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OF A VECTOR FIELD IN R3 WITH A SINGULAR

POINT DOES NOT IMPLY GLOBAL STABILITY

Alexei A.Glutsuk

In the paper we present a negative solution to the higher-dimensional Markus-
Yamabe global stability conjecture. Namely, we prove the following

Theorem 1. There exists a C1- vector field in R3 with a singular point that pos-
sesses the following properties:

1) all the eigenvalues of the Jacobian matrix of the field have negative real parts
everywhere;

2) the singular point is not globally attractive.

Remark 0. Theorem 1 is not valid in R2 ([4, 5, 6]).
The global stability problem for a vector field in Rn that satisfies condition 1)

of Theorem 1 was stated by Markus and Yamabe [7] in 1960.
Earlier the global stability problem under some additional assumptions was in-

vestigated by G.Meisters [1], C.Olech ([1, 2]), P.Hartman [3] and others. In 1988
Barabanov [8] had made an attempt to show that Theorem 1 is valid in Rn for
n ≥ 4. There were some gaps found in his paper. Using the ideas presented in the
Barabanov’s paper J.Bernat and J.Llibre [9] have proved the n− dimensional ver-
sion of Theorem 1 with n ≥ 4. A positive solution of the two-dimensional problem
was obtained by C.Gutierrez [4] and independently by R.Fessler [5] in 1993. A little
later in the same year it was independently obtained by the author [6]∗ . Thus the
Markus-Yamabe global stability problem is solved completely now.

I am grateful to V.I.Arnold and Yu.S Ilyashenko who had drawn my attention
to Markus-Yamabe global stability problem, and to R.I.Bogdanov for their helpful
remarks on the text.

The plan of the proof of Theorem 1

Definition 1. Say that a real n × n-matrix has stable type, if all its eigenvalues
have negative real parts.

Research supported by part by ISF grants M98000, M98300, by grant of Pro-Mathematica
Foundation of French Mathematical Society, by Russian Fundamental Research Foundation grant
95-01-00229a, by UNAM and CIMAT

∗The author’s solution of the three-dimensional problem was announced in his talk at the
Workshop on Dynamical Systems, Trieste, May 22 - June 2, 1995. In October, 1995 this result
was discussed with A.Cima. After this at the end of 1995 a polynomial counterexample to the
three-dimensional Markus-Yamabe conjecture was independently obtained in the joint work by
A.van den Essen, E.Hubbers, A.Cima, F.Mañosas, A.Gasull. The method they used is quite
different from the one of the author.
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In the proof of Theorem 1 we use the following characterization of a three-
dimensional stable type matrix.

Proposition 1. Let A be a real 3 × 3-matrix, χ be its characteristic polynomial.
A has stable type, if and only if the following inequalities hold:

1) trA < 0; 2) detA < 0; 3) χ(trA) > 0.

For the completeness of presentation let us prove Proposition 1. Firstly suppose
A is a stable type 3× 3-matrix with the characteristic polynomial χ. Let us prove
that inequalities 1) - 3) hold. Inequalities 1), 2) are obvious. Let us prove inequality
3). By assumption, the characteristic polynomial χ has at least one real negative
root. Let λ1 be the minimal one of such roots. Then trA < λ1, since other roots
have negative real parts. The polynomial χ is positive in the interval (−∞,λ1.
Indeed by construstion, χ has no roots in the latter, and χ(x) → +∞, as x → −∞.
Hence χ(trA) > 0.

Now suppose a real 3×3-matrix with the characteristic polynomial χ satisfies the
inequalities from Proposition 3. Let us prove that all its eigenvalues have negative
real parts. Suppose the contrary. By inequality 2), this means that χ has a unique
real negative root λ1, and the two other roots have nonnegative real parts. Hence
λ1 < trA < 0 (inequality 1)). Therefore χ(trA) < 0, since χ(0) = detA < 0, and
λ1 is a unique real negative root of χ. This contradicts inequality 3). Proposition
1 is proved.

The idea of proof of Theorem 1. The proof of Theorem 1 is based on the
following

Remark 1. Let (x, y, z) be a fixed positively oriented orthonormal coordinate system
in R3, r = (x2+y2)

1
2 . There exists a vector field with a stable type Jacobian matrix

in a neighbourhood of the circle z = r = 1 such that the latter is its hyperbolic
closed trajectory with the stable manifold r = 1 and the unstable manifold r = z >
0.

Example 1. Let v be a vector field in R3 \ Oz with the following coordinate
representation:

ẋ = (r − 1)x+ 2(r − z + 1)y

ẏ = −2(r − z + 1)x+ (r − 1)y

ż = 3r2 − z(2r + 1).

The field v is rotation invariant with respect to the Oz-axis. The circle z = r = 1
is its hyperbolic closed trajectory with the stable manifold r = 1 and the unstable
manifold r = z > 0. The origin is a unique singular point of the field. It is
attractive, and its attraction basin is the set r < 1 (fig.1). The Jacobian matrix of
the field v has stable type in the circle. Indeed by rotation invariancy of the field,
for the test of the last property it suffices to check it only at the point (1, 0, 1). The
Jacobian matrix of v at this point is equal to




1 2 0
−4 0 2
4 0 − 3



 .

This is a stable type matrix. One can check this by using Proposition 1.

For the proof of Theorem 1 we show that there exists a vector field with the
following properties:
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Theorem 2. There exists a vector field in R3 that satisfies condition 1) of Theorem
1 and possesses the following properties:

1) 0 is its unique singular point;
2) the field is rotation invariant with respect to the Oz-axis;
3) the circle z = r = 1 is a hyperbolic closed trajectory; its stable manifold is the

cylinder r = 1, and the intersection of its unstable manifold with the set {r ≤ 2} is
the surface {0 < r = z ≤ 2};

4) the attractive basin of the point 0 is the set {r < 1} (fig. 1’).

Theorem 2 is proved in Section 2.

Proof of Theorem 2

Definition. Let v be an Oz- rotation invariant vector field in R3. The factorization
of the field v is the vector field in the half-plane {y = 0} ∩ {x ≥ 0} that is the
orthogonal projection of the field v|y=0 to the plane y = 0. The rotation part of the
field v is its orthogonal projection to the lines tangent to the Oz- rotation circles.

