularities)
whose pullback under the projection o : A; ! C vyields the previous Euclidean metric family on the
nonisolated leaves.

Corollary 3.2.2 Let f be a rational function from (3.0.1). Then each horosphere inits quotient
hyperbolic lamination H¢ =f" (with isolated leaves deleted) is nowhere dense.
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Proof (sketch). Let S be an arbitrary horosphere in a nonisolated leaf oH . For the proof of the
corollary it su ces to show that the union of the images of S under forward and backward iterations
of f* is nowhere dense. Denoteg the singular Euclidean metric on C from the previous theorem. We
measure the heights of the horospheres with respect to this eiric. The heights of S over all the
points are all the same (by de nition and Theorem 3.2.1). The mapping f has a constant modulus
of derivative in the metric g, sincef’ is leafwise a ne. Hence, the heights of the iterated images 6S
form an arithmetic progression, thus, a discrete set of reahumbers. This proves the corollary. 2

Theorem 3.2.3 [48, 49]. Let f be a rational function that does not belong to the list (3.0.1 Let
H=f" (H?:’r’\) be the corresponding quotient hyperbolic lamination (wih deleted isolated leaves, if
has branch-exceptional repelling periodic orbits, see (3.6)); H H ?rf’\ be a leaf associated to a
repelling periodic point of f (see De nition 3.1.30). Then each horosphere inH is dense inH?:f".

Theorem 3.2.3 is the main result of the papers [48, 49]. Its wof is sketched in the next section. As
it is shown below, it implies density of all the horospheresi the critically-nonrecurrent nonparabolic
case and density of \almost" all the horospheres in the genet critically-nonrecurrent case, with
parabolics allowed, provided thatf 2 (3.0.1).

Theorem 3.2.4 [48, 49]. Letf : C! C be a critically-nonrecurrent rational function without pa rabo-
lic periodic points (e.g., a hyperbolic one) that does not Heng to the list (3.0.1). Then each horosphere
in H¢ =" accumulates toH?=f".

Theorem 3.2.5 [48, 49]. Let f be a critically-nonrecurrent rational function that does not belong to
the list (3.0.1). Let H H ; bealeaf,L = h(H) A ¢ beits boundary. Let the projectionp(L) A [
do not lie in a leaf associated to a parabolic periodic point bf . Let H=f* H ; =f" be the corresponding
leaf of the quotient lamination. Then each horosphere irH=f" accumulates toH?=f".

Theorem 3.2.4 follows immediately from Theorem 3.2.5. Belw we deduce Theorem 3.2.5 from
Theorem 3.2.3 and the following theorem.

Theorem 3.2.6 [48, 49]. Let the conditions of Theorem 3.2.5 hold (but nowf is not necessarily
excluded from the list (3.0.1)). Then each horosphere inH=f" accumulates to some horosphere in a
leaf in H?:f'\ associated to appropriate repelling periodic point.

Proof of Theorem 3.2.5. Each horosphere inH=f" accumulates to some horosphere in a leaf in
Hfozf’\ corresponding to a repelling periodic point (Theorem 3.2.5. The latter horosphere is dense in

Hf°=f" (Theorem 3.2.3). Hence, the former horosphere accumulatet® Hfozf’\. This proves Theorems
3.2.5 and 3.2.4. 2

The following theorem shows the closeness of the horospheran the leaves associated to parabolic
periodic points, without the critical nonrecurrence assunption.

Theorem 3.2.7 Letf : C! C be an arbitrary rational function with a parabolic periodic point
a. Let H, H ; be a leaf associated to itH,=f" H ¢=f be the corresponding leaf of the quotient
hyperbolic lamination. Each horosphere inHa (Ha=f") is closed in H; (respectively, H; =f') and does
not accumulate to itself.
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3.3 Brief proofs of main results

In the next subsection we prove Theorem 3.2.3. In SubsectioB.3.2 we prove Theorem 3.2.6 (which,
together with Theorem 3.2.3, implies Theorem 3.2.5 on the desity of all the horospheres). In Subsec-
tion 3.3.3 we prove Theorem 3.2.7.

For simplicity, everywhere below (including the statements of lemmas and propositions) we assume
that the rational function f under consideration does not have branch-exceptional refleng periodic
orbits, and thus, Hy = HY : the proofs of Theorems 3.2.3 and 3.2.5 (given below) remaimalid in
the opposite case with obvious changes. Thus, the laminatinss A; and H; are minimal (Proposition
3.1.31).

3.3.1 Dense horospheres over repellers. Proof of Theorem 3. 2.3

Let a 2 C be a repelling periodic point off , & A ¢ be its periodic backward orbit, L (4), H (&)
be the respectively the corresponding leaves of the lamin&ns A; and H¢. We x a horosphere
S H(4), denote

S = [ m22f™(S); and show that the closure ofS in H; contains H (): (3.3.1)

The leafH (&) is dense (minimality). This together with the previous statement implies Theorem 3.2.3.

It su ces to prove (3.3.1) with S = S,.0. Without loss of generality everywhere below we assume
that the point ais xed : f(a) = a. One can achieve this by replacingf by its iteration. Then both
leavesL (&) and H (&) are xed by f", which acts onL (A) by (complex) homothety centered at & with
coe cient f %a). Denote

a=fb2L@naj o) = a (@)D 60g: (3.32)

The set 4 is nonempty and in nite. This follows from the assumption th at a is not a branch-
exceptional xed point and Picard's theorem.
Each horosphereS H (&) is mapped byf’\ to a horosphere in the same leaH (&) so that

" (Sa0) = Sam In jif %(a);» (\(Sﬁ;h) = Sppy:hein jfo@)j foranym22z; h2 R and b2 . (333)

The monodromies of the horospheres (when de ned) along loapbased ata add appropriate basic
cocycles to the heights (see De nition 3.1.35) so that for ag B2 . h2R m22z

Sah = Spps atys thus, ™ (Sao) = Sbhy,, + Mo = ;D) + minjf Ya)j:

The main part of the proof of Theorem 3.2.3 is the next lemma, vhich implies that the previous
height values hy. .. are dense inR. Theorem 3.2.3 is then deduced from it by elementary topologal
arguments (using Corollary 3.1.29), which are omitted to sae the space.

Lemma 3.3.1 Let f be a rational function that does not belong to the list (3.0.}, a be its repelling
xed point, 4 be as in (3.3.2). The set

Bf =f (aB)+ minjf%a)jjb2 . m2zg (3.3.4)
is dense inR.

Everywhere below for anyz 2 C (with a chosen local chart in its neighborhood, the latter beng
equipped with the standard Euclidean metric) and > 0 we denote

D (z)=fjw zj< g C; D =D (0):

Lemma 3.3.1 is proved below. In its proof we use the followingroperties of the points from 4
and basic cocycles.
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Proposition 3.3.2 Let f be a rational function, a 2 C be its repelling xed point, , be as in
(3.3.2), B;62 .. Let > 0 be such that the local leaves (4;D (a)), L(f);D (a)), L(e;D (a)) are
univalent over D (a), and moreover, the inverse branchf ! that xes a extends up to a univalent
holomorphic function D (a) ! D (a) (whose orbits in D (a) thus converge toa). Let j 2 N be such
that b « 2 D (a) for any k | (see Proposition 3.1.22). Let

y2 L&D (@); oly)=b; d=1I(y); aec be the function from (3.1.13). Then
@d= @b+ aecb): (3.3.5)
Proof (sketch). One hasd2 ., which easily follows from de nition,
@d= @B+ ;4 by 3110, B:d)= acd)

(the two latter equalities imply (3.3.5)). Let us prove the second equality. The pointsf* I (B) and y
are projected to one and the same point ; and lie in the local leavesL (&;D (a)) and L(¢;D (&)

respectively by construction. One has (B;d) = (1 (D);y) (the invariance of basic cocycle, see
(3.1.9), and the projection coincidence). Now (f* I (B);y) = a;e(b j) by de nition and the previous
inclusion. 2

Corollary 3.3.3 Letf, a, 4 be as in Proposition 3.3.2. The closure

B=f B jb2 .g (3.3.6)
is an additive semigroup inR.

Proof Fix arbitrary B;62 .. We havetoshowthatB?= (a;H)+ (A;¢) 2B, i.e., BCis approximated
arbitrarily well by values (a;d), 82 .. Letj, d be asin (3.3.5). Then

(a;d) B°= ae(bj) (A6 by (3.3.5). (3.3.7)
The latter dierence tends to 0, asj ! 1 , since ze(a) = (&;€¢) and b j ! a This proves the
Corollary. 2

We use the following elementary property of additive semigoups.

Proposition 3.3.4 Let B R be an additive semigroup such that for any > 0 it contains a pair of
at most "- close distinct elements. Then for anyM 2 R n0 the semigroupBy = B+ ZM is dense in
R.

By de nition, one has
B B + ZInjf%a)j Bf: (3.3.8)

We show that the semigroupB contains distinct elements arbitrarily close to each other Then applying
Proposition 3.3.4 to M = In jf Ya)j together with the previous inclusion implies Lemma 3.3.1.
As it is shown below, the previous statement onB is implied by (3.3.5) and the following

Lemma 3.3.5 (Main Technical Lemma) Let f be a rational function that does not belong to the
list (3.0.1), a 2 C be its repelling xed point, & 2 A; be its xed orbit, , be the set from (3.3.2).

There exists a pair of pointsB;62 . such that for anyN 2 N

aelfb ; jj ng 6 const (3.3.9)



45

The proof of Lemma 3.3.5 (sketched below) uses essentially¢ analyticity of basic cocycle.
Proof of Lemma 3.3.1. It su ces to show that the semigroup B contains pairs of arbitrarily close
distinct elements (see the previous discussion). Leb;¢ 2 . be as in Lemma 3.3.5), & be as in
(3.3.5). The valuesB?= (&;B)+ (4;6) and (4;d) are both contained in B (Corollary 3.3.3). Their
di erence (3.3.7) is arbitrarily small, whenever | is large enough, see the proof of the corollary. It is
nonzero for an in nite number of indices j by (3.3.7) and (3.3.9). This proves Lemma 3.3.1 modulo
Lemma 3.3.5. 2

Proof of Lemma 3.3.5 (sketch). Fix a small neighborhoodU of a wheref is univalent and such
that f (U) U. Then the linearizing chart of f at a extends up to a holomorphic univalent chart on
U. We take U to be convex in the linearizing chart. For any 22 L (&) there exists aN > 0 such that
z j2Uforanyj N. Then the backward orbit z n;z n 1;::: is called atail of 2 (the previous
number N is not necessarily chosen to be the minimal one satisfying th previous statement). If N is
minimal, then the tail is called complete The local leaf L (4; U) is well-de ned and univalent over U
by de nition. It consists precisely of the points of A} represented by tails.
We have to show that there exists a basic cocycle 4.« that is nonconstant along an arbitrary tail

of appropriate point B2 .. First let us show that if f does not belong to the list (3.0.1), then there
exists a2 , such that

a.¢ 6 constin a neighborhood ofa: (3.3.10)

This is proved by showing that the contrary would imply that f belongs to (3.0.1). For anyc‘2 4
such that ¢ const one has ae 0. Indeed, the constance of 4.« implies that the mapping
germ :(L(a);&)! (L(4);¢) preserving the projection extends up to an a ne automorphism  of
L(&) = C such that 4. Inj §and o 0. The latter identity implies that cannot have
attracting (repelling) xed points; hence, j § 1 and s 0. Nowlet ¢ Oforalle¢2 .
Recall that the lamination A; is minimal by assumption. Fix an a ne Euclidean metric on the leaf
L(&). It extends up to a continuous family of a ne Euclidean metr ics on all the leaves ofA; that
are projected to one and the same (singular) metric orC (by density of L (4), the vanishing and the
invariance of basic cocycle). Hencef belongs to (3.0.1) by Theorem 3.2.1. This proves the existare
of a nonconstant 4.

Fix at2 , satisfying (3.3.10). Without loss of generality we conside that the local leaf L (¢;U)
is univalent over U (then the function a.s is real-analytic on U, see Corollary 3.1.38). We prove the
existence off satisfying (3.3.9) by contradiction. Suppose the contrary: ae conston some tail of
eachh2 , (and hence, equals a.¢(a) there). We show that a.¢ const on U, - a contradiction to
(3.3.10).

The level set a.¢ = a.¢(a) is a nontrivial real-analytic subset in U by the analyticity of 4. and
(3.3.10). Let A U be the minimal analytic subset that contains a tail of eachB2 4. Then A lies
in the previous level set. We show that eitherA = U (then a.¢ const), or A is a line interval in the
linearizing chart. In the latter case we also show that .. const.

The existence of a backward orbit converging toa along a nontrivial analytic set A implies imme-
diately that arg f (a) 2 Q. We then deduce thatA is a nite union of line intervals passing through
a with ends on @U Let us show that then A is a single line interval. To do this, we use the fact, that
A is f - invariant and contains the complete tail of eachb2 ,. The latter statement is deduced
from the former one and the convexity ofU.

Suppose the contrary : the setA contains at least two distinct line intervals (let us x them
and denotel; and I3). Fix a N such that ¢ ; 2 U for any | N. Consider the inverse branch
f Jju :a7! ¢ j (which is single-valued by the univalence ofL (¢; U)). We show that the germs of the
analytic curvesf N (l,), r = 1;2, at their transversal intersection point ¢ y 6 a are contained inA.
This implies that A cannot be a nite union of line intervals containing a, - a contradiction. Each I,
contains a subsequences;X,;::: (let us x it) of a tail of some B2 .. The previous germ inclusion
follows from analyticity and the fact that for any s large enough the sequence N (xs);f N 1(xs);:::
is a tail of somed® 2 ;.
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Thus, the previous analytic set A is a single line interval. By de nition, a.eja const. The
function ., Whose constance we have to prove, is equal to minus the logdrm of the modulus of
the derivative of a holomorphic univalent function : U ! C. The latter function is de ned by the
lifting

Ul LU L®); o = Id; and the a ne identi cation L(&)= C:

The latter identi cation is given by the linearizing coordi nate of f at a (see Example 3.1.19). The
previous derivative of is taken in the linearizing chart of f on U. The modulusj 9 is constant along
A, since aeja  const. The image (A) lies in a line (the latter line passes throughd and near &

it is locally projected to A). This easily follows from the f- invariance of this line by an argument
analogous to the proof of the previous germ inclusion. This agether with the following proposition

shows that the derivative (and hence, a.¢) is constant globally, - a contradiction to (3.3.10). This

proves Lemma 3.3.5.

Proposition 3.3.6 Let be a conformal mapping of one domain o€ onto another one. Let map
a line interval A to a line and the modulus of its derivative be constant along.. Then is an ane

mapping.

3.3.2 Minimality. Proof of Theorem 3.2.6

Let f : C! C be a critically-nonrecurrent rational mapping. Let L A ; be a leaf of the
corresponding a ne lamination whose projection p(L) A [ does not lie in a leaf associated to a
parabolic periodic point. Let H H ; be the corresponding hyperbolic leaf. Let us show that there
exists a repelling periodic pointa 2 C of f (denote & 2 A its periodic orbit) such that for each
horosphereS  H the union of its images under forward and backward iteratiors of f* accumulates
to some point of H(&) (and hence, to the horosphere passing through this point).This will prove
Theorem 3.2.6.

Here we prove the previous accumulation statement only in tle case, wherl. A } . The proof in
the general case is similar but becomes slightly more techoal.

Lemma 3.3.7 Letf andL A 'f be as above® 2 L be such thatxg 2 J = J(f). There exist
a sequenceny ! +1, a point b2 J (that is not a parabolic periodic point) and a neighborhood
V =V(b Csuchthatx ,, ! band for any k 2 N the local IeafL(f'\ "k (%);V) is well-de ned and
univalent over V.

The Lemma is proved by using Mane's theorem [89].

Let &, ng, b and V be as in the previous lemma. Without loss of generality we cosider that
V = D4, b=0. The disk V intersects the Julia set off and hence, contains a repelling periodic point
(let us x it and denote by a). We show that a is a repelling point we are looking for.

For each local leafL (f* "«(&);V) and any w 2 V denote its lifting to this leaf by

WK 2 L(F "R (&) V) o(WF) = w; &K 2 L(F " (R);V); o(aF) = a:
Fix a horosphereS H and denote
Sk=1f "™(S) HE):; k2 SXitspointover a<: ( ¥) =85

Let s be the period ofa, = (f%)%a). We show that there exists a sequencéy ! +1 such that
the sequence’™'«( k) contains a subsequence converging to a point = (‘a; h) 2 H (&). The height of
the point fS'«( k) equalsly Inj j plus the height of ¥ (all the heights are measured in the standard
metric on V). For the proof of the existence of the previous sequenck we show that the heights of
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Ktendto 1 , and moreover, the heights ofSk over the local leavesL (f* "<(%);V)tendto 1 (as
functions on V, uniformly on compact sets), ask ! 1 . Indeed, the height of Sk over f* "« (&) (which
is projectedtox ,, ! b=0)tendsto 1 :itequals the height of S over % plus Inj(f "«)%xo)j,
which tendsto 1 (by the Shrinking Lemma). The previous uniform convergencego 1 then follows
from the equicontinuity of the heights on compact subsets inV. The equicontinuity follows from the
fact that the heights are equal (up to additive constants) to logarithms of moduli of derivatives of
appropriate univalent functions :V ! C (that can be normalized by a ne transformations in the
image so that (0) =0, 90) = 1) and the compactness of the space of all thus normalizé univalent
functions on a disk.

3.3.3 Closeness of the horospheres associated to the parabo lic periodic
points

Let us prove Theorem 3.2.7. Letf be a rational function with a parabolic periodic point a 2 C.
Without loss of generality we consider thata is xed. Let L, A ; be a leaf associated ta of the
ane lamination, H, H ; be the corresponding hyperbolic leaf. In the proof of Theorm 3.2.7 we
use the following

Proposition 3.3.8 Letf, a, La, Ha be as above. Then each horosphere i, is invariant under the
mapping f".

Proof The Fatou coordinate is a ne on the leaf L5, and f* acts by unit translation there. Hence, it
preserves an Euclidean metric orl,. This implies the proposition. 2

Fix a horosphereS H,. We show that S is closed inH; and does not accumulate to itself. This
together with its invariance (Proposition 3.3.8) implies Theorem 3.2.7.

Suppose the contrary :S accumulates to some horospher&®. Let H H ¢ be the leaf containing
S% L A ; be the corresponding a ne leaf. Take an arbitrary nonsingular point § 2 L such that
b= o® 6 a, ( 0j.)%D) 6 0 and a neighborhoodV = V(b) C such that the local leaf L (B; V) is
univalent over V. There exists a sequenc@ 2 L, converging tobin A; so that the points of S over
B converge to that of S° over B (by de nition), and in addition, ¢ 2 L(®;V). For any neighborhood
U= U(), U V (letus xit) the local leaves

= L(B;U) L, are univalent over U for all k large enough.

This follows from the convergenceﬁ‘ ! b and the de nition of topology in A . Without loss of
generality we consider that this is true for all k,

U=Djy; b=0= o(ﬁk); and the leaves  are distinct:

We equip U with the standard Euclidean metric and measure the heights 6 the horospheres over
the local leaves with respect to this metric. We show that the heights of S over ff tendto +1 | - a
contradiction to the convergence of the points ofS over f.

For the proof of the previous height asymptotics, we x a disk D, (a) where f is univalent, the
branch of f ' xing a is single-valued and such that each backward orbit containd there in fact
converges toa (this is true, whenever the disk is small enough). For any xed k one hasH‘j I g,
asj ! +1 ;denotenyg 2 N the minimal number such H‘j 2 D, (a) for any j ng. Passing to a
subsequence of the indice& one can achieve thatbt n, converge; thenf® "« (B) converge to some
R 2 N¢ in Nt represented by a backward orbit in D (a). One has X' 2 L,, by construction and
since it is distinct from the xed orbit of a (by de nition and the inequality 0 = kK 6 a). Moreover,
f* "(B) I R along a local leaf aroundx? The sequenceny tends to in nity. The heightof S = f* M (S)
over " " (f) (measured in a metric nearx,) tends to a nite value, namely, to its height over X. On
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the other hand, its di erence with the height of S over ¢ is equal to Inj(f "«)%0)j, which tends to
1 (the Shrinking Lemma). This implies that the height of S over ¢ tends to +1 . Together with
the previous discussion, this proves Theorem 3.2.7.



Chapitre 4

Instability of nondiscrete Lie
subgroups in Lie groups

4.1 Introduction : main results, open problems and history

4.1.1 Main result : instability of liberty. Plan of the chapt er

Let G be a nonsolvable Lie group. It is well-known (see [29]) that Bnost each (in the sense of the
Haar measure) pair of elementsA;B) 2 G G generates a free subgroup irG. At the same time in
the case, whenG is connected and semisimple, there is a neighborhodd G G ofunityin G G
where a topologically-generic pair A;B) 2 U generates a dense subgroup : the latter pairs form an
open dense subset iJ. This was proved in [14].

The pairs generating groups with relations form a countableunion of surfaces (relation surfaces)
in G G. We show that the relation surfaces are dense itJ.

The main result of the chapter is the following

Theorem 4.1.1 [50] Any nondiscrete free subgroup with two generators in aonsolvable Lie groupG
is unstable. More precisely, consider two elementé; B 2 G generating a free subgroup= <A;B > .
Let be not discrete. Then there exists a sequendd\k;Bx) ! (A;B) of pairs converging to(A;B)
such that the corresponding groups A k; Bk > have relations : there exists a sequenasy = wi(a;b)
of nontrivial abstract words in symbolsa, b (and their inversesa *, b ) ! such thatwy(Ax;By) =1
for all k.

Remark 4.1.2 The condition that the subgroup under consideration be nondscrete is natural : one
can provide examples of discrete free subgroups &fSL,(C) (e.g., the Schottky group, see [6]) that
are stably free, i.e., remain free under any small perturbaibn of the generators.

Remark 4.1.3 The closure of a nondiscrete subgroup in a Lie group is a Lie s&igroup of positive
dimension (see [116], p.42). Therefore, in Theorem 4.1.1 thiout loss of generality we assume that the
subgroup< A;B > G under consideration is dense inG.

The question of instability of nondiscrete free subgroups as stated by E Ghys, who also suggested
to study the best rate of approximation of the pair (A;B) by pairs having a relation of a length no
greater than a givenl (in analogy with the approximations of irrational number by rationals, where
the best approximation rate is well-known ; it is achieved by continued fractions. In our situation the
pair (A; B) plays the role of an irrational number, the pairs with relations play the role of rationals.)

1Everywhere in the chapter, by a word in given symbols we mean a word in the same symbols and their inverses
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We prove an upper bound of the best approximation rate (Theoem 4.1.29 and Corollaries 4.1.30,
4.1.31 stated in 4.1.3 and brie y proved in 4.1.3 and 4.6).

The proof of Corollary 4.1.30 uses Theorem 4.1.16 (stated id.1.2), which deals with a semisimple
Lie group and a pair (A; B) of its elements generating a dense subgroup (brie y calledan irrational
pair). It provides an upper bound for the rate of approximations of the elements of the unit ball in
the Lie group by words in (A; B) satisfying a bound of derivatives. These and related resi$ and open
problems are discussed in Subsections 4.1.2-4.1.4.

Theorem 4.1.16 follows (see 4.1.2) from Lemma 4.1.25 and Theem 4.1.26, both stated in 4.1.2;
their proofs are omitted here and may be found in [50]. Theors 4.1.26 proves the statement of
Theorem 4.1.16 for a Lie group whose Lie algebra satis es theo-called weak Solovay-Kitaev inequality
(see De nition 4.1.23). This inequality means a decomposibn (with estimate) of each element of a
Lie algebra as a sum of two Lie brackets. Lemma 4.1.25 shows dh the latter inequality holds true
for any semisimple Lie algebra.

Theorem 4.1.21 (recalled in 4.1.2 and proved by R.Solovay ahA Kitaev, see [22, 80, 95]) concerns
the Lie groups whose Lie algebras satisfy the (strong) Solay-Kitaev inequality (see De nition 4.1.17).
This inequality says that each element of a Lie algebra is a la bracket (with estimate). For these
Lie groups Theorem 4.1.21 provides an upper bound for the ra of approximations of its elements
in the unit ball by words in a given irrational pair of elements. The bound given by Theorem 4.1.21
is stronger than that in Theorem 4.1.16. Corollary 4.1.31 fdlows (see 4.1.2) from Theorems 4.1.21,
4.1.29 and Remark 4.1.22.

Remark 4.1.4 Inthe case, when the Lie group under consideration i® SL,(R), Theorem 4.1.1 easily
follows from the density of the elliptic elements of nite orders in an open domain ofP SL,(R) : the

proof is given in Subsection 4.1.5. The case & SL,(C) is already nontrivial (in some sense, this is a
rst nontrivial case). In this case the previous argument cannot be applied, since the elliptic elements
in PSL,(C) are nowhere dense. At the same time, there is a short proof ofheorem 4.1.1 for dense
subgroups inP SL,(C) that uses holomorphic motions and quasiconformal mapping. We present it
in Section 4.5.

In this chapter we prove Theorem 4.1.1 only for semisimple Lé groups with irreducible adjoint. Its
statement in the general case then follows (relatively easy, see [50]) by arguments using the classical
radical and decomposition theorems for Lie algebras (see 18], pp. 60, 61, 151 ; they are brie y recalled
in Subsection 4.2.1). We treate separately the cases of a Ligroup with proximal elements (Section
4.3, whose arguments work, e.g., foG = SLp(R)) and without proximal elements (Section 4.4). A
reader can read the proofs in Section 4.3 assuming everywhethat G = SL,(R).

In 4.1.7 we formulate a more general Theorem 4.1.33 in the casof a semisimple Lie group with
irreducible adjoint representation. We deduce Theorem 4.11 from it at the same place. We prove
Theorem 4.1.33 (modulo technical details) in Sections 4.3z 4.4.

The de nition of proximal element and basic properties of groups with proximal elements will be
recalled in 4.2.3.

In 4.1.4 we present a brief historical overview and some opeproblems.

In 4.1.6 we give a proof of a simpli ed analogue (Proposition4.1.32) of Theorem 4.1.1 for the
simplest solvable noncommutative Lie groupAff . (R), which is the group of orientation-preserving
a ne transformations of the real line. (The author is sure th at Proposition 4.1.32 is well known to
the specialists.) The proof gives a simple illustration of he basic ideas used in the proof of Theorem
4.1.1.

The basic de nitions concerning Lie groups (adjoint repre®ntation, (semi) simple groups, etc.),
which will be used through the chapter (mostly in proofs), are recalled in 4.2.1 and 4.2.2.

4.1.2 Approximations by values of words.

De nition 4.1.5 Let G be a Lie group. We say that a pair A;B) 2 G G isirrational , if it generates
a dense subgroup inG.
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Proposition 4.1.6 Let G be a semisimple Lie group. The set of irrational pairs inG G is open.
More generally, the set ofM - ples of elements ofG generating dense subgroups is open in the product
of M copies ofG.

Proof We prove the statement of the proposition for pairs : for M - ples the proof is analogous. Let
(A;B) 2 G G be an irrational pair. We have to show that there exists its naghborhoodV G G
such that each pair (A% B9 2 V is irrational. Let Go G be the unity component of G. Recall that
there exists a neighborhoodU Gy G of unity where an open and dense set of pairs generate
dense subgroups inGg (see the beginning of the chapter and [14]). Thus, there exis an open subset
U%= U; U, U such that each pair in U° generates a dense subgroup itg. There exist words w;
and w, such that wj (A;B) 2 U, j =1;2. By continuity, there exists a neighborhoodV of (A; B ) such
that for any (A%B% 2 V one hasw; (A% B9 2 U;, and thus, the subgroup generated byw; (A% B9 is
dense inGq by de nition. The ambient subgroup generated by (A% B9 is dense inG, since its closure
contains G (the previous statement) and each connected component o6 contains an element of
<A%BO> (The latter fact holds true for the subgroup < A;B > (which is dense) and remains valid
for < A%BO> by continuity.) Thus, each pair (A% B9 2 V is irrational. The proposition is proved. 2

Let us recall the following well-known

De nition 4.1.7  Given a metric spaceE, a subsetK E anda > 0. We say that a subsetinE is a
- net on K, if the union of the - neighborhoods of its elements coverk , and all these neighborhoods
do intersectK .

Remark 4.1.8 A - net on K is always contained in the - neighborhood ofK .

Everywhere below (whenever the contrary is not speci ed) fo any given point a of the spaceR"
(or of a Lie group G equipped with a Riemann metric) we denote

D, (a) the ball centered at a of radiusr; D, = D,(0) R" (respectively, D, = D;(1) Go);

where Gg is the unity component of G. Everywhere below whenever we say about a distance on a
connected component of a Lie group, we measure it with respé¢o a given left-invariant Riemann
metric on the group (if the contrary is not speci ed). We use the following property of left-invariant
distance.

Proposition 4.1.9 Let ;; » > 0, G be a connected Lie group equipped with a left-invariant meie,
K G be an arbitrary subset. Let ; ° G be two subsets such that contains a ;- neton K, ©
contains a - netonthe ;- ballD , G. Then the product ° G contains a ,- neton K.

Proof Take an arbitrary x 2 K and some its ;- approximant ! 2 . Then x°=1 1x 2 D, (the
left-invariance of the metric). Take a »- approximant ! °2  %of x° Then !! %is a ,- approximant of
X

dist(I! %x) = dist(! °x% < ,:

This proves the proposition. 2
Let X > O,

1n

"R+ ! R4 be adecreasing function such that'(cx) <c *"(x) forany c>1; x X: (4.1.1)

Example 4.1.10 For any > 0 the function "(x) = e * satis es (4.1.1) with appropriate X (de-
pending on ).
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De nition 4.1.11  Let G be a Lie group (equipped with a Riemann metric). Let (A;B)2 G G be
an irrational pair, K G be a bounded set in the unity componentGq of G, "(x) be a function as in
(4.1.1). We say that G is "(x)- approximable onK by words in(A;B), if there exista c= ¢(A;B;K ) >
0, a sequence of numberk, = I (A;B;K ) 2 N (called length majorants), I, '1 ,asm!1 , and

a sequence mk = mkap Of word collections such that
jwj Iy foranyw2 L and (4.1.2)
the subset .k (A;B) is contained in Gy and contains a"(cl,) netonK: (4.1.3)

We say that G is "(x)- approximable on K by words in (A;B) with bounded derivatives if .«
satisfying (4.1.2) and (4.1.3) may be chosen so that the unio [ m» mk (A;B) is a bounded subset in
Go and there exista = ( A;B;K ) > 0 and a neighborhoodV G G of the pair (A;B) such
that forany m2 Nand anyw 2

the mappingG G! G; (a;b 7! w(a;b); has derivative of norm less than on V: (4.1.4)

De nition 4.1.12  We say that a Lie group G is "(x)- approximable (with bounded derivatives) by
words in (A;B) 2 G G, if soitis on any bounded subset of its unity component. We sg brie y that

G is "(x)- approximable (with bounded derivatives)if so it is by words in an arbitrary irrational pair
and on any bounded subset of its unity component.

