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Abstract

We study family of dynamical systems on 2-torus modeling over-
damped Josephson junction in superconductivity. It depends on three
parameters (B,A;ω): B (abscissa), A (ordinate), ω (a fixed frequency).
We study the rotation number ρ(B,A;ω) as a function of (B,A) with
fixed ω. A phase-lock area is the level set Lr := {ρ = r}, if it has a
non-empty interior. This holds for r ∈ Z (a result by V.M.Buchstaber,
O.V.Karpov and S.I.Tertychnyi). It is known that each phase-lock
area is an infinite garland of domains going to infinity in the vertical
direction and separated by points called constrictions (expect for the
separation points with A = 0). We show that all the constrictions in Lr

lie in its axis {B = ωr}, confirming an experimental fact (conjecture)
observed numerically by S.I.Tertychnyi, V.A.Kleptsyn, D.A.Filimonov,
I.V.Schurov. We prove that each constriction is positive: the phase-
lock area germ contains the vertical line germ (confirming another con-
jecture). To do this, we study family of linear systems on the Riemann
sphere equivalently describing the model: the Josephson type systems.
We study their Jimbo isomonodromic deformations described by so-
lutions of Painlevé 3 equations. Using results of this study and a
Riemann–Hilbert approach, we show that each constriction can be an-
alytically deformed to constrictions with the same ` := B

ω and arbitrar-
ily small ω1. Then non-existence of ”ghost” constrictions (nonpositive
or with ρ 6= `) with a given ` for small ω is proved by slow-fast methods.
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1 Introduction

1.1 Model of Josephson junction: a brief survey and main
results

The Josephson effect is a tunnelling effect in superconductivity predicted
theoretically by B.Josephson in 1962 [41] (Nobel Prize in physics, 1973) and
confirmed experimentally by P.W.Anderson and J.M.Rowell in 1963 [1]. It
concerns the so-called Josephson junction: a system of two superconductors
separated by a very narrow dielectric fiber. The Josephson effect is the
existence of a supercurrent crossing the junction (provided that the dielectric
fiber is narrow enough), described by equations discovered by Josephson.

The model of the so-called overdamped Josephson junction, see [41, 60,
50, 6, 46, 47, 55], is described by the family of nonlinear differential equations

dφ

dt
= − sinφ+B +A cosωt, ω > 0, B ≥ 0. (1.1)

Here φ is the difference of phases (arguments) of the complex-valued wave
functions describing the quantum mechanic states of the two superconduc-
tors. Its derivative is equal to the voltage up to known constant factor.

Equations (1.1) also arise in several models in physics, mechanics and
geometry, e.g., in planimeters, see [26, 27]. Here ω is a fixed constant, and
(B,A) are the parameters. The variable and parameter changes

τ = ωt, θ := φ+
π

2
, ` =

B

ω
, µ =

A

2ω
,

transform (1.1) to a non-autonomous ordinary differential equation on the
two-torus T2 = S1 × S1 with coordinates (θ, τ) ∈ R2/2πZ2:

dθ

dτ
=

cos θ

ω
+ `+ 2µ cos τ. (1.2)

The graphs of its solutions are the orbits of the vector field{
θ̇ = cos θ

ω + `+ 2µ cos τ

τ̇ = 1
(1.3)

on T2. The rotation number of its flow, see [2, p. 104], is a function ρ(B,A)
of parameters2:

ρ(B,A;ω) = lim
k→+∞

θ(2πk)

2πk
.

2There is a misprint, missing 2π in the denominator, in analogous formulas in previous
papers of the second author (A.A.Glutsyuk) with co-authors: [28, formula (2.2)], [13, the
formula after (1.16)].
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Here θ(τ) is a general R-valued solution of the first equation in (1.3) whose
parameter is the initial condition for τ = 0. Recall that the rotation number
is independent on the choice of the initial condition, see [2, p.104]. The
parameter B is called abscissa, and A is called the ordinate. Recall the
following well-known definition.