We are looking for an Oz - rotation invariant vector field in R3 that satisfies
condition 1) of Theorem 1 and has a factorization with phase portrait in a neigh-
bourhood of the set x ≤ 1 depicted at fig. 1. Condition 1) of Theorem 1 means
that the Jacobian matrix of the field satisfies the inequalities from Proposition 1.

Example 2. Let a vector field ṽ in R × R+ ∪ {0} (with the coordinates (z, x))
have singular points only at (0, 0), (1, 1) and possess the first integral Fl(z, x) =
(x− 1)l( zx − 1) in the set {x > 0}, l > 0. Then its phase portrait1 is of the type
depicted at fig. 1. The vector field from Example 1 possesses the first integral F3.

The idea of the proof of Theorem 2. For the proof of Theorem 2 we show
that for any l ∈ N large enough there exists an Oz- rotation invariant vector field
in R3 with a stable type Jacobian matrix such that the correspondent factorization
possesses the following properties:

1) its singular points are (0, 0), (1, 1);
2) the function Fl from Example 2 is its first integral in the set {0 < x ≤ 2};
3) all its trajectories in the set x > 1 approach the line z = l

l−1x− 2l
(l−1)2 at the

infinity in the positive direction (fig. 1’).

Remark 2. Let an Oz-rotation invariant vector field in R3 have the Jacobian matrix
A. Then A has stable type everywhere, if and only if this is valid in the half-plane
{y = 0}∩{x ≥ 0}. The function trA is determined by the factorization of the field,
i.e, does not depend on its rotation part.

In the proof of Theorem 2 we use the following formulas for an Oz - rotation
invariant vector field and a one with the first integral Fl.

Remark 3. A vector field v in R3 is Oz - rotation invariant, if and only if its
coordinate representation has the following form:

ẋ = f(z, r)x+ h(z, r)y

ẏ = f(z, r)y − h(z, r)x

ż = q(z, r).

1 In this place by the phase portrait of a vector field we mean the one without a fixed orientation
of the phase curves.
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If the functions f , h, q are C1 in R × (R+ ∪ {0}), and ∂q
∂r (z, 0) ≡ 0, then the

correspondent vector field v is C1. Its factorization is the vector field

ẋ = f(z, x)x

ż = q(z, x).

Its rotation part is the sum of the terms from its expression that contain the function
h. Its divergence (i.e., the trace of its Jacobian matrix) is equal to

r
∂f

∂r
(z, r) + 2f(z, r) +

∂q

∂z
(z, r)

Remark 4. A vector field in R×R+∪{0} with the only singular points (0, 0), (1, 1)
possesses the first integral Fl from Example 2, l > 0, if and only if its coordinate
representation has the following form:

ẋ = x(x− 1)f(z, x)

ż = (lx2 − z(x(l − 1) + 1))f(z, x).(0)

Indeed
∂Fl

∂x
=

(x− 1)l−1

x2
(l(zx− x2)− z(x− 1));

∂Fl

∂z
=

(x− 1)l

x
.

Therefore the field possesses the first integral Fl in the set {x > 0}, if and only
if the ratio of its z- and x- components is equal to

−
∂Fl
∂x
∂Fl
∂z

=
lx2 − z(x(l − 1) + 1)

x(x− 1)
.

The vector field (0) is directed as at fig.1 and (1, 1) is its nondegenerate (hyperbolic)
singular point, if and only if f |x>0 > 0. The divergence of an Oz- rotation invariant
vector field in R3 with the factorization (0) at the circle z = r = 1 is equal to (1−l)f .
Hence in the case when f > 0 it is negative, if and only if l > 1.

Theorem 2 is implied by the following

Main Lemma 1. There exist an L > 1 and families
f1(z, r)(l), f2(z, r)(l), f1, f2 : R× (R+ ∪ {0}) → R+ of positive C∞- functions2

that depend on the parameter l ∈ N with the following properties:
1) ∂((r(l−1)+1)f2)

∂r |r=0 ≡ 0, f1|r≤2 ≡ f2|r≤2;
2) for any natural l > L there exists a positive C∞- function hl : R×R+∪{0} →

R+ such that the field

ẋ = (r − 1)f1(z, r)x+ hl(z, r)y

ẏ = (r − 1)f1(z, r)y − hl(z, r)x

ż = (lr2 − z(r(l − 1) + 1))f2(z, r)

2 From now on we omit the sign l in the expressions for f1, f2 for simplicity
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has a stable type Jacobian matrix everywhere in {y = 0} ∩ {x ≥ 0}.

Lemma 1 is proved in 2-7.
The vector field from Lemma 1 with l large enough is a one we are looking for.

Indeed it is C1 (Remark 3 and statement 1) of Lemma 1) and satisfies condition
1) of Theorem 1 (Remark 2). It has a unique singular point at 0 and possesses
the first integral Fl from Example 2 in the set r ≤ 2 (Remark 4). Its closed
orbit z = r = 1 is hyperbolic as in Theorem 2: the singular point (1, 1) of its
factorization is hyperbolic with the stable manifold x = 1; the intersection of its
unstable manifold with the set x ≤ 2 is {0 < x = z ≤ 2}.

Let us present families f1, f2, hl that satisfy the statements of Lemma 1. Let
Ψ : R+ ∪ {0} → R+ be a positive C∞- function such that

Ψ ≤ 1; Ψ|r≤2 ≡ 1, Ψ(r)|r≥3 =
1

r + 1
,

φ : R+ ∪ {0} → R+ ∪ {0} be a C∞- function such that φ(0) = 0, φ′|[0,1) > 0,
φ|[1,+∞) ≡ 1 (fig.2). Below we show that there exists an L > 1 such that for any
l > L and m large enough dependently on l the families

f2(z, r) =
1

r(l − 1) + 1

1

(z2 + r2 + 1)
1
3

, f1(z, r) = Ψ(r)f2(z, r),

hl(z, r) = hl,m(z, r) =
m

r
φ(r(l − 1))

√∫ +∞

z−54r

dt

(t2 + 1)
2
3

satisfy3 the statements of Lemma 1.