The following proposition shows that the "(x)- approximability is equivalent to the "(x)- approxi-
mability on the unit ball centered at 1.

Proposition 4.1.13 Let "(x) be as in (4.1.1), G, Gy, (A;B) be as in De nition 4.1.11, and let

the metric on G be left-invariant. Let G be "(x)- approximable by words in(A;B) (with bounded

derivatives) on the unitballD;  Go, ¢(A;B;D 1), In(D1) = Im(A;B;D 1), mp , be the corresponding

constant and sequences of length majorants and word collemts, see (4.1.2) and (4.1.3). LetR > 1,
r be a nite collection of words whose values afA;B) form a 1- net onDr Gy,

[(R) = max jwj:
w2 R
Then G is "(x)- approximable onDr by words in (A; B) (with bounded derivatives), where

c(A;B;D1).
IR)

Proof Let mp.,Im(Dr) be the word collections and numbers given by (4.1.5). For apm 2 N the
set mp . (A;B) contains a - net on Dg,

= "(clm(D1)); & = c(A;B;D 1);

by Proposition 4.1.9 applied toK = Dr, = r(A;B), 1=1, °= ,p,(A;B), 2= .(The
latter satisfy the conditions of the proposition by de niti on and the "(x)- approximability.) One has

mDgr — R mD 1; Im(DR): |m(A;B;DR): |(R)+ |m(D1); C(A;B;DR): (415)

jwj  In(Dr)forany w2 mpg;

.. Im(D
“(eainf P (DR)) " (G(ABiD Rl (Dr)):
m Im(DR)
This follows by de nition, (4.1.5), the inequality % ﬁ and the decreasing of the function'(x).

If in addition, the set [ m» m:p , (A; B) is bounded and the derivatives of the mappings &; b) 7! w(a;b),
W2[m mp,,are uniformly bounded on a neighborhood of A;B) in G G, then the same holds
true with m.p, replaced by mnp, and the same neighborhood. This follows by de nition and the
niteness of the collection g. This proves the" (x)- approximability on Dg (with bounded derivatives)
and Proposition 4.1.13. 2
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Corollary 4.1.14  Any Lie group "(x)- approximable by words in a given irrational pair (with bourded
derivatives) on unit ball, is "(x)- approximable by words in the same pair (with bounded deritizes)
on any bounded subset.

The next proposition shows that the notion of " (x)- approximability is independent on the choice
of the metric on G.

Proposition 4.1.15 Let"(x) be asin (4.1.1),G, A, B, K be as in De nition 4.1.11. Let g;, g be two
(complete) Riemann metrics onG. Let the group G equipped with the metricg; be"(x)- approximable
on K by words in (A;B) (with bounded derivatives), mk , Im = Im(A;B;K ), &1 = c(A;B;K ) be
respectively the corresponding word collections, majorats and constant from (4.1.2) and (4.1.3). Let

p = max "(cilm); K, be the closedp  neighborhood ofK in the metric g;:

Then the group G equipped with the metricg, is also "(x)- approximable onK by words in (A;B)
(with bounded derivatives), with respect to the same sequess nx , Im and the new constant

dgz (X; y) .

= &(A;B;K)= lc;; =maxf sup ;19

Xy 2Kp dg1 (X; Y)

Proof Eachset mk (A;B) containsa”(cily)- neton K in the metric g;. The latter net is contained
in K, by de nition, and is a " (c1lm)- net on K in the metric g, (by the de nition of ). One has

"(clm)  "( telm) = "(clm); wheneverm is large enough,

by de nition and (4.1.1). This proves the "(x)- approximability in the metric g,. Let in addition, ( G; g1)
(the group G equipped with the metric g;) be "(x)- approximable with bounded derivatives, i.e., the
set[ m mk (A;B) be bounded and the derivatives of the mappings4;b) 7! w(a;b), w2[ i mk , be
uniformly bounded on a (bounded) neighborhoodv G G of (A;B) (in the metric g;). Then the

set® = [m mx (V) is bounded and hence, sup, ,¢ z;‘jgig < +1 . The latter inequality together

with the previous uniform boundedness of the derivatives orV (in the metric g;) implies their uniform
boundedness orV in the metric g,. This proves the proposition. 2

The following well-known Question is open. It was stated in P5], p.624 (without bounds of deri-
vatives) for the groups SU(n).

Question 4.1. Is it true that each semisimple Lie group (having at least oneirrational pair of
elements) is always' (x)- approximable with "(x) = e * ? If yes, does the same hold true with bounded
derivatives ?

Theorem 4.1.16 Let G be an arbitrary semisimple Lie group (such that there existsat least one
irrational pair (A;B) 2 G G). Then the group G is "(x)- approximable with bounded derivatives,
where 1S

n —_ X . _ nl .

xX)=e*,; = ing - (4.1.6)
In addition, for any irrational pair (A;B) 2 G G the corresponding length majorantdy, = Im (A;B;D 1)
may be chosen so that

|m+1 :9|m. (4.1.7)

Theorem 4.1.16 follows from Lemma 4.1.25 and Theorem 4.1.28oth formulated below).
It appears that for many Lie groups the previous approximation rate can be slightly improved. To
state the corresponding result, let us introduce the folloving
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De nition 4.1.17  Let g be a Lie algebra with a xed a positive de nite scalar product on it. We say
that g has surjective commutator if for any z 2 gnO0 there existx;y 2 g such that

xy]= z: (4.1.8)

We say that g satis es the Solovay-Kitaev inequality if there exists ac > 0 such that for anyz 2 gn0
there exist x;y 2 g satisfying (4.1.8) and such that

o P —
Xjp=1ly<c Jjz (4.1.9)

Theorem 4.1.18 (G.Brown, [15]). Each complex semisimple Lie algebra and ezh real semisimple
split Lie algebra (see [116], p.288) have surjective commator.

Remark 4.1.19 |In fact, the latter Lie algebras satisfy the Solovay-Kitaev inequality. The author
did not nd a proof of this statement in the literature, but it can be obtained by minor re nement
of Brown's arguments [15]. The question of the surjectivity of commutator in Lie groups has a long
history, see [15], [59] and the references therein. We woultke to mention one of the rst results
due to M.Goto [54], who have proved that in any compact semignple Lie group each element is a
commutator of appropriate two other elements.

Example 4.1.20 The Lie algebrassu, satisfy the Solovay-Kitaev inequality [22, 80, 95].

Question 4.2. Is it true that each real semisimple Lie algebra has surjectie commutator ? If yes,
is it true that it satis es the Solovay-Kitaev inequality ?

Theorem 4.1.21 (R.Solovay, A.Kitaev, [22, 80, 95]) Let a Lie group G have a Lie algebra satisfying
the Solovay-Kitaev inequality, and there exist at least onérrational pair (A;B) 2 G G. Then the
group G is "Yx)- approximable with

n 0 _ X O. 0_— |nl5
xX)=e ; s

(4.1.10)
In addition, for any irrational pair (A;B) 2 G G the corresponding length majorantd, = 1, (A;B;D 1)
can be chosen so that

Remark 4.1.22 In fact, in Theorem 4.1.21 the Lie group is"Yx)- approximable with bounded de-
rivatives (with length majorants I, (A;B;D ;) satisfying (4.1.11)). This can be easily derived from
Kitaev's proof [22, 80, 95]. See [50] for more detail.

De nition 4.1.23  Let g be a Lie algebra with a xed positive de nite scalar product on it. We say
that g satis es the weak Solovay-Kitaev inequality if there exists a consantc > 0 such that for any
z 2 gnO there existx;;y; 2 g,j =1;2, such that

R «
z =[xyl +[x2:y2)s jxji=jyji<c jzj (4.1.12)

Remark 4.1.24 The condition that a Lie algebra satis es a (weak) Solovay-Kitaev inequality is
independent on the choice of the scalar product. A Lie algela satisfying the strong Solovay-Kitaev
inequality obviously satis es the weak one.

Lemma 4.1.25 Each semisimple Lie algebra satis es the weak Solovay-Kitv inequality.

Lemma 4.1.25 is easily deduced from basic properties of corgx roots of a semisimple Lie algebra.
Some of these properties are recalled in 4.2.2.
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Theorem 4.1.26 Let a Lie group G have a Lie algebra satisfying the weak Solovay-Kitaev ineglity.
Let (A;B) 2 G G be an irrational pair. Then the group G is "(x)- approximable with bounded
derivatives, where"(x), Im = Im (A; B;D 1) are the same, as in (4.1.6) and (4.1.7) respectively.

Theorem 4.1.26 is proved analogously to the proof of Theorem.1.21 given in [22, 80, 95], see its
proof in [50] for more detail. Together, Lemma 4.1.25 and Therem 4.1.26 imply Theorem 4.1.16.

4.1.3 Approximations by groups with relations

Fix a Riemann metric on a Lie group G.

De nition 4.1.27  Let G be a Lie group, A;B) 2 G G. Let "(x) be a function as in (4.1.1). We
say that the pair (A;B) is "(x)- approximable by pairs with relations if there existac= c¢(A;B) > 0
and sequences of numberk 2 N (called the length majorantg, Iy !'1 ,ask!1 , nontrivial words
wg (a; b) of lengths at most Iy and pairs (Ax;Bk) ! (A;B) such that for any k 2 N one has

wk (Ak; Bk) =1 and dist((Ax;Bk); (A;B)) <" (clk) for any k 2 N: (4.1.13)

Remark 4.1.28 The previous De nition and the corresponding word sequenceny are independent
on the choice of the metric onG (while the constant ¢ depends on the metric). The proof of this
statement is analogous to the proof of Proposition 4.1.15.

Theorem 4.1.29 Let G be a nonsolvable Lie groupGss be its semisimple part (see De nition 4.2.5).

Let "(x) be a function as in (4.1.1). Let A;B 2 G and A%B°2 Gg be their projections. Let the pair

(A%B9% 2 Gss Ggs be irrational, and the group Ggs be "(x)- approximable with bounded derivatives
by words in (A% B9 (see De nition 4.1.12). Then the pair (A;B) is "(x)- approximable by pairs with
relations.

Addendum to Theorem 4.1.29. In the conditions of Theorem 4.1.29 the groupGss is "(X)-
approximable by words in(A% B9 with bounded derivatives. Letl,, = I, (A%B%D;) be the correspon-
ding word length majorants from (4.1.2). There exist constats g 2 N and c’°> 0 depending only on
(A;B) such that the pair (A;B) 2 G G is "(x)- approximable by pairs with relations having length
majorants

12 =cm; m q: (4.1.14)
Corollary 4.1.30 Each irrational pair of elements in a nonsolvable Lie group $ "(x) = e * - ap-
proximable by pairs with relations, where = 'Tnlf, see (4.1.6). The corresponding length majorant

sequencdy can be chosen so thaly+; =9l.

Proof Let G be a nonsolvable Lie group, A;B) 2 G G be an irrational pair. Then its projection
(A%B9 2 Gss G is also irrational. The function "(x) = e X satis es the conditions of Theorem
4.1.29 and its Addendum with a majorant sequencdy such that lx.; = 9lx (Theorem 4.1.16 applied
to the semisimple part of G). This together with Theorem 4.1.29 and its Addendum, see (41.14),
implies the corollary. 2

Corollary 4.1.31 Let G be a nonsolvable Lie group such that the semisimple part gfsatis es the

Solovay-Kitaev inequality. Then each pair(A;B) 2 G G with irrational projection to Gss Ggs IS
0

"0(x) = e X - approximable by pairs with relations, where °= "|‘n1§5, see (4.1.10). The corresponding

length majorant sequencdy can be chosen so thalc.; =5I.

Corollary 4.1.31 follows from Theorem 4.1.29 (with the Addenxdum), Theorem 4.1.21 and Remark
4.1.22, analogously to the above proof of Corollary 4.1.30A proof of Theorem 4.1.29 together with
its Addendum is sketched in Section 4.6.
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Question 4.3. s it true that in any nonsolvable Lie group each irrational pair of elements ise *-
approximable by pairs with relations ?

By Theorem 4.1.29, a positive solution of Question 4.1 with lmunded derivatives (see 4.1.2) would
imply a positive answer to Question 4.3.

4.1.4 Historical remarks and further open questions

The famous Tits' alternative [112] says that any subgroup oflinear group satis es one of the two
following incompatible statements :

- either it is solvable up-to- nite, i.e., contains a solvable subgroup of a nite index;

- or it contains a free subgroup with two generators.

Any dense subgroup of a connected semisimple real Lie groumtss es the second statement : it
contains a free subgroup with two generators.

The question of possibility to choose the latter free subgrap to be dense was stated in [33] and
studied in [14] and [33].E.Ghys and Y.Carrere [33] have proved the positive answerin a particular
case. E.Breuillard and T.Gelander [14] have done it in the geeral case.

T.Gelander [32] have shown that in any compact nonabelian L& group any nite tuple of elements
can be approximated arbitrarily well by another tuple (of th e same number of elements) that generates
a nonvirtually free group.

A question (close to Question 4.1) concerning Diophantine poperties of an individual pair A;B 2
SO(3) was studied in [79]. We say that a pair A;B) 2 SO(3) SO(3) is Diophantine (see [79]), if
there exists a constantD > 1 depending onA and B such that for any word wx = wg(a; b) of length
k

we(A;B) 1j>D k:

A.Gamburd, D.Jakobson and P.Sarnak have stated the followng
Question 4.4 [30]. Is it true that almost each pair (A;B) 2 SO(3) SO(3) is Diophantine ?

V.Kaloshin and I.Rodnianski [79] proved that almost each par (A; B) satis es a weaker inequality
with the latter right-hand side replaced by D ¥*.

Question 4.5. Is there an analogue of Theorem 4.1.1 for the group of

- germs of one-dimensional real di eomorphisms (at their canmon xed point) ?
- germs of one-dimensional conformal di eomorphisms ?

- di eomorphisms of compact manifold ?

The latter question concerning conformal germs is relateda study of one-dimensional holomorphic
foliations. A related result was obtained in the joint paper [72] by Yu.S.llyashenko and A.S.Pyartli,
which deals with one-dimensional holomorphic foliations @ CP? with isolated singularities and inva-
riant in nity line. They have shown that for a typical foliat ion the holonomy group at in nity is free.
Here \typical" means \lying outside a set of zero Lebesgue masure". It is not known whether this is
true for an open set of foliations.

4.1.5 A simple proof of Theorem 4.1.1 for G = PSLy(R)

Without loss of generality we assume that< A;B > = G. Otherwise, < A;B > would be dense in
a Lie subgroup of dimension at most two, which is solvable, hece, A and B cannot generate a free
subgroup.

The group G = PSL,(R) acts by conformal transformations of unit disk D;. There is an open
subset U G formed by nontrivial elliptic transformations, which are c onformally conjugated to
nontrivial rotations. The rotation number (which is the rot ation angle divided by 2 ) is a local
(nowhere zero) analytic function in the parameters ofU. An elliptic transformation f has nite order
if and only if its rotation number (f) is rational.
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Let w = w(a; b) be a word such thatw(A; B) 2 U (it exists by density). It su ces to show that the
function (a;b) 7! (w(a;b) is not constant near (A; B) : then it follows that there exists a sequence
(an;h) ! (A;B) such that (w(an; b)) 2 Q. Hence,w(an;b,) are nite order elements, thus, one
has relations of the typew*" (a,;b,) = 1.

The previous function is locally analytic. Suppose the contary : it is constant. Then by analyticity,
it is constant globally and w(a; b) is elliptic with one and the same nonzero rotation number fa all
the pairs (a;h). On the other hand, it vanishes at (a;b) = (1 ; 1), sincew(1;1) = 1 - a contradiction.
This proves Theorem 4.1.1 forG = PSL(R).

4.1.6 Case of group Aff . (R).
For any s > 0, u 2 R denote

Os i X7V sx; ty: X7l x+u; (8)=<gs;t1 > Aff +(R):

Proposition 4.1.32  For any so > O there exists a sequencsy, ! sp such that the corresponding
subgroups ( sx) have relations that do not hold identically ins.

Proof It su ces to prove the statement of the proposition for open and dense subset of the values

sp > 0 (afterwards we pass to the closure and diagonal sequenced)hus, without loss of generality

we assume thatsy 6 1. We also assume that 0< so < 1, since the groups (s) and (s 1) coincide.
For any s the group ( s) contains the elements

tee = gf t1 g fandtpe; m22Z; k2 N[ O:

We construct sequences of numbersi ! so and my 2 N in such a way that each group (s), s= sk,
has an extra relationt,, &« = t1. For obvious reasons this is not a relation that holds identtally. This
will prove the Proposition.

For any k take my = [s,¥], thus, my is the integer number such that mys gives a best ap-
proximation of 1, with rate less than sf; mys§ ! 1, ask ! 1 . The valuessx we are looking for
are the positive solutions to the equationsm,s® = 1 (they correspond to the previous relations by
de nition). Indeed, it su ces to show that sk ! sg, or equivalently, that the solutions uyk of the equa-
tions (u) = my(so + u)¥ = 1 converge to 0. The mapping  is the composition of the homothety
u 7! @ = ku and the mapping € : & 7! m¢(so + k '@)k. One has

€c(g) = misk(L+ k 153)k! (8)= e%; ask!1l : (4.1.15)
0

The convergence is uniform with derivatives on compact setsThe limit (&) is a di eomorphism
R ! R.: with unit value at 0. Hence, the solutions B¢ of the equations € (g) = 1 converge to O.
Therefore, so doux = k '@ andsg = Sp+ ux ! sp. The proposition is proved. 2

4.1.7 Generalization in the case of semisimple Lie group wit h irreducible
adjoint
Theorem 4.1.33 Let G be a semisimple Lie group with irreducibleAds (not necessarily connected).

a parameter u from some manifold (say, R'). Let the family (u) be conj- nondegenerate at 0 (see
De nition 4.2.12 in 4.2.1). Then there exist arbitrarily sm all valuesu such that the mappingsa; (0) 7!
a; (u) do not induce group isomorphisms<  (0) >! < (u) >.

Theorem 4.1.33 and Corollary 4.2.14 (stated below, in 4.2)1limply immediately Theorem 4.1.1
in the case, whenG is semisimple,Adg is irreducible and A, B generate a dense subgroup. Indeed,



58

suppose the contrary : each pair §;b) close to (A; B) generates a free subgroup, hence, the mapping
(A;B) 7! (a;b) induces an isomorphism of the corresponding subgroups. @sider the family of all the
pairs (a;b) depending on the parameters inG of the elementsa and b. By the previous assumption
and Theorem 4.1.33 (applied to the same family), this familyis conj- degenerate at @;B). On the
other hand, it is a priori conj- nondegenerate at A; B) (Corollary 4.2.14), - a contradiction.

4.2 Background material on Lie groups

4.2.1 Lie groups, basic de nitions and properties

Everywhere below the Lie algebra of a Lie groupG will be denoted
g= T.1G:

Let us rstly recall what is the adjoint action (see [116], p.32). The group G acts on itself by
conjugations (the unity is xed). The derivative of this act ion along the vectors of the tangent Lie
algebra g de nes a linear representation of G in g called the adjoint representation. The adjoint
representation of an elementg 2 G is denotedAdy. (If G is a matrix group, then the adjoint action is
given by matrix conjugation : Adg(h) = ghg ®.) The adjoint action of a Lie algebra on itself is de ned
by the Lie bracket, adx : y 7! [x;y]. Let G be a Lie group with a given algebrag. One has

Adexp x = exp(ady) for any x 2 g:

De nition 4.2.1 A Lie group is said to be simple, if it has dimension greater than one and the
adjoint representation of its unity component is irreducible. A Lie group is said to be semisimplg if
its unity component has no normal solvable Lie subgroup of psitive dimension.

Remark 4.2.2 A Lie group is (semi)simple, if and only if so is its algebra inthe following sense.

De nition 4.2.3  An ideal in a (real or complex) Lie algebrag is a Lie subalgebral g (over the
corresponding eld) such that [g;1] |. A Lie algebragis said to besimple, if it has no nonzero ideal
di erent from itself. A Lie algebra g is said to be semisimplg if it has no nonzero solvableideal.

Remark 4.2.4 A complex Lie algebra is semisimple, if and only if so is it as aeal algebra.

It is well-known (see [116], pp. 60, 61) that each Lie algebray has a unique maximal solvable
ideal (called radical ; it may be trivial). The factor of g by the radical is a semisimple Lie algebra.
Analogously, each nonsolvable Lie group has a unique maxinh@olvable normal connected Lie sub-
group and its tangent algebra coincides with the radical of he Lie algebra of the ambient group; the
corresponding Lie group quotient is a semisimple Lie group.

De nition 4.2.5  The factor of a nonsolvable Lie algebra (group) by its radica (respectively, the
maximal solvable normal connected Lie subgroup) is calledts semisimple part

Remark 4.2.6 The Lie algebra of the semisimple part of a nonsolvable Lie giup G is the semisimple
part of g.

Remark 4.2.7 Each semisimple Lie algebra is a nite direct product of simgde Lie algebras (the
latter product decomposition is unique, see [116], p.151).
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Example 4.2.8 Let G = SL,(R). The adjoint action of a diagonal matrix

is diagonalizable and has the eigenvalues 1,; = g—J i 6 j. The eigenvector corresponding to the

eigenvalue j is represented by the matrix with zeros everywhere except fothe (i;j )- th element. The
other (unit) eigenvalues correspond to the diagonal matries. It is well-known that the group SL,(R)
is simple (see, [116], pp. 150, 177).

Proposition 4.2.9  For any semisimple (not necessary (simply) connected) Lie mup G there exists

a collection of semisimple Lie groupsHi;:::;Hs, each one with irreducible adjoint Ady;, and a ho-
momorphism

:G! H; Hs
that is a local di eomorphism (in particular, g = st:l hj). Moreover, the image (G) is projected

surjectively onto each groupH;. The kernel of is contained in the center of the unity component of
G.

Proof If the adjoint Adg is irreducible, we put s =1, G = H;, and we are done. In generalg is
a product of simple Lie algebras. If the groupG is simply connected, then it is the product of the
corresponding simply connected Lie groups (which are simpl and hence, have irreducible adjoints).

Case when G is an arbitrary connected semisimple Lie group. Denote € its universal
covering, C(&) the center of & (which is a discrete subgroup in€). Then

G= 6= ; C(6G);, 6= 1§, ¥s; |, are simply connected simple groups.
One hasC(E€) = st=1 C(H§). Therefore, there is a natural projection homomorphism
:G=6=1 G=C(6€)= H, Hs; Hj = 18;=C(4)): (4.2.1)
This is a homomorphism we are looking for.
Case, when G is an arbitrary semisimple Lie group. Denote G, G its unity component.
We assume thatAdg is not irreducible (the opposite case was already discussgd.et g= g; O

be the decomposition ofg as a product of simple Lie algebras. The adjoint of eacly 2 G sends
any subalgebrag; to an isomorphic subalgebrag; ; then we say that g; is equivalent to g;. To each
equivalence class of they;' s we associate the product of the algebras from this class. &note all the
latter products hy;:::;hs : by de nition, g= h; hs. The subalgebrash; are Adg- invariant by
construction, and Adgjn,; is irreducible for eachj. Indeed, the only Adg, - invariant subspaces inh;
are the subalgebrasg; from the corresponding equivalence class and their produst No one of these
subspaces iAdg invariant, since Adg acts transitively on the subalgebrasg; in h; by de nition.

Let 19 be the simply connected Lie groups with algebragy , H; = 18;=C(14;). Let
NiGo ! |4]_ ﬁs

be the homomorphism (4.2.1), which is a local di eomorphism Consider the subsetHj0 Go of the
elements in Gy whose images under “have unit Iq]‘ - component : it is the kernel of the composition

of ~ with the projection to Iqj. This is a normal Lie subgroup in Gg. Denote HjO Hj0 its unity
component. Its Lie algebra is the product of theh;' s with i 6 j, which is Adg- invariant. Thus, the
subgroup HjO G is normal in G. Denote

Hj = G=H?, :G! Hi Hs

the homomorphism whose components are the natural projectins. By construction, this is a local
di eomorphism and the projection of (G) to each H; is surjective. Denote G the kernel of



60

which is the intersection of the subgroupsHjO Gy. It is contained in Gg and is a discrete normal
subgroup there. Hence, it is contained in the center ofGy. The image of the adjoint representation
Ady; : hy ! h coincides with that of the previous representation Adgjn, , which is irreducible.
Therefore, Ady; is also irreducible. Proposition 4.2.9 is proved. 2

Proposition 4.2.11 Let G be a semisimple Lie groupn = dimG. Let a pair (or M - ple) of its ele-
ments be irrational, i.e., generate a dense subgroup iG. Then their joint conjugacy class is bijectively
analytically parametrized (as aG- action orbit) by the quotient of the groupG by its center. The space
of the conjugacy classes corresponding to all the irratiorlapairs (M - ples) is an analytic manifold
of dimension n (respectively, (M  1)n). The mapping (a1;:::;am) 7! Conj(as;:::;aw) is a local

Proof Let A = (A1;:::;An) 2 GM be an irrational M - ple : the subgroup< A > generated by
A is dense inG. The parametrization g 7! gAg ! of the conjugacy class ofA by g 2 G induces its
1-to-1 parametrization by the quotient of G by its center. Equivalently, for any two distinct elements
g;h 2 G the elementsgAg !, hAh ! of the conjugacy class ofA coincide if and only if g°= g *h lies
in the center of G. Indeed, gAg ! = hAh 1, if and only if g° commutes with eachA;, or equivalently,
with < A> . The latter commutation is equivalent to the commutation with G = <A > . This proves
the previous statement. The irrational M - ples form an open subset in the product oM copies ofG
(Proposition 4.1.6). This together with the previous parametrization statement implies the statements
of Proposition 4.2.11. 2

De nition 4.2.12  Let G be a semisimple Lie group, (u) = (ay(u);:::;am (u)) be a C!- family of

M - ples of its elements depending on a parameten from some maniold (say, R'). We say that

is conj- nondegenerate atu = ug if the subgroup < (ug) > G is dense inG and the mapping

u 7! Conj( (u)) has a rank no less thann = dimG at u = ug. Otherwise we say that the family
(u) is conj- degenerate atug. If (u) is conj- nondegenerate at allu, then we say that (u) is conj-

nondegenerate.

Remark 4.2.13 Let G be a semisimple Lie group, (u) be an arbitrary family of M- ples of its
elements. Then the set of the parameter values at which (u) is conj- nondegenerate is an open set
(it may be empty). This follows from de nition and Propositi on 4.1.6.

Corollary 4.2.14  Let G be a semisimple Lie group(A;B) 2 G G be an irrational pair. The family
of all the pairs (a;b) 2 G G is conj- nondegenerate at(A; B).

Proof The mapping (a;b) 7! Conj(a;b) has full rank at (A;B), which is equal to n (Proposition
4.2.11). This implies the Corollary. 2

For any real linear space (Lie algebra)g we denote
gc its complexi cation ;

which is also a linear space (Lie algebra).
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4.2.2 Semisimple Lie algebras and root decomposition

De nition 4.2.15  An element of a Lie algebra is calledegular, if its adjoint has the minimal possible
multiplicity of zero eigenvalue.

De nition 4.2.16  Let g be a complex semisimple Lie group. ACartan subalgebraassociated to a
regular element ofg is its centralizer : the set of the elements commuting with it

It is well-known (see, [116], pp. 153, 159) that

- a) any Cartan subalgebrah is a maximal commutative subalgebra;

- b) all the Cartan subalgebras are conjugated;

- ¢) the adjoint action of h on g is diagonalizable in an appropriate basis ofy;

- d) the eigenvalues of the latter adjoint action are linear functionals on h, thus, elements ofh ,
the nonidentically zero ones are calledoots;

- e) the roots are distinct and the corresponding eigenspaceare complex lines;

-f)if isaroot,thensois ;

- g) for any root the only roots complex-proportional to  are

- h) some roots form a complex basis irh and moreover, an mteger root basis in the following
sense : each root is an integer linear combination of the basiroots;;

- i) the algebra g is the direct sum (as a linear space) oh and the root eigenlines.

Statement g) follows from the analogous statement in [116]theorem 6 on p.159) for real-proportional
roots and from statement h).

4.2.3 Proximal elements

De nition 4.2.17  Alinear operator R" ! R" is calledproximal, if it has a unique complex eigenvalue
(taken with multiplicity) of maximal modulus (then this eig envalue is automatically real). An element
of a Lie group is proximal, if its adjoint is.

Remark 4.2.18 The set of proximal operators (elements) is open.

De nition 4.2.19 A maximal R- split torus in a semisimple Lie groupG is a maximal connected
Lie subgroup with a diagonalizable adjoint action on g (which is automatically commutative). A

semisimple Lie group is calledsplit (see [116], p. 288), if some its maximaR- split torus is a maximal
connected commutative Lie subgroup.

Example 4.2.20 Each groupSL,(R) is split : the diagonal matrices form a maximal R- split torus.

A typical diagonal matrix is a proximal element of SL,(R). The group SO(3) is not split, has trivial

maximal R- split torus and no proximal elements. The group SO(2;1) is not split and has one-
dimensional maximal R- split torus, whose nontrivial elements are proximal in SO(2; 1).

Lemma 4.2.21 Let a semisimple Lie group contain a proximal element. Then a&ch its maximal R-
split torus contains a proximal element.

The proof of Lemma 4.2.21 is implicitly contained in [1] (p.25, proof of theorem 6.3).

De nition 4.2.22  An element g of a Lie group will be called 1- proximal, if the operator Adg Id
is proximal.

We use the following equivalent characterization of semisnple Lie groups with proximal elements.
Corollary 4.2.23 A semisimple Lie group contains a proximal element, if and oly if its unity com-

ponent contains a 1- proximal element. In this case the 1- pximal elements form an open subset in
G accumulating to the unity.
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In the proof of the corollary we use the following propertiesof the adjoint representation of a semisimple
Lie group.

Proposition 4.2.24 Let G be a connected semisimple Lie group. For anx 2 g (g 2 G) and an
eigenvalue of ady (Adg) the number  (respectively, ') is also an eigenvalue of the corresponding
adjoint with the same multiplicity, as

Proof It su ces to prove the statement of the proposition for the Li e algebra : this would imply its
statement for any g 2 G close enough to 1 (belonging to an exponential chart), and ten, for any
g2 G (the connectedness o6 and the analytic dependence of the operator familyAdg ong 2 G). For
any regular elementx 2 g the nonzero eigenvalues of adare split into pairs of opposite eigenvalues
with equal multiplicities. This follows from the central sy mmetry of the root system of the complex
Cartan subalgebra in gc containing x (see 4.2.2, statement f)). The regular elements are dense g
This implies that the previous statement remains valid for any x 2 g. This proves the proposition. 2

Corollary 4.2.25 Any 1- proximal element of a connected semisimple Lie groupsiproximal.