Definition 1.1 (cf. [28, definition 1.1]) The r-th phase-lock area is the level
set

Lr = Lr(ω) = {ρ(B,A) = r} ⊂ R2,

provided that it has a non-empty interior.

Remark 1.2 : phase-lock areas and Arnold tongues. H.Poincaré
introduced the rotation number of a circle diffeomorphism. The rotation
number of the flow of the field (1.3) on T2 equals (modulo Z) the rota-
tion number of the circle diffeomorphism given by its time 2π flow mapping
restricted to the cross-section S1

θ ×{0}. In Arnold family of circle diffeomor-
phisms x 7→ x+ b+ a sinx, x ∈ S1 = R/2πZ the behavior of its phase-lock
areas for small a demonstrates the tongues effect discovered by V.I. Arnold
[2, p. 110]. That is why the phase-lock areas became “Arnold tongues”, see
[28, definition 1.1].

Recall that the rotation number has physical meaning of the mean volt-
age over a long time interval up to known constant factor. The phase-lock
areas of the family (1.3) were studied by V.M.Buchstaber, O.V.Karpov,
S.I.Tertychnyi et al, see [12]–[22], [44], [28] and references therein. The
following statements are known results:

1) Phase-lock areas exist only for integer rotation number values (quan-
tization effect observed and proved in [17], later also proved in [36, 34]).

2) The boundary of the r-th phase-lock area consists of two analytic
curves, which are the graphs of two functions B = gr,η(A), η = 0, π, (see
[18]; this fact was later explained by A.V.Klimenko via symmetry, see [44]).

3) The latter functions have Bessel asymptotics{
gr,0(s) = rω − Jr(− s

ω ) +O( ln |s|
s )

gr,π(s) = rω + Jr(− s
ω ) +O( ln |s|

s )
, as s→∞ (1.4)

(observed and proved on physical level in [56], see also [47, chapter 5], [6,
section 11.1], [16]; proved mathematically in [44]).

4) Each phase-lock area is a garland of infinitely many bounded domains
going to infinity in the vertical direction. In this chain each two subsequent
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domains are separated by one point. This was proved in [44] and follows
from the above statement 3). Those of the latter separation points that
lie in the horizontal B-axis were calculated explicitly, and we call them the
growth points, see [18, corollary 3]. The other separation points, which lie
outside the horizontal B-axis, are called the constrictions.

5) For every r ∈ Z the r-th phase-lock area is symmetric to the −r-th
one with respect to the vertical A-axis.

6) Every phase-lock area is symmetric with respect to the horizontal
B-axis. See Figures 1–5 below.
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Figure 1: Phase-lock areas and their constrictions for ω = 2. The abscissa
is B, the ordinate is A. Figure taken from [13, fig. 1a)]

Definition 1.3 For every r ∈ Z and ω > 0 we consider the vertical line

Λr = {B = ωr} ⊂ R2
(B,A)
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Figure 2: Phase-lock areas and their constrictions for ω = 1. The abscissa
is B, the ordinate is A. Figure taken from [13, fig. 1b)]

and we will call it the axis of the phase-lock area Lr.

The main results of the paper are the two following theorems.

Theorem 1.4 For every r ∈ Z and every ω > 0 all the constrictions of the
phase-lock area Lr lie in its axis Λr.

Remark 1.5 Theorem 1.4 was numerically observed by S.I.Tertychnyi, V.A.Kleptsyn,
D.A.Filimonov, I.V.Schurov. It was stated as an experimental fact and con-
jecture [28, experimental fact A]. It was proved in [28, theorem 1.2] that
for every r ∈ Z the constrictions in Lr have abscissas B = `ω, ` ∈ Z,
` ≡ r(mod 2), ` ∈ [0, r]. For further results and discussion of this conjecture
see [13, section 5] and [28, 29, 30].
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Figure 3: Phase-lock areas and their constrictions for ω = 0.7. Figure taken
from [20, p. 331], see also [13, fig. 1c)].