Remark 5. Let f1, f2 be as above, l ≥ 2. The factorization ṽ of a correspondent
vector field from Lemma 1, which does not depend on hl, possesses the following
property: all its trajectories in the set x > 1 have the asymptotic line z = l

l−1x−
2l

(l−1)2 at the infinity in the positive direction. One can prove this by straightforward

calculation of the derivative of the function Λ(z, x) = z − l
l−1x along ṽ in the lines

Λ = const.

2. Pre-motivations and the scheme of the proof of Lemma 1. We are
looking for a vector field of the type as in Lemma 1 with a stable type Jacobian
matrix. This means that the latter satisfies the inequalities from Proposition 1.

Firstly let us motivate the construction of a vector field as in Lemma 1. Let v
be an Oz- rotation invariant vector field in R3 with the rotation part vr and the
Jacobian matrix A. The function detA is the sum of a function that does not
depend on vr and a function det′ quadratic in vr. The same is valid for χ(trAl,m).
Let the circle z = r = 1 be v- invariant. Then detA = det′ at the point (1, 0, 1).
Indeed it suffices to check this in the case when vr(1, 0, 1) = 0. Then the whole circle
z = r = 1 consists of the singular points of the field v, and hence, detA(1, 0, 1) =
0 = det′(1, 0, 1).

For the proof of Lemma 1 we construct a vector field as in the latter with the
Jacobian matrix A such that the main contribution to detA, χ(trA) is brought

3 From now on a function R×R+ → R and its continuation to the set R× {0} are denoted by
the same symbol.
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by the terms of their expressions that contain the coordinate components of the
rotation part of the field. To do this we construct families f1, f2 of the same type
as in Lemma 1 and a family hl,m = m

r gl(z, r) of nonnegative functions, gl|r=0 ≡ 0
that depends on the natural parameter l and m > 0 with the following property:
there exists an L > 1 such that for any natural l > L and m > 0 large enough with
respect to l the triple (f1, f2, hl = hl,m) satisfies the statements of Lemma 1.

Definition 3. Let f1, f2 : R×R+∪{0} → R+ be families of positive C∞- functions
that satisfy condition 1) of Lemma 1 (see footnote 2), gl : R × R+ ∪ {0} → R
be a family of C∞- functions that depend on the natural parameter l ≥ 2 such
that gl(z, 0) ≡ 0. The family vl,m of vector fields in R3 associated to the triple
(f1, f2, gl) is the one of the fields constructed from the functions f1, f2, hl(z, r) =
m
r gl(z, r), m > 0 by the formula from Lemma 1.

Lemma 1 is implied by the following

Lemma 2. There exist an L > 1, families f1, f2 and gl as in Definition 3, gl|r>0 >
0 such that for any natural l > L there exists an M > 0 with the following property:
for any m > M the correspondent vector field vl,m from Definition 3 has a stable
type Jacobian matrix everywhere in {y = 0} ∩ {x ≥ 0}.

Lemma 2 is proved in 3-7.

3. The plan of the proof of Lemma 2.

Definition 4. Let f1, f2, gl, vl,m be as in Definition 3. The family Al,m(z, r) of
matrix functions associated to the triple (f1, f2, gl) defined for z ∈ R, r ≥ 0 is
the one of the Jacobian matrices of the fields vl,m at the point (r, 0, z).

In the proof of Lemma 2 we use the following properties of the matrix family
Al,m:

Preliminary Remark 6. For a triple (f1, f2, gl) as in Definition 3 the correspondent
matrix family Al,m = (aij(z, r)(l, m)) has the following type:

(1)




a11(z, r)(l)

m
r gl(z, r) a13(z, r)(l)

−m∂gl
∂r (z, r) a22(z, r)(l) −m∂gl

∂z (z, r)
a31(z, r)(l) 0 a33(z, r)(l)



 .

Its only elements4 that depend either on m or on gl are a12, a21, a23.
To sketch the proof of Lemma 2 we introduce some definitions.

Definition 5. Let f1, f2 be as in Definition 3. The families trl, aij = aij(l) (see
footnote 4) of functions in (z, r) ∈ R × R+ ∪ {0} associated to f1, f2, (i, j) +=
(1, 2), (2, 1) (2, 3) are respectively the trace and the correspondent elements of the
matrix family Al,m associated to a triple (f1, f2, gl), where gl is a family as in
Definition 3.

Remark 7. The families aij , trl associated to f1, f2 as above depend on the param-
eter l and are well-defined (Remark 6). The families a31, a33 are determined by the
choice of f2. The families a11, a22, a13 are determined by the choice of f1; they are
linear in f1 and its partial derivatives.

4 From now on for simplicity we omit the sign l in the expressions for the families aij(l) of the
matrix Al,m elements
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Definition 6. Let (f1, f2, gl) be a triple as in Definition 3, Al,m be the corre-
spondent matrix family, χ be its characteristic polynomial. Define det′l,m (χ(tr)′l,m)
to be the sum of the products of matrix elements in the expression for detAl,m (re-
spectively χ(trAl,m)) that contain m.

Remark 8. Let f1, f2, gl, Al,m be as above. The differences detAl,m − det′l,m,
χ(trAl,m)− χ(tr)′l,m do not depend neither on m nor on gl. Both det′l,m, χ(tr)′l,m
are products of m2 and a function that does not depend on m.

Lemma 2 is implied by the following

Lemma 3. There exist an L > 1 and a triple (f1, f2, gl) as in Definition 3,
gl|r>0 > 0 such that for any natural l > L, m += 0 the correspondent families trl,
det′l,m, χ(tr)′l,m from Definitions 5, 6 satisfy the following inequalities everywhere:

1) trl < 0;
2) there exists a cl > 0 such that

(2) −det′l,m > m2cl| detAl,m − det′l,m|,

(3) χ(tr)′l,m > m2cl|χ(trAl,m)− χ(tr)′l,m|.

Lemma 3 is proved in 4-7.