Proof Let g be a 1- proximal element, 2 R be the eigenvalue ofAdg Id with maximal modulus
(which is simple, and hence, nonzero). Then (+1) ! are simple eigenvalues oAdgy (by Proposition
4.2.24). We claim that ( +1) 1 is the eigenvalue ofAdg with maximal modulus, if 2 R . Indeed, it
follows from de nition (in both cases) that ( +1) ! j j+1. Forany eigenvalue °6 of Ady Id
one hasj 9 < j j (1- proximality). This together with the previous and trian gle inequalities implies
that

(+1) ' j+1>j93+1 j %+1j
This proves the previous statement on the maximality of the d@genvalue ( + 1) ! and thus, the
proximality of Adg. Corollary 4.2.25 is proved. 2

Proposition 4.2.26  Let G be a semisimple Lie group,T G be a maximalR- split torus. Let g2 T
be a proximal element ofG. Then g is also 1- proximal.

Proof The eigenvalues ofAdg (which are real, sinceAdr : g! gis diagonalizable) are positive, since
this is true for Ad; = Id and the torus T is connected. The nonunit eigenvalues are split into pairs
of inverses (Proposition 4.2.24). Hence, we can order themsafollows (distinct indices correspond to
distinct (may be multiple) eigenvalues) :

o< .1l< 1< <

1 2 Gl < < op (4.2.2)

The eigenvalue ; is simple (proximality). One has

1 1> Y1 =1 Y sinceoc ;'<1
by (4.2.2). This together with (4.2.2) implies that ;1 1 is a simple eigenvalue ofAdg Id with
maximal modulus. Hence, the operatorAdg Id is proximal. Proposition 4.2.26 is proved. 2

Proof of Corollary 4.2.23. Let the unity component of G contain a 1- proximal element. Then
this element is proximal (Corollary 4.2.25). Conversely, &t G contain proximal elements. LetT G
be a maximal R- split torus, g 2 T be a proximal element ofG (which exists by Lemma 4.2.21). Then
g is 1- proximal (Proposition 4.2.26) and lies in the unity component of G.

Now let us prove the last statement of Corollary 4.2.23. To dothis, consider the 1- parameter
subgroup T passing through the previous proximal elementg. The elementsg" 2 , r > 0,
are proximal, since Ady is proximal and any positive power of a proximal operator is dso proximal.
Therefore, they are 1- proximal (Proposition 4.2.26) and acumulate to 1. This together with Remark
4.2.18 proves the corollary. 2
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4.3 Proof of Theorems 4.1.1 and 4.1.33 for semisimple Lie
groups with irreducible adjoint and proximal elements

Here and in Section 4.4 we prove Theorem 4.1.33, which dealsittv semisimple Lie groups having
irreducible adjoint representation. For those Lie groups Theorem 4.1.1 follows from Theorem 4.1.33
(see 4.1.7). In the present section we treate the case of Liegup with proximal elements. The opposite
case is treated in the next section.

4.3.1 Motivation and the plan of the proof

Let G be a semisimple Lie group with irreducible adjoint and proximal elements,n = dimG,

depending on parameteru (see De nition 4.2.12). Recall that the subgroup< (0) > G is dense.
Without loss of generality we assume that

- the parameter space has the same dimension, as G : u 2 R" (we can restrict our family to
appropriate generically embedded copy oR" in the parameter space, along which the family remains
conj- nondegenerate).

We construct a sequencev, of words in M elements such that there exists a sequenag 2 R" for
which

wi( (ug))=1; uc! O;ask!l ; (4.3.1)

and the relationswg ( (u)) = 1 do not hold true identically in a neighborhood of 0. Then the mapping

(0) 7! (u) does not extend up to a group isomorphism< (0) >! < (u) > for arbitrarily small
values ofu. Indeed, the relationswy = 1 hold true in the group < (u) > for the valuesu = uy (which
tend to 0), and do not hold for some other values olu (which can be chosen arbitrarily small as well).
This will prove Theorem 4.1.33.

First let us motivate the proof of Theorem 4.1.33. A natural way to construct the previously
mentioned wordswy is to achieve thatwi( (0)) ! 1. Then to guarantee the existence of a sequence
ux ! O of solutions to the equationswy( (u)) = 1, we have to show that there exists a sequence

k ! O such that 12 w( (D ,)), whenever k is large enough. To do this, we have to prove an
appropriate lower bound for derivatives of the mappingswy ( (u)) near 0; in particular, to show that
certain derivatives will be greater than Ydist (wi( (0));1).

By density, we can always construct a sequence of wordsy so that w( (0)) ! 1. In the case,
when g; (0) are close enough to unity, it su ces to take wy to be a sequence of appropriate successive
commutators

wi =[] =[ar; @), wo =[]2 =[ay;[ar; a]];:::

On the other hand, the derivatives of the corresponding mapmgswg( (u)) do not admit a satisfactory
lower bound : the values at (0) of the commutators converge exponentially to 1, and the pevious
derivatives (taken at 0) converge exponentially to zero.
In order to construct words wy with large derivatives, we use the following observation. Fx a small
> 0. Then dist([lx( (0));1) < , whenever k is large enough. Consider all the powers [l of the
previous commutators. Put

myx =minfm 2 N; dist([[' ( (0));1) o}

(The numbers my are well-de ned provided that [Jx( (0)) 6 1.) Then dist([I;"“( (0));1) < 2,
wheneverk is large enough, by de nition, the previous inequality and the left invariance of the metric
on G. We claim that if a;(0) and a,(0) are close enough to 1 and the family (u) satis es appropriate
genericity assumption, then the derivative at 0 in certain directions of the mappingu 7! [I'*( (u)) 2 G
grows linearly in k, as that of the mappings  in the proof of Proposition 4.1.32.

In what follows we construct
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Wio = h; Wik = gWik 10 1Wi(|} 1) (4.3.2)

- a sequence of collections

MW= W (4.3.3)

D= Whowy

We show that the latter words wy satisfy (4.3.1). To do this, we introduce the rescaled pararater
a = ku;
as in Proposition 4.1.32, and show that
( (k 'B))! (w@);ask!l ; : R"! Gis a local di eomorphism at O; (4.3.4)

the previous convergence is uniform with derivatives on cormact subsets inR". Theorem 4.1.33 will
be then deduced from (4.3.4) at the end of the subsection.
For a xed g2 G consider the corresponding commutator mapping

g:G! G; 4(y)=gyg'ly “10nehas 4(1)=1; J(1)=Ady Id:g! g

Wik ( (W)= §( @y (W): (4.3.5)

For any 1- proximal elementg 2 G (see De nition 4.2.22) denote
s(g) = the eigenvalue of Adg Id with maximal modulus, Ly g its eigenline (4.3.6)

The function s(g) is analytic on the (open) subset of 1- proximal elements, bythe simplicity of the
eigenvalues(g). Denote

= f1- proximal elementsg2 G jjs(g)j < 1g: (4.3.7)

Remark 4.3.1 Let G be an arbitrary semisimple Lie group with proximal elements The above set
is open and nonempty (Corollary 4.2.23).

The choice of the wordsg, and h will be speci ed at the end of the subsection. It will be done ®
that

g( (0) 2 forany j=1;:::;n:

The following Proposition 4.3.2 describes the asymptotic lehavior of the iterated commutators 'é(y),
ask !'1 , for arbitrary g 2 and y 2 G close enough to 1. Using Proposition 4.3.2, we show
(Corollary 4.3.3) that for appropriately chosen word h and arbitrary given " > 0 one can choose
appropriate exponentsmjy. (which depend ong and ", see (4.3.11)) so that the mapping sequence
'«( (k 'a)) converges to some mapping (), which depends only ong;, h and ". The mapping is
explicitly given by formula (4.3.12) below. The main technical part of the proof of Theorem 4.1.33 is
to show that one can adjustg;, h and " so that the limit be a local di eomorphism at 0 (Lemmas
4.3.4, 4.3.6 and the Main Technical Lemma 4.3.5 below). Lemas 4.3.4 and 4.3.6 easily follow from
Lemma 4.3.5. Theorem 4.1.33 will be deduced from Lemma 4.3#nd Proposition 4.3.2 at the end of
the subsection. The proofs of Lemma 4.3.6 and Proposition 8.2 are omitted here. A sketch-proof of
Lemma 4.3.5 will be given in 4.3.2.
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Proposition 4.3.2 Let G be a Lie group with proximal elements, be as in (4.3.7). There exist an
open subset

0 G ° 1; (4.3.8)

and a g- valued vector function vg(y) analytic in (g;y) 2 © vg(1) = 0 (denotedvy : g! g its
di erential in y at'y =1) such that for any (g;y) 2 °one has

VoY) 2 Lg; dvgjL, = 1d :Lg! Lg; §(y) = exp(s“(9)(Vg(y) + 0(1))); ask! +1; (4.3.9)

s(g) and L4 are the same, as in (4.3.6). The latter" 0" is uniform with derivatives in (g;y) on compact
subsets in ©.

Corollary 4.3.3 Let G, n, M, (u) be as at the beginning of the subsection, be as in (4.3.7), ¢
Vg be as in Proposition 4.3.2. Letgs;:::;0n, h be words inM elements such that

(g ( (0);h( (0) 2 Cforanyj =1;:::;n: Put

sj(u) = s(g ( (W); g(u)= vy @y(h(C (W) 2g ;= ¢(): (4.3.10)

mic = ["isi “(O)]: (4.3.11)
Let ! « be the corresponding commutator power product (4.3.3). The
Le( (k tm) ! (@) =exp("eld@nsiO)e )...exp(eldnsnO@)e - aski11 ; (4.3.12)
uniformly with derivatives on compact subsets inRR".

Proof One has
anl:jk ( (k lB)) I exp("e(dm sj(0) e ].) (4313)

uniformly with derivatives on compact sets in R". Indeed, by (4.3.5) and (4.3.9), one has
Wi ((k 'e)) =exp(my si(k ‘e)(e (k ‘e)+ o1); g (k ‘e)! (4.3.14)
mycsf(k te) 1 eldnsiO)e: since (4.3.15)
si(k '8)=(s;(0)+ k *(ds(0)e+ ok ")
= s50)(1+ k '(dIns;(0))e+ ok M)k = sk(0)e" O e(1+ o(1)) (4.3.16)
and mjg s}‘ (0)! " by (4.3.11). Substituting (4.3.15) to (4.3.14) yields (4.313), which implies (4.3.12).

The corollary is proved. 2

Lemma 4.3.4 Let G, n, (u), M be as at the beginning of the subsection, be as in (4.3.7). There

exists a collectiongs;:::; g, of words in M elements such thatgi( (0)) 2 foralli=1;:::;n and
the system ofn functions s;(u) = s(gi( (u))) (which are well-de ned in a neighborhood of 0) has the
maximal rank n at 0. Moreover, given any collectionA1;:::;A, 2 one can achieve that in addition,

the elementsg;( (0)) be arbitrarily close to A;.

For the proof of Theorem 4.1.33 in the general case, withoutlie assumption that G has proximal
elements, we use the following generalization of Lemma 4.4.
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Lemma 4.3.5 (Main Technical Lemma). Let G be an arbitrary semisimple Lie group with ir-
reducible adjoint representation (not necessarily with poximal elements), dimG = n. Let (u) =

be arbitrarily close to A;.

Lemma 4.3.4 follows from Lemma 4.3.5 applied tdJ = and the function  (g) = s(g).

Lemma 4.3.6 Let G, n, M, (u) be as at the beginning of the subsection, G G be as in
Proposition 4.3.2. There exist wordsgs;:::;gn, h such that (g ( (0));h( (0))) 2 Ofor all j and for
any " > 0 small enough the corresponding mapping &) from (4.3.12) is a local di eomorphism at 0.

Proof of Theorem 4.1.33 modulo Proposition 4.3.2 and Lemmas 4.3.5 and 4.3.6. Letg,
h, " be as in Lemma 4.3.65; (u) be as in (4.3.10),mjx be as in (4.3.11). Let! « be the corresponding
commutator power product from (4.3.3), be the mapping from (4.3.12). Let > 0 be such that

D ! (D) G be a dieomorphism (it exists by Lemma 4.3.6). Let w be an arbitrary word
such that
w( (0)2 (D); we=w :Then
wi( (k 'e))! (@=w? (0)(e; :D! (D) Gisadieomorphism, (4.3.17)
12 (D)

(Corollary 4.3.3). Therefore, for any k large enough the imagewy( (k D )) also contains 1, and
hence,wi( (k ‘eg)) =1 for some g 2 D . Put

ux = k tey; one haswi( (uk))=1; ug! O

The relation wy( (u)) = 1, which holds for u = ug, does not hold identically in u 2 Dy 1 o for any

0< © |, because of the di eomorphicity of the mappingse 7! wi( (k tg@)) on D for large k (see
(4.3.17); the convergence is uniform with derivatives orD there). Thus, the words wy satisfy (4.3.1).
This proves Theorem 4.1.33. 2

4.3.2 Sketch-proof of the Main Technical Lemma

Denote 0 = R" the parameter u space under consideration. By assumption, the family (u) is
conj- nondegenerate. This together with the equality of the dimexsions ofG and O implies that the
derivative along each nonzero vectow 2 ToO of the function u 7! Conj( (u)) is nonzero. (Fix a
v 2 To0 n0.) The derivatives along v of the mappingsu 7! w( (u)) (where w is an arbitrary word)
form a vector eld on the dense subgroup =< (0) > G (we extend itto 1 by 0). This vector eld is
well-de ned (single-valued), if is free. In general, if th ere are relations in , it is single-valued, if and
only if for any word w giving a relation (i.e., w( (0)) = 1) the corresponding mapping u 7! w( (u))
has zero derivative alongyv.

The maximal rank statement of Lemma 4.3.5 is equivalent to tre statement that for any given
v 2 To0 n0 there exists an indexj such that the corresponding vector at g ( (0)) of the previous
eld is nonzero and transversal to the level hypersurface othe function . To prove that, we show
that the previous vector eld (if well-de ned) is not Lipsch itz at 1. Moreover, we show that for any
line g there exists a sequence of wordei (az;:::;am ), Wk( (0)) ! 1,ask!1l , such that

i ( ()
- B
dist(wi( (0));1)

1 ;ask!l ; (4.3.18)
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the tangent line in Ty, ( (o)) G generated by the latter derivative tends to : (4.3.19)

First we prove (by contradiction) that statement (4.3.18) h olds true for some word sequencevy .
Suppose the contrary : the previous vector eld on the densewgbgroup G is Lipschitz at 1. Then we
show that it extends up to a vector eld on the whole G that de nes a ow of automorphisms of G. The
latter automorphisms preserve conjugacy classes (semispticity). This contradicts the nonvanishing
of the derivative along v of Conj ( (u)).

Given any word sequencewy satisfying (4.3.18), passing to a subsequence one can acheethat
the tangent lines in Ty, ( (o) G generated by the (big) derivatives from (4.3.18) converged some line

g, i.e., statement (4.3.19) holds true for this . The union of all these possible limit lines is
closed andAdg - invariant. This follows by de nition and the density of the subgroup G. We show
that the latter union of limit lines is the whole g, by using the irreducibility of the adjoint.

The existence (for arbitrary ) of words satisfying (4.3.18) and (4.3.19) implies the following

Corollary 4.3.7 LetG,n, (u),U G, :U! R bethe same, as in the Main Technical Lemma

wi( (0)) ! g, such that the derivativesw are transversal to the level hypersurfaces = (hg).

Proof (sketch). It suces to prove the statement of the corollary for any g belonging to a dense
subset in U. We prove it for those g 2 U\ at which d (g) 6 O. Inclusion g 2 means that

g= w( (0)) for some wordw. If already the derivative = W is transversal to the hypersurface
= (g), then we put wx = w and we are done. Now suppose that the latter derivative is tagent
to the hypersurface = (g). We x an arbitrary line g whose image inTgG under the left

multiplication by g is transversal to the same hypersurface. Letwy be a word sequence satisfying
(4.3.18) and (4.3.19) for this . We show that the words wy = wwy satisfy the statements of the
Corollary. The derivative e = W is the sum of the two following vectors :

- the vector Q2 2 T, G, which is the image of = w under the right multiplication by
wi( (0));

- the vector ¢ 2 Ty, G, which is the image ofw under the left multiplication by w( (0)).

An elementary calculation shows that dlg = O(dist(hg;g)), ask ! 1 (by construction : g— =
0), while the derivative 4— asymptotically dominates O(dist (hy;g)) (this follows from (4.3.18) and

d «

(4.3.19)). Thus, the latter derivative dominates the former one and ddi 6 0 for any k large enough.
This proves the corollary. 2
Proof of Lemma 4.3.5. Givena"> 0andAj;:::;An 2 U, let us construct words gi( ), gi( (0))
being "- close toA;, such that the valuess;(u) = (g( (u))), i =1;:::;n, are functions of joint rank
n at 0. This will prove Lemma 4.3.5.

Given a tangent vector v 2 To0 n 0, there exists a wordg; (denote s;(u) = (gi( (u)))) such
that g;( (0)) is "- close toA; and % 6 0 (conj- nondegeneracy and Corollary 4.3.7 applied to

g = A;). Take another vector v, 6 0 tangent to the level hypersurface of the function s; at 0. Again
applying the corollary to v = v,, one can nd a word g, with gx( (0)) being "- close toA; such that
the derivative along v, of the function s, : u 7! (g2( (u))) does not vanish. Now take a vectorv; 6 0
tangent to the level surface of the vector function 6:;s;) and construct a word gz similarly etc. This
yields the words g, we are looking for : by construction, the system of functionss; : u 7! (gi( (u)))
has rankn at 0. Lemma 4.3.5 is proved. 2

4.4 Case of semisimple Lie groups with irreducible adjoint
and without proximal elements

In the case mentioned in the title of the section the proof (given below) of Theorem 4.1.33 is
essentially the same, as before, but it becomes slightly mertechnical.
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Everywhere below in this section, whenever the contrary is bt speci ed, we consider thatG is a

be aconj- nondegenerate family ofM - ples of its elements. As in Section 4.3, we consider that 2 R",
n = dimG. We construct appropriate sequence of wordsv, and a sequencai, 2 R" such that

wie( (ue)=21;u! O asr!l ; (4.4.1)

and the relationsw; ( (u)) = 1 do not hold identically in a neighborhood of 0. This will prove Theorem
4.1.33.

I =(ly;::2500) 2 Z™; a sequence of numberk, 2 N; k, '1 ; asr!1l ;

De= wipr,oowie o swe = w (4.4.2)
where wjx .+, are the iterated commutators given by the recurrent formula (4.3.2). We consider the
rescaled parameter

8 = k,u and show that
'h( (k,'e)! (®8); : R"! Gisalocal dieomorphism at 0; (4.4.3)

the latter convergence is uniform with derivatives on compat sets in R". This implies Theorem 4.1.33
analogously to the discussion at the end of Subsection 4.3.The implication is proved at the end of
the present section.

In the proof of Theorem 4.1.33 we use Proposition 4.4.8 statebelow. It describes the asymptotic
behavior of iterated commutators

s =1g::lgyl:l;

ask !l .Thisis an analogue of Proposition 4.3.2 from Section 4.3nthe case under consideration the
unity component of G contains no 1- proximal elements (for which Proposition 4.32 was formulated).
We introduce so-calledC-1-proximal elements(see the next de nition). We show that their set contains
an open dense subset in the unity component (Proposition 4.4 and its Corollary 4.4.4, both stated
below). We state Proposition 4.4.8 for the C-1-proximal elementsg such that the derivative 8(1) is
contracting. To do this, we show (Proposition 4.4.5 below) hat for each C-1-proximal elementg 2 G
there exists a unique g(l)- invariant plane L(g) g equipped with a natural 8(1)- invariant complex
structure such that the restriction 8(1) :L(g)! L(g)is multiplication by a complex eigenvalue s(g)
of the operator 8(1) :g! g with maximal modulus.

The words g; will be chosen at the end of the subsection, in particular, sothat each element
g = g ( (0) be C-1-proximal and js(g)j < 1. For any collection of words g satisfying the latter
statements and any given" > 0, Proposition 4.4.9 and Corollary 4.4.10 (both stated bela) provide
sequencexk,;m; ! 1 such that for any word h with h( (0)) close enough to the unity and any

(4.4.2), converges to some mapping :R" ! G uniformly with derivatives on compact sets in R".
The limit mapping is given explicitly by formula (4.4.11) b elow, which depends only on the words
g, h, the collection| 2 Z" and ". Lemma 4.4.11 stated below shows that one can adjusg, h and
| so that be a local di eomorphism at 0, whenever " is small enough. This is the main technical
part of the proof of Theorem 4.1.33. The proof of Lemma 4.4.11ses the Main Technical Lemma from
Section 4.3.

At the end of the section we deduce Theorem 4.1.33 from the témical statements listed above
(Propositions 4.4.1, 4.4.8 and Lemma 4.4.11; their proofsra given in [50] and omitted here).
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Proposition 4.4.1 Let G be a connected semisimple Lie group. There exists a nonempsubsetU
G such that the subseAdy Ade  End(g) is Zariski open in Adg and the adjoint of eachg 2 U
satis es the following statements :

1) the number of its nonunit complex eigenvalues is maximal ral nonempty, and all they are
simple;

2) if there is a pair of distinct eigenvalues 1; 61 withj 1 1j=j » 1j,then 1= .

De nition 4.4.2  An element g of a Lie group is calledC-1-proximal, if the operator Adg Id has a
pair of simple nonreal complex-conjugated eigenvalues ttiaare the unique eigenvalues with maximal
modulus.

Proposition 4.4.3  Any element of a semisimple Lie group whose adjoint satis eshe previous sta-
tements 1) and 2) is either 1- proximal (see De nition 4.2.22) or C-1-proximal.

Proof Let Ady satisfy 1) and 2), Dbe its eigenvalue for which the modulusj 1j is the maximal

possible. Then 16 0and is a simple eigenvalue (statement 1)). For any eigenvalue®6 ; one
hasj 1j>j ° 1j (statement 2)). Therefore, gis 1- proximal, if 2 R and C-1-proximal otherwise.
Proposition 4.4.3 is proved. 2

Corollary 4.4.4 Let G be a semisimple Lie group without proximal elements. The seif C- 1- proxi-
mal elements inG is open and contains a dense subsé&l Gy of its unity component Go.

Proof The openness of the set o€-1-proximal elements follows from de nition. The subsetU  Gg
from Proposition 4.4.1 is open and dense (sincédy is nonempty and Zariski open in a smooth
variety Adg,, by Proposition 4.4.1). The setU consists of C-1-proximal elements (Proposition 4.4.3
and absense of 1- proximal elements iGy). Indeed, otherwise, a 1- proximal element ofGy would
be proximal (Corollary 4.2.25), - a contradiction to the conditions of Corollary 4.4.4. This proves
Corollary 4.4.4. 2

We use the following properties of the adjoint of aC-1-proximal element.

Proposition 4.4.5 Let A:R"! R" be a linear operator with a pair of simple complex-conjugai®
eigenvaluess;s 2 R. There exists a uniqueA- invariant plane L R" whose complexi cation is
the sum of the complex eigenlines corresponding to the eigaduess and s. The plane L carries an
A- invariant linear complex structure (i.e., a structure of complex line compatible with its real linear
structure), unique up to complex conjugation. The restriciton A : L ! L acts by multiplication by
either s or s in the latter complex structure (dependently on double choé of the complex structure).

Proof By basic linear algebra, the previous planeL exists, unique and there exists aR- linear
nondegenerate operatord : L ! C such that HAH (z) = sz. The H- pullback of the standard
complex structure on C (or of its conjugate) is an A- invariant complex structure on L such that the
restriction A : L ! L acts by multiplication by s (respectively, s). These are the only A- invariant
linear complex structures onL. Or equivalently, the standard complex structure on C is the unique
linear complex structure (up to complex conjugation) invariant under the multiplication by a number
s 2 CnR. Indeed, each linear complex structure on a plane de nes anlipse centered at 0 (up to
homothety) : the latter ellipse is an orbit of a vector under the multiplication by the complex numbers
with unit modulus. Vice versa, an ellipse determines a lineacomplex structure uniquely up to complex
conjugation. The only ellipse in C sent to a homothetic one by multiplication by a s 2 CnR is a circle.
This proves the previous uniqueness statement and Proposin 4.4.5. 2

De nition 4.4.6  Let G be a Lie group,g 2 G be aC-1-proximal element. Let s(g) be an eigenvalue
of Adg Id with the maximal modulus. LetL_(g) g be the Adg 1d- (and hence,Ady- ) invariant
plane corresponding to the eigenvalues(g), s(g) (see Proposition 4.4.5). The correspondinghdg Id-
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invariant complex structure on L(g), in which Adg Id : L(g)! L(g) acts by multiplication by s(g),
will be called the s(g)- complex structure.

Proposition 4.4.7 Let G be a Lie group,V G be a connected component of the subset of the
C-1-proximal elements (which is open by de nition). The valtes s(g), s(g) from De nition 4.4.6 yield
two real-analytic complex-conjugated functionss;s:V ! C= R2.

Proof The local real analyticity of the previous values follows from the simplicity of the eigenvalues
s(g), s(g). The global real analyticity (say, of s(g)) follows from the fact that its analytic extension
along any closed loop invV does not change the analytic branch. Indeed, the result of aalytic extension
of s(g) remains an eigenvalue ofAdg |d with the maximal modulus, by de nition and the previous
local analyticity statement. Therefore, given agy 2 V and a loop V based atgp, the result of the
analytic extension ofs(g) along is either s(go), or s(go). In the latter case there exists ag®2  where
s(g@) 2 R, by continuity. It follows from de nition and the local anal yticity that s(g%) is a double
eigenvalue ofAdg Id with maximal modulus, - a contradiction to the C-1- proximality. Proposition
4.4.7 is proved. 2

In what follows, everywhere below in this section, we X a red-analytic branch of the eigenvalue
function s(g) from Proposition 4.4.7, de ned on the open set of all theC-1-proximal elements. The
corresponding family of planesL(g) g and the s(g)- complex structures on them (see the previous
de nition) also depend analytically on g. We de ne the multiplication of vectors in L(g) by complex
numbers in the sense of thes(g)- complex structure. Denote

c1=fC 1 proximal elementsg2 G with js(g)j < 1g (4.4.4)

This is a nonempty open subset inG, by Corollary 4.4.4.

Proposition 4.4.8 Let G be a Lie group such that 1 6 ;, s(g), L(g) and the complex structures
on the planesL(g) be as above. There exists an open subset

% c1 G c1 1 2y (4.4.5)

and a g- valued vector function vg(y) analytic in (g;y) 2 ?3;1, Vg(1) = 0 (denotedvyg : g! gits
di erential in y at y =1) such that

Vo(y) 2 L(g) for any (g;y) 2 215 dVgjL(g = Id :L(9)! L(9); (4.4.6)

5(y) = exp(s“(g)vg(y) + o(js*(g)i)); ask!1l ; (4.4.7)
the latter \o" is uniform with derivatives on compact subsets in  2.,.

Given a collection of wordsg;, j =1;:::;n, with g ( (0)) 2 ¢;1, we denote

Proposition 4.4.9  For any real vector = ( 1;:::; n) 2 R" there exists a sequence of numbers
ki 2N,k '1 ,asr!1 , such that

ke ;! Omod2 ); asr!1 ; foranyj =1;:::;n: (4.4.8)

Proof Consider as an element of the torusT" = R"=2 Z". The subgroup< > T" either is
discrete, or accumulates to 0. In both cases there exists a geence of numbersk, 2 N, k. !'1
such thatk, ! 0inT" (the latter statement is equivalent to (4.4.8)). In the second case this follows
from de nition. In the rst case the group < > is nite cyclic by compactness. Denotem its order,
ki = rm. Thenk, =0in T" for all r 2 N. This proves Proposition 4.4.9. 2
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Corollary 4.4.10 Let G, n, M, (u) be as at the beginning of the Subsection,c.; be as in (4.4.4),

?;;1 be as in (4.4.5). Letg;;:::;0n;h be words inM elements such that
(g ( (@);h( Q) 2 ?:;1 forany j =1;:::;n: (4.4.9
Let kr 2 N, kr !'1 , be a sequence satisfying (4.4.8) with; = arg s(g;( (0))). Let "> 0, put
mir =["isi (g ( O sj(u) = s(g( (W); ;= Vg @ () 2L(g( (0); (44.10)
see (4.4.6). Letl =(ly;:::;1y) 2 Z" be an arbitrary collection of n integers, ! ; be the corresponding
product (4.4.2) of iterated commutator powers. Then
Le( (k@) ! (B) =exp("st(0)eldnsiOe ). exp("sl (0)eldinsn@)e . (4.4.11)

asr ! 1 , uniformly with derivatives on compact sets in R". (The multiplication of the vectors
i 2 L(g( (0))) by complex numbers is de ned in terms of thes(g;j( (0)))- complex structures on

L(g ( (0)).)
Proof Onehas(asr!1 )

Wi, +1, ( (k. 1)) =exp( s (k, ‘e)e (@) + ofjs” " (k. 'B)})); where (4.4.12)

& (8) = Vg ( (k ey (h( (K ) ) R
by de nition and (4.4.7),

s (k te) = s (0)eldM s @81+ o(1)); asin (4.3.16)

Mir s}" (0) !' " by (4.4.8) and (4.4.10). Hence,wj;”?(j’r+|j( (k, te)) ! exp("sj!" )eldnsi e ) as
r!'l by (4.4.12) and the latter asymptotics. This implies (4.4.11). 2

Lemma 4.4.11 Let G, n, M, (u) be as at the beginning of the subsection. There exist words
O1;:::;0n; h satisfying (4.4.9) and al = (l1;:::;1,) 2 Z" such that for any " > 0 small enough
the corresponding mapping ( &) from (4.4.11) be a local di eomorphism at 0.

Proof of Theorem 4.1.33 modulo Propositions 4.4.1, 4.4.8 an dLemma4.4.11. Letg;:::;0n,
h, I, " be as in Lemma 4.4.11s; (u) = s(gi( (u)), j =argsj(0). Let k, !'1 be a natural sequence
satisfying (4.4.8). Let m;, be the numbers from (4.4.10). Let! ; be the corresponding iterated com-
mutator power product (4.4.2), be the corresponding mapping from (4.4.11). Let > 0 be such
that

D! (D) G be adieomorphism.