Definition 1.6 [29, p.329] A constriction (B0, A0) is said to be positive, if
the corresponding germ of interior of phase-lock area contains the germ of
punctured vertical line interval: that is, if there exists a punctured neigh-
borhood U = U(A0) ⊂ R such that the punctured interval B0×(U \{A0}) ⊂
B0 × R lies entirely in the interior of the corresponding phase-lock area. A
constriction is called negative, if the above punctured interval can be chosen
to lie in the complement to the union of the phase-lock areas. Otherwise it
is called neutral. See Fig.6.

Theorem 1.7 3 All the constrictions are positive.

3The main results of the paper (Theorems 1.4 and 1.7) with a sketch of proof were
announced in [7].

7



-1 -0.5 0 0.5 1
dimensionless dc bias

0

1

2

3

4

d
i
m
e
n
s
i
o
n
l
e
s
s
 
s
i
n
e
 
a
m
p
l
i
t
u
d
e

period=12.5664 omega=0.5

Figure 4: Phase-lock areas and their constrictions for ω = 0.5. Figure taken
from [13, fig. 1d)]

Remark 1.8 It was shown in [29, theorem 1.8] that each constriction is
either positive, or negative: there are no neutral constrictions. Positivity of
constrictions was stated there as [29, conjecture 1.13]. It was also shown in
[29] that Theorem 1.7 would imply Theorem 1.4.

Proofs of Theorems 1.7 and 1.4 are sketched in the next subsection,
where the plan of the paper is presented. They are based on the following
characterization of constrictions.

Proposition 1.9 [28, proposition 2.2] Consider the time 2π flow map h2π

of system (1.3) acting on the transversal coordinate θ-circle {τ = 0}. A
point (B,A;ω) is a constriction, if and only if ω,A 6= 0 and h2π = Id.

Some applications of Theorems 1.7 and 1.4 and open problems will be
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Figure 5: Phase-lock areas and their constrictions for ω = 0.3. Figure taken
from [13, fig. 1e)]

discussed in Section 6.

1.2 Method of proof of Theorems 1.4, 1.7. Plan of the paper

Definition 1.10 A ghost constriction is a constriction (B,A;ω) in model
of Josephson junction for which either ` := B

ω is different from the rotation
number ρ(B,A;ω), or the constriction is not of positive type. (Note that
` ∈ Z for each constriction, see Remark 1.5.)

Theorems 1.4 and 1.7 state that there are no ghost constrictions. We
prove this statement in two steps given by the two following theorems. To
state them, let us introduce the following notation. We set η := ω−1. For
every fixed ` ∈ Z we consider the set

Constr` = {(µ, η) ∈ R2
+ | (B,A;ω) = (`η−1, 2µη−1; η−1) is a constriction}.
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Figure 6: Positive, negative and neutral constrictions (figure made by
S.I.Tertychnyi). It is proved that negative and neutral constrictions do not
exist.

Theorem 1.11 For every ` ∈ Z the subset Constr` ⊂ R2
+ is a regular

one-dimensional analytic submanifold in R2
+. The restriction of the coordi-

nate η to each its connected component is unbounded from above (i.e., ω is
unbounded from below). The rotation number and the type of constriction
(positive or negative, see Remark 1.8) are constant on each component.

Theorem 1.12 For every ` ∈ Z there are no ghost constrictions in the axis
Λ` := {B = ω`} whenever ω > 0 is small enough (dependently on `).

Theorem 1.12 will be proved in Section 5 by methods of the theory of
slow-fast families of dynamical systems. Theorems 1.4 and 1.7 immediately
follow from Theorems 1.11 and 1.12, see the Subsection 5.6.