Proof of Lemma 2. Let L, f1, f2, gl be as in Lemma 3. Let us prove that they
satisfy the statement of Lemma 2. To do this we check that for any natural l > L
and m large enough dependently on l the matrix Al,m satisfies the inequalities 2),
3) from Proposition 1. This together with the latter and inequality 1) from Lemma
3 will prove Lemma 2. For a fixed natural l > L let cl be a correspondent constant

from Lemma 3. For m >
√

2
cl

detAl,m < 0, χ(trAl,m) > 0 (inequalities (2), (3)).

Lemma 2 is proved.

Preliminary Remark 9. In the proof of Lemma 3 we use the following formulas:

(4)






det′l,m(z, r) = m2

2r (
∂g2

l
∂r a33 − ∂g2

l
∂z a31)(z, r);

χ(tr)′l,m(z, r) = −m2

2r (
∂g2

l
∂r (a11 + a22) +

∂g2
l

∂z a31)(z, r);

a31(z, r) = 2lrf2(z, r)− z(l − 1)f2(z, r) + (lr2 − z(r(l − 1) + 1))∂f2∂r (z, r);

a33(z, r) = −(r(l − 1) + 1)f2(z, r) + (lr2 − z(r(l − 1) + 1))∂f2∂z (z, r).

4. Motivation of the construction of (f1, f2, gl) and the sketch of the
proof of Lemma 3.

We are looking for (f1, f2, gl) as in Definition 3 such that the estimates
from Lemma 3 hold. This implies that for any l large enough, m += 0 trl =
a11 + a22 + a33 < 0, det′l,m < 0, χ(tr)′l,m > 0.

To motivate the construction of a triple (f1, f2, gl) as in Lemma 3 we make
the two following Remarks:

Preliminary Remark 10. Let f1, f2 be as in Definition 3, aij be the correspondent
families from Definition 5. For any l ≥ 3 the following inequalities hold:

a31(1, 1) > 0, a31(0, 0) = 0,
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trl(1, 1) < 0, a33(1, 1) < 0, a33(0, 0) < 0.

a22|r=1 = 0, a11|r=1 > 0, a11|r=0 = a22|r=0 < 0,

Therefore the main contribution to trl(1, 1) is brought by a33. The terms in the
expressions (4) for a31, a33 that contain the partial derivatives of the family f2
vanish at (1, 1).

Remark 11. The vector field from Example 1 coincides with the vector field v3,1
from a family vl,m as in Definition 3. The correspondent matrix A3,1 has stable
type at (1, 1). The families Al,m and gl possess the following properties:

a21(1, 1)|l=3 = −4 = −∂g3
∂r

(1, 1) < 0,

a23(1, 1)|l=3 = 2 = −∂g3
∂z

(1, 1) > 0,

g3(1, 1) > 0, det′3,1(1, 1) < 0, χ(tr)′3,1(1, 1) > 0

(Example 1). Let l = 3, m = 1. The term m2

2r
∂g2

l
∂r a33 is a unique negative term

at (1, 1) in the expression (4) for det′l,m and hence brings the main contribution

to det′l,m(1, 1). The term −m2

2r
∂g2

l
∂z a31 is a unique positive term at (1, 1) in the

expression (4) for χ(tr)′l,m and hence brings the main contribution to χ(tr)′l,m(1, 1).
On the other hand, this term vanishes in the set r = 0. Hence in this set χ(tr)′l,m =

−m2

2r
∂g2

l
∂r (a11 + a22).

The idea of the proof of Lemma 3. For the proof of Lemma 3 we construct a
triple as in the latter with the following properties: 1) for any l ≥ 2

(5) gl|r>0 > 0,
1

r

∂g2l
∂r

(z, r) > 0,
∂g2l
∂z

(z, r) ≤ 0;

2) for any l large enough a) a33 < 0, a31|r>0 > 0, a22|r≤ 1
l−1

< 0, b) for any

(z, r) each of a11(z, r), a22(z, r) is either negative or ”small enough” with respect to
a33(z, r) (in the sense of (6)), c) the main contribution to det′l,m is brought by the

(negative) term m2

2r
∂g2

l
∂r a33 from (4), d) the contribution to χ(tr)′l,m of the (positive)

term −m2

2r
∂g2

l
∂z a31 is greater than the one of the negative terms in its expression (4)

in the set r ≥ 1
l−1 , the term −m2

2r
∂g2

l
∂r a22 from (4) possesses the same property in

the set r < 1
l−1 , e) the main contributions to a31, a33 are brought by the terms in

their expressions (4) that do not contain neither z nor the partial derivatives of f2,
f) the (negative) ratios a31

a33
, a33

a31
are bounded in the set r ≥ 1

l−1 , the bounds are
independent on l;

3) the restriction of the (negative) ratio
∂g2

l
∂r
∂g2

l
∂z

to the set r ≥ 1
l−1 concidered as a

function in (l, z, r) is constant.
The precise statements of the above properties 1), 2)a)-d), 2)f), 3) are presented

below (inequalities (6)-(8) and properties (ii)-(iv)).
Let us motivate the construction of a triple (f1, f2, gl) as above. We are

looking for a family f2 of positive functions such that the main contribution to the
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correspondent family a33 is brought by the terms in its expression (4) that do not
contain ∂f2

∂z . Firstly let f2(z, r) = f2(r) be independent on z. Then a33(z, r) =
−(r(l − 1) + 1)f2(r) < 0. The correspondent family a31 is the sum of a family of
functions independent on z and a family linear in z. If a31 ≥ 0 everywhere then
the latter should vanish identically. This means that

∂((r(l− 1) + 1)f2)

∂r
= 0, i.e.,

f2(r) =
c

r(l − 1) + 1
, c ∈ R.

Example 3. Let f1 ≡ f2 ≡ 1
r(l−1)+1 , trl, aij be the correspondent families from

Definition 5. Then

a31(z, r) =
lr

r(l − 1) + 1
(2− (l − 1)r

r(l − 1) + 1
) ≥ 0, a33 = −1 < 0.