It exists by Lemma 4.4.11. Fix an arbitrary word w in M elements such that
w( (0)2 (D):Putw, =w ,:

For any r large enough the imagew, ( (k, D )) contains 1. This follows from the convergence

we( (k 'e) ! (8)=w *( (0)( ®) (4.4.13)
(which takes place by de nition and (4.4.11)) and the fact that
D! (D) Gisadieomorphism,and12 (D );

as at the end of Subsection 4.3.1. Therefore, for any large enough there exists a parameter value
g 2D R"; put u =Kk, ‘e; suchthat w,( (u/))=1:

The sequenceu, satis es (4.4.1). The relations w; ( (u)) = 1 do not hold identically in u for any r
large enough, as at the end of 4.3.1. This proves Theorem 433 modulo Propositions 4.4.1, 4.4.8 and
Lemma 4.4.11. 2
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4.5 A short proof of Theorem 4.1.1 for dense subgroups in
G = PSLy(C)

Let A;B 2 PSL,(C) generate a free dense subgroup. We prove Theorem 4.1.1 byrtadiction.
Suppose there is a (simply connected) neighborhoo¥ P SL,(C) PSL,(C) of the pair (A;B)
such that each pair (@;b) 2 V generates a free subgroup. Thus, each wordi(a; b) is a holomorphic
function in (a;b) 2 PSL,(C) P SL,(C) with values in PSL,(C); distinct words de ne holomorphic
functions with disjoint graphs over V. Using holomorphic motion of the xed points of the elements
w(a;b) 2 PSL,(C), we construct a nonstandard measurable almost complex strcture on C invariant
under the action of < A;B > (and hence, under the action of the whole groufP SL,(C) by density).
But the only measurable almost complex structure preservedunder the action of PSL,(C) on C is
the standard complex structure, - a contradiction.

Remark 4.5.1 The author's initial proof of Theorem 4.1.1 in the case, whenG = P SL,(C), followed
a similar scheme (using the holomorphic motion of xed points) but was longer than the one pre-
sented below. The nal quasiconformal mapping and invariarce argument, which simpli ed the proof
essentially, is due toEtienne Ghys.

Recall that an elementb2 P SL,(C) is called elliptic, if its action on C is conjugated to a rotation.

It is called hyperbolic if it has two xed points : one attracting and the other one re pelling. Otherwise

it is parabolic, i.e., has a unique xed point and is conjugated to the transhtion. If b has two xed

points, then their multipliers are inverse to each other. The half-sum of their multipliers (denoted
(b)) is a holomorphic function :PSL,(C)! C.

Proposition 4.5.2 Let V PSL,(C) PSL»(C) be an open set such that each paifa;b) 2 V
generates a free subgroup i? SL,(C). Then each element of the latter subgroup is hyperbolic.

Proof Suppose the contrary : there exists a pair §;b) 2 V and a nontrivial word w such that the
multiplier of the transformation w(a;h) at some its xed point has unit modulus. This is equivalent
to say that (w(a;b) 2 [ 1;1]. There exists a pair €;d) 2 PSL,(C) PSL,(C) arbitrarily close
to (a;b) (in particular, lying in V) such that the multiplier of w(c;d) at some its xed point be a

root of unity, or equivalently, (w(c;d)) = cos , 2 Q. This follows from the nonconstance of

the holomorphic function (c;d) 7! (w(c;d)) and openness of holomorphic mappings. (The function
(w(c; d)) is nonconstant on PSL,(C) PSL,(C), since w(1;1) = 1 and the value of the word w
on the generators of a Schottky group is hyperbolic.) By consuction, the transformation w(c;d) is
elliptic of nite order, - a contradiction to the liberty of t he group< c;d > . The proposition is proved.
2

Thus, each elementw(a; b) 2 PSL,(C), (a;b) 2 V, is hyperbolic, hence, its xed points are analytic
functions in (a;b) 2 V. The graphs of the xed point functions are disjoint. Indeed, otherwise, if two
distinct hyperbolic elements of PSL,(C) have one common xed point, then their commutator is
parabolic : the latter xed point is its unique xed point. Th is contradicts the hyperbolicity of the
commutator. If two hyperbolic elements have two common xed points, then they commute, - a
contradiction to the liberty.

For any (a;b) 2 V denote Fix(a;b) C the set of xed points of all the elements of the group
<a;b>.The setFix (A;B) is dense inC, since the subgroup< A;B > is dense. The previous disjoint
graphs of xed point functons form a holomorphic motion over V of the setsFix (a;b), (a;b) 2 V.
They can be extended up to a global holomorphic motion : lling the whole productV  C by a
union of disjoint graphs of holomorphic functionsV ! C. This follows immediately from the density
of Fix (A; B) by the disjointness and elementary normal family argument(e.g., a version of Montel's
theorem, see [88]).
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Remark 4.5.3 The well-known Slodkowski theorem [108] says that any holomrphic motionin D C
of any subset of the Riemann sphere over unit diskD extends up to a holomorphic motion of the
whole Riemann sphere. Here we do not use this theorem in fullanerality.

For any (a;b) 2 V denoteh,p : C! C the mapping of the C- ber (a;b) C V Ctothe ber
(A;B) C de ned by the holonomy of the previous holomorphic motion. In more detail, take any path
in V from (a;b) to (A; B) and lift it to each one of the previous disjoint graphsinV  C. By de nition,
the mapping h,p sends the starting point of a lifted path to its end-point. Th e mappingha., does not
depend on the choice of path by simple connectivity ofV. It is a quasiconformal homeomorphism :
any holomorphic motion has a quasiconformal holonomy [111]The homeomorphismh,., conjugates
the actions on C of the groups< A;B > and < a;b >, since it conjugates them on the dense invariant
subsetsFix (A;B) and Fix(a;b) in C, by construction. The quasiconformal homeomorphismhg,
transforms the standard complex structure onC to a measurable almost complex structure (denoted
by (a;b). The latter structure is invariant under the action of the group < A;B > (by de nition
and the previous conjugacy statement), and hence, undeP SL,(C), by density. Now to prove the
theorem, it su ces to show that for a generic pair (a; b) the almost complex structure (a;b) is not
standard.

For any (a;b) 2 V the elementsa and b are hyperbolic with distinct xed points; the latters form
a quadruple denotedQ(a; b) of points in C. If the cross-ratios of two quadruplesQ(a;b) and Q(A;B)
are distinct, then the quasiconformal homeomorphismh,.,, which sendsQ(a;b) to Q(A;B), is not
conformal; hence, (a;b) is not standard. This together with the discussion at the beginning of the
section proves Theorem 4.1.1.

4.6 Sketch-proof of Theorem 4.1.29

For simplicity we sketch the proof of Theorem 4.1.29 only in he case, wherG is a semisimple Lie
group with irreducible adjoint and proximal elements. In th e case, whenG is the same but without
proximal elements, the proof is analogous. In the case, whefs is arbitrary semisimple Lie group,
Theorem 4.1.29 is deduced from its statements in the previogly mentioned cases and Proposition
4.2.9. In the general case Theorem 4.1.29 is then deduced ffnoits statement for semisimple groups
and the existence of the factorizationG ! Ggs (See 4.2.1).

Thus, we assume thatG is semisimple, with irreducible adjoint and with proximal elements. Recall
that G is "(x)- approximable with bounded derivatives. Let (A;B) 2 G G be an irrational pair,

Im = Im(D1) = Im(A;B;D 1)

be the corresponding length majorant sequence for approxiations by words in (A;B) on the unit

ball D; G, see De nition 4.1.11. We show that there exist a sequencwy, (a; b) of nontrivial words,

a sequence of pairsAm;Bm)2 G G, (Am;Bm)! (A;B), and constantsc® c®®> 0 (depending only
on (A; B)) such that

WO (Am:Bm)=1; jwlj 19 = c™n; (4.6.1)

dist((Am;Bm); (A;B)) <" (A%): (4.6.2)

This means that the pair (A;B) is "(x)- approximable by pairs with relations, and Theorem 4.1.29
with its Addendum then follow immediately.
For the proof of (4.6.1) and (4.6.2) we X an arbitrary conj- n ondegenerate family

(W=(a(u);bu)2G G; u2R"; n=dimG; (0)=(A;B):

As it was shown in Section 4.3 (see (4.3.17)), there exist a gaence of wordsw, a mapping :R"! G
and a > 0 such that

we( (k 'e))! (8); :D ! (D) Gisadieomorphism,12 (D ); (4.6.3)
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the previous convergence is uniform with derivatives on compact sets inR". Fix a R > 0 such that
(0) 2 Dg = Dr(1) G: (4.6.4)
Let I(R) be as in (4.1.5),
mD r; fin = Im(DR) = Im + I(R); Cr = ¢(A;B;DR)

be respectively the word collection and length majorant segences and the constant, corresponding
to the "(x)- approximations on Dgr by words in (A;B) with bounded derivatives, see De nition
4.1.11 and (4.1.5). For anyk large enough one hasw( (0)) 2 Dgr, by (4.6.3) and (4.6.4). We X

a sequence of wordsy.m 2 mp, Such that the elements . (A;B) be "(crBn)- approximants of
wi ( (0)) = wi(A;B). We show that if we x a k large enough, then the words

0 _— 1
Wi = em Wk

satisfy statements (4.6.1) and (4.6.2). The existence of agr sequence Am;Bm)= (Um), Un 2 R",
satisfying (4.6.1) and (4.6.2) is deduced from (4.1.5) andhe following statements :

dist(w®, (A; B); 1) <" (crfn) (by de nition); (4.6.5)

km (8) = Wo( (k ‘@) =( awi)( (k '®)! Se)=( (0) * (1) (4.6.6)

uniformly with derivatives on compact sets, ask;m ! 1 . Statement (4.6.6) follows from de ni-
tion, (4.6.3) and the uniform boundedness of the derivatives of the words «.m on one and the same
neighborhood of @;B) ("(x)- approximability with bounded derivatives).

In more detail, x a k 2 N for which there exists a constantK > 0 such that for any m large
enough (dependently onk)

km D ! n(D) Gisadieomorphismand1= €0)2 n(D); (4.6.7)
jiC 2, (x) ljj<K foranyx2D : (4.6.8)
The existence of the previousk follows from (4.6.6). Put
Unm =k * (1); (Am;Bm)=(um): By de nition, w2 (Am;Bm)=1;
dist((Am;Bm);(A;B)) = O(um) = O(dist( m (0);1)) = O(dist(wp, (A;B); 1)) = O("(crn));
by (4.6.5). Thus, there exists a constantC > 1 such that
dist((Am:Bm); (A;B)) <C" (crfin) (4.6.9)
for any m large enough (that is, for which the previous pair (An, ;Bn) is well-de ned). One has
Wi i kmitiwk Batiwkj=Im+ 5 = jwj+ I(R): Therefore,
+

.0 I
wlj 1% = Ay PO=max ——;
m Im

H . . . n n . — H P p— CR .
dist((Am;Bm); (A;B)) <C" (crfn) <" (AA%); wherec®= C lcg inf ﬁ = S

This proves (4.6.1), (4.6.2) and Theorem 4.1.29.



Chapitre 5

Restricted version of the
In nitesimal Hilbert 16-th problem

5.1 Introduction : zeros of Abelian integrals

5.1.1 Restricted In nitesimal Hilbert 16th Problem

The original In nitesimal Hilbert 16th Problem is stated as follows. Consider a real polynomialH
in two variables of degreen + 1: The space of all such polynomials is denoted by ,.

Connected components of closed level curves &f are called ovals of H: Ovals form continuous
families, see Fig. 5.1. Fix one family of ovals, say ; and denote by (t) an oval of this family that
belongs to the level curvefH = tg:

Fig. 5.1 { Families of ovals; an oval aroundA; that belongs to the level curve H = H(Ay) is
distinguished.

Consider a polynomial one-form
I = Adx + Bdy

75
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with polynomial coe cients A(x;y) and B(x;y) of degree at mostn: The set of all such forms is
denoted by  The main object to study below is the integral
Z
I(t) = I (5.1.1)
(t)

In nitesimal Hilbert 16th Problem . Let H and! be as above. Find an upper bound of the
number of isolated real zeros of integral (5.1.1) for a polyomial H 2 H, and any family  of real
ovals of H: The estimate should be uniform in! and H; thus depending onn only.

This problem stated more than 30 years ago is not yet solved. fie existence of such a bound was
proved by A.N.Varchenko [113] and A.G.Khovanskii [81]. A weaker version of the problem is called
restricted. In order to formulate it we need the following

De nition 5.1.1 A polynomial H 2 H ,, is ultra-Morse provided that it has n? complex Morse critical
points with pairwise distinct critical values, and the sum h of its higher order terms has no multiple
linear factors.

Denote by U, the set of all ultra-Morse polynomials in H,. The complement to this set is denoted
by ., and called the discriminant set. The integral (5.1.1) may be identically zero. The following
theorem shows that for ultra-Morse polynomials this may hapen by a trivial reason only.

Theorem 5.1.2 (Exactness theorem [61, 62, 102]) Let H be a real ultra-Morse polynomial of
degree higher than 2. Let the integral (5.1.1) be identicayl zero for some family of real ovals of the
polynomial H: Then the form ! is exact :! = d:

Denote by , the set of all non-exact polynomial one-forms from ,:

Restricted version of the In nitesimal Hilbert 16th Proble m (RIHP) .  For any compact
subsetK of the set of ultra-Morse polynomials nd an upper bound of tle number of all real zeros of
the integral (5.1.1) over the ovals of a polynomialH 2 K: The bound should be uniform with respect
toH 2K and! 2 : It may depend onn and K only.

This problem is solved in papers [52, 53] (joint with Yu.S.llyashenko). The solution is based on
the results of papers [46], [47] and [70]. Each one of the parse[46], [47],[70] is independent on the
others. The paper [53] is the main one in the series. It contais the survey of results of all the four
papers, as well as the solution of the RIHP.

Numerous results obtained during more than 30 years of the sidy of the in nitesimal Hilbert
problem are presented in section 7 of a survey paper [69]. Péal solution of the RIHP (given in our
preliminary, unpublished joint paper with Yu.S.llyashenk o) was claimed in that survey paper. The
paper [53] contains a complete solution to RIHP (modulo [46][47], [70]). Its results with a brief proof
were announced in [52].

The main results of the papers [46, 53, 70] are presented in ik chapter.

5.1.2 Main results

To measure a gap between a compact s&& U , and the discriminant set ,, let us rst normalize
ultra-Morse polynomials by an a ne transformation in the ta rget space. This transformation does not
change the ovals ofH, thus the number of zeros of the integral (5.1.1) remains unicanged.

Say that two polynomials G and H are equivalent i

G=aH+b; a>0; b2 C:

De nition 5.1.3 A polynomial is balancedif all its complex critical values belong to the closed disk
of radius 2 centered at zero, and there is no smaller disk thatontains all the critical values.
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Remark 5.1.4 Any polynomial with at least two distinct complex critical v alues is equivalent to
one and unique balanced polynomial. If the initial polynomial has real coe cients, then so does the
corresponding balanced polynomial.

Let us de ne two positive functions on U, such that at least one of them tends to zero a$d tends
to n: For any compact setK U ,, the minimal values of these functions onK form a vector in
R: R, thatis taken as a size of the gap betweefK and :

De nition 5.1.5 For any H 2 U, let ¢;(H) be n multiplied by the smallest distance between two
lines in the zero locus ofh; the higher order form of H: The distance between two lines is taken in
sense of the Fubini-Study metric on the projective lineCP*: Let ¢H ) = min( cy(H); 1):

Denote by V, the set of all polynomials with more than one critical value and more than one line in
the locus of the higher order homogeneous form. By De nition5.1.1,U, V ,:

Denition 5.1.6  For any H 2 V,; let G be the balanced polynomial equivalent toH: Let c;(H) be
the minimal distance between two critical values of G multiplied by n?: Let c®{H) = min( cz(H); 1):

Note that inequality c¢(H)c°{H) > 0 is equivalent to the statement that H is ultra-Morse.

In what follows, we deal with balanced ultra-Morse polynomals only. This may be done without
loss of generality : any ultra-Morse polynomial is equival@t to a balanced one ; equivalent polynomials
have the same number of zeros of the integral (5.1.1) over theorresponding families of ovals.

Theorem A. [53]Let H be a real ultra-Morse polynomial of degreen +1: Let = f (t)g be an
arbitrary continuous family of real ovals of H: There exists a universal positivec such that the integral

(5.1.1) has at most(1 log c‘)(H))ec"‘¥c'+>r“1 isolated zeros.
Appendix. The statement of Theorem A holds with ¢ = 5:000

An approach to the In nitesimal Hilbert 16th Problem itself presented below motivates the follo-
wing complex counterpart of Theorem A, namely, Theorem B tha gives an estimate of the number
of zeros of the integral (5.1.1) in the complex domain. Consler an ultra-Morse polynomial H and let

(5.1.2)

Fix any real noncritical value to of H;
jtoj < 3

whose distance to the complex critical values oH is no less than: Considerarealoval ¢ f H = tog:
We suppose that such an oval exists. Leta = a(tg) <tg < b(tp) = b(or a(H;to); b(H;to) for variable
H) be the nearest real critical values ofH to the left and to the right from to respectively;or 1 ;+1
if there are none. Denote by (tp) the interval (a(to); b(tp)) and let (o) be the continuous family of
ovals that contains ¢ :

(o=Ff Mjt2 (to); (to)= o0 (5.1.3)

The following cases for §;b) = (tp) are possible :
(a;b); b>a; 1 <a<b< +1; (a;+1); (1 ;b:

If ais nite, and lim top ,, , (t) contains a saddle critical point of H; then a is a logarithmic branch
point of I: If lim top , 5 (t) is a singleton, or contains no critical point of H, then a is called an
apparent singularity. The same for b:

Denote by B = By the set of all noncritical values ofH :

B=Cnfay::::;ag, =n?% a are the complex critical values ofH:
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Let W be the universal cover overB with the base point to and the projection
W!I B C:

For any t 2 C denote
Ss=fH=tg CZ%

De nition 5.1.7  Any point £ 2 W is represented by a class [] of curves in B starting at to and
terminating at t = f} all the curves of the class are homotopic orB: Any cycle from H1(S,;Z)
may be continuously extended over as an element of the homology groups of level curves éf; the
resulting cycle (f) from H1(S;;Z) is called anextensionof corresponding tof:

This construction allows us to extend the integral (5.1.1) to W : for any 2 W;
z
1 (f) = I (5.1.4)
()

Forany O<r denote bya+ re’ 2 W a point represented by a curve ; , B; where ;is
an oriented segment fromto to t1 = a+r 2 (to); 2=fa+re' j 2[0;']Jg; - is oriented fromt;
to t: In the same wayb re" 2 W is de ned. Let

(a)=fa+re' 2WjOo<r ;j'j 2 g fora6 1 (5.1.5)

(b=fb re' 2Wjo<r ;jj 2 g forb6+1
Let )
D(l;a)= fa+re’ 2Wja+reT 2 ( a)g
D(;b)=fb re' 2Wjb reT 2 ( bg;
D(;ja)=;;ifa= 1 ; D(;b)=;;ifb=+1:

Let DPr = DPR(H;tp) be the disk of radius R in the Poincae metric of W centered atty:

For any real polynomial H; the choice of a cycle ¢ determines a family of ovals (5.1.3) over which
the integral (5.1.1) is taken. When we want to specify this cltoice we write . , or Iy instead of I:
The integral |y, , may be analytically extended not only as a function off' 2 W; but also as a function
of H:

An analytic extension of the integral | to W is denoted by the same symbol: For any positive R
and natural | denote by G = G(I; R;H;t o) the domain

G = DPRr(H;to) [ D(l;a(H;to)) [ D(l;b(H;tp)); see Figure 5.2
Theorem B. [53]For any real ultra-Morse polynomial H; any real oval o of H; any natural | and any

positive R > %; the number of zeros of the integral 4, , in G = G(I;R; H;t o); whereto = H j o;
is estimated as follows :

481 n4
#1£2 G(;R; H;to)jl. ,()=0g (1 logdH)) e+ A%BOTRT - A = e (5.1.6)

The lower bound onR in the statement of the theorem is motivated by the remark in Subsection
5.2.4 below.



79

D(l,a) G_ D(l,b)

c
s (tg=(a,b)
a (g )=art O tof JAB- b
s (tg.n)=[I(ty).r(tH)]

Fig. 5.2 { The domains DPr(H;to);D(l;a);D(l;b) W ; the domain G is their union

5.1.3 An approach to a solution of the In nitesimal Hilbert 1 6th Problem

Conjecture (Yu.S.llyashenko). For any n there exist (n);l(n);R(n) with the following pro-
perty. Let Ho be an arbitrary real polynomial from H,; to be its real noncritical value and o be a
real oval of Hy that belongs tof Hp = tog (we suppose that such an oval exists). Ldty be the integral
(5.1.1). The integral Iy depends onH as a parameter. Lett; 2 (tp);ln,(t1) =0 andt(H) be a germ
of an analytic function de ned by the equationly (t(H)) 0; t(Ho) = ti: The required property is
the following. There exists a path H , depending onHg only starting at Hp and ending at some
H; 2 H, such that :

Hy)  (n); ™Hy)  (n); (5.1.7)

the analytic extensiont(H1) of the function t(H) along starting at the valuet; belongs to the domain
G(I(n); R(n); H1;to):

The conjecture above implies the solution of the In nitesimal 16th Problem. Indeed, suppose that
the conjecture is true. Let N (n) be the right hand side of the inequality (5.1.6) with ¢qH) and c°{H)
replaced by (n); R and | replaced by R(n) and I(n) respectively. Then the number of real zeros
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of integral I, can not exceedN (n): If not, any of real zeros ofl, would be extended along up
to a zero of an integrally, located in G = G(I(n); R(n);H1;to), for some polynomial H; satisfying
inequalities (5.1.7). Thus the number of zeros of the integal | 4, in G will exceedN (n): But Theorem
B implies that the number of zeros ofH; in G is no greater than N (n); a contradiction.

The chapter is structured as follows. In Section 5.2 we pres# the main ideas of the proof of
Theorem A. Section 5.2 contains also a survey of the previoumvestigations and describes some
results of [46]; these results may be called \quantitative &gebraic geometry"”. Moreover, we prove in
this section a part of Theorem A; namely, Theorem Al; modulo the Main Lemma. In Section 5.3
we sketch the proof of the Main Lemma. The proof relies upon tw statements : formula for the
determinant of periods, and upper estimates of Abelian intgrals provided by quantitative algebraic
geometry. These two statements are proved in two separate pgeers, [47] and [46] respectively. The
proof of Theorem A (modulo Theorems Al and A2) will be given inSubsection 5.2.5. Theorem A2 is
written in [53] and is due to Yu.S.llyashenko. It will be proved in Section 5.4. The Main Lemma is an
important tool for both Theorems A and B.

5.2 Main ideas of the proof and survey of the related results

5.2.1 Historical remarks

A survey of the history of the In nitesimal Hilbert 16th Prob lem may be found in [69], and we will
not repeat it here. In particular, a much weaker version of Theorem A is claimed there as Theorem
7.7. The rst solution to restricted Hilbert problem was suggested in [100]. An explicit upper bound
for the same numbers of zeros as in Theorem A was suggested theas a tower of four exponents
with coe cients \that may be explicitly written following t he proposed constructive solution." It
is unclear how much e orts is needed to write these constantsdown. Moreover, exponential of a
polynomial presented in Theorem A is much simpler (though sill very excessive) than the tower of
four exponentials.

The result of [100] is a crown of a series of papers [97] - [9Bolution to the restricted version of
the In nitesimal Hilbert 16th Problem presented there is only one application of a vast theory. This
theory presents an upper bound of the number of zeros of soligns to linear systems of di erential
equations. Similar results for components of vector solutns to linear systems are obtained. Abelian
integrals are considered as solutions to Picard-Fuchs eqtians. Using the above-mentioned theory,
A. Grigoriev [55, 56] have proved another upper bound for thenumber of zeros of Abelian integrals
in domains distant from the critical values. His estimate is given by double exponent of the sum
of two terms : a power of the degree of the hamiltonian and a costant term. The latter power is
universal : its exponent is a constant independent on the harittonian and the form. The previous
constant term depends on the minimal gap between the domain mder consideration and the critical
values. In dierence to our result, Grigoriev's bound deperds only on the latter gap and does not
depend on the higher terms of the hamiltonian.

On the contrary, our presentation is focused on the study of Aelian integrals given by formula
(5.1.1) \as they are" and not as solutions of di erential equations.

5.2.2 Quantitative algebraic geometry

Everywhere below for anyr > 0 andw 2 C we denote
Diw)=fijz wj<rg C; D, = D(0):

Our main tool is Growth-and-Zeros theorem for holomorphic finctions stated in the next subsec-
tion. It requires, in particular, an upper bound of the integ ral under considergfion. We x an integrand,
sayw = xXy" Kkdx: Depending on a scale inC2; a cycle in the integral ! may be located in a
small or in a large ball. According to this, the integrand will be small or large. We want to estimate
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the integral at a certain point of the universal cover W represented by an arc that connects a base
point to with some point, say t; with jtj  3: To make this restriction meaningful, the scale in the

range of the polynomial should be chosen; in other words, thg@olynomial should be balanced. The
argument above shows that it should be alsaescaledin sense of the following de nitions.

De nition 5.2.1  The norm of a homogeneous polynomiah is the maximal value of its modulus on
the unit sphere ; this norm is denoted by khkqay :

De nition 5.2.2 A balanced polynomialH 2 C[x;y] is rescaledprovided that the norm of its higher
order form h equals one :jjhjjmax = 1; and the origin is a critical point for H: Briey, a balanced
rescaled polynomial will be callednormalized.

Remark 5.2.3 Any ultra-Morse polynomial may be transformed to a normalized one by homotheties
and shifts in the source and target spaces (not in the unique way). The functions c® and c®°remain
unchanged under such transformations.

De nition 5.2.4  We say that the topology of a complex level curveS; = H (t) of a polynomial
H 2 H, is located in a bidisk

Dxy =f(x;y)2C%jjxi X jyi Yg

provided that the di erence S;nDx.y consists ofn+1 =deg H punctured topological disks, and the
restriction of the projection (x;y) 7! x to any of these disks is a biholomorphic map ontd x 2 CjX <
ixj < 1g:

Theorem C [46]. For a normalized polynomial, the Hermitian basis in C?> may be so chosen that
the topology of all level curvess; for jtj 5 will be located in a bidiskDx.y with

X Y ((H)) M"°nesn’ = Ry

This theorem is of independent interest, providing one of tte rst results in quantitative algebraic
geometry. On the other hand, it implies upper estimates of Abelian integrals used in the proof of
Theorem A and required by the Growth-and-Zeros theorem belw.

In the rest of this section, we describe the main ideas of the pof of a simplied version of
Theorem A, namely Theorem Al stated below. It provides an upgr bound for the number of zeros
of the integral (5.1.1) on a real segment that is -distant from critical values of H and belongs to the
disk D3, thus being distant from in nity ; recall that = (H) is given by (5.1.2).

Together with the use of Theorem Al, we get an estimate of the amber of zeros of the integral
In. , near the endpoints of (tp); as well as near in nity (Theorem A2 stated in 5.2.5). Together
with Theorem Al, this completes the proof of Theorem A. The tools used in the proof of Theorem
A2 include Petrov method and a so called KRY theorem. The latter one is a recent result in one-
dimensional complex analysis [82, 105]. Its improved versh is proved by Yu.S.llyashenko in a separate
paper [70]. In this form it provides a powerful tool to estimate the number of zeros of analytic functions
near logarithmic singularities.

5.2.3 Growth-and-Zeros Theorem for Riemann surfaces

The idea of the proof of TheoremALl is to consider an analytic extension of the integral (5.1.1to
the complex domain and to make use of the following Growth-ad-Zeros theorem. The symbol diam,
used in the statement of the theorem denotes the intrinsic dimeter, see De nition 5.2.6 below. We
need a notion of a -gap between a set and its subset on a Riemann surface.
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De nition 5.2.5 Let W be a Riemann surface, : W ! C be a holomorphic function (called

projection) with non-zero derivative. Consider the metric on W lifted from C by projection : Let

U W be a connected domain, andK U be a compact set. For anyp 2 U let "(p; @Y be the

supremum of radii of disks centered aftp; located in U and such that is bijective on these disks. The
-gap betweenK and @Ujs de ned as

-gap (K;@U =min "(p; @V
p2K

Growth-and-zeros theorem. Let W; be the same as in De nition 5.2.5. Let U W be a
domain conformally equivalent to a disk. LetK U be a path connected compact subset bf (di erent
from a single point). Suppose that the following two assumjans hold :

Diameter condition :

diam i K D;

Gap condition :
-gapK; @V ™
Let | be a bounded holomorphic function orJ: Then

2D maxg jl j

#fz2 Kjl(z)=0g e logmaijIj (5.2.1)

The de nition of the intrinsic diameter is well known ; yet we recall it for the sake of completeness.

De nition 5.2.6  The intrinsic distance between two points of a path connected set in a metric space
is the in num of the lengths of paths in K that connect these points (if exists). Theintrinsic diameter
of K is the supremum of intrinsic distances between two points tken over all the pairs of points in
K:

De nition 5.2.7  The second factor in the right-hand side of (5.2.1) is calledhe Bernstein index of
| with respect to U and K and denotedBk.y (1) :

M - -
Bku (I)=log —; M =supjlj; m=max jlj: (5.2.2)
m U K
Proof of the Growth-and-Zeros theorem. The above theorem is proved in [74] for the case when
W = C; = Id: Infact, in [74] another version of (5.2.1) is proved with (52.1) replaced by
#fz2 Kjl(z)=0g Bku (I)e; (5.2.3)

where is the diameter of K in the Poincae metric of U: In this case it does not matter whether U
belongs toC or to a Riemann surface.