The main part of the proof of Theorems 1.4 and 1.7 is the proof of The-
orem 1.11, which is sketched below. It is based on the following equivalent
description of model of Josephson junction by a family of two-dimensional
linear systems of differential equations on the Riemann sphere, see [15, 17,
20, 26, 34, 36], [12, subsection 3.2]. The variable change

z = eiτ = eiωt, Φ = eiθ = ieiφ, ` =
B

ω
, µ =

A

2ω

transforms equation (1.2) on the function θ(τ) to the Riccati equation

dΦ

dz
= z−2((`z + µ(z2 + 1))Φ +

z

2ω
(Φ2 + 1)). (1.5)

Equation (1.5) is the projectivization of the two-dimensional linear system

Y ′ =

(
diag(−µ, 0)

z2
+
B
z

+ diag(−µ, 0)

)
Y, B =

(
−` − 1

2ω
1

2ω 0

)
, (1.6)
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in the following sense: a function Φ(z) is a solution of (1.5), if and only if
Φ(z) = v

u(z), where the vector function Y (z) = (u(z), v(z)) is a solution of
system (1.6). For µ > 0 system (1.6) has two irregular nonresonant singular
points at 0 and at ∞. Its monodromy operator acts on the space C2 of
germs of its solutions at a given point z0 ∈ C∗ by analytic extension along
a counterclockwise circuit around zero.

Remark 1.13 The variable change E(z) := eµzv(z) transforms the family
of systems (1.6) to the following family of special double confluent Heun
equations, see [62], [19]–[23]:

z2E′′+((`+1)z+µ(1−z2))E′+(λ−µ(`+1)z)E = 0, λ :=
1

4ω2
−µ2. (1.7)

We will also deal with the so-called conjugate Heun equation obtained from
(1.7) by change of sign at `:

z2E′′ + ((−`+ 1)z + µ(1− z2))E′ + (λ+ µ(`− 1)z)E = 0. (1.8)

Using this relation to well-known class of Heun equations a series of results
on phase-lock area portrait of model of Josephson junction were obtained in
[62], [19]–[23], [12, 13]. See also a brief survey in the next subsection.

Recall that an isomonodromic family of linear systems is a family in
which the collection of residue matrices of formal normal forms at singular
points, Stokes matrices and transition matrices between canonical solution
bases at different singular points remain constant (up to appropriate conju-
gacies).

It is known that (B,A;ω) is a constriction, if and only if A,ω 6= 0 and
system (1.6) has trivial monodromy; then ` = B

ω ∈ Z. See [28, proposition
3.2, lemma 3.3]

We denote by Jos the three-dimensional family of systems (1.6), which
will be referred to, as systems of Josephson type. For the proof of Theorem
1.11 we study their isomonodromic deformations in the four-dimensional
space JN (R+) of linear systems of the so-called normalized R+-Jimbo type

Y ′ =

(
−τ K

z2
+
R

z
+ τN

)
Y, τ ∈ R+, K,R,N are real 2x2-matrices, (1.9)

N =

(
−1

2 0
0 0

)
, R =

(
−` −R21

R21 0

)
, K = −GNG−1, R21 > 0, ` ∈ R,

(1.10)
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where G ∈ SL2(R) is a matrix such that

G−1RG =

(
−` ∗
∗ 0

)
; (1.11)

here the matrix elements ∗ may be arbitrary.
Step 1. We study the real one-dimensional analytic foliation of the space

JN (R+) by isomonodromic families of linear systems. These isomonodromic
families are obtained (by gauge transformations and rescaling of the variable
z) from well-known Jimbo isomonodromic deformations [38], which are given
by real solutions of Painlevé 3 equation (P3). Namely, the function w(τ) =

− R12(τ)
τK12(τ) should satisfy the P3 equation

w′′ =
(w′)2

w
− w′

τ
+ w3 − 2`

w2

τ
− 1

w
+ (2`− 2)

1

τ
(1.12)

along the isomonodromic leaves. We show that the hypersurface Jos ⊂
JN (R+) corresponds to poles of order 1 with residue 1 of solutions of (1.12).
This implies that Jos is transversal to the isomonodromic foliation. This is
the key lemma in the proof.

Step 2. We consider the subset Σ ⊂ JN (R+) of systems (1.9) with
trivial monodromy. We show that ` ∈ Z for these systems, and their germs
at 0 and at ∞ are analytically equivalent to their diagonal formal normal
forms. Using this fact, we show that Σ is a real two-dimensional analytic
submanifold in JN (R+) with the following properties:

2.1) Σ is a union of leaves of the isomonodromic foliation;
2.2) (the key theorem in the proof) there exists a submersive projection

R : Σ→ Rx given by an analytic invariant R of linear systems, the so-called
transition cross-ratio, that is constant along the leaves.