There exist L > 1, c, c′, c1, c2 > 0 such that for any l > L
1) the following inequalities hold everywhere:

(6)

{
a11 < − ca33

l

a22 < − ca33
l

,

(7) −c1
lr

r(l − 1) + 1
a33(z, r) ≤ a31(z, r) ≤ −c2

lr

r(l − 1) + 1
a33(z, r);

2) for any z ∈ R, r ≤ 1
l−1

(8) a22(z, r) < c′a33(z, r).

One can show this by a straightforward calculation. System (6) implies that trl < 0
for any l large enough.

Definition 7. Let f1, f2 be as in Definition 3. Say that the pair (f1, f2) is good, if
there exist L > 1, c, c′, c1, c2 > 0 such that for any l > L a33 < 0 and inequalities
(6)-(8) hold in the correspondent sets from Example 3.

The plan of the proof of Lemma 3. For the proof of Lemma 3 we construct a
triple (f1, f2, gl) as in the latter with the following properties: (i) the pair (f1, f2)
is good; (ii) for any l ≥ 2 inequalities (5) hold everywhere; (iii) the restriction of the
family g2l to the set r ≥ 1

l−1 is of the type θ(z−2c2r), where θ is a positive function

(independent on l) with dθ
dt < 0, c2 is a constant from (7); (iv) the inequality

(9)
∂g2l
∂r

≥ −2c2
∂g2l
∂z

holds everywhere. Property (i) implies that trl < 0 for any l large enough. As it is
(implicitly) shown in 5, properties (i)-(iv) imply the above properties 2c),d) (and
hence positivity of the left-hand sides in (2), (3)). We prove the existence of a triple
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with properties (i)-(iv) such that for any l large enough there exists a cl > 0 such
that (2), (3) hold everywhere. This will prove Lemma 3.

The proof of Lemma 3 is split into 4 subsections. In 5 for each good pair
(f1, f2) we construct a class of ”appropriate” families gl as in Definition 3 with the
properties (ii)-(iv). This class is determined by the constant c2 and presented in
Remark 12. Each gl from the class is determined by the choice of θ and c2. Then
in 6-7 we construct a good pair (f1, f2) with the following property: there exists a
representative gl from the correspondent class such that estimates (2), (3) hold. In
the proof of the latters we use estimates (10), (11) of their left-hand sides. These
estimates are proved in 5.

At the end of 5 we reduce Lemma 3 to Basic Technical Lemma, which is stated
at the same place. The latter implies the existence of (f1, f2), gl as at the end of
the last item. This Lemma is proved in 6-7.

5. The construction of the class of appropriate families gl and Basic
Technical Lemma.

Let (f1, f2) be a fixed good pair. We are looking for families gl such that (5)
hold and the correspondent left-hand sides in (2), (3) are positive. As it is shown
below, this is satisfied provided that gl possesses the following properties.

Proposition 2. Let (f1, f2) be a good pair, c2 be a correspondent constant from
(7). Let gl be a family as in Definition 3 with properties (ii)-(iv) from the end of
4. Then there exist L > 1, c′′ > 0 such that for any l > L, m += 0 the following
inequalities hold:

(10) det′l,m(z, r) ≤ m2

6r
(
∂g2l
∂r

a33)(z, r) < 0;

(11) χ(tr)′l,m(z, r) ≥ −m2c′′

4r
(
∂g2l
∂r

a33)(z, r) > 0.

Proof. The right estimates in (10), (11) are obvious. Let us prove the left estimate
in (10). By (4)-(7), (9), for any l large enough

det′l,m(z, r) ≤ m2

2r
(
∂g2l
∂r

a33 +
l

l − 1
c2

∂g2l
∂z

a33)(z, r) ≤
m2

6r
(
∂g2l
∂r

a33)(z, r).

Now let us prove the left estimate in (11). Firstly let us estimate χ(tr)′l,m in the

set r ≥ 1
l−1 . By (4)-(7), for any l large enough, r ≥ 1

l−1

χ(tr)′l,m(z, r) ≥ m2

2r
(− ∂g2l

∂r
(a11 + a22) +

c1
2

∂g2l
∂z

a33)(z, r)

≥ m2

2r
(
∂g2l
∂r

2ca33
l

− c1
4c2

∂g2l
∂r

a33)(z, r) = −(
c1
4c2

− 2c

l
)
m2

2r

∂g2l
∂r

a33(z, r).

The constant factor in the brackets in the right-hand side of the above inequality
is greater than c1

8c2
whenever l is large enough.

Now let us estimate χ(tr)′l,m in the set r < 1
l−1 . By (4)-(8), for any l large

enough, r < 1
l−1

χ(tr)′l,m(z, r) ≥ −m2

2r

∂g2l
∂r

(a11 + a22)(z, r) ≥ −m2

2r

∂g2l
∂r

(−c

l
+ c′)a33(z, r).
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This is the place we use estimate (8). The right-hand side of the above inequality

is greater than −m2c′

4r
∂g2

l
∂r a33(z, r) when l is large enough. This together with the

estimate from the last item proves the existence of c′′ > 0 such that (11) holds
whenever l is large enough. Proposition 2 is proved.

Below we construct a class of families gl that satisfy the conditions of Proposition
2 for the fixed f1, f2.

Firstly let us motivate the construction of gl. Let c2, f1, f2 be as above, θ : R →
R+ be a positive C∞-function with dθ

dt < 0. Put

gl(z, r) =
√
θ(z − 2c2r).

The family gl possesses properties (ii)-(iv). But it does not satisfy the conditions
of Definition 3, since gl(z, 0) +≡ 0.

Now let us modify the above gl in order to obtain a family that satisfies the
conditions of Definition 3 as well. To do this we introduce the following

Definition 8. Let b > 0, θ : R → R+ be a positive C∞- function with dθ
dt < 0,

φ : R+ ∪ {0} → R+ ∪ {0} be a fixed C∞-function such that φ(t) = 1 for t ≥ 1,
φ(0) = 0, φ′|[0,1) > 0 (fig. 2). Define

gl,θ,b(z, r) =
√
θ(z − 2br)φ(r(l − 1)).

Remark 12. Let f1, f2, c2 be as in Proposition 2. For any θ as above the family
gl = gl,θ,c2 satisfies the conditions of Proposition 2.