Proposition 5.2.8 Let K;U be two sets in the Riemann surfacéV from De nition 5.2.5, and let
the Diameter and Gap conditions from the Growth-and-Zeros heorem hold. Then the diameter oK
in the Poincae metric of U admits the following upper estimate :

2D="; (5.2.4)

Proof Denote by jvjpy the length of a vector v in sense of the Poincae metric of U. By the
monotonicity property of the Poincae metric, the length jvjpy of any vector v attached at any point
p 2 K is no greater than two times the Euclidean length ofv divided by the -gap betweenK and
@UThis implies (5.2.4) 2

Together with (5.2.3), this proves (5.2.1). 2
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5.2.4 Theorem Al and Main Lemma

In what follows, H will be an ultra-Morse polynomial unless the converse is sted. Consider a
normalized polynomial H . Let & be its complex critical values,j =1;:::;n%; ; to; W and be the
same as in 5.1.2. Let be the integral (5.1.1) as in Theorem A (well de ned fort = tg). It admits an
analytic extension to W, which will be denoted by the same symboll:

Let a= a(to); b= b(tp) be the same as in 5.1.2, and be from (5.1.2). Let

(

a+ fora6 1
[(to) =
(to) 3fora= 1 ;

(

b forb6+ 1
r(to) =

3forb=+1":

Let
(to; ) =[I(to);r(to)]; see Figure 5.2

We identify (to; ) C withits liftto W that contains to:

Theorem Al. In the assumptions stated at the beginning of the subsectipfor any complex form

n:»

2
#ft12 (to; )jl(1)=0g< (1 logcdH))A58: A = e : (5.2.5)

This theorem is an immediate corollary of the Growth-and-Zgos theorem and the Main Lemma
stated below. Let

( .
_ fa+ e " 2wWj' 2[0;2 ]gforag 1
L ()= f 3" 2Wj' 2[0;2(n+1) ]g; fora= 1 ; (5-2.6)
_fb e " 2Wj' 2[0;2 Jgforb&+ 1
R (to) = f43e " 2W|' 2[0:2(n+1) ]g: for b=+ 1 : (5.2.7)
a= L (to)[ L (to); 6=R"(to)[ R (to); = al ul (to; )

Main Lemma. Let H be a normalized polynomial of degrem+1 3 with critical values & : j =
1;::;n2; 1 be a complex polynomial 1-form of degree no greater than: Let W, ;  be the same as
at the beginning of this subsection. Then there exists a pattonnected compact seK W, K
K D3, with the following properties :

diam;y K < 36n; (5.2.8)
dist(K;a j) forany j =1;::;n%: (5.2.9)

Moreover, let U be the minimal simply connected domain inW that contains the =2 neighborhood of
K: Then the Bernstein index of the integral (5.1.1) admits the following upper bound :

Bku (1)< (1 logcdH))AZ: (5.2.10)

The proof of the Main Lemma is sketched in Section 5.3. This Lemma is used also in the estimate of
the number of zeros of the integral in the intervals @;1(to)), (r(to); b). In fact, a much better estimate
for the Bernstein index holds :

27018

BK;U (l) < W

30n%logcd(H) := B(n;c%c%: (5.2.11)
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Together with the elementary inequality
B(n;c%c®y < (1 logcHA?; (5.2.12)

it implies (5.2.10).

Proof of Theorem Al. Let us apply Growth-and-Zeros theorem to the function | in the domain
U in order to estimate the number of zeros ofl in K; note that K (to; ): The intrinsic diameter
of K is estimated from above by (5.2.8). The gap condition forU and K has the form

gap K; @Y="= 5 =

by the de nition of U: Hence,

o2 < o Biren? — pAS576.

The Bernstein index Bk.y (1) is estimated from above in (5.2.10). By Growth-and-Zeros heorem
#ft2 (to)j1(t)=0g<Byyu (1)A%® < (1 logc)AS™:
This proves (5.2.5). 2

The following remark motivates the restriction on R in Theorem B.

Remark 5.2.9 Let K be the set from the Main Lemma, K be its diameter in the Poincae metric
of W. Then
wK < (%Y 28an*: (5.2.13)

Indeed, w K is no greater than the ratio of the double intrinsic diameter of K divided by its minimal

distance to the critical values of H (Proposition 5.2.8). Together with (5.2.8) and (5.2.9) this implies
(5.2.13). On the other hand, in the proof of Theorem B, we appy Growth-and-Zeros theorem in the
case, when the Poincae diskDPg(H;tp) is large enough, namely, contains the seK: Hence, the
maximum of jl j over the disk is no less than maxl j over K. The latter maximum is estimated from
below in the proof of the Main Lemma.

5.2.5 Theorem A2 and proof of Theorem A

Theorem A2. Let H, tg;a= a(tp); b= b(tp), I(to), r(to) be the same as in the previous subsection.
Let ! be areal 1- form in . Then, in assumptions of Theorem Al,

#1t2 (a;l(to)) [ (r(to);b)j1(t)=0g< (1 logc)A*8o0 (5.2.14)

Proof of Theorem A. By Theorems Al and A2

#ft2 (a;b); 1(1)=0g< (1 logcAAS® +(1  logcHA*0 < 2(1  logcHA80: (5.2.15)

This implies the estimate of the number of zeros given by Thetem A on the interval (a;b).

Let 9 R be the maximal interval of continuity of the family of real o vals that contains o:
Then 9is bounded by a pair of critical values, at most one of them maybe in nite. In general,
the interval © may contain critical values (see Fig. 5.1, which presents a @ssible arrangement of
level curves ofH in this case :A;, Az, Az are critical points of H, & = H(A;), ax 2 0= (ay;as),
to 2 (a1;a)). In this case °6 (a;b) = (a;;ay). Let us estimate the number of zeros on % The
interval  ©is split into at most n? subintervals bounded by critical values. On each subinteral the
number of zeros ofl is estimated by (5.2.15), as before. Therefore, the numberfazeros ofl on Cis
less than 21?(1  logc)A*P < (1 logc®)A*80L: This proves Theorem A. 2
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5.3 An upper bound for the number of zeros on a real segment
distant critical values. Proof of the Main Lemma

In this section we prove the Main Lemma (modulo technical detils) and hence Theorem Al. We
also prove the Modi ed Main Lemma, see Subsection 5.3.8 belo, and prepare necessary tools for the
proof of Theorem A2.

5.3.1 The plan of the proof of the Main Lemma

The proof of the Main Lemma is based on the following idea. Thantegral (5.1.1) is extended onto
the universal coverW of the set of noncritical values of the real ultra-Morse polynomial H ; the base
point of this cover belongs to ( 3;3): The upper estimate of the Bernstein index of this integral in
the pair of domains U; K requires an upper bound of the maximal modulus of the integrain U; and
a lower bound in K: When we consider these maxima instead of their ratio, we havéo normalize the
form !; multiplying it by an appropriate complex factor.

De nition 5.3.1 A polynomial 1-form is normalized if the maximal magnitude of its coe cients
equals I and some coe cients equal

The upper bound of the integral is provided by the quantitative algebraic geometry. The main
di culty is to obtain the lower bound. For this we consider 2 integrals instead of a single one; recall

that = n2: Namely, we introduce a special set of monomial 1- forms! ;i =1;:::; and a special
set of vanishingycycles on the level curves; = fH = tg: ((t);:::; (t): The matrix I(t) with the
entries I (t) = I'; is calleda matrix of periods. The determinant ( t) = det I(t) is single-valued.

AON

The rst step is tc; evaluate this determinant and to provide a lower bound for ( t) whent is distant
from the critical values of H: This is done in [47] and [46]. The second step is to give an uppestimate
for the entries of |: This estimate is based on the results of [46] (see Theorem Caged in 5.2.2). The
main step is to construgf the setK  W: This set is constructed in sgch a way that the assumption
\m = maxg jlj; I (t) = M I, is small" implies that all the integrals | (to) I j =1;:; are small.
This implication makes use of the Picard-Lefschets theoremand the connectedness of the intersection
graph of the special system of vanishing cycles.

The implication above is used in tie followinggwvay. For a nornalized form ! , one may replace
some row of the matrix | by the row () Loy ) ! without changing the main determinant.
All the entries of | are estimated from above; the determinant ofl is estimated from below. This
implies that none of the rows of | may be too small, and thus provides a lower bound form. The
domain U is chosen as a slightly modi ed"-neighborhood ofK for appropriate ": The upper estimate
of M = maxy;jlj is obtained by quantitative algebraic geometry [46], as theupper bound of thejlj jju
above, and a Geometric lemma stated in 5.3.4. Upper estimatef M and lower bound form imply an

upper estimate of the Bernstein indexBy.x (1) and thus prove the Main Lemma.

5.3.2 Special set of vanishing cycles and modi ed Main Lemma

All along this section H is a real normalized ultra-Morse polynomial of degreen+1 3; =

n% ap;:::;a are the critical values ofH;  is the same as in (5.1.2);' = =2: For t close toa;; | (t)
is a local vanishing cycle corresponding t@; on a level curve
St = fH = tg:

Recall the de nition of this cycle.

Consider an ultra-Morse polynomial in C2 having a (Morse) critical point with a critical value a:
An intersection of a level curve of this function correspondhg to a value close toa with an appropriate
neighborhood of the critical point is di eomorphic to an annulus. This follows from the Morse lemma.
The annulus above may be called a local level curve correspdimg to the a critical value a:
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De nition 5.3.2 A generator of the rst homology group of the local level curve corresponding toa
is called alocal vanishing cyclecorresponding toa:

A local vanishing cycle is well de ned up to change of orientgion.

Apath ; :[0;1]! C is calledregular provided that
i0=to; j(1)=4a; j[0;1) B (5.3.1)

De nition 5.3.3 Let ; be a regular path,s 2 [0;1] be close to 1 j(t); t = (s); be a local
vanishing cycle onS; corresponding to & : Consider the extension of ; along the path up to a
continuous family depending ons of cycles ; (  (s)) in complex level curvesH = (s): The homology
class j = j(to) 2 H1(St,; Z) (corresponding to s = 0) is called a cycle vanishing along j:

De nition 5.3.4  Consider a set of regular paths 1;:::; ; see (5.3.1). Suppose that these paths
are not pairwise and self intersected. Then the set of cycles 2 H1(S;,;Z) vanishing along j; j =
1::::;; is called amarked set of vanishing cycle®n the level curveH = to:

Recall that the intersection graph of a set of cycles inH1(S;;Z) is the graph whose vertices are
the elements of the set; two vertices are connected by an edgi and only if the corresponding cycles
have nonzero intersection index.

Theorem 5.3.5 [9] Let H be a ultra-Morse polynomial. For any noncritical value t any marked set of
vanishing cycles inH1(S;; Z) is a basis in the same homology group and has a connected irgection
graph.

Recall that W = W (tg; H) is the universal cover over the set of noncritical values oH with the
base pointty and the projection :W ! C:

Let 1;::;  be amarked set of vanishing cycles. For any cyclg from this set, consider an integral

Z
h(t) = X
1(t)

over local vanishing cycles, fort close toa,. This integral is holomorphic at a;, and takes zero value
at a. Denote by W, the Riemann surface of the analytic extension of this integal. Note that the
Riemann surfaceW, contains the diskD (a).

Lemma 5.3.6 (Modi ed Main Lemma). The Main Lemma from Subsection 5.2.4 holds true pro-
vided that the real oval (t) of integration (1.1) is replaced by a local vanishing cycle (t) close to the
corresponding critical value a;, W is replaced byW, and s replaced by the diskD (a):

This lemma is proved in 5.3.8.

5.3.3 Matrix of periods

Consider and x an arbitrary marked set of vanishing cycles j; j =1;:::; : For any 2 W; let
i (f) be the extension of ; corresponding tof (as in De nition 5.1.7).

De nition 5.3.7  Consider a set of forms!; of the type
Li= yxyldx; ki1 O, k+1 2n 2 (5.3.2)

(k; 1) depends oni; such that all the forms with k+1 n 1 are included in the set, and the number
of forms with monomials of degree 8 k equalsk for 1 k n. In what follows, such a set is called
standard.
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A matrix of periods | = (15); 1 i A , is the matrix function de ned on W by the
formula : 4
i () = o i 10 = (15 (B) (5.3.3)
i
where j; j =1;:::;; form a marked set of vanishing cyclesf!; ji =1;:::; gis a standard set of

forms (5.3.2).
When we want to specify dependence ot , we write I (£ H) instead of 1(f):

5.3.4 Upper estimates of integrals

Denote by j the length of a curve ; and by U"(A) the "-neighborhood of a setA:
The main result of the quantitative algebraic geometry that we need is the following

Theorem 5.3.8 Let ; be a vanishing cycle from a marked set, see De nition 5.3.4, @responding to

acurve j;j jj 9 (recall that jtoj 3). Let B be a curve starting atty (denote byt its endpoint)
such that

jj 36n%+1;jtj B (5.3.4)
Let the curve j\ U"(a) be a connected arc of j, and the curves ; nU"(g;) and have an empty
intersection with "-neighborhoods of the critical valuesa; where" = =2; is from (5.1.2). Let ! be

a form (5.3.2), £2 W corresponds to[ ]; and ; (f) be the extension of ; to f. Then
Z

. . 2600 n 16 4
j . Lj< 27¢%m (YH)) 28" := Mg (5.3.5)
i (©)
This result is based on TheoremC from 5.2.2. Both results are proved in the paper [46].
We have to give an upper bound of the integral not over a vanising cycle, but over a real oval.
The following lemma shows that the real oval is always a linea combination of some (at most )
vanishing cycles with coe cients 1.

Lemma 5.3.9 (Geometric lemma). Let H be a real ultra-Morse polynomial and be a real oval of
H: Let Hj = to: Denote bys the number of critical points of H located inside in the real plane. Let

intersecting paths that connectty with these critical values and satisfy assumption (5.3.1) Moreover,
suppose that all these paths belong to the upper halfplanedafor any & (which is real), an open
domain bounded by a path ; and a real segment (connecting the endpoints of;) contains no critical
value of H (see Figures 5.3 and 5.4). Let ; be the vanishing cycles that correspond to the paths; :
Then

[1= 3" j; where"; = L (5.3.6)

A proof of Lemma 5.3.9 (given in [53] and omitted here) is basa& on Picard-Lefschetz theorem [9].
Upper estimates of the integrals of monomial forms over varshing cycles are provided by Theorem
5.3.8. When we replace a monomial form by a polynomial one, th following changes are needed. Let
I 2 |, be the form in the integral I: There exists another form of type
X
10= a X<yt dx; (5.3.7)
k+l n 1

such that the dierence ! ! %is exact. We may replace the form! by ! %in (5.1.1) ; the integral | will
be preserved. Moreover, we can replace the form® by a normalized form ! ¢ 2 C; see De nition
5.3.1. Hence, we may assume that the fornh in the integral |1 has the type (5.3.7) and is normalized
from the very beginning. When we replace a polynomial form bya normalized one, the previous upper
bound of the integral should be multiplied by the number of monomials, namely, by % When
the vanishing cycle is replaced by a real one, the integral iseplaced by a sum ofs  n? integrals over

vanishing cycles, by the Geometric Lemma. This results in anther multiplication by n?2.
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Fig. 5.3 { The cycle = (to) and local vanishing cycles j = ;(t;); the points t; close tog; are
marked at Fig.4.

qt, B hH o &Flz oty

Fig. 5.4 { The paths for the extension of the local vanishing cycle ; (t).

Corollary 5.3.10 In the condition of Theorem 5.3.8 letH be a real polynomial, (f) be the extension
to f of a real oval,! be a normalized form (5.3.7). Then

. . nd(n+1
i)' %Mo: (5.3.8)

5.3.5 Determinant of periods

The determinant of the matrix of periods (5.3.3) is called the determinant of periods. It appears
that this determinant is single-valued on B; thus depending not on a point of the universal coverW;
but rather on the projection of this point to B: Let

(t)=detI(f); t= ¢

The main determinant is single-valued; this follows from the Picard-Lefschetz theorem. Indeed, a
circuit around one critical value adds the multiple of the correspondent column to some other columns
of the matrix of periods. Thus the determinant remains unchanged.

When we want to specify the dependence of the main determinanon H; we write  (t): This
function is a polynomial in t; and an algebraic function in the coe cients of H: The formula for
the main determinant (with !; of appropriate degrees) with a sketch of the proof was claine by
A.Varchenko [114]; this formula is given up to a constant fador not precisely determined. The complete
answer (under the same assumption on the degrees bf) is obtained in [47], with the latter constant
factor calculated explicitly. Moreover, the following lower estimate holds :

Theorem 5.3.11 For any normalized ultra-Morse polynomial H; theootuple of standard forms
(5.3.2) may be so chosen that for anyt 2 C lying outside the = Z=- neighborhoods of the cri-
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tical values of H the following lower estimate holds :
FCEH) (@H) T (€@QH) 0 7= (53.9)
This result is proved in [46] with the use of the explicit formula for the Main Determinant mentioned
before, and results of the quantitative algebraic geometry

5.3.6 Construction of the set K

We can now pass to the construction of the seK mentioned in the Main Lemma. We rst construct
a smaller setK ©

Lemma 5.3.12 (Construction lemma). Let St, be a real oval of an ultra-Morse polynomial.
Then there exist :
a set of regular paths j; j =1;:::;; (see (5.3.1)), such thatj ;j 9; and the paths ; are not

pairwise and self intersected ;
a path connected setk® W; to 2 K% K ©  Dg; such that for any cycle ; 2 Hi(St,;2)
vanishing along ; there exist two points 1; 22 K% (to) with the property

[C)l [(21= 4L 1j2Zn0: (5.3.10)
Moreover,
diamine K < 19n?; (5.3.11)
and K Cis disjoint from the -neighborhoods of the critical valuesgj; j = 1;:::; :

The next modi cation of this lemma will be used in the proof of the Modi ed Main Lemma.

Lemma 5.3.13 (Construction lemma for vanishing cycles). Construction lemma holds true if
S, is replaced by any vanishing cycle; = (to) from an arbitrary marked set of vanishing cycles,
and W is replaced byW, (see 5.3.2). In the conclusion, (5.3.10) should be replacetly

[i()] [i(2D]=1i[(to)]; forj &1 1; 2Zn0:

Both lemmas are purely topological. Their proof is given in p3] and omitted here. It is based
on Picard-Lefschetz theorem [9] and the connectivity of theintersection graph of marked basis of
vanishing cycles (Theorem 5.3.5). In what follows we deduc¢he Main Lemma from Lemma 5.3.12
and Theorems 5.3.8, 5.3.11.

Corollary 5.3.14 (of Lemma 5.3.12). For any form ! (not necessarily of type (5.3.2)) and any
marked set of vanishing cycles consider the vector function

Z Z
L :w! Cc;t7n RS I (5.3.12)

Let jj jj denote the Euclidean length inC : Then

N )
mo:= max jI(B] —=jil (to)i: (5.3.13)
f2KN  1(ty) 2n

Proof Consider a component of the vector, (tg) with the largest magnitude. Let its number be j:
Then
z

1. )
Eo il (to)ii: (5.3.14)
i (to) n
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By Lemma 5.3.12, there exist 1; » 2 K% (o) such that
Z
(1) 1(2)=1 Llj2Zn0:
j (to)

Hence, at least one of the integrald ( |) in the left hand side, say |l ( ); | 2 f 1;2g; admits a lower
estimate : 7

. 1
irCDj > I (5.3.15)
j (to)

Together with (5.3.14) this proves the corollary. 2

Let us now take
K=K ;= (to)[L (to)[ R (to); (5.3.16)

see (5.2.6), (5.2.7).
In the following section we will check that this K satis es the requirements of the Main Lemma.

5.3.7 Proof of the Main Lemma

LetustakeK asin (5.3.16). Let be the same asin (5.1.2). LetJ be the smallest simply connected
set that contains the "-neighborhood ofK; " = =2: Then (5.2.8) follows from (5.3.11), (5.3.16). The
last statement of Lemma 5.3.12 implies (5.2.9).

Let us now check (5.2.10), that is, estimate from above the Benstein index By (1) for the integral
(5.1.2).

Let the form ! in the integral (5.1.1) be normalized, and let, as beforeM = maxy jlj; m =
maxk jl j: By Corollary 5.3.10,

where Mg is from (5.3.5). Let us now estimatem from below, following the ideas presented at the
beginning of the section.

Letin (5.3.7) jak,1,j = 1; ! = yxkoylodx: Without loss of generality we may assume thatay,, = 1:
Let us now replace theith row of the matrix | by the vector I, : This transformation is equivalent to
adding a linear combination of rows ofl to the ith row, so the determinant ( tp) remains unchanged.

By Theorem 5.3.8 and (5.2.8), all the entries in other rows ae estimated from above byMg; see
(5.3.5). (The corresponding paths  used in the construction of K are chosen as in Lemma 5.3.12,
so, the inequality j jj 9 of Theorem 5.3.8 holds true.) Hence, all the vector-rows eoept for the ith
one have the length at mostnM ¢: By (5.3.13), the ith row has the length at most 2nmg: We can now
obtain a lower bound for m: Indeed,m mg: On the other hand,

o i (t)i 2meMgy 'n; =n?
where g is the same as in (5.3.9). Therefore,

1
m m oMg n (5.3.17)

We can now estimateBg.y (1) from above. Indeed,
Bku (I)=logM logm logM? logmo:
Elementary estimates (together with (5.3.17)) imply that
logM? logmo > (1 logc)AZ: (5.3.18)

This proves the Main Lemma.
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5.3.8 Modied Main Lemma and zeros of integrals over (comple X) vani-
shing cycles

Proof of the Modi ed Main Lemma. The arguments of the previous subsection work almost
verbatim. The previous corollary for the integral | = I, taken over | instead of ; is stated and proved
in the same way.

Let K 9 be the same as in Lemma 5.3.13. Instead of (5.3.16), let

K=K° [D (a):

Let U be the smallest simply connected set that contains thée'-neighborhood ofK:
By Theorem 5.3.8,
maxjl;j My; whereV = UnD (a):
\%

But 1, is holomorphicinD (a): Hence, by the maximum modulus principle, the previous ineqality
holds in U instead of V: After that, the rest of the arguments of the previous subsecion work. This
proves the Modi ed Main Lemma. 2

The following theorem will be used in the next section.

Theorem 5.3.15 The number of zeros of the integral | in the disk D (&) satis es the inequality :
#1f2D (a)jLi(f)=0g (1 logcyH))A5E: (5.3.19)

The proof is the same as for Theorem Al, section 5.2.4.

5.4 Estimates of the number of zeros of Abelian integrals nea r
critical values

In this section we give a proof (due to Yu.S.llyashenko) of Tleorem A2, see 5.2.5. Together with
Theorem Al (whose proof was given in Section 5.2), Theorem Amplies Theorem A.

We split the proof of Theorem A2 into three cases : 1)a;b6 1 ;2)a= 1 ;3)b=+ 1. First
we prove Theorem A2 in Case 1 (Subsections 5.4.1-5.4.5). Gas2 and 3 are treated in 5.4.6.

5.4.1 Argument principle, KRY theorem and Petrov's method

All the three cases are treated in a similar way. We want to appy the argument principle.

The estimates near in nity are based on the argument principe only. The estimates near nite
critical points use the Petrov's method that may be consideed as a generalization of the argument
principle for multivalued functions. The increment of the argument is estimated through the Bernstein
index of the integral, bounded from above in the previous sdions. The relation between these two
quantities is the subject of the Khovanskii-Roitman-Yakovenko (KRY) theorem and Theorem 5.4.3
stated below. It seems surprising that these theorems wereat discovered in the classical period of
the development of complex analysis. The latter theorem is poved in [70]; the proof is based on the
KRY theorem and methods of [82] and [105].

At this spot we begin the proof of Theorem A2 in case 1. Recallhe statement of the theorem in
case 1.

Theorem A2 (Case 1). Leta6 1 ;b6 1 : Then
#ft2 (a;l(to)) [ (r(to);bjl(t)=0g< (1 Iogco)e%%%“A;

wherel(tg) and r(tp) are the same as at the beginning of 5.2.4.
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We will prove that

4700 n4 .

#ft2 (a;l(to)) jl(t)=0g< %(1 logc)e e : (5.4.1)

Similar estimate for (r(to);b) is proved in the same way. These two estimates imply TheorenfA2.
Let = ( a) be the same as in (5.1.5), namely

= ft2WjO<ijt a ;jargt aj 2 g

Lemma 5.4.1 Inequality (5.4.1) holds provided that in (5.4.1) the interval (a; [(to)) is replaced by :
Lemma 5.4.1 implies (5.4.1) becausea( I(tp)) : Let

=ft2 j jt g g

Lemma 5.4.2 Lemma 5.4.1 holds provided that in (5.4.1) the domain is replaced by

Lemma 5.4.2 implies Lemma 5.4.1, because

= [>o0
The proof of Lemma 5.4.2 occupies this and the next four Substions. We have
@ = 123 4
As sets, the curves ; are de ned by the formulas below; the orientation is de ned separately :
1= ftjjt aj= jjarg(t a)j 29g= a
3= ftjjt a= ;jarg(t aj 2 g
2.4 = ftj jt a garg(t a= 2g:
The curve 1 is oriented counterclockwise, ; is oriented from the right to the left, 3 is oriented
clockwise, 4 is oriented from the left to the right.
Let#ft2 (a+ ;I (to)) jI(t)=0g= N : Denote by R (f) the increment of the argument of a
holomorphic function f along a curve (R of Rouchet),
V (f) = the variation of the argument of f along : Obviously, jR (f)j V (f):

In assumption that | 60 on @ ; the argument principle implies that

x4
R (1): (5.4.2)
1

1 1
N Re (=5

The rstterm in this sum is estimated by the modi ed KRY theor em, the second and the forth one
by the Petrov method, the third one by the Mardesic theorem. The case when the above assumption
fails is treated in 5.4.3.
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5.4.2 Bernstein index and variation of argument

The rst step in establishing a relation between variation of argument and the Bernstein index
was done by the following KRY theorem.

Let U be a connected and simply connected domain irC; U be a (nonoriented compact)
curve, f be a bounded holomorphic function onU.

KRY theorem, [82] For any tuple U; U as above and a compact sé{ U there exists a
geometric constant = (U;K; ) ; such that

V() Bkul(f):

In [82] an upper estimate of the Bernstein index through the \ariation of the argument along
= @Uis given; we do not use this estimate. On the contrary, we needn improved version of the
previous theorem with  explicitly written and U being a domain on a Riemann surface. These two

goals are achieved in the following theorem.
Let j j be the length, and () be the total curvature of a curve on a surface endowed with a
Riemann metric.

Theorem 5.4.3 [70] Let b U%b U°b U W be respectively a curve, and three open sets in a
Riemann surfaceW: Let f : U! C be a bounded holomorphic functionfj 60:Let :W! Cbhea
projection which is locally biholomorphic, and the metric m W be a pullback of the Euclidean metric
in C: Let "< % and the following gap conditions hold :

-gap( ;U% " -gap(U®UY " -gap(UOU) ™ (5.4.3)
Let D > 1 and the following diameter conditions hold :
diam iy U%® D; diam i,y U° D (5.4.4)
Then
V() Bumu((Ld+ O+ e (5.4.5)

Recall that intrinsic diameter and -gap are de ned in 5.2.3.
We can now estimate from above the rst term in the sum (5.4.2). The estimate works in both
cases whera is nite or in nite.

Lemma 5.4.4 Let H be a normalized polynomial of degree+1 3. Let | be the same integral as in
(5.1.1). Let K be a compact set mentioned in the Main Lemma, ad 31 = , be the same as in this
lemma (a may be in nite). Then

V., (1)< (1 logcH))A%®; A = gim: (5.4.6)

In what follows, we write ¢ c®instead of ¢cA(H);c°{H):
The lemma follows easily from Theorem 5.4.3 and the Main Lemra, see [53] for more detail.

Remark 5.4.5 Lemma 5.4.4 remains valid if in its hypothesis the integrall is replaced by an integral
J over the cycle vanishing at the critical value a of H. The proof of this modi ed version of Lemma
5.4.4 repeats that of the original one with the following charge : we use the Modi ed Main Lemma
instead of the Main Lemma.
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Corollary 5.4.6  Suppose that the integrald with a real integrand ! is taken over a local vanishing
cycle Correspondir(')log to the real critical valuea. Then the number of zeros of] in the disk centered
at a of radius = > admits the following upper estimate :

Ny:=#ft2Cjjt aj<:J (t)=0g< Zi(l log c) A #4600 (5.4.7)

This follows from the modi ed Lemma 5.4.4 and the argument principle.

5.4.3 Application of the Petrov's method

The Petrov's method applied below is based on the remark thatthe magnitude of the increment
of the argument of a nonzero function along an oriented curves no greater than the number of zeros
of the imaginary part of this function increased by 1 and multiplied by : Indeed, at any half circuit
around zero, a planar curve crosses an imaginary axis at leagnce. The method works when the
imaginary part of a function appears to be more simple than the function itself.

Let (t) 2 Ha(t) be the local vanishing cycle at thespointa: Let ! be the same real form as in
integral (5.1.1). Let J be the germ of integral J(t) = ) I along the cycle (t); which is a local
vanishing cycle att = a: Note that J is single-valued in any simply connected neighborhood od that
contains no other critical values ofH: Let o = ( (t); (t)) 6 0 be the intersection index of the cycles

(t) and (t): As the cycle (t)is real andH is ultra-Morse, Ip may take values 1; 2 only. This is
implied by the following lemma.

Lemma 5.4.7 Consider a maximal family of real ovals that contains (tp): The union of the ovals
of the family forms an open domain. The boundary of this domai consists of one or two connected
components. Any of these components belongs to a criticalMel of H and contains a unique critical
point. Fix any of these critical points and denote by the corresponding local vanishing cycle. Then the
cycle may be extended to a cycle(tp) that belongs to a marked set of vanishing cycles constructed
above. Moreover,

( (to); (to)) 60; more precisely, itis equalto 1, 2

Let .
o= ft2Rjte?" 2 ,g

Then by the Picard-Lefschetz theorem
Ij2:(|+|OJ)j0;|j4:(| IO‘])jo:
Proposition 5.4.8  The integral J is purely imaginary on the real interval (a;b).

Proof Recall that the form ! and the polynomial H are real. Then

M= I0:
R
Indeed, ! = Q(x;y)dx. The involution i : (x;y) 7! (X;Vy) brings the integral J(t) = Qdx to
R R R - (t)
Qdx = Qdx = 1y Qdx = J(f): On the other hand, for real t we havet = T and thus,
i (1) (®
J(t) = J(T). Hence,J(t) = J(t) for t 2 (a;b): This implies Proposition 5.4.8. 2

Corollary 5.4.9 Let, as above,l, 6 0 be the intersection index of the cycles (t) and (t): Then

Iml j,,= loJj,:
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Proof This follows from Proposition 5.4.8, Picard-Lefschetz th@rem and the reality of | on (. 2

Suppose rst that | has no zeros on , and 4: Then
R,.(I) (1+ N); whereN =# ft2 (jJ(t)=0g: (5.4.8)

Obviously, N  Nj; see (5.4.7). The right hand side of this inequality is alreag estimated from above
in Corollary 5.4.6. Hence,

R,.(I) + %(l log ¢ A4600:

Suppose now thatl has zeros on , (hence on 4, by Proposition 5.4.8). Indeed, its real part is the
same at the corresponding points of »; o; 4; and the imaginary parts of 1j , and | j , are opposite
at these points. In this case we replace the domain by © de ned as follows.

The curves .4 should be modi ed. A small segment of , centered at zero point ofl that contains
no other zeros ofJ; should be replaced by an upper half-circle having this segnmt as a diameter and
containing no zeros ofJ: A similar modi cation should be done for 4 making use of lower half-circles.
Denote the modi ed curves by 9,:Let © be the domain bounded by the curve

@°= 193 % (5.4.9)
It contains , and we will estimate from above the number of zeros of in  © still using the argument

principle. The increment of argl along ; is already estimated in 5.4.2. Here we give an upper bound
for the increment of argl along 8;4: The increment along 3 is estimated in the next subsection.