Statement 2.1) follows from definition. Statement 2.2) is proved by show-
ing that (x, τ), x = R, form local analytic coordinates on Σ. Fix an ` ∈ Z,
and let Σ` ⊂ Σ denote the subset of systems with the given value of `. For
every pair (x0, τ0) corresponding to a system from Σ` realization of any pair
(x, τ) close to (x0, τ0) by a system from Σ` can be viewed as a solution of
Riemann–Hilbert type problem. It is proved via holomorphic vector bun-
dle argument, as in famous works by A.A.Bolibruch on Riemann–Hilbert
Problem and related topics: see [9]–[11] and references therein. We glue a
holomorphic vector bundle with connection on C from two trivial bundles:
one over the disk D2 ⊂ C, and the other one on the complement of the closed
disk D 1

2
⊂ C. The connections on the latter trivial bundles are given by the

diagonal normal forms prescribed by ` and τ . The gluing matrix, which is
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holomorphic on the annulus D2 \ D 1
2
, depends analytically on (x, τ). The

bundle thus obtained is trivial for (x0, τ0) (by definition). It remains trivial
for all (x, τ) close enough to (x0, τ0). This follows from the classical theorem
stating that a holomorphic vector bundle close to a trivial one is also trivial
[11, appendix 3, lemma 1, theorem 2], [53, theorem 2.3], [31]. The connec-
tion on the trivial bundle thus obtained is given by a meromorphic system
with order two poles at 0 and at ∞ and the same normal forms. Its gauge
equivalence to a Jimbo type system (1.9), (1.10) is proved by a symmetry
argument.

The submanifold Jos is transversal to Σ, by the result of Step 1 and
Statement 2.1). Therefore, the intersection Jos∩Σ` is a real one-dimensional
submanifold in JN (R+). It is transversal to the isomonodromic foliation of
Σ` (Step 1), and hence, is locally diffeomorphically projected to an open
subset in R by the mapping R. The above intersection is identified with
Constr`. This implies that Constr` is a one-dimensional submanifold; each
its connected component is analytically parametrized by an interval I =
(a, b) of values of the parameter x = R and hence, is non-compact.

Step 3. We show that the coordinate η = ω−1 is unbounded from above
on each component C in Constr`. Assuming the contrary, i.e., that η is
bounded on C, we have that for every c ∈ {a, b} at least one of the func-
tions µ±1, η−1 (depending on the choice of c) should be unbounded, as
x→ c. Boundedness of µ is proved by using Klimenko–Romaskevich Bessel
asymptotics of boundaries of the phase-lock areas [44]. For c 6= 0 we prove
boundedness of the functions µ−1, η−1, as x→ c, by studying accumulation
points of the set Constr` in the union of coordinate axes {η = 0}∪{µ = 0}.

Afterwards, to finish the proof of Theorem 1.11, it remains to show
that the rotation number and type of constriction are constant on each
connected component in Constr`. We deduce constance of type from the
fact that no constriction can be a limit of the so-called generalized simple
intersections: those points of intersections Λ` ∩ ∂Lr, r ≡ `(mod 2), that are
not constrictions and do not lie in the abscissa axis. This, in its turn, is
implied by the two following facts:

- the generalized simple intersections correspond to Heun equations (1.8)
having a polynomial solution [13, theorem 1.15]; this remains valid for their
limits with A 6= 0;

- no constriction can correspond to a Heun equation (1.8) with polyno-
mial solution [12, theorems 3.3, 3.10].