The class of families from Remark 12 is the one we are looking for.
Below we show that there exist f1, f2, c2, θ as above such that the triple

(f1, f2, gl = gl,θ,c2) satisfies the statements of Lemma 3.
Lemma 3 is implied by Proposition 2 and the following

Basic Technical Lemma 4. There exist a good pair (f1, f2) and a function θ as
in Definition 8 such that for any l large enough, b > 0 there exists a cl > 0 such that
the families from Definitions 5, 6 correspondent to the triple (f1, f2, gl = gl,θ,b)
satisfy the following inequalities:

(12) −1

r

∂g2l,θ,b
∂r

(z, r)a33(z, r) > cl| detAl,m − det′l,m|(z, r),

(13) −1

r

∂g2l,θ,b
∂r

(z, r)a33(z, r) > cl|χ(trAl,m)− χ(tr)′l,m|(z, r).

Lemma 4 is proved in 6-7.

Proof of Lemma 3. Let θ and a good pair (f1, f2) be as in Lemma 4, c2 be a
correspondent constant from (7). Let us prove that f1, f2, gl = gl,θ,c2 satisfy the
statements of Lemma 3. For any l large enough trl < 0 ( a33 < 0 and inequalities
(6)), and there exists a cl > 0 such that (2), (3) hold. This follows from (12), (13)
and Proposition 2. Lemma 3 is proved.
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6. Motivations of the construction of f1, f2, θ and the sketch of the proof
of Lemma 4.

We show that one can choose θ as in Lemma 3 from the following class of
functions.

Example 4. Let s > 1
2 . Define

θs(t) =

∫ +∞

t

dτ

(τ2 + 1)s
.

The function θ = θs satisfies the conditions of Definition 8.

Below we prove that there exists a triple (f1, f2, θ = θs) that satisfies the
statements of Lemma 4. We construct such a triple with s = 2

3 .

Remark 13. We show that the families f1, f2 from the end of 1 and θ = θ 2
3
satisfy

the statements of Lemma 4 and the correspondent constant c2 from (7) can be
chosen to be equal to 27. (The last statement is proved in 7.) Hence the triple
(f1, f2, gl) with gl = gl,θ,27 satisfies the statements of Lemma 3 (and hence
Lemma 2 too). Therefore the triple (f1, f2, hl) from the end of 1 satisfies the
statements of Lemma 1.

In the proof of Lemma 4 we use the two following estimates of dθ
dt and 1

r

∂g2
l,θ,b

∂r
valid for θ = θs.

Remark 14. For any s > 0, θ = θs there exists a p > 0 such that

(14) θ > −p
dθ

dt
.

This estimate is proved in 7 for s = 2
3 .

Proposition 3. Let θ, gl,θ,b be as in Definition 8, and there exist a p > 0 such
that (14) holds. Then for any l ≥ 2, b > 0 there exists a q > 0 such that

(15)
1

r

∂g2l,θ,b
∂r

(z, r) > − q

r + 1

dθ

dt
(z − 2br).

Proof. Let us estimate the left-hand side of (15).

1

r

∂g2l,θ,b
∂r

(z, r) = −2b
φ2(r(l − 1))

r

dθ

dt
(z − 2br) +

2(l − 1)φ(r(l − 1))

r
φ′(r(l − 1))×

θ(z − 2br) ≥ −dθ

dt
(z − 2br)(2b

φ2(r(l − 1))

r
+ 2(l − 1)pφ′(r(l − 1))

φ(r(l − 1))

r
).

The second factor in the right-hand side of the above inequality does not depend
on z. It is positive for any r ≥ 0 and equals 2b

r when r ≥ 1
l−1 . Indeed its first term

is nonnegative everywhere and equals 2b
r when r ≥ 1

l−1 . Its second term is positive

when 0 ≤ r < 1
l−1 and vanishes when r ≥ 1

l−1 . Therefore there exists a q > 0 such
that this factor is greater than q

r+1 . Proposition 3 is proved
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The plan of the proof of Lemma 4. For the proof of Lemma 4 we construct
a good pair (f1, f2) and a θ = θs such that for any l large enough and b > 0
there exists a cl > 0 such that the correspondent families aij satisfy the following
inequalities:

(16)

{
1

r+1
dθ
dt (z − 2br)a33(z, r) > cl| detAl,m − det′l,m|(z, r)

1
r+1

dθ
dt (z − 2br)a33(z, r) > cl|χ(trAl,m)− χ(tr)′l,m|(z, r).

This together with (14), (15) will prove Lemma 4.

Preliminary Remark 15. In the proof of Lemma 4 we use the following formulas:

(17) detAl,m − det′l,m = a22(a11a33 − a13a31),

(18) χ(trAl,m)−χ(tr)′l,m = −(a11+a22)(a11+a33)(a22+a33)+a13(a11+a33)a31.

Preliminary Remark 16. The right-hand sides in (17), (18) are homogeneous poly-
nomials of degree 3 in aij ; each of their monomials contains at least one of the
following terms: a11, a22, a13. Therefore they are polynomials of degree 3 in f1, f2
and their partial derivatives such that each of their monomials contains either f1
or its partial derivative (Remark 7).

To motivate the construction of f1, f2, θ we make the following

Remark 17. Let (f1, f2) be a good pair, θ be as in Definition 8, and inequalities
(16) hold for the correspondent families from Definition 5 and Remark 8. Then for
any r ≥ 0

∫ +∞

0

| detAl,m − det′l,m|
|a33|

(ζ, r)dζ,

∫ +∞

0

|χ(trAl,m)− χ(tr)′l,m|
|a33|

(ζ, r)dζ < +∞.

The motivation of the construction of f1, f2, θ. We are looking for a good
pair (f1, f2) such that there exists a θ = θs that satisfies estimates (16). This
implies that the correspondent integrals from Remark 17 should be finite. We show
that one can choose f2 as in Lemma 4 of the following type:

Example 5. Put

f(z, r) =
1

(z2 + r2 + 1)
s
2
, s > 0, f2(z, r) =

f(z, r)

r(l − 1) + 1
.