Proposition 5.4.10 Let N be the same as in (5.4.8). Then

jRg, (1) (2N +1): (5.4.10)

Proof We will prove the proposition for 9; the proof for § is the same. Letl have zerosh 2
2; J =1;u5k; the number of occurrences ofy in this list equals its multiplicity. Note that

Im1j,=1¢J (5.4.11)

Hence, at the pointsh ; J has zeros of no less multiplicity thanl: Hence, the total multiplicity k° of
zeros ofJ at the points b 2 ,; j = 1;::;k; is no less thank: Let J haves zeros on 3: We have :

K k;s N k® N kiLet 1;:5; ¢ q k+1;be the open intervals, the connected components
of the dierence of 9 and the half-circles constructed above. Lets; be the number of zeros of] on
i Ts = s:Let
R =R, (I):
Then
R (5 +1):
Hence,
X
JRo()j  (k+  (s+1)) (2k+1+s)  (2k°+1+s) (2N +1); (5.4.12)

1

whereN  N; < (1 logc)A*%?, see (5.4.7). 2
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5.4.4 Application of the Mardesic theorem

Proposition 5.4.11 Let | be the integral (5.1.1), and 3 be the same as in Subsection 5.4.1. Then
for  small enough,
iR ()] (4n*+1): (5.4.13)

Proof LetJ andlo be the same as in the previous subsection. Let=0; and | (€' t) means the result
of the analytic extension of| from a value| (t) along a curve€?" t; ' 2 [0;1]: By the Picard-Lefshetz
theorem, for smallt .

L€ t) = (1) + o (b):
Consider the function

logt ]
21 2O
log t

This function is single-valued because the increments of lib terms | and lo75-J (t) under the analytic
extension over a circle centered at 0 cancel. The functioh is bounded along any segment ending at
zero, and J is holomorphic at zero, with J(0) = 0: Hence, Y is holomorphic and grows no faster
than logjtj in a punctured neighborhood of zero. (In fact, it is bounded n the latter neighborhood :
jJ(t)logtj (cjtjjlogtj! 0, ast! 0.) By the Removable Singularity Theorem, it is holomorphic at
zero. Hence,

Y(®)=1(t) o

logt
()= Y(t)+ IO%J(t) (5.4.14)
with Y and J holomorphic. We claim that the increment of the argument ofl along 3 for smallis
bounded from above through oid; the multiplicity of zero of J at zero. The latter order is estimated

from above by the following theorem by Mardesic :

Theorem 5.4.12 [90]. The multiplicity of any zero of the integral | (or J) taken at a point where
the integral is holomorphic does not exceed*:

The function (5.4.14) is multivalued. The proof of Proposition 5.4.11 is based on the following
simple remark. Let f1;f, be two continuous functions on a segment R, and jf1j  2jf,j: Then
JR (f1+f2)j j R (f1)j+ 5 Indeed, the valueR (f; + "f ) cannot change more than by, as”
ranges over the segment [QL]:

To complete the proof of Proposition 5.4.11, we need to conder three cases. Let =ordoY; =

ordod; ()= Y(e?" );g()=1o J'Q9' (e?" ): Note that n%:
Case (i) : < : Then,for small 2jgj j fj: By the previous remark, appliedtof, = f; f , = g;
we get

iR.(1)j (4 +1) (4 +1) (@n*+1:

Case (ii): = : Then, for small, 2ifj | gj; because of the logarithmic factor ing: In the same
way as before, we get
R, 4 +1)  (@n*+1):

Case (iii) : > : In the same way, as in Case (ii), we get (5.4.13). 2
5.4.5 Proof of Theorem A2 in case 1 (endpoints of the interval considered
are nite)

Proof It is su cient to prove Lemma 5.4.2. We prove a stronger statement
. 1
N(; ©):=#ft2 °jI(t)=0g< 5@ log ) A#600 (5.4.15)

By the argument principle

2N (I; %) V(+ R e j+ iR )i+ iR 5(1)] (5.4.16)
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The rst term in the r.h.s is estimated in (5.4.6). The second and the fourth terms are estimated from
above in (5.4.10) (the N in the r.h.s. of (5.4.10) is estimated from above byN;, see (5.4.7)). The
third term is estimated in (5.4.13). Altogether this proves (5.4.15), hence, Lemma 5.4.2 and implies a
stronger version of (5.4.1) :

N (I; 0)<%(1 log c)A*e0:

This proves Theorem A2 in case 1. 2

5.4.6 Proof of Theorem A2 in Case 2 (near an in nite endpoint)

Here we prove Theorem A2 for a segment with one endpoint, say, in nite.

Proposition 5.4.13  The integral | has an algebraic branching point at in nity of order n +1:

Proof of Theorem A2 near in nity. We consider the casdb =+ 1 only; the casea= 1 is
treated in the same way. LetW, be the Riemann surface of the integrall: Let W, be the degree
n + 1 cover of the circle jtj = 3 with the base point t; = +3 : This is a closed curve onW, : This curve
is a boundary of a domain onW, that covers n + 1 times a neighborhood of in nity on the Riemann

sphere. Let us denote this domain byW?! : We will estimate from above

Ny =ft2W?! jlI(t)=0g:

This will give an upper estimate to the number of zeros ofl on * = (3;+1 ) because * W :
We will use the argument principle in the form

N1 Ziv (IN+n+1: (5.4.17)
This follows from the argument principle and the fact that th e in nity is the only pole of Ijw: , and
its order is at most n + 1. The latter bound on the order follows from the condition t hat the 1- form
under the integral (1.1) has degree at mosn, and the fact that the integration oval (t) has size (and
length) of the order O(jtjﬁ), ast!l ,t2R.

The variation in the right hand side will be estimated by Theorem 5.4.3. To apply this theorem
we need to de ne all the entries like in the previous subsectin.

We have : = @W : Without loss of generality we consider thatlj & 0 (one can achieve this by
slight contraction of the circle jtj = 3). Let K be the same as in the Main Lemma. Denote byJ, the
set U from that Lemma : both K and Ug are taken projected to the Riemann surface of the integral
I. By (5.2.7), K .Let "= 5= 2?1[:2* U U% U be respectively the minimal simply connected
domain containing "-, 2"-, 3"- neighborhood ofK . One haskK; b U%b U%b U. Then U coincides
with the projection of Up to W, (up to lling holes, if there are any). Therefore, maxy, jlj = maxgjlj
(the maximum principle). Hence,

Buwu(l) Bku,o(l) < (1 logc)AZ:

The latter inequality is (5.2.10). This provides the estimate of the Bernstein index from inequality
(5.4.5) in Theorem 5.4.3. Other ingredients are the followng.
By (5.2.8), the diameter condition (5.4.4) holds with

D =36n+1:

C00

The gap condition (5.4.3) for , U% U% U holds with the above " = 55— . Hence,

5D
e A4600
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Moreover,
j =6 (n+1);j () j=2 (n+1):
Altogether, by Theorem 5.4.3, this implies :
V(1) (1 logc®)c(n;cPyaseoz,

with C(n;c® = &£ 12 (n+1)+1 <A %: Together with (5.4.17) this proves Theorem A2, Case
2. 2



Chapitre 6

Con uence of singular points and
Stokes phenomena

6.1 Introduction : Stokes phenomena and main results

6.1.1 Brief statements of results, plan of the chapter and hi storical remarks

Consider a linear analytic ordinary di erential equation

A . Jocn i 1 k2N (6.1.1)

= tk+1 77

with a nonresonant irregular singularity of order (the Poincae rank) k at O (or briey, an irregular
equation). This means that A(t) is a holomorphic matrix function such that the matrix A(0) has
distinct eigenvalues (denote them by ;). Then the matrix A(0) is diagonalizable, and without loss of
generality we suppose that it is diagonal.

De nition 6.1.1  Two equations of type (6.1.1) are analytically (formally) equivalent, if there exists
a changez = H (t)w of the variable z, where H (t) is a holomorphic invertible matrix function (res-
pectively, a formal invertible matrix power series), that t ransforms one equation into the other.

The analytic classi cation of irregular equations (6.1.1) is well known [8, 10, 71, 75, 107] : the
complete system of invariants for analytic classi cation consists of a formal normal form (6.1.4) and
Stokes operators (6.1.6) de ned in Subsection 6.1.2; the téer are linear operators acting in the
solution space of (6.1.1) comparing appropriate \sectorihcanonical solution bases".

On the other hand, an irregular equation (6.1.1) can be regaded as a result ofcon uence of
Fuchsian singular points (recall that a Fuchsian singular point of a linear equation is a rst order pole
of its right-hand side). Namely, consider a deformation

o )
ACD . rwmy= o) (6.1.2)
(t") i=0

Z_:

—h

of equation (6.1.1) that splits the irregular singular point 0 of the nonperturbed equation into k + 1
Fuchsian singularities (") of the perturbed equation, i.e., (") 6 (") fori & j. The family (6.1.2)
depends on a parametef 2 R. [ 0,f(t;0) t“*1 A(t;0) A(t).

The monodromy group of a Fuchsian equation acts linearly in its solution space byanalytic ex-
tensions of solutions along closed loops. The analytic equalence class of a Fuchsian equation is
completely determined by the local types of its singularities and the action of its monodromy group.
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Everywhere in what follows we denote byM; the monodromy operator of the perturbed equation
(6.1.2) along a loop going around the singular point ; (the choice of the corresponding loops will
be speci ed later). The monodromy group of the perturbed equation is generated by appropriately
chosen operatoraM; .

In 1984, V. I. Arnold proposed the following question. Consiler a generic deformation (6.1.2). Is
there an operator

MM (6.1.3)
from the monodromy group of the perturbed equation that conwerges to a Stokes operator of the
nonperturbed equation ?

A version of this question was proposed independently by JR. Ramis in 1988.

It appears that already in the simplest case of dimension 2 ath Poincae rank k = 1 generically
each operator from the monodromy group(except for that along a circuit around both singularities
(and its powerg) tends to in nity , and none tends to a Stokes operator. In other terms, no word
(6.1.3) with di 2 Z tends to a Stokes operator. But if k = 1, then appropriate words (6.1.3) with
noninteger powersd; tend to Stokes operators (Theorem 6.2.12 in Subsection 6.2). The last two
statements are proved in [42].

The previous question and its nonlinear analogue for parabl@c mappings were studied by J.-P.
Ramis, B. Khesin, A. Duval, C. Zhang and J. Martinet (see the historical overview in Subsection 6.1.3
and that of recent results below). It was proved by the author [38] in the general case that appropriate
branches of the eigenfunctions of the monodromy operator$1; of the perturbed equation tend to
appropriate canonical solutions of the nonperturbed equaibn (Theorem 6.2.5). In the case of Poincae
rank k = 1 this implies (Corollary 6.2.6 stated in the two-dimensional case) that Stokes operators of
the nonperturbed equation are limits of transition operators between appropriate eigenbases of the
monodromy operatorsM;. This corollary has a generalization for higher Poincae rank and dimension
[38]. These results are also extended to a generic resonarase [40].

The conjecture saying that Stokes operators are limit trandtion operators between monodromy
eigenbases of the perturbed equation was rst proposed by AA. Bolibrukh in 1996.

Nonlinear analogues of the previous statements for paraba mappings (i.e., one-dimensional
conformal mappings tangent to identity) and their Ecalle-Voronin moduli, saddle-node singularities
of two-dimensional holomorphic vector elds and their Martinet-Ramis invariants (sectorial central
manifolds in higher dimensions) were obtained by the authoiin [39] (see Theorem 6.4.17 in Section 6.4
for two-dimensional saddle-nodes). Generalizations andther versions of the statement on parabolic
mappings were later obtained in the paper [91] by P. MardesicR. Roussarie, C. Rousseau, and in two
papers by the following authors : (1) X. Bu and Tan Lei (unpub lished); (2) A. Douady, F. Estrada,
P. Sentenac [24].

In Subsection 6.1.2 we recall the analytic classi cation ofirregular equations (6.1.1) and the de -
nitions of sectorial canonical solution bases and Stokes @pators. Subsection 6.1.3 contains a survey
of previous results.

In Subsection 6.2.1 we state the results on the representain of Stokes operators as limit transition
operators between monodromy eigenbases (Theorem 6.2.5 ar@brollary 6.2.6). In Subsection 6.2.2
we state Theorem 6.2.12 on convergence of appropriate word (1.3) to a Stokes operator. Its proof is
given in Section 6.3.

In Section 6.4 we state the results from [39] concerning twalimensional saddle-nodes. One of them
(Corollary 6.4.22) is used in the proof of Theorem 6.2.5 give in Subsection 6.4.3. Corollary 6.4.22 is
proved in Subsection 6.4.4.

6.1.2 Analytic classi cation of irregular equations. Cano nical solutions and
Stokes operators

Let (6.1.1) be an irregular equation.

be separated, more precisely, that (6.1.1) is analyticallyequivalent to a direct sum of one-dimensional
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linear equations, i.e., a linear equation with a diagonal m#rix function on the right-hand side ? Ge-
nerically, the answer is \no". At the same time any irregular equation (6.1.1) is formally equivalent
to a unique direct sum of the type

_ b

LS i

i=1;::5m (6.1.4)

where hy (t) are polynomials of degree at mosk, b (0) = ;. The normalizing series bringing (6.1.1) to
(6.1.4) is unigue up to left multiplication by a constant dia gonal matrix. The system (6.1.4) is called
the formal normal form of (6.1.1) [8, 10, 71, 75, 107]. S

Generically the normalizing series diverges. At the same the there exists a nite covering ]-N:O S
of a punctured neighborhood of zero in thet-line by radial sectors §; (i.e., those with the vertex
at 0) that have the following property. There exists a unique change of variablesz = H; (t)w over
each §; that transforms (6.1.1) to (6.1.4), where H; (t) is an analytic invertible matrix function on
S; that can be C! -smoothly extended to the closureS; of the sector so that its asymptotic Taylor
series at 0 coincides with the normalizing series. The precéng statement on existence and uniqueness
of sectorial normalization holds in any good sector (see théwo following De nitions) ; the covering
consists of good sectors [8, 10, 71, 75, 107].

Case k=1,n=2, > 2 R.

De nition 6.1.2 A sector in C with the vertex at 0 is said to be good if it contains only one imaginary
semiaxisiR , and its closure does not contain the other one (see Fig. 6.1)

General case.

De nition 6.1.3 Letk2 N, = f 1;:::; ng Cbeann-tuple of distinct numbers, t be the coordi-
nate onC. For a given pair ; 6 ; the raysin C starting at 0 and forming the set Re(( ; N=tc)y=0
are called the ; ) -imaginary dividing rays corresponding to the pair ( i; ;). A radial sector is said
to be (k; ) -good if for any pair ( i; ;), j 6 i, it contains exactly one corresponding imaginary
dividing ray and so does its closure.

Remark 6.1.4 In the case, whenk =1, n =2, ; 2 2 R, the imaginary dividing rays are the
imaginary semiaxes, and the notions of \good" sector and K; )-good sector coincide.

Remark 6.1.5 The ratio v"x—j‘(t) of solutions of equations from (6.1.4) tends either to zeroor to
in nity, as t tends to zero along a ray distinct from the imaginary dividing rays corresponding to the
pair ( i; j). Its limit changes exactly when the ray under consideration jumps over one of the latter
imaginary dividing rays.

Consider a coveringsj’\':O S; of a punctured neighborhood of zero by good (orK; )-good) sectors
numbered counterclockwise, and putSy+1 = Sp. The standard splitting of the normal form (6.1.4)
into the direct sum of one-dimensional equations de nes a caonical base in its solution space (uniquely
up to multiplication of the base functions by constants) with a diagonal fundamental matrix. Denote
the latter fundamental matrix by

solution space of (6.1.1) in the sectorsS; with the fundamental matrices

Zi(t) = Hj(OW(t); j=0;::5;N +1; (6.1.5)
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Sn+1 = Sp. The corresponding branch ofW \with index N + 1" is obtained from that \with index
0" by right multiplication with the monodromy matrix of the f ormal normal form (6.1.4).) In the
connected component of the intersectior§; \ S;.; there are two canonical solution bases coming from
S; and Sj+1 . Generically, they do not coincide. The transition betweenthem is de ned by a constant
matrix Cj :

Zi"™ ()= Z ()G (6.1.6)
The transition operators (matrices C;) are called Stokes operators(matrices) (see [8, 10, 71, 75, 107]).

The nontriviality of Stokes operators yields the obstruction to analytic equivalence of (6.1.1) and its
formal normal form (6.1.4).

Remark 6.1.6 The Stokes matrices (6.1.6) are well de ned up to simultaneas conjugation by one
and the same diagonal matrix.

Fig. 6.1 { Case 1 2 2 R+ . A covering by two good sectors

Example 6.1.7 Let k = 1, n = 2. In this case we may assume without loss of generality that

1 2 2 R;+ (one can achieve this by linear change of the time variable)Then the above covering
consists of two sectorsSy and S; (Fig. 6.1). The former contains the positive imaginary semaxis and
its closure does not contain the negative one; the latter hashe same properties with respect to the
negative (respectively, positive) imaginary semiaxis. Ttere are two components of the intersection
So\ S;. S0, in this case we have a pair of Stokes operator$he Stokes matrices(6.1.6) are unipotent :
the one corresponding to the left intersection component idower-triangular; the other one is upper-
triangular [8, 10, 71, 75, 107].

Remark 6.1.8 Stokes operators of an irregular equation (6.1.1) with a digonal matrix in the right-
hand side are identity operators. In this case, (6.1.1) is aalytically equivalent to its formal normal
form. In general, two irregular equations are analytically equivalent, if ard only if they have the same
formal normal form and the corresponding Stokes matrix tupgs are obtained from each other by simul-
taneous conjugation by one and the same diagonal matrixf. the previous remark. Thus, the formal
normal form and the Stokes matrix tuple taken up to the previous conjugation present the complete
system of invariants for analytic classi cation of irregular equations (see [8, 10, 71, 75, 107]).
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6.1.3 Previous results

Earlier, in 1919, R. Garnier [31] had studied some particula deformations of some class of linear
equations with nonresonant irregular singularity. He obtained some analytic classi cation invariants
for these equations by studying their deformations. The complete system of analytic classi cation
invariants (Stokes operators and formal normal form) for general irregular nonresonant di erential
equations was obtained later in the 70's in the papers by Jurkt, Lutz, Peyerimho [75], Sibuya [107]
and Balser, Jurkat, Lutz [10]. Later Jurkat, Lutz and Peyeri mho extended their results to some reso-
nant cases [76]. In 1985, J.-P. Ramis proved that the Stokesperators and the monodromy operators
of a linear ordinary di erential equation belong to its Galo is group ([103], see also [71]). In 1989 he
considered the classical con uenting family of hypergeomigic equations and proved convergence of
appropriate branches of monodromy eigenfunctions of the pgurbed equation to canonical solutions
of the nonperturbed one by direct calculation [104]. In the khte 80's, B. Khesin also proved a version
of this statement, but his result was not published. In 1991,A. Duval [25] proved this statement for
the bicon uenting family of hypergeometric equations (where the nonperturbed equation is equivalent
to Bessel's equation) by direct calculation. In 1994, C. Zhag [119] had obtained the expression of
Garnier's invariants via Stokes operators (for the class ofrregular equations considered by Garnier).

The analytic classi cation of germs of parabolic mappings vas obtained separately by J.Ecalle [26]
and S. M. Voronin [117]. The orbital analytic classi cation of germs of two-dimensional saddle-node
holomorphic vector elds was obtained by J. Martinet and J.-P. Ramis in their joint paper [93]. The
analytic classi cation of two-dimensional saddle-nodes émultiplicity two was recently obtained in the
joint paper [118] by S. M. Voronin and Yu. I. Meshcheryakova.

A particular case of the result from [39] concerning parabdt mappings (analogous to the previously
mentioned statements on linear equations) was obtained by JMartinet [92]. For other related results
concerning parabolic mappings see also [91] and the referess therein.

6.2 Main results. Stokes operators and limit monodromy

In the present section we formulate the statements expressg the Stokes operators as limit transi-
tion operators between monodromy eigenbases of the con ugimg Fuchsian equation (Theorem 6.2.5
and Corollary 6.2.6) and as limits of some words (6.1.3) of nointeger powers of monodromy operators
(Theorem 6.2.12).

6.2.1 Stokes operators as limit transition operators betwe en monodromy
eigenbases

We formulate the result from the title of this subsection only in the case whenk = 1, n = 2
(see [38] in the general case). Let;, i =1;2, be the eigenvalues of the matrixA(0). Without loss of
generality we assume that ; 2 2 R:+ : one can achieve this by linear change of the time variable.

We consider a deformation of (6.1.1),

AL
ICRN

where A(t;") and f (t;") depend continuously on a parameter® 0 so that o(") 6 (") for "> 0.
Without loss of generality we assume that o+ ; 0. We formulate the statement from the title of
the subsection for a generic deformation (6.2.1), see the fowing De nition.

z= fE") =0t ot 1("); f(t0) t% A(t0)= A(t); (6.2.1)

De nition 6.2.1 A family of quadratic polynomials f (t;") depending continuously on a nonnegative
parameter ", f (t;0)  t2, with roots ("), i =0;1, o+ 1 O, is said to begeneric if (") 6

1(") for " 6 0, and the line passing through (") and (") intersects the real axis at an angle
bounded away from 0 uniformly in". A family (6.2.1) of linear equations is said to be generig, if the
corresponding family of polynomialsf (t;") is generic.
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Recall the following :
De nition 6.2.2 A singular point to of a linear analytic ordinary di erential equation z = %z is
said to be Fuchsian, if it is a rst order pole of the right-hand side (i.e., the corresponding matrix
function B(t) is holomorphic at tg). The characteristic numbers of a Fuchsian singularity are the
eigenvalues of the corresponding residue matriB (to) (which are equal to the logarithms divided by
21 of the eigenvalues of the corresponding monodromy operatr

Remark 6.2.3 A family (6.2.1) of linear equations is generic if and only if the dierence of the
characteristic numbers at (") (or equivalently, at ;(")) of the perturbed equation is not real for
small " and, moreover, has argument bounded away from Z uniformly in " small enough. The latter
condition implies that the monodromy operator of the perturbed equation around each singular point

i has distinct eigenvalues (moreover, their moduli are distict), and hence, a well-de ned eigenbase
in the solution space (for small").

The singularities of the perturbed equation from a generic &mily have imaginary parts of constant
(and opposite) signs (by de nition). Without loss of generality we assume in what follows that

Im ¢>0; Im ;<0 (seeFig.6.2)

Fig. 6.2 { Two generically con uenting singularities

De nition 6.2.4  Let (6.2.1) be a generic family of linear equations (see the nevious de nition)
whose singularity families satisfy the previous inequalites. Let S;, j = 0;1, be a pair of good sectors
in the t-line such that (") 2 S;,j =0;1,iR+ Sp, iR S; (see Fig. 6.1). The sectorS; is said
to be the sector associated to the singularity family ,j =0;1.

We show that appropriate branches of the eigenfunctions oftie monodromy operatorM; around
i of the perturbed equation converge to canonical solutions fothe nonperturbed equation in the
corresponding sectorS;. This will imply the statement from the title of this subsect ion.
To formulate the latter statement precisely, consider the auxiliary domain

SP=sin[ of"); (i (6.2.2)

which is simply-connected, and the canonical branches of #tamonodromy eigenfunctions on the domain
SP. In more detail, consider a small circle going around ;, and take a base point on it outside the
segment [ o("); 1(")]. In the space of local solutions of the perturbed equationat the base point
consider the monodromy operatorM; acting by the analytic extension of a solution along the cirde
from the base point to itself in the counterclockwise directon. The eigenfunctions ofM; have well-
de ned branches (up to multiplication by constants) in the corresponding disc with the segment
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[ o("); 1(")] deleted. Their immediate analytic extension yields ther canonical branches onSP. In
other terms, we identify the space of local solutions with the space of solutions or§? by immediate
analytic extension, considerM; as an operator acting in the latter space and take its eigenfoctions.

The canonical basic solutions of the nonperturbed equatiorare numbered by the indices 1 and
2, which correspond to the eigenvalues ;; » of A(0). To state the results previously mentioned, let
us de ne an analogous numbering of the monodromy eigenfunains at (). The monodromy eigen-
functions are numbered by the eigenvalues of the correspoimy residue matrix. The latter eigenvalues
are proportional to those of the matrix A( i(");"), whichtendto 1 and ,, as"! 0. This induces
the numbering of the monodromy eigenfunctions with the indices 1 and 2 corresponding to the limit
eigenvalues ; and ».

Theorem 6.2.5 Let (6.2.1) be a generic family of linear ordinary di erential equations (see De ni-
tion 6.2.1), (") its singularity family, let S; be the corresponding sectolsee the previous de nition),
and S the domain (6.2.2). Consider the eigenbase or8? of the monodromy operator of the perturbed
equation around ;("). The appropriately normalized eigenbasd&by multiplication of the basic functions
by constantg converges to the canonical solution basé6.1.5) on S; of the nonperturbed equation.

Corollary 6.2.6 Let (6.2.1) be a generic linear equation family (see De nition 6.2.1), ; its sin-

gularity families, let S; be the corresponding sectorgsee the previous de nition) chosen to cover a
punctured neighborhood of zero, and? the corresponding domains(6.2.2). Let Co, C; be the corres-
ponding Stokes matriceg6.1.6) of the nonperturbed equation in the left(respectively, right) component
of the intersection Sp\ S;. Consider the eigenbase or8 of the monodromy operator of the perturbed
equation around ;("). Denote by Z!(t) the fundamental matrix of this eigenbase. LeCo(") (C1("))

be the transition matrix between the monodromy eigenbaseai (t), i = 0;1, in the left (respectively,
right) component of the intersectionS9\ S9 :

Zit)= Z29(t)Co(") for Ret< O;

0 1 (6.2.3)

Z:(t) = Z+(t)Ce(") for Ret> O
For any i = 0;1 and appropriately normalized monodromy eigenbaseg&i, j = 0;1 (the normalization
of 9 (only) depends on the choice of), C;(")! Cj as"! 0.

Remark 6.2.7 Theorem 6.2.5 and Corollary 6.2.6 extend to the general casef arbitrary Poincae
rank k and dimensionn [38], as do the notions of a generic family of linear equatios and a sector
associated to a singularity family. The statement of Corollary 6.2.6 in the case ok = 1 and arbitrary

n remains the same. But for higherk (when the number k + 1 of transition matrices is less than
that of Stokes matrices) it says that appropriate products o subsequent Stokes matrices (not all the
Stokes matrices themselves) are limit transition matricesbetween appropriate branches of monodromy
eigenbases. These limit products of Stokes matrices covell éhe Stokes matrices. On the other hand,
each element of a Stokes matrix in a limit product can be exprssed as a polynomial in the product
elements; so, all the Stokes matrices can be recovered frorhd limit transition matrices.

6.2.2 Stokes operators as limits of commutators of appropri ate powers of
the monodromy operators

The Stokes and monodromy operators act in di erent linear smaces : in the solution spaces of the
nonperturbed (respectively, perturbed) equations. To fomulate the statement from the title of the
subsection, let us rst identify these solution spaces and pecify the loops de ning the monodromy
operators.

Let (6.2.1) be a generic family of linear equations. Take thébase point"
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Remark 6.2.8 The space of local solutions of a linear equation at a nonsindar point to 2 C is
identi ed with the space of initial conditions at to (which is common for the nonperturbed and the
perturbed equations). This identi es the solution spaces d the latter. The space thus obtained will be
denoted by Hy,.

Remark 6.2.9 Let (6.1.1) be an irregular equation with k =1, n=2, > 2 R, and let Sy, S;
be good sectors covering a punctured neighborhood of zero the t-line, both containing R and R.
(see Fig. 6.1). LetCp, C1 be the Stokes operators (6.1.6) corresponding to the left gspectively, right)
intersection component of the sectors. The operatolCy (C;) is well de ned in the spaceH;, of local
solutions of (6.1.1) at any pointto 2 R (respectively, to 2 R, ).

Now let us de ne the monodromy operators acting in the previais spaceH;, .

De nition 6.2.10  Let(6.2.1) be a generic family of linear equations, ("), i = 0; 1, be its singularity

families. Fix a point to 2 R (independent of"). Let |; be a small circle centered at ; (") whose closed
disc is disjoint from ("), & =[to; i]\ li, with the segment [to; a;] oriented from to to & . Consider
the closed path ; =[to;a] i [to;a] %, i =0;1, which starts and ends attq (see Fig. 6.3). De ne
Mi :H¢, ! Hy¢, to be the corresponding monodromy operator of the perturbedequation.

Fig. 6.3 { The loops for the monodromy operators

We show that commutators of appropriate noninteger powers dthe operatorsM; (see the following
de nition) tend to the Stokes operators.

Denition 6.2.11 Letd2 R,andletM :H ! H be a linear operator in a nite-dimensional linear
space having distinct eigenvalues. Thal-th power of M is the operator having the same eigenlines as
M, whose corresponding eigenvalues are some valuesdsth powers of those ofM .

Theorem 6.2.12 Let (6.2.1) be a generic family of linear equations(see De nition 6.2.1)and ("),

i = 0,1, its singularity families. Let to = 1=2, H, the corresponding local solution space(see
Remark 6.2.8). Let M; : Hi, ! H¢, be the corresponding monodromy operators from De nition6.2.1Q
Let Sj, i = 0;1, be the corresponding associated sectoré&see De nition 6.2.4) forming a covering of

a punctured neighborhood of zero, and le€y, C; be the Stokes operatorg6.1.6) of the nonperturbed
equation corresponding to the left(respectively, right) component of the intersectionSy\ S; (acting in
the spacesH -, and Hi-, respectively, see Remark6.2.9). Then for any pair of numbers dy;d; > 0
such thatdg + dy < 1

M, “MIMIM, %1 Co inthe space H 1op;

, (6.2.4)
My MIEM&PM, %1 C; inthe space Hy-, as "! O



107

Theorem 6.2.12 is proved in the next section.

Remark 6.2.13 The statements of Theorem 6.2.12 imply the same statementsni any spaceH;,,
Rety < 0 (respectively, Retg > 0). Theorem 6.2.12 extends to the case ok = 1 and arbitrary
dimension [42].

6.3 Convergence of the commutators to Stokes operators. Pro of
of Theorem 6.2.12

6.3.1 Projectivization. The plan of the proof of Theorem 6.2 A2

Let us prove convergence of the rst commutator in (6.2.4); the proof of the convergence of the
other commutator is analogous.

Thus, from now on, we putty = 1=2.

For the proof of Theorem 6.2.12 we consider the projectivizeion of the space H, = C2. The
projectivizations of the monodromy and Stokes operators a& Mebius transformations C! C (denote
by m; : C! C the projectivizations of the monodromy operatorsM;, and by the projectivization
of the Stokes operatorCy).

Let do;d; > 0,dp + d1 < 1. Denote .

m?= m!

For the proof of (6.2.4) we show (below and in subsections 6.3, 6.3.3) that
(m9) *mdmI(mg) ! as "! O (6.3.1)

This means that the commutator (6.2.4) multiplied by an appropriate constant (depending on the
parameter) converges toCy. The commutator (6.2.4) has unit determinant, as does any conmutator
and the operator Cy (which is unipotent, see Example 6.1.7). This together with (6.3.1) implies that
its limit exists and is equal to either Co or Cy. The fact that it is really equal to Cy will be proved
in subsection 6.3.4.