13



1.3 Historical remarks

Model (1.1) of overdamped Josephson junction was studied by V.M.Buchstaber,
O.V.Karpov, S.I.Tertychnyi and other mathematicians and physicists, see
[12]–[23], [46], [28]–[30], [34, 36, 43, 44, 61, 62] and references therein.
Hereby we present a brief survey of results that were not mentioned in
the introduction. Recall that the rotation number quantization effect for
a family of dynamical systems on T2 containing (1.3) was discovered in
[17]. I.A.Bizyaev, A.V.Borisov and I.S.Mamaev noticed that a big family
of dynamical systems on torus in which the rotation number quantization
effect realizes was introduced by W.Hess (1890). It appears that in classi-
cal mechanics such systems were studied in problems on ridig body move-
ment with fixed point in works by W.Hess, P.A.Nekrassov, A.M.Lyapunov,
B.K.Mlodzejewski, N.E.Zhukovsky and others. See [8, 51, 52, 45, 63] and
references therein. P.A.Nekrasov observed in [52] that the above-mentioned
big family of systems considered by Hess can be equivalently described by a
Riccati equation (or by a linear second order differential equation).

Transversal regularity of the fibration by level sets ρ(B,A) = const /∈ Z
with fixed ω on the complement to the union of the phase-lock areas was
proved in [13, proposition 5.3]. Conjectures on alignment and positivity of
constrictions (now Theorems 1.4 and 1.7 respectively) were stated respec-
tively in [28] and [29] and studied respectively in [28, 29] and [29], where
some partial results were obtained. Theorem 1.4 for ω ≥ 1 was proved in
[28]. For further survey on these conjectures see [28, 13, 29] and references
therein. A conjecture saying that the semiaxis Λ+

` := Λ` ∩ {A > 0} inter-
sects the corresponding phase-lock area L` by a ray explicitly constructed
in [29] was stated in [29, conjecture 1.14]. It was shown in [29, theorem
1.12] that the ray in question indeed lies in L`. An equivalent description of
model (1.1) in terms of a family of special double confluent Heun equations
(1.7) was found by S.I.Tertychnyi in [62] and further studied in a series of
joint papers by V.M.Buchstaber and S.I.Tertychnyi [19]–[23]. They have
shown that the constrictions are exactly those parameter values (B,A;ω)
for which the corresponding double confluent Heun equation (1.7) has an
entire solution: holomorphic on C [20]. Using this observation they stated
a conjecture describing ordinates of the constrictions lying in a given axis
Λ` as zeros of a known analytic function constructed via an infinite matrix
product [20]. This conjecture was studied in [20, 21] and reduced to the
conjecture stating that if the Heun equation (1.7) has an entire solution,
then the conjugate Heun equation (1.8) cannot have polynomial solution.
Both conjectures were proved in [12]. New automorphisms of solution space
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of Heun equations (1.7) were discovered and studied in [22, 23].
In [19] V.M.Buchstaber and S.I.Tertychynyi described those (B,A;ω),

for which conjugate Heun equation (1.8) has a polynomial solution. Namely,
for a given ` = B

ω ∈ N their set is a remarkable algebraic curve, the so-called
spectral curve (studied in [19, 30]): zero locus of determinant of appropriate
three-diagonal matrix with entries being linear non-homogeneous functions
in the coefficients of equation (1.8). The fact that those points (B,A;ω)
for which (1.8) has a polynomial solution are exactly the generalized simple
intersections is a result of papers [19, 13], stated and proved in [13].

There exists an antiquantization procedure that associates Painlevé equa-
tions to Heun equations; double confluent Heun equations correspond to
Painlevé 3 equations. See [58, 59, 54] and references therein.

V.M.Buchstaber, O.V.Karpov, S.I.Tertychnyi, D.A.Filimonov, V.A.Kleptsyn,
I.V.Schurov made numerical experiences that have shown that as ω → 0, the
”upper” part of the phase-lock area portrait converges to a kind of parquet
in the renormalized coordinates (`, µ): the renormalized phase-lock areas
tend to unions of pieces of parquet, and gaps between the phase-lock areas
tend to zero. See Fig. 5 and the paper [43]. This is an open problem. In
[43] V.A.Kleptsyn, O.L.Romaskevich and I.V.Schurov proved some results
on smalless of gaps and their rate of convergence to zero, as ω → 0, using
methods of slow-fast systems.

A subfamily of family (1.2) of dynamical systems on 2-torus was studied
by J.Guckenheimer