It appears that for s < 4
5 , f1 ≡ f2 the pair (f1, f2) is good. For any l large enough

the ratios |aij|
f ((i, j) += (1, 2), (2, 1), (2, 3)), f

|a33| are bounded from above uniformly

in (z, r), and therefore there exists a pl > 0 such that the expressions in the integrals
from Remark 17 are less than plf2 (Remark 16). Hence if 1

2 < s < 4
5 (e.g., s = 2

3 )
then the integrals from Remark 17 are finite whenever l is large enough.

Now let us motivate the construction of f1, f2, θ. Firstly put

θ = θ 2
3
, f1(z, r) ≡ f2(z, r) ≡

1

r(l − 1) + 1

1

(z2 + r2 + 1)
1
3

.
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The pair (f1, f2) is good. For any l ≥ 2, b > 0 there exists a q > 0 such that

(19) −dθ

dt
(z − 2br) ≥ q|a33|2(z, r).

On the other hand for any l large enough there exists a ql > 0 such that the
following inequality holds:

(20) | detAl,m − det′l,m|+ |χ(trAl,m)− χ(tr)′l,m| < ql|a33|3.

If this were valid with the change of the right-hand side to ql
|a33|3(z,r)

r+1 then for any
l large enough estimates (16) would hold (inequality (19)). But for a fixed l ≥ 2
there is no ql such that this modified estimate (20) holds.

Let Ψ be a function as at the end of 1. For the proof of Lemma 4 we show that
if the above f1 is changed to Ψ(r)f2(z, r), then the modified estimate (20) from the
last item will hold. To do this we use Remark 16 and prove that the correspondent
families aij satisfy the following stronger system of simple estimates.

Remark 18. Let (f1, f2) be a good pair, aij be the correspondent families. Let
there exist an L > 1 with the following property: for any l > L there exists a pl > 0
such that

|a11|(z, r), |a22|(z, r), |a13|(z, r) <
pl|a33|(z, r)

r + 1
.

Then for any l large enough there exists a ql > 0 such that the left-hand side of

(20) is less than ql|a33|3(z,r)
r+1 . This follows from Remark 16 and (7).

We show that the new triple (f1(z, r) = Ψ(r)f2(z, r), f2, θ = θ 2
3
) satisfies the

statements of Lemma 4.
As it is shown below, the following Lemma implies Lemma 4. Then in 7 we prove

that the above Ψ, f2, θ possess all the properties from this Lemma.

Lemma 5. Let Ψ be a function as at the end of 1. There exist C∞-functions
f(z, r), f : R×R+ ∪ {0} → R+,

∂f
∂r |r=0 = 0, θ as in Definition 8 and a p > 0 with

the following properties:
1) inequality (14) holds;
2) for any b > 0 there exists a q > 0 such that

−dθ

dt
(z − 2br) > qf2(z, r).

3) Let f2(z, r) =
1

r(l−1)+1f(z, r), f1(z, r) = Ψ(r)f2(z, r), aij be the families from

Definition 5 correspondent to the tuple (f1, f2). For any l ≥ 2 there exists a pl > 0
such that

|a11|(z, r), |a22|(z, r), |a13|(z, r) <
pl

r + 1
f(z, r).

4) There exist L ≥ 3, c, c′, c1, c2, c3, c4 > 0 such that for any l > L
a) c3f < −a33 < c4f ;
b) inequalities (6)-(8) hold in the correspondent sets from Example 3.

Lemma 5 is proved in 7.

Proof of Lemma 4. Let L, f1, f2, θ be as in Lemma 5. Let us prove that the triple
(f1, f2, θ) satisfies the statements of Lemma 4. By construction, the pair (f1, f2)
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satisfies the conditions of Definition 3. It is good by statement 4b) of Lemma 5.
Let us prove estimates (12), (13). By Proposition 2 and statement 1) of Lemma
5, to do this it suffices to prove (16). Let us estimate the left-hand sides of the
latters. For any l > L, b > 0 there exists a q > 0 such that inequality (19) holds
(statements 2), 4a) of Lemma 5). Now let us estimate the right-hand sides of (16).
For any l > L there exists a ql > 0 such that the moduli in the right-hand sides of

(16) are less than ql|a33|3(z,r)
r+1 . This follows from Remark 18 and statements 3), 4a),

4b) of Lemma 5. This together with (19) proves that for any l > L there exists a
cl > 0 such that (16) hold. Lemma 4 is proved.

7. Proof of Lemma 5.
Let Ψ : R+ ∪ {0} → R+ be as at the end of 1,

f(z, r) =
1

(z2 + r2 + 1)
1
3

, θ(t) = θ 2
3
(t) =

∫ +∞

t

dτ

(τ2 + 1)
2
3

,

f1, f2 be the correspondent families from Lemma 5. Below we show that f , θ,
c2 = 27 satisfy the statements of Lemma 5.

Remark 19. The function Ψ satisfies the inequality

Ψ(r) ≤ 4

r + 1
.

The function f is C∞, positive, and ∂f
∂r |r=0 = 0.

Statement 2) of Lemma 5 is obvious.

Proof of statement 1). Let us estimate θ(t).

θ(t) ≥ θ(|t|) =
∫ +∞

|t|

dτ

(τ2 + 1)
2
3

≥
∫ +∞

|t|

dτ

(τ + 1)
4
3

=
3

(|t|+ 1)
1
3

≥ 3

2(t2 + 1)
1
3

= −3

2
(t2 + 1)

1
3
dθ

dt
(t) ≥ −3

2

dθ

dt
(t).

Statement 1) is proved.

Proof of statement 4a). We use the following formula for the family a33 correspon-
dent to the tuple (f1, f2):

(21) a33(z, r) = −f(z, r)(1 +
2

3

( lr2

r(l−1)+1 − z)z

z2 + r2 + 1
).

Let us prove that for any l large enough

(22) |
( lr2

r(l−1)+1 − z)z

z2 + r2 + 1
| < 4

3
.