To sketch the proof of (6.3.1), let us rst recall the following :

De nition 6.3.1 ([6]) A Mebius transformation is said to be hyperbolig if it has two xed points
one of which is attracting (then the other is repelling). It i s said to be parabolic, if it has only one
xed point. (Otherwise, it is said to be elliptic.)

In what follows, we represent hyperbolic and parabolic trarsformations by gures as follows. The
Riemann sphereC will be drawn in the form of a circle. A hyperbolic transformation with xed points
a and b, a being repelling, will be represented by markinga and b at the circle (representing C) and
an oriented segment going froma to b (see Fig. 6.4(a)). A parabolic transformation with xed poi nt
a, sendingb to c, will be represented by marking the points a; b; cand the arrow from bto ¢ on the
circular arc joining them and disjoint from the xed point a (see Fig. 6.4(b)).

Remark 6.3.2 The projectivization of a Stokes operator of an irregular eqiation is parabolic, since
a Stokes operator is unipotent (see Example 6.1.7). The pre@jctivization of a two-dimensional linear
operator having eigenvalues with distinct modulus is hypebolic : its repelling xed point corresponds
to the eigenfunction with the eigenvalue of the smallest modilus ; its multiplier at the repelling xed
point is equal to the ratio of the eigenvalues. Each monodrom operator M; from Theorem 6.2.12 has
eigenvalues of distinct moduli (see Remark 6.2.3), sats projectivization m; is hyperbolic

For the proof of (6.3.1) we state and prove its analogue (Lemra 6.3.11 below) for commutators of
families of hyperbolic transformations generalizingm? = m("). To do this and to motivate the proof,
let us rst describe the arrangement of the xed points of mg, m; and
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a) b) C

Fig. 6.4 { Hyperbolic and parabolic transformations

Proposition 6.3.3 Let (6.1.1) be a two-dimensional irregular equation, ;, > be the eigenvalues of
the corresponding matrix A(0), and 1 2> 0. Let Sy, S; be the sectors from Example6.1.7 (see
Fig. 6.1), Co be the Stokes operator(6.1.6) corresponding to the left component of their intersection,
and let be the projectivization of Cy. Let fi1, fi2» be the canonical solutions of(6.1.1) on the sectors
Si, i =0;1, pi1, piz be their projectivizations. Then is a parabolic transformation with the xed point
Po2.,

Poz = P12;  (Po2) = Poz;  (Po1) = Pu1; (see Fig.6.5(b)):

Proposition 6.3.3 follows from the de nition, the unipotence and the lower triangularity of the
Stokes matrix Cp (see Example 6.1.7).

Proposition 6.3.4 Let (6.2.1) be a generic family of linear equationsty 2 R, M; be the monodromy
operators of the perturbed equation from De nition 6.2.1Q fi;.-, fi2~ be their basic eigenfunctions,
and i1, i2 the corresponding eigenvalues. Then

01 12
o= —11 ; 1= — 11
02 11

; oas "0 (6.3.2)

Corollary 6.3.5 Under the conditions of Proposition 6.3.4, let m; : C! C be the projectivizations of
Mi, pj be those off» . Then m; are hyperbolic transformations with xed points pj1;+, pi2;. More
precisely, poz:+ is the repelling point of mg, pi1 is that of my (see Fig 6.5(a)), the corresponding
multipliers are equal to ¢, 1, see(6.3.2) : they tend to in nity. Let S; be the sectors associated to
the singularities ; of the perturbed equation(see De nition 6.2.4), pj be the projectivizations of the
canonical sectorial solutions onS; of the nonperturbed equation. Then

pi- ! pj as "! O (see Fig.6.5(b)): (6.3.3)

Statement (6.3.3) follows from Theorem 6.2.5.

To motivate the proofs of the convergence of the commutatorsn (6.2.4) and (6.3.1), consider the
simplest case, where in the family of equations (6.2.1) the mrix function family A(t;") is lower-
triangular. Then the line z; = 0 is invariant for each equation of the family. This implies that the
monodromy operatorsMo and M; have a common eigenfunction (whose graph lies in the invariat
line z; = 0) and their projectivizations m; have the common xed point poz+ = pi2-, repelling for
mo and attracting for m; (see Fig. 6.6(a) below). In this case not only does the commator in (6.3.1)
converge : it does so with arbitrary powersm?i, di > 0, in particular, mllmomlmol I . Thisis
implied by (6.3.2), (6.3.3) and a more general Proposition 6.6 stated below. To formulate it, let us
introduce the following notation :

hap: :C! C (6.3.4)

is the hyperbolic transformation of the Riemann sphere xing points a;b2 C; a is repelling with the
multiplier
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b) P11

P12 = Po2

Fig. 6.5 { The projectivizations of the monodromy and Stokes opeators

Proposition 6.3.6  Let p, po1, p11 be three distinct points of the Riemann sphere, and let : C! C
be the parabolic transformation xing p and sendingpo: to pi1. Consider three arbitrary families of
points a;ly; by 2 C converging top; (see Fig.6.6) :

al p; ! Ppoi; br! pu:
Then in the notation (6.3.4)

hp e, Nabo: oNbya 1hap,: o ! as (ajbp;by) ! (P;po1;pu1); o; 1!l

b) P11
| Q POl
P

Fig. 6.6 { Degenerating hyperbolic transformations with a comma xed point

The proof of Proposition 6.3.6 is straightforward and can bedone by hand (e.g., multiplying the
(triangular) matrices of the h' s explicitly). It is omitted to save space.

In the previous case of the lower-triangular matrix A(t;") the families m; of hyperbolic transfor-
mations (and also m?i with arbitrary d; > 0) satisfy the conditions of Proposition 6.3.6 by (6.3.2),
(6.3.3). This together with the proposition implies (6.3.1).

In the general case, the transformationsm; have distinct xed points : pg2» 6 piz». On the
other hand, the latter xed points are conuent to the xed po int p = pg2 of . For the proof
of (6.3.1) in the general case we show rst that the distance @t(po2-;pi2:+) IS not too large : it
decreases a©( ; 1) (Corollary 6.3.8). Then we state and prove a generalizatio (Lemma 6.3.11) of
Proposition 6.3.6 for families of hyperbolic transformations hay:by: o, Nb,:a,: , that have no common
xed point, but con uenting families of xed points ag;a; ! p such that the distance dist(ag; a;)
between them decreases fast enough, more precisely, @§ o 1j ). We apply Lemma 6.3.11 to the
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hyperbolic transformations m? = m{’i and ; = ,d . To show the possibility of applying Lemma 6.3.11

to m?, it suces to prove that dist( poz-;piz~) = 0( o 1j ). This is the place where we use the
inequalities on the exponentsd; from Theorem 6.2.12.
To estimate the distance dist(po2. ; P12+ ), We use the following

Lemma 6.3.7 Let (6.2.1) be a generic family of linear equations(see De nition 6.2.1), ; be its

singularity families, S; be the corresponding sectorgsee De nition 6.2.4) chosen to cover a punctured
neighborhood of zeroSP be the corresponding domains from(6.2.2). Let Co, C; be the Stokes matrices
(6.1.6) of the nonperturbed equation(corresponding to the left (respectively, right) component of the
intersection Sp\ S;),

Co= ! O; Ci=

o 1 (see Example6.1.7). (6.3.5)

1 ¢
0 1
Let M; be the monodromy operator of the perturbed equation around;(") acting in the space of
solutions on S°. Let Z! be (the fundamental matrix of) its eigenbase. LetCo(") be the transition
matrix (6.2.3) between the baseZ! that converges toCp, as" ! 0, see Corollary 6.2.6 (we consider
the transition in the left component of the intersection SJ\ S?) :

1+0o(1)  u(")

CO(") = Co+ 0(1) 1+ 0(1) , U(") !

0:
Let 11; 12 be the eigenvalues oM; at ("), 1 = 12= 11 be the corresponding multiplier of its
projectivization. Then the upper triangular elementu(") of the matrix Cy(") has the asymptotics

u()=( c+o(l) ,* as "! 0 (6.3.6)
where ¢; is the upper triangular element of the Stokes matrixC; in (6.3.5).

Lemma 6.3.7 is proved in subsection 6.3.2.

Corollary 6.3.8 Let (6.2.1) be a generic family of linear equationsto = 1=2, M; be the monodromy
operators from De nition 6.2.1Q m; be their projectivizations, po2+ be the repelling xed point of mg,
p12- be the attracting xed point of my, and let 11 be the multiplier of the latter attracting xed
point. Then

dist(poz;"; Pr2;) = O( 11) as "! O

Remark 6.3.9 The multipliers of a hyperbolic transformation at its xed p oints are inverse. In
particular, in the preceding corollary, 1 is the multiplier of m; at its repelling xed point pii.-.

Proposition 6.3.10 Let M; be the monodromy operators from De nition 6.2.10 m; their projectivi-
zations, and ; the multipliers at their repelling xed points. Then
Joi=i e as 10

Proof Recall that appropriate logarithms of the eigenvalues of tte monodromy operators around
singularities are equal to 2i times the corresponding eigenvalues of the residue matrise(i.e., the
characteristic numbers). The characteristic numbers at (") are equal to (1 + o(1)) times those
at 1("). This together with (6.3.2) implies that In j oj = (1 + o(1))Inj 1j, which proves Proposi-
tion 6.3.10. 2

As is shown below, (6.3.1) is implied by Corollary 6.3.8, Prgosition 6.3.10, the inequalities ond;
from Theorem 6.2.12, and the following lemma.
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Lemma 6.3.11 Let p, po, p. be three distinct points of the Riemann sphere, and : C! C the
parabolic transformation xing p and sendingpo to p;. Consider four arbitrary families of points
ap;as; by; by 2 C converging top, po and p; (see Fig.6.7) :

ag;ar! p; ! po; b ! pi
Then in the notations (6.3.4)
hbﬁal; 1hao;b0§ ohbl;al; 1ha0:|;b0; 0 - (637)

asag;ar! p, (bo;b) ! (Po;p1), o) 1!'1  sothatdist(ag;a1) = o(j o 1j ).

b p,

Po

Fig. 6.7 { Degenerating hyperbolic transformations with a pair of rapidly con uenting xed points

Lemma 6.3.11 is proved in subsection 6.3.3.

Proof of (6.3.1)  Let us show that the families of hyperbolic transformations m? = m?i satisfy the

conditions of Lemma 6.3.11. Their xed points converge top; by (6.3.3). Their multipliers at the
repelling xed points are equal to ;| = ,d Now it su ces to prove the last asymptotic formula
in (6.3.7) saying in our case that dist(oz:; p12:+) = 0] 80 ‘flj D). The latter formula follows from

Corollary 6.3.8, Proposition 6.3.10, positivity of the powers d; and the inequality dy + d; < 1 from

the conditions of Theorem 6.2.12. This together with Lemma 63.11 proves (6.3.1). 2
6.3.2 The upper triangular element of the transition matrix . Proof of
Lemma 6.3.7

The transition matrix Co("), which converges to the Stokes matrixCo, Z* = Z9Co("), compares
the monodromy eigenbase&? and Z? in the left component of the intersection S3\ S?, in particular,
on areal interval in R . It is not changed when we extend the basic functions analytally from R to
R. along the real line. Denote byZ!., the corresponding branch onR, of the extended fundamental
matrix Z!,i = 0;1. By construction, Z.Q+ is obtained from Z9r, by applying the monodromy operator
Mo; Z%,, is obtained from Z1jr, by applying the inverse monodromy operatorM , L.

Zh, = Z'jsoM; 1 the matrix My is diagonal (6.3.8)

On the other hand, we can choose a renormalization of the eigbaseZ.9+ by multiplication of the
basic functions by constants (i.e., changing it toz?, ( "), ( ") =diag(l1:(");12(")) so that in the right
component of the intersectionS9\ S? the transition matrix C;(") between Z-Q+ (") and Z tends to
the Stokes matrix Cq :

29, (")= ZHgCu(): Ca(")! Cu:
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Substituting (6.3.8) and (6.2.3) in the latter formula yiel ds
Co(")= ( ")C ("M, & (6.3.9)

The matrices C;(") tend to the Stokes matricesC;, which are unipotent. The matrices ("), M are
diagonal and depend on". This implies that

(")=Mi1+0() as "! O

This together with (6.3.9) implies (6.3.6).

6.3.3 Commutators of hyperbolic transformations with clos e xed points.
Proof of Lemma 6.3.11

Lemma 6.3.11 can be proved \by hand" by multiplying explicitly the matrices of the hyperbolic
transformations in the commutator (6.3.7).
Denote the latter commutator by . For the proof of Lemma 6.3. 11 it su ces to show that

(a)! p; (6.3.10)
ao)! 1,  (m)! pu:

these statements imply that does not tend to in nity and eac h of its limit points is a Mebius
transformation having xed point p with unit multiplier and sending po to p: (thus, coinciding with
), hence !
Let us prove (6.3.10) (the proof of the other two statements § analogous). Recall the last asymptotic
condition from Lemma 6.3.11 :

dist(ao;a1) = ofj 0 1j *): (6.3.11)

Consider the orbit of the point ag under consecutive hyperbolic transformations forming thecommu-
tator (6.3.7). Applying h_* does not moveag. Applying hp,.a,. , movesag to a point (denoted by

ao;bo; o
ag) close toa; ; more precisely,

dist(ad;a;) = ; tdist(ap;al)(1 + o)) = o ot ;2) (6.3.12)

(by (6.3.11)). Put

380: haoibo; oag; a800: blj;-al; 1380
For the proof of (6.3.10) it su ces to show that
ad® p; orequivalently; dist(a$®a;)! O (6.3.13)

By (6.3.11), (6.3.12),
dist(ag; a0) = o(j o 1j *):
Applying ha,:,: , to aJ yields : dist(alag) = o ; *)! 0, hence by (6.3.11),
dist(ag’a;) = o ;1)

Applying h, %, . to aj’and using the previous formula yields dist@®a;) ! 0. This proves (6.3.13)
and (6.3.10).
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6.3.4 Convergence of projectivizations versus convergenc e of linear
operators. The end of the proof of Theorem 6.2.12

We have already proved that the projectivization of the rst commutator in (6.2.4) converges to
that of the Stokes matrix Cy. Let us show that the commutator itself converges toCy. This is implied
by Lemma 6.3.11 and the following :

Proposition 6.3.12  Under the conditions of Lemma 6.3.11 consider two-dimensional linear opera-
tors whose projectivizations are the hyperbolic transforrations hy,. from the commutator (6.3.7).
Then the corresponding commutator of linear operators congrges to a unipotent operator.

Proof The transformation is parabolic; thus, it is the projectivization of a (unique) unipotent
operator (denote that operator by C). The convergence of projectivizations means that the comm-
tator of the linear operators under consideration multiplied by appropriate constant converges toC.
The commutator has unit determinant, as a commutator, and sodoesC. Therefore, the commutator
converges either toC, orto C. Let us show that it converges toC.

Let ag, a3 be the con uenting xed points of the hyperbolic transformations. In the case where
ay @i, this statement holds by de nition : the operators in the commutator have a common eigenline,
hence, the corresponding eigenvalue of the commutator is eql to 1, not 1, so, the limit is C.

In the general case we can consider without loss of generalithat the families of points ap;a;
meet in nitely many times while con uenting. The commutato rs of linear operators corresponding to
the meeting places tend toC by the previous statement. This proves the proposition. 2

Thus, by Lemma 6.3.11 and the above proposition, the commuttor (6.2.4) converges to a unipotent
operator whose projectivization is the same as that of the Sikes operatorCop, which is also unipotent.
Hence, the limit operator coincides with Cy. This nishes the proof of Theorem 6.2.12.

6.4 Nonlinear analogues and proof of Theorem 6.2.5

In the present section we state the nonlinear analogues of Téorem 6.2.5 and Corollary 6.2.6
for two-dimensional saddle-node holomorphic vector eldsand their Martinet-Ramis moduli (subsec-
tion 6.4.2). We consider a two-dimensional holomorphic vetr eld with an elementary degenerate
singular point (saddle-node). We study its generic deform#éon under which the degenerate singu-
larity of the nonperturbed eld splits into nondegenerate linearizable singularities of the perturbed
eld. The Martinet{Ramis invariant (of the orbital analyti ¢ classi cation) of the nonperturbed eld is
expressed in terms of the limit transition functions between the linearizing charts of the singularities
of the perturbed eld in [39]. Here we state this result only in the case of multiplicity two (see [39] for
its statement for higher multiplicities). The linearizing charts determine the canonical rst integrals
of the perturbed eld. Theorem 6.4.17 says that appropriate branches of the canonical rst integrals
of the perturbed eld converge to appropriate sectorial caronical integrals of the nonperturbed eld.
This implies that the components of the Martinet-Ramis invariant are the limit transition functions
between the canonical integrals of the perturbed eld (Cordlary 6.4.18).

The main result on saddle-nodes (Theorem 6.4.17) implies Collary 6.4.22 saying that the \hori-
zontal" separatrices of the perturbed eld converge to the ®ctorial central manifolds (zeros of canonical
integrals) of the nonperturbed eld.

The main result on linear equations (Theorem 6.2.5) is rela¢d to its nonlinear analogue for saddle-
nodes. Namely, the projectivization transforms the nonpeturbed linear equation (6.1.1) to a holomor-
phic vector eld on C fj tj < 1g having two saddle-node singularities. A generic deformatin of (6.1.1)
is transformed to a generic deformation of the pair of saddlenodes. It appears that Theorem 6.2.5
reformulated in terms of the projectivization follows from the previously mentioned Corollary 6.4.22
on the convergence of the horizontal separatrices of geneslly perturbed saddle-nodes.

The previously mentioned results concerning saddle-nodeare stated in Subsection 6.4.2. Theo-
rem 6.2.5 and Corollary 6.4.22 are proved in Subsections 63land 6.4.4, respectively.
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The basic de nitions (canonical rst integrals and Martine t-Ramis moduli of saddle-nodes), which
may be found in [67, 93], are recalled in Subsection 6.4.1.

6.4.1 Two-dimensional saddle-node singularities and thei r Martinet-Ramis
invariants

De nition 6.4.1  We say that an isolated singular point of a holomorphic vecta eld is of complex
saddle-nodetype, if the corresponding linearization operator has exatly one zero eigenvalue.

De nition 6.4.2  Two holomorphic vector elds are said to beorbitally analytically equivalent, if there
exists a biholomorphic di eomorphism of the correspondingphase spaces that maps the complex phase
curves of the rst vector eld into the phase curves of the seond one. Orbital analytic equivalence
of germs of holomorphic vector elds is de ned similarly. The formal orbital equivalence of germs is
de ned analogously with a formal di eomorphism, i.e., a two-dimensional formal power series invertible
under composition. More precisely, two germs are said to béormally orbitally equivalent, if there exists

a formal di eomorphism transforming the rst germ to the sec ond one multiplied by a formal nonzero
function, i.e., a formal power series with nonzero free term

Remark 6.4.3 Any germ of a holomorphic vector eld in (C?;0) with a saddle-node singularity at
the origin is orbitally analytically equivalent to the germ at the origin of a vector eld of the form
(

p=p+ O(jpi® + jtji***);
t = kel (6.4.1)
De nition 6.4.4  Let S be a radial sector on a complex line with coordinatet. For any r > 0, we set
S’ = S\fj tj<rag.

One can ask the following question : Is it possible to separa&t variables in the di erential equation
corresponding to the vector eld (6.4.1) or, more precisely is it true that the germ of (6.4.1) is
locally orbitally analytically equivalent to the germ of a eld corresponding to a di erential equation
with separated variables? Generally, this question has a rgative answer. At the same time, the
answer is positive for the formal equivalence. Namely, anyaddle-node eld (6.4.1) is formally orbitally
equivalent to a unique vector eld of the form

p= R+ t9);

Lo et 2 C: (6.4.2)

The corresponding vector eld (6.4.2) is called theformal normal form of (6.4.1) (see [67, 93]).

Generically, the normalizing power series is divergent. Orithe other hand, there are neighborhoods
U, and U, of the origin on the axesp and t, respectively, and a covering of the punctured neighborhod
U; by 2k radial sectorsS; (i.e., sectors with vertex at the origin), j = 0;:::;2k 1, possessing the
following property : for appropriate r > 0 in each of the domains§; = U, S, there is a holomorphic
coordinate transformation

B 1 (p) 7! (p= Hj(p1);t) (6.4.3)
that transforms (6.4.1) to its normal form (6.4.2); further more, at the origin H; (p;t) possesses an
asymptotic power series inz and t coinciding with the normalizing series (see [67, 93]).

The \nontriviality" of the transition from one normalizing chart (6.4.3) to another (over the in-
tersection of the sectors of the covering) gives rise to an dbruction for orbital analytic equivalence
between the vector eld (6.4.1) and its formal normal form (6.4.2), and is called thenonlinear Stokes
phenomenon This obstruction is the nontriviality of the Martinet-Ram is invariant. We now give its
de nition. To this end, consider the canonical rst integra |

1

I(p;t)=pt  exp R
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of the formal normal form (6.4.2). The integral |, together with the sectorial normalizing coordinate
transformations |, induces the rst integrals

=1 19 (6.4.4)
of (6.4.1) over the sectorsS; (more precisely, in the domainsS[ ). These integrals are called thesectorial
canonical integrals. We set Sy = So, B2« = Ho. In the de nitions of all the integrals |; = | &,
j =0;:::;2k, we choose the branches of the (multivalued) functionl so that for each j 2k 1

its branch over Sj+1 (corresponding to the indexj + 1) be the analytic extension of its branch
over §; when moving counterclockwise in thet-plane. We introduce X transition functions (),

of the corresponding sectorsS; and Sj+1
ljvz = (6.4.5)

Remark 6.4.5 The system of functions j in (6.4.5) is determined uniquely up to conjugation by
multiplication by a constant, i.e., up to transformations o f the form

i()7cij(c 1): where c2 CnO does not depend orj: (6.4.6)

The vector eld (6.4.1) is orbitally analytically equivale nt to its formal normal form (6.4.2) if and
onlyif () for all j. More generally, two germs of vector elds of the form (6.4.3 are orbitally
analytically equivalent if and only if they have the same formal normal form and the corresponding
systems of functions ; from (6.4.5) are obtained one from the other by applying sucessively a
transformation of the form (6.4.6) and a cyclic shift of order k of the 2k indices| (see [67, 93]).

Example 6.4.6 Consider the case of multiplicity two, i.e., whenk =1 in (6.4.1), (6.4.2). Then the

previous covering consists of the same two good sectof§;, and S;, as in subsection 6.1.2, in the
case of linear equations (see Example 6.1.7 and Fig. 6.1). Bhprevious collectionf ;g consists of
two functions o and ;. The function 1( ) is holomorphic on C and has the form ()= + ¢,

c1 2 C. The function ¢( ) is holomorphic in a neighborhood of the origin and has unit crivative at

0: o()= +0of)as ! O.

De nition 6.4.7  The equivalence class of a collection of functions; in (6.4.5) under transformations
(6.4.6) (and cyclic shifts of orderk of the indices, ifk > 1) is calledthe Martinet-Ramis orbital analytic
classi cation invariant of the vector eld (6.4.1).

6.4.2 Con uence of singular points and Martinet-Ramis inva riant

We state the result on expressing the Martinet-Ramis invarant via limit transitions between li-
nearizing charts only in the case of multiplicity two, i.e., k = 1 (its statement in the general case may
be found in [39]). To do this, we introduce some notations andecall the theorem on linearizability of
a generic nondegenerate singular point of a two-dimensiothdolomorphic vector eld.

De nition 6.4.8 A singular point of a holomorphic vector eld is said to be linearizable if the
corresponding germ of the eld is orbitally analytically equivalent to its linear part.

De nition 6.4.9  The characteristic humber of a two-dimensional holomorphic vector eld at its
singular point is the ratio of the eigenvalues of the correspnding linearization operator.

Theorem 6.4.10 ([8]) A singular point of a two-dimensional holomorphic vector eld with a nite
nonreal characteristic number is linearizable.
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De nition 6.4.11 A singular point of a two-dimensional holomorphic vector eld is said to betypical
if in suitable coordinates the corresponding linear part ha the form

(
P= P Col
> ; —ZR:
t= t 11>
The canonical integral of this linear vector eld is its rst integral pt = . The canonical integral of

a two-dimensional vector eld at its typical singular point is obtained from the canonical integral of
the corresponding linear part by applying the linearizing coordinate transformation.

Remark 6.4.12 If a singular point of a two-dimensional holomorphic vector eld is typical in the
sense of the preceding de nition, then it is linearizable (Theorem 6.4.10). The corresponding canonical
integral is determined uniquely up to a constant factor.

We consider the following continuous one-parameter defor@tion (depending on the parameter
0) of the saddle-node (6.4.1) (which corresponds td = 0) in the class of holomorphic vector
elds :

(
p=p(d+ R(p;t;")+ g(t")f ("),
t=f(t");

f(0)=1t%  R(0;0,0)=0; ot 1 0

fE") =0t oDt (") (6.4.7)

whereg and R are continuous families of holomorphic functions. Assumehat the degenerate singular
point 0 of the nonperturbed eld splits into two typical sing ularities (0; (")) of the perturbed eld,

i(")8 ((")fori 6 I," 60.Forageneric deformation (6.4.7) (see the next de nition) we shall express
the Martinet-Ramis invariant of the nonperturbed eld in te rms of the limit transition functions
comparing the canonical integrals of the perturbed eld.

Remark 6.4.13 When we restrict ourselves to deformations of the type (6.47) only, we do not loose
generality (see [39]).

De nition 6.4.14 A vector eld family (6.4.7) is said to be a generic saddle-node family if the
corresponding family of polynomialsf (t;") is generic (see De nition 6.2.1).

Remark 6.4.15 Suppose that (6.4.7) is a generic saddle-node family. Thenhe arguments of the
characteristic numbers of the singular points of the pertubed vector eld are uniformly bounded

away from Z for all su ciently small values of the parameter. In particu lar, for small " the singular

points of the perturbed eld are typical : one eigenvalue of the corresponding linearized operator
tends to zero and the other eigenvalue tends to one. Thus thearesponding canonical integrals (see
De nition 6.4.11) are well de ned for small " 6 0. Conversely, if the characteristic numbers of the

perturbed eld in a continuous family of vector elds (6.4.7) satisfy the above estimate, then the
families f (t;") and (6.4.7) are generic.

Recall that the roots (") of a generic family f (t;") of polynomials have imaginary parts of
constant sign. Without loss of generality we assume that Im o > 0, thenIm ;< 0.

A sector in the t-line associated to a root family (") of f (t;"), i = 0;1, is de ned in the same
way as in De nition 6.2.4.

For a typical family (6.4.7), we shall show that a branch of the appropriately normalized canonical
integral of the perturbed eld at the singular point (0 ; (")) converges to the sectorial integral of the
nonperturbed eld over the corresponding sectorS;.
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De nition 6.4.16  Suppose thatV is a domain on the Riemann sphereY- is a one-parameter family
(depending on the parameter® 0) of domains on the sphere. We say that the familyV- converges
to V as"! O, ifit converges toV in the Hausdor sense, i.e., if the maximal distance from a pant

of the boundary @V to the boundary @ Vtends to zero, and the same is true for the boundarie®®V
and @YV interchanged. By convergence of a family of functions holomrphic in V- depending on the
same parameter’ we mean uniform convergence of these functions on compact lssets ofV.

Theorem 6.4.17 Suppose that(6.4.7) is a generic saddle-node family of vector elds(see De ni-
tion 6.4.14) = (") is a continuous family of t-coordinates of their singularities, S = S; is a
sector associated to it(see De nition 6.2.4). There exist anr > 0, a neighborhoodU, of the origin on
the p-axis, and a family - of simply connected domains on thd-axis that contain (") and do not
contain (") (this family depends on the same parametéel and is de ned for all small values" 6 0)
such that the following statements hold :

(1) The connected component containing (") of «\ (S" n[0; (")]) converges toS" as" ! 0
(see De nition 6.4.16).

(2) Let 2= .n[ o("); 1(")]. The canonical integral |- of the perturbed eld (6.4.7) at the singular
point (0; (")) (see De nition 6.4.11)is a multivalued holomorphic function onf. = U, - branched

0

along the linet = ("). This function has a single-valued branch of . = Up 9. This branch, when
appropriately normalized (see Remark6.4.12), converges to the sectorial canonical integral6.4.4) of
the nonperturbed eld on§" = U, S'.

This theorem is proved in [39] for saddle-nodes of arbitrarymultiplicity (but for a less general class
of deformations (6.4.7) in the case of multiplicity two). In fact, its version from [39] in the latter case
is equivalent to Theorem 6.4.17.

Corollary 6.4.18 Let (6.4.7) be a generic saddle-node family of vector elds(0; (")) its singulari-
ties, i =0;1, and S; the corresponding sectors(see De nition 6.2.4). Accordingly, suppose thatr > 0,

Up, and - (i) are the constant the neighborhood, and the domains - corresponding to = ; from

the preceding theorem, 2(i) = (i) n[ o("); 1(")], li» (t) is the canonical integral of the perturbed

eld at the singular point (0; (")) (see De nition 6.4.11). More precisely, we take its single-valued
0 .

branch in the domain f . (i)= Up 9%i); we setly» = lg~. Let C! be the connected component

of S§\ S, j =0;1 (we assume thatC® R , C' R.), and let ; be the corresponding com-
ponent (6.4.5) of the Martinet-Ramis invariant of the nonperturbed eld. T here exists a familyC(")

of connected components oSj\ S;\  ?(0)\ ?(1) that converges toC! as" ! 0 and possesses
the following property : the transition function - between appropriately normalized integrald .+ in
€")=U, C("), ljsa» = ~ I}, is holomorphic in a domain (depending on") that converges to
the domain of j,and ! ; as"! 0.

Corollary 6.4.18 and its extension to higher multiplicities are contained in [39].

Now we formulate another corollary of Theorem 6.4.17, on covergence of appropriate separatrices
of the perturbed eld to the sectorial central manifolds of the saddle-node. We use this corollary
further in the proof of Theorem 6.2.5.

De nition 6.4.19  The sectorial separatrix of a saddle-node (6.4.1) over a good sect@® is the zero
curve of the corresponding canonical sectorial integral (pequivalently, the image of the central mani-
fold of the formal normal form under the inverse of the normalzing change of variables). Thehorizontal
separatrix of a typical singular point of a two-dimensional holomorphic vector eld is the zero curve
of the corresponding canonical integral (see De nition 6.411).
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Remark 6.4.20 Let (6.4.1) be a saddle-node vector eld,S a good sector (see De nition 6.1.2), and
the corresponding sectorial separatrix (see the precedig de nition). There exists an r > 0 such that
contains the graph

p=q(t) (6.4.8)
of a function q(t) with the following properties :

(i) qis holomorphic in S" and continuous in its closure;
(i) this is the unique function satisfying (i) whose graph is tangent to the eld.

Remark 6.4.21 Consider a two-dimensional holomorphic vector eld in coodinates (p;t) with a
typical singularity. Let the eigenline of its linearizatio n operator with the largest eigenvalue be parallel
to the p-axis. Then the corresponding horizontal separatrix (see [ nition 6.4.19) contains the graph

p=q(t) (6.4.9)

of a holomorphic function, the graph contains the singularty. This is the unique graph of a holomorphic
function tangent to the eld and passing through the singularity.

Corollary 6.4.22 Let (6.4.7) be a generic saddle-node family. Then the horizontal separices at
the singularities of the perturbed eld converge to the secrial separatrices of the saddle-node over
the corresponding sectors(see the previous De nition). More precisely, letb(") = (0; (")) be a sin-
gularity family, S be the sector associated to (see De nition 6.2.4). Let g(t) be the function whose
graph (6.4.8) is contained in the sectorial separatrix overS, and ¢ (t) the function with graph (6.4.9)
contained in the horizontal separatrix of the perturbed el at b("). There exist anr > 0 and a family

- of domains in thet-line, (*)2 -, (") 2 -, satisfying the following statements :

(1) the connected component containing (") of the intersection (S" n[0; (")) \ - converges to
S',as"! O (see De nition 6.4.16);

(2) the function q(t) is holomorphic in S", @ is holomorphic in -, and g ! q.

The generalization of the corollary to arbitrary dimension and multiplicity is stated and proved in
[39].

6.4.3 Projectivization. Proof of Theorem 6.2.5

For the proof of Theorem 6.2.5 we projectivize all the linearequations involved. The projectiviza-
tion of a linear equation is a tangent line eld on the product P* fj tj < 1g that is the pushforward
of the linear equation under the tautological projection C2n0! P! (or a holomorphic vector eld on
the latter product contained in the tangent line eld).

The projectivization of a two-dimensional irregular equation (6.1.1) is a holomorphic vector eld
on P! fj tj < 1g having a pair of singularities on the ber P* 0 (which correspond to the eigen-
lines of the matrix A(0), the coordinate lines in our case). These singularitiesire saddle-nodes of the
same orderk as the Poincae rank of the equation under consideration k = 1). The projectivization
transforms the graphs of the canonical sectorial solution®f (6.1.1) to the sectorial separatrices of the
corresponding saddle-node singularities of the projectization (and hence, the solutions themselves
to the corresponding functions (6.4.8)). Indeed, the image of the canonical solutions under the tau-
tological projection are functions holomorphic in the corresponding sectors and continuous in their
closures (by construction), and their graphs are tangent tothe projectivization. By uniqueness (see
Remark 6.4.20), they coincide with those de ning the correponding sectorial separatrices.

The projectivization of a perturbed equation from a genericfamily (6.2.1) is a holomorphic vector
eld on the same spaceP® fj tj < 1g with four typical singularities : a pair of singularities in each
ber P! i("), i =0; 1. Analogously, the projectivization transforms the graphs of the monodromy
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eigenfunctions at the singularities of the perturbed linea equation to the horizontal separatrices of
the projectivization.

The projectivization of a generic family of linear equations becomes a generic saddle-node family
(locally near each saddle-node singularity of the projectiization of the nonperturbed equation) after
applying an appropriate family of changes of the space variale. Now the preceding corollary applied
to the family of projectivizations says that the horizontal separatrices converge to the sectorial se-
paratrices of the projectivized nonperturbed equation. This means that the branches inSP of the
monodromy eigenfunctions (taken up to multiplication by constants) converge to the canonical ba-
sic solutions of the nonperturbed equation (also taken up tomultiplication by constants). Therefore,
appropriately normalized monodromy eigenfunctions convege to appropriately normalized canonical
basic solutions. This proves Theorem 6.2.5 modulo Corollar 6.4.22.

6.4.4 Convergence of the horizontal separatrices. A brief p roof of
Corollary 6.4.22
We give a brief proof of Corollary 6.4.22 independent on Theem 6.4.17 (the complete text of the

proof may be found in [39]).
Let us prove the statements of Corollary 6.4.22, say, for

0, S=Sp: letusshowthat ¢! q:

To do this, we show that the functions ¢ are holomorphic in domains - large enough (satisfying
statement (1) of Corollary 6.4.22) and form a normal family (i.e., precompact in the topology of
uniform convergence on compact sets its") : more precisely,

iPMj< Ljg@® jt oM forany t2 . (6.4.10)

(Recall that by de nition, o ( o(")) = 0.) Then the limit of any convergent sequenceq,, "n ! O, is
a function holomorphic in the sector S" and continuous in its closure that vanishes at 0. Its graph is
tangent to the saddle-node eld. Therefore, by the uniqgueness statement of Remark 6.4.20, the limit
coincides with g. This together with normality proves the convergenceg ! a.

For the proof of the bounds (6.4.10) we consider the followig family K of tangent cones at the
points of the phase plane and the corresponding conig °:

K=fipi<ijtig; K°=fipi<jt o("ig:
The inequalities (6.4.10) are equivalent to the inclusions
T g K q K@ (6.4.11)

where ¢ is the graph of the function ¢ .
For the proof of the inclusions (6.4.11), we consider an apppriate constant multiple

v (") = € (6.4.7); 2 R is independent on";

of the vector eld family (6.4.7). We choose the number so that the singular point kp(") = (0; o(")) of
the perturbed eld v (") from the new family is hyperbolic with the stable manifold WS = ft = ((")g
and the unstable manifold being locally the horizontal sepaatrix WY = g . More precisely,

(1) the eigenvalue of the linearization operator ofv (") at by(") at the eigenline tangent to the line
ft= o(")g has a negative real part;

(2) the other eigenvalue has a positive real part;

(3) the previous conditions hold \uniformly" : the real part of the former eigenvalue is bounded
away from zero; the argument of the latter eigenvalue is bouded away from =2+ Z.
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The above conditions will be satised if, e.g., < =2 and is close enoughto =2.

In the proof of (6.4.11) we use the fact that for any satisfying (1){(3)) there exists a bidisc U
in the phase space (independent of) such that for any " small enough the tangent cone eldK is
invariant under the real ow of the perturbed eld v (") : each cone oK is mapped under a positive
time ow map strictly inside the cone of K at the image of the point under consideration. This implies
that the cone K %is alsov (")-invariant.

The inclusions (6.4.11) hold a priori at the singular point by("), and hence in its neighborhood
(whose size depends on the parameter). By invariance df , they remain valid in all the trajectories
of the eld v (") in the unstable manifold g that go out from the singular point. These trajectories
saturate a domain in @ bijectively projected onto some domain in thet-line (denoted by -). If the
bidisc U is chosen in an appropriate way (say, centered at 0 and so thaits height in the coordinate
p is at least two times greater than its width in the coordinate t; denote by V its projection to the
t-line), then the previous domain - is saturated by the real trajectories of the quadratic vecta eld

t=€ (t oMt 1(")

in the disc V that go out from its repelling singular point (") (see Fig. 6.8(a)). The family of the
domains - thus constructed satis es statement (1) of Corollary 6.4.2, at least for some sectorS
associated to . (In fact one can achieve this for an arbitrary given sectorS associated to ¢ by
appropriate choice of .) This proves Corollary 6.4.22.

In fact, the domain - converges to a domain (denoted , see Fig. 6.8(b)) bounded bya cardioid-
like curve having a \cusp" at 0 with tangency to the ray arg t = . Recall that the closure of the
sector Sy is disjoint from iR . One can achieve that the latter cusp ray be arbitrarily clo toiR (so
that the limit domain contains the sector Sj, for appropriate r > 0) by choosinga < =2 close
enoughto =2.

Fig. 6.8 { The domains - and , where the separatrices have bounded slopes



Bibliographie

[1] Abels, H.; Margulis, G.A.; Soifer, G.A. Semigroups con&ining proximal linear maps. - Israel J.
Math., 91 (1995), 1-30.

[2] Abiko , W. Real analytic theory of Teichmuller space. - Lect. Notes in Math., 820, Springer-Verlag
(1980).

[3] Agol, I. Tameness of hyperbolic 3 { manifolds. - Preprinthttp ://arxiv.org/abs/math/0405568.
[4] Ahlfors, L. Lectures on quasiconformal mappings. - Wadworth (1987).

[5] Ahlfors, L.; Bers, L. Riemann's mapping theorem for variable metrics, Ann. of Math. (2) 72 (1960),
385{404.

[6] Apanasov, B.N.; Gusevskii N.A.; Krushkal, S.L., Kleinian groups and uniformization in examples
and problems (in Russian). - Novosibirsk : Nauka, 1981.

[7] Arnold, V.1. Dopolnitelnye glavy teorii obyknovennykh di erentsialnykh uravnenii. (Russian) [Sup-
plementary chapters to the theory of ordinary di erential e quations] - \Nauka", Moscow, 1978.

[8] Arnold, V.I.; llyashenko, Yu.S. Ordinary di erential e quations, in : Dynamical Systems{l Itogi
Nauki i Tekhniki, VINITI, Moscow, 1985 ; English transl. in : Dynamical Systems | Encyclopaedia
Math. Sci., Springer, Berlin, 1988, 1{148.

[9] Arnold V.1., Varchenko A.N., Gussein-Zade S.M. Singulaities of di erentiable mappings. - Nauka
publ., Moscow, 1982.

[10] Balser, W.; Jurkat, W.B.; Lutz, D.A. Birkho invariant s and Stokes' multipliers for meromorphic
linear di erential equations. - J. Math. Anal. Appl. 71 (197 9), No.1, 48-94.

[11] Bani@, C.; Forster, O. Complete intersections in Stein Manifolds. - Manuscripta Math. 37
(1982), no. 3, 343-356.

[12] Berndtsson, Bo; Ransford, T.J. Analytic multifunctio ns, the @ equation, and a proof of the
corona theorem.- Paci ¢ J.Math. 124 (1986) no 1, 57-72.

[13] Bers, L. Simultaneous uniformization. - Bull. Amer. Math. Society. 66 (1960) 94-97.

[14] Breuillard, E.; Gelander, T. On dense free subgroups dfie groups. - J.Algebra, 261 (2003), No.
2, 448-467.

[15] Brown, G. On commutators in a simple Lie algebra. - Proc.Amer. Math. Soc. 14 1963 763{767.

[16] Bu, X.; Cheritat, A. Ensembles de Julia quadratiques de mesure de Lebesgue strictement posi-
tive. - Comptes Rendus Mattematique 2005, Volume 341, no 11669-674.

[17] Calegari, D.; Gabai, D. Shrinkwrapping and the taming d hyperbolic 3-manifolds. - J. Amer.
Math. Soc. 19 (2006), no. 2, 385{446.

[18] Candel, A., Uniformization of surface laminations. - Ann. Sci. Ecole Norm. Sup. (4) 26 (1993),
no. 4, 489{516.

[19] Candel, A.; Gomez-Mont, X. Uniformization of the leav es of a rational vector eld. - Ann. Inst.
Fourier (Grenoble) 45 (1995), no. 4, 1123{1133.

121



122

[20] Chern, S.-S., An elementary proof of the existence of @idhermal parameters on a surface. - Proc.
Amer. Math. Soc. 6 (1955), 771{782.

[21] Choquet-Bruhat, Y.; de Witt-Morette, C.; Dillard-Ble ick, M. Analysis, Manifolds and Physics.
- North-Holland, 1977.

[22] Dawson, C.M.; Nielsen, M.A. The Solovay-Kitaev algorthm. - Quantum Inf. Comput. 6 (2006),
no. 1, 81{95.

[23] Douady, A.; Bu, X. Le treoeme d'inegrabilie de s structures pesque complexes. (French)
[Integrability theorem for almost complex structures] - The Mandelbrot set, theme and variations,
307{324, London Math. Soc. Lecture Note Ser., 274, Cambridg Univ. Press, Cambridge, 2000.

[24] Douady, A., Estrada, F., Sentenac, P. Champs de vectesr polynémiaux sur C. - To appear in
the Proceedings of Bodilfest.

[25] Duval, A. Bicon uence et groupe de Galois. - J. Fac. Sci.Univ. Tokyo Sect. IA Math. 38 (2)
(1991), 211{223.

[26] J. Ecalle, Invariants holomorphes simples des transformatins de multiplicateur 1. - C. R. Acad.
Sci. Paris Sr. A{B, 276 (1973), A375{A378.

[27] Ecalle, J. Les fonctions esurgentes. Tome Ill. L'Equation du pont et la classi cation analy-
tique des objects locaux. - Publications Mattematiques dOrsay, 85-5. Universie de Paris-Sud,
Departement de Mattematiques, Orsay, 1985. 587 pp

[28] Ecalle, J. Introduction aux fonctions analysables et preue constructive de la conjecture de Dulac.
(French) [Introduction to analyzable functions and constructive proof of the Dulac conjecture]
Actualies Mattematiques. [Current Mathematical Topic s] - Hermann, Paris, 1992. ii+340 pp.

[29] Epstein, D. B. A. Almost all subgroups of a Lie group are fee. - J. Algebra 19, 1971, 261{262.

[30] Gamburd, A.; Jakobson, D.; Sarnak, P. Spectra of elemes in the group ring of SU(2). - J. Eur.
Math. Soc. (JEMS) 1 (1999), no. 1, 51{85.

[31] Garnier, R. Sur les singularies irreguleres desequations dierentielles lireaires. - J. Math. Pures
Appl. 8, no 2 (1919), 99{198.

[32] Gelander, T. On deformations of free subgroups in compa Lie groups. - To appear in Israel J.
Math.

[33] Ghys,E.; Carrere, Y. Relations dequivalence moyennables su les groupes de Lie. - C. R. Acad.
Sci. Paris Sr. | Math, vol. 300 (1985), No.19, 677-680.

[34] Ghys,E. Sur l'uniformisation des laminations paraboliques. - InIntegrable systems and foliations,
ed. C.Albert, R.Brouzet, J.-P. Dufour (Montpellier, 1995), Progress in Math. 145 (1996), 73-91.

[35] Glutsyuk, A., Uniformization of leaves of one-dimensbnal holomorphic foliations. - Threse Ph.D.,
Departement de Mattematiques, Universie d' Etat de Moscou, 1996 (en russe).

[36] Glutsyuk, A., The hyperbolicity of phase curves of a geeric polynomial vector eld in C". -
Functsionalnyi Analiz i iego Prilozheniia, 2(1994), 1-11 {ersion anglaise en Functional analysis and
its Applications, 2(1994), 77-84).

[37] Glutsyuk, A., Hyperbolicity of leaves of a generic onedimensional holomorphic foliation on a
nonsingular projective algebraic manifold. - Trudy Matematicheskogo Instituta im. V.A.Steklova,
v.213 (1996), 90-111 (version anglaise en Proceedings ofeBlov Mathematical Institute, v.213
(1996), 83-103).

[38] Glutsyuk, A., Stokes operators via limit monodromy of a generic deformation. - Journal of Dy-
namical and Control Systems, v.5 (1999) no 1, 101-135.

[39] Glutsyuk, A., Con uence of singular points and the nonlinear Stokes Phenomena. - Trudy Mos-
kovskogo Matematicheskogo Obshchestva, v.62 (2000), p.8®4 (en russe, la version anglaise de ce
journal est \Proceedings of Moscow Mathematical Society")



123

[40] Glutsyuk, A., Resonant con uence of singular points ard Stokes phenomena. - Journal of Dyna-
mical and Control Systems, vol. 10 (2004), No. 2 (April), pp. 253{302.

[41] Glutsyuk, A., Conuence of singular points and Stokes genomena. - Proceedings of NATO
Advanced Study Institute \Normal Forms, Bifurcations and F initeness Problems in Di erential
Equations", Montreal, July 6-19 2002 (C. Rousseau and Yu. fashenko, eds.), NATO Science Series
[I Math. Phys. Chem., (2004), vol.137, pp. 267-294. Kluwer Academic Publishers, Dordrecht.

[42] Glutsyuk, A., On the monodromy group of con uenting lin ear equations. - Moscow Math. J., 5
(2005), no. 1, 67-90.

[43] Glutsyuk, A., Nonuniformizable skew cylinders : a couterexample to the simultaneous uniformi-
zation problem. - C.R.Acad.Sci.Paris, Serie 1 Math., t.332 (2001), p.209-214.

[44] Glutsyuk, A., On simultaneous uniformization and locd nonuniformizability. -
C.R.Acad.Sci.Paris, Srie 1 Math., t.334 (2002), p.489-94.

[45] Glutsyuk, A., Simultaneous metric uniformization of foliations by Riemann surfaces. - Commen-
tarii Mathematici Helvetici, vol. 79, Issue 4 (2004), pp.704-752.

[46] Glutsyuk, A., Upper bounds of topology of complex polyromials in two variables. - Mosc. Math.
J. 5 (2005), no. 4, 781{828.

[47] Glutsyuk, A., An explicit formula for period determina nt. - Ann. Inst. Fourier (Grenoble) 56
(2006), no. 4, 887{917.

[48] Glutsyuk, A., A survey on minimality of horospheric laminations associated to rational functions.
- Dans Fields Institute Communications 2007, Vol : 51, pp. 28-287. Proceedings of the Partially
hyperbolic dynamics, laminations, and Teichmuller ow Wor kshop, January 5-9, 2006.

[49] Glutsyuk, A., On density of horospheres in dynamical laninations. -
http ://xxx.lanl.gov/abs/math.DS/0605644

[50] Glutsyuk, A., Instability of free nondiscrete subgroups in Lie groups. - Soumis au journal \Trans-
formation Groups". Disponible sur I'archive :
http ://arxiv.org/abs/math/0409556

[51] Glutsyuk, A., Simple proofs of uniformization theorems. - Soumis aux Fields Institute Commu-
nications. Disponible sur I'archive :
http ://xxx.lanl.gov/abs/math/0510071

[52] Glutsyuk, A.; llyashenko, Yu., Restricted in nitesim al Hilbert sixteenths problem. - Doklady
Academii Nauk, 2006, v. 407, no 2, 154-159 (in Russian). Enigh translation in Doklady Mathe-
matics, 2006, vol. 73, no 2, 185-189.

[53] Glutsyuk, A.; llyashenko, Yu., Restricted version of the insinitesimal Hilbert 16-th problem. -
Moscow Math. J. 7 (2007), no. 2, 281-325.

[54] Goto, M. A theorem on compact semi-simple groups. - J. Mé. Soc. Japan 1, (1949). 270{272.

[55] Grigoriev, A. Uniform asymptotic bound on the number of zeros of Abelian integrals. - Preprint
arXiv :math.DS/0305248 v1, 17 May 2003.

[56] Grigoriev, A. - Ph. D. thesis, the Weizmann Institute of Sciences, December 2001.

[57] Gromov, M. Pseudoholomorphic curves in symplectic maifolds. - Invent. Math. 82 (1985), no.
2, 307{347.

[58] Hae iger, A., Some remarks on foliations with minimal leaves. - J. Dierential Geometry, 15
(1980), no 2, 269284.

[59] Hirschbahl, R. Commutators in classical Lie algebras - Linear Algebra Appl. 142 (1990), 91{111.

[60] llyashenko, Yu.S. The density of an individual solution and the ergodicity of the family of solutions
of the equationd =d = P(; )=Q(; ). (Russian) - Mat. Zametki 4 1968 741{750.

[61] llyashenko, Yu.S. Generation of limit cycles under theperturbation of the equation dw=dz =
R;=Ry, where R(z;w) is a polynomial. - Math. Sbornik, vol. 78 (1969) no. 3 360{33.



124

[62] llyashenko. An example of equationglw=dz = P, (z; w)=Q; (z; w) having a countable number of
limit cycles and arbitrarily high Petrovski-Landis genu s. - Mat. Sb. (N.S.) 80 (122) 1969 388{404.

[63] llyashenko, Yu.S. Foliations by analytic curves. (Rusian) - Mat. Sb. (N.S.) 88(130) (1972), 558{
577.

[64] llyashenko, Yu.S., NondegenerateB -groups. (Russian.) - Dokl. Akad. Nauk SSSR 208 (1973),
1020{1022.

[65] llyashenko, Yu.S. Topology of phase portraits of analtic di erential equations on a complex
projective plane. (Russian.) - Trudy Sem. Petrovsk. No. 4 (B78), 83{136.

[66] llyashenko, Yu.S. Finiteness theorems for limit cycls. - Translated from the Russian by H. H. Mc-
Faden. Translations of Mathematical Monographs, 94. Amercan Mathematical Society, Providence,
RI, 1991.

[67] Yu. S. llyashenko, ed., Nonlinear Stokes Phenomena. -dv. Soviet Math. 14, Amer. Math. Soc.,
Providence, RI, 1993.

[68] llyashenko, Yu.S. Covering manifolds for analytic fanilies of leaves of foliations by analytic curves.
- Topol. Methods Nonlinear Anal. 11 (1998), no. 2, 361{373.

[69] llyashenko, Yu.S. Centennial history of Hilbert's 16th problem. - Bull AMS, v 39 ( 2002), no 3,
301{354

[70] llyashenko, Yu.S., Variation of argument and Bernsten index for holomorphic functions on Rie-
mann surfaces. - Math. Res. Lett. 14 (2007), no. 3, 433{442.

[71] llyashenko, Yu.S.; Khovanskii, A.G., Galois groups, $okes operators and a theorem of Ramis. -
Funct. Anal. Appl., 24, no 4 (1991), 286{296.

[72] llyashenko, Yu.S.; Pyartli, A.S. The monodromy group & in nity of a generic polynomial vector
eld on the complex projective plane. - Russian J. Math. Phys 2 (1994), no. 3, 275{315.

[73] llyashenko, Yu.S.; Shcherbakov, A.A. Skew Cylinders ad Simultaneous Uniformization. - Proc.
of Steklov Math. Inst., vol.213 (1996), 112-123

[74] llyashenko Yu.S.; Yakovenko S.Yu. Counting real zeroof analytic functions satisfying linear
ordinary di erential equations. - Journal of Di erential e quations 126 (1996), No. 1, 87-105.

[75] Jurkat, W.B.; Lutz, D.A.; Peyerimho, A. Birkho invar iants and e ective calculations for me-
romorphic linear di erential equations. - J. Math. Anal. Ap pl. 53 (1976), no.2, 438{470.

[76] Jurkat, W.B.; Lutz, D.A.; Peyerimho, A. Birkho invar iants and e ective calculations for me-
romorphic linear di erential equations. - Houston J. Math. 2, no 2 (1976), 207{238.

[77] Kahn, J.; Lyubich, M.Yu. ; Rempe, L. A note on hyperbolic leaves and wild laminations of rational
functions. - Preprint.

[78] Kaimanovich, V.A.; Lyubich, M.Yu. Conformal and harmo nic measures on laminations associated
with rational maps. - Mem. Amer. Math. Soc. 173 (2005), No. 8D, vi+119 pp.

[79] Kaloshin, V.; Rodnianski, |. Diophantine properties of elements ofSO(3). - Geom. Funct. Anal.
11 (2001), No. 5, 953{970.

[80] Kitaev, A. Yu. Quantum computations : algorithms and error correction. (Russian) - Uspekhi
Mat. Nauk 52 (1997), no. 6(318), 53{112; translation in Rusg&an Math. Surveys 52 (1997), no. 6,
1191{1249.

[81] Khovanskii, A.G., Real analytic manifolds with the property of niteness, and complex Abelian
integrals. - Funct. Anal. Appl. vol. 18 no. 2 (1984), 40{50.

[82] Khovanskii, A. G.; Yakovenko, S.Yu., Generalized Rolé theorem in R" and C: - Journal of
Dynamical and Control Systems, vol. 2, N 1, 1996, 103|-123.

[83] Korn, A., Zwei Anwendungen der Methode der sukzessiveAnnaherungen. - Schwarz Festschrift,
Berlin (1919), pp. 215-229.



125

[84] Landis, E. M.; Petrovski, I. G. On the number of limit ¢ ycles of the equation dy=dx =
P (x;¥)=Q(x;y), where P and Q are polynomials. (Russian) - Mat. Sb. N.S. 43(85) (1957), 19{168.

[85] Lavrentiev, M.A., Sur une classe des repesentationgontinues. - Mat. Sb., 42 (1935), 407-434.

[86] Lichtenstein, L., Zur Theorie der konformen Abbildungen; Konforme Abbildungen nicht-
analytischer singularitatenfreier Flachenstacke auf ebene Gebiete. - Bull. Acad. Sci. Cracovie,
(1916), 192-217.

[87] Lins Neto, A. Simultaneous uniformization for the leaves of projective foliations by curves. - Bol.
Soc. Brasil. Mat. (N.S.) 25 (1994), no. 2, 181{206

[88] Lyubich, M. Yu. Dynamics of rational transformations : topological picture. (Russian) - Uspekhi
Mat. Nauk 41 (1986), no. 4(250), 35{95, 239.

[89] Lyubich, M. ; Minsky, Y. Laminations in holomorphic dyn amics. - J. Di erential Geom. 47 (1997),
no. 1, 17{94.

[90] Mardest, P. An explicit bound of the multiplicity of z eros of generic Abelian integrals. - Nonli-
nearity 4 (1991), 845-852.

[91] P. Mardesic, R. Roussarie, and C. Rousseau, Modulus ofalytic classi cation for unfoldings of
generic parabolic di eomorphisms. - Mosc. Math. J., 4(2) :465{502, 2004.

[92] Martinet, J. Remarques sur la bifurcation n ud-col dan s le domaine complexe, - Asterisque no
150-151, 1987, p. 131-149.

[93] J. Martinet and J.-P. Ramis, Probemes de modules pourdesequations dierentielles non lireaires
du premier ordre. - Inst. Hautes Etudes Sci. Publ. Math. 55 (1982), 63{164.

[94] Morrey, C. B., Jr. On the solutions of quasi-linear ellptic partial di erential equations. - Trans.
Amer. Math. Soc. 43 (1938), no. 1, 126{166.

[95] Nielsen, M.A.; Chuang, I.L. Quantum computation and quantum information. - Cambridge Uni-
versity Press, Cambridge, 2000. xxvi+676 pp.

[96] Nishino, T. Nouvelles recherches sur les fonctions egites de plusieurs variables complexes (l1).
Fonctions enteres qui se reduisenta celles d'une variale. - J. Math. Kyoto Univ. 9-2 (1969),
221-274.

[97] Novikov, D.; Yakovenko, S.Yu., A complex analog of Rok theorem and polynomial envelops of
irreducible di erential equations in the complex domain. - J. London Math. Soc. (2), 56 (1997),
no.2, 305-319.

[98] Novikov, D.; Yakovenko, S.Yu., La borne simplement expnentielle pour le nombre de zros eels
isoks des inegrales compktes aleliennes. - ComptesRendus Acad. Sci. Paris, srie I, 320 (1995),
853-858 (brief announcement)

[99] Novikov, D.; Yakovenko, S.Yu. Simple exponential estnate for the number of zeros of complete
Abelian integrals. - Ann. Inst. Fourier (Grenoble), vol. 45 (1995), 897{927.

[100] Novikov, D.; Yakovenko, S.Yu. Redundant Picard-Fucts systems for Abelian integrals. - J. of
Di erential Equations, 177 (2001), 267-306.

[101] Petrov, G. S. The number of zeros of complete ellipticritegrals. (Russian) - Funktsional. Anal.

i Prilozhen. 18 (1984), no. 2, 73{74.

[102] Pushkar', I.LA. A multidimensional generalization of llyashenko's theorem on abelian integrals.

(Russian) - Funktsional. Anal. i Prilozhen. 31 (1997) no. 2,34{44

[103] J.-P. Ramis, Prenomene de Stokes et ltration Gevrey sur le groupe de Picard-Vessiot. - C. R.
Acad. Sci. Paris Ser. | Math. 301 (5) (1985), 165{167.

[104] Ramis, J.-P. Con uence et esurgence. - J. Fac. Sci. ©kyo, Sect. |IA, Math. 36 (1989), No.3,
p.703-716.

[105] Roitman, M. ; Yakovenko, S.Yu. On the number of zeros ofinalytic functions in a neighborhood
of a Fuchsian singular point with real spectrum. - Math. Res. Letters, 3 (1996), no 3, 359{371.



126

[106] Shcherbakov, A.A. The exhaustion method for skew cytiders. - Algebra i Analiz, 12(5) (2000).
178-206.

[107] Sibuya, Y., Stokes phenomena. - Bull. Amer. Math. S0¢.83 (1977), pp. 1075{1077.

[108] Slodkowski, Z. Holomorphic motions and polynomial hils. - Proc. Amer. Math. Soc. 111 (1991),
no. 2, 347{355.

[109] Stein, K. Uberlagerungen holomorph-vollsiandiger komplexer Raume. - Arch. Math. 1956, 7 no
5, 354-361.

[110] Sullivan, D. Quasiconformal homeomorphisms and dymaics. |. Solution of the Fatou-Julia
problem on wandering domains. - Ann. of Math. (2) 122 (1985),no. 3, 401{418.

[111] Sullivan, D.P.; Thurston, W.P. Extending holomorphic motions. - Acta Math. 157 (1986), no.
3-4, 243{257.

[112] Tits, J. Free subgroups in linear groups. - J.Algebrayol. 20 (1972), 250-270.

[113] Varchenko, A. N. Estimation of the number of zeros of anAbelian integral depending on a
parameter, and limit cycles. - Funct. Anal. Appl. vol. 18 no. 2 (1984), 14{25.

[114] Varchenko, A.N. Critical values and the determinant d periods. (Russian) - Uspekhi Mat. Nauk
44 (1989), no. 4(268), 235{236; translation in Russian Math Surveys 44 (1989), no. 4, 209{210

[115] Verjovsky, A., A uniformization theorem for holomorphic foliations. - The Lefschetz centennial
conference, Part Il (Mexico City, 1984), 233{253, Contemp Math., 58, Ill, Amer. Math. Soc.,
Providence, RI, 1987.

[116] Vinberg, E. B.; Onishchik, A. L. Seminar po gruppam Li i algebraicheskim gruppam. (Russian)
[A seminar on Lie groups and algebraic groups] - Second edith. URSS, Moscow, 1995.

[117] Voronin, S.M. Analytic classi cation of germs of conformal mappings (C; 0)! (C; 0). (Russian)
- Funktsional. Anal. i Prilozhen. 15 (1981), no. 1, 1{17.

[118] Voronin, S.M.; Meshcheryakova, Yu.l. Analytic class cation of generic degenerate elementary
singular points of germs of holomorphic vector elds on the omplex plane (in Russian). -Izv. Vyssh.
Uchebn. Zaved. Mat.(1) (2002), 13{16.

[119] C. Zhang, Quelquesetudes en theorie desequationgonctionnelles et en analyse combinatoire.
- These, Institut de Recherche Mattematique Avanee, Univ. Louis Pasteur et CNRS (URA 01),
1994.