This together with (21) will prove inequality 4a) with c3 = 1
9 , c4 = 17

9 .
We use the following
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Inequality 1. For any t, z ∈ R

| tz + z2

t2 + z2 + 1
| < 5

4
.

Proof. It suffices to prove Inequality 1 for t, z ≥ 0. In this case the former is
implied by the following inequality:

5(z2 + t2 + 1)− 4(tz + z2) = z2 − 4tz + 4t2 + 5 + t2 = (z − 2t)2 + t2 + 5 > 0.

Inequality 1 is proved.

Now let l ≥ 2. Let us estimate the left-hand side of (22). It is less or equal to

l

l − 1

r|z|+ z2

z2 + r2 + 1
<

5

4

l

l − 1

(Inequality 1). For any l large enough the right-hand side of the above inequality
is less than 4

3 . Therefore there exists an L > 1 such that for any l > L, c3 = 1
9 ,

c4 = 17
9 inequality 4a) holds. Statement 4a) of Lemma 5 is proved.

Proof of estimate (7). We use the following formula for the family a31 correspondent
to f1, f2:

(23) a31(z, r) = (
lr

r(l − 1) + 1
(2− (l − 1)r

r(l − 1) + 1
)− 2

3

( lr2

r(l−1)+1 − z)r

z2 + r2 + 1
)f(z, r).

Let us prove that there exist 0 < c1 < c2 such that for any l large enough (7) holds
with the change of a33 to −f . This together with statement 4a) proved above will
prove (7).

It suffices to show that for any l large enough

(24) |
( lr2

r(l−1)+1 − z)r

z2 + r2 + 1
| ≤ 4

3

lr

r(l − 1) + 1
.

This together with the inequality

2
lr

r(l − 1) + 1
≥ lr

r(l − 1) + 1
(2− (l − 1)r

r(l − 1) + 1
) ≥ lr

r(l − 1) + 1

and (23) will prove the modified estimate (7) from the last item with c1 = 1
9 ,

c2 = 3− 1
9 . This means that the estimate (7) from Example 3 is valid with c2 = 27

(statement 4a) with c3 = 1
9 proved above).

Below we consider that l ≥ 2. Let us estimate the left-hand side of (24). It is
less or equal to

lr

r(l − 1) + 1

r2 + |z|(r(l−1)+1)
l

z2 + r2 + 1
.

The second ratio in the above expression is less or equal to

r2 + |z|r
z2 + r2 + 1

+
1

l

|z|
z2 + r2 + 1

<
5

4
+

1

l
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(Inequality 1). Therefore for any l large enough this ratio is less than 4
3 . This

proves estimate (24). Estimate (7) is proved.

Proof of estimates (6), (8). The first estimate in (6) follows from statement 4a),
which is proved above. Let us prove its third inequality. Then we prove (8) and
the second inequality of (6).

We use the formula

(25) a22(z, r) =
r − 1

r(l − 1) + 1
Ψ(r)f(z, r).

Let L ≥ 3, c3, c4 be as in 4a). By the latter and (25), for any l > L

a22 <
f

l − 1
≤ − a33

c3(l − 1)
.

Therefore for c = 2
c3
, l > L the third inequality from (6) holds.

Now let us prove (8). By (25), for any l ≥ 3, z ∈ R, r ≤ 1
l−1

a22 ≤ −1

4
Ψf = −f

4
.

By 4a) and the last inequality, for c′ = 1
4c4

, l > L (8) holds in the set r ≤ 1
l−1 .

Estimate (8) is proved.
Let us prove the second estimate of (6). To do this we show that there exists

a q > 0 such that for any l ≥ 2 a11 < qf
l−1 . This together with 4a) will prove the

second estimate of (6). We use the formula

a11(z, r) =
∂

∂r
(

r(r − 1)

r(l − 1) + 1
Ψ(r)f(z, r)) = (

r(r − 1)

r(l − 1) + 1
(
∂ ln f(z, r)

∂r
+

d lnΨ(r)

dr
)

+
2r − 1

r(l − 1) + 1
− (l − 1)r(r − 1)

(r(l− 1) + 1)2
)Ψ(r)f(z, r) = (

r(r − 1)

r(l − 1) + 1
(−2

3

r

z2 + r2 + 1

+
d lnΨ(r)

dr
) +

(l − 1)r2

(r(l − 1) + 1)2
+

2r − 1

(r(l − 1) + 1)2
)Ψ(r)f(z, r).

(26)

The first factor in the right-hand side of (26) is bounded from above by

1

l − 1
((r + 1)(

2

3

r

z2 + r2 + 1
+ |∂ lnΨ(r)

∂r
|) + 1 + 2).

The second factor in the last expression does not depend on l and is bounded from
above uniformly in (z, r). This proves the estimate from the beginning of the item.
Estimate (6) is proved. The proof of estimates (6)-(8) is completed. Statement 4b)
of Lemma 5 is proved.

Proof of statement 3). Let l ≥ 2. We prove the estimates from statement 3) of
Lemma 5 with the change of their right-hand side to plΨ(r)f(z, r). This together
with Remark 19 will prove statement 3).
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Firstly let us estimate |a22|. By (25),

|a22|(z, r) ≤
r + 1

r(l − 1) + 1
Ψ(r)f(z, r) ≤ Ψ(r)f(z, r).

This proves the estimate for a22 from the last item with pl = 1.
Now let us estimate a11. For any fixed l ≥ 2 there exists a pl > 0 such that the

module of the first factor in the right-hand side of (26) is less than pl for all r ≥ 0,
z ∈ R. Indeed for a fixed l ≥ 2 each its term has a bounded module. This proves
the estimate for |a11|.

Let us estimate |a13|. We use the formula
(27)

a13(z, r) =
r(r − 1)

r(l − 1) + 1
Ψ(r)

∂f

∂z
(z, r) = −2

3

r(r − 1)z

(r(l − 1) + 1)(z2 + r2 + 1)
Ψ(r)f(z, r).

The module of the second ratio in the right-hand side of (27) is bounded from
above uniformly in l ≥ 2, (z, r). This proves the estimate for |a13|. Statement 3)
of Lemma 5 is proved. The proof of Lemma 5 is completed.
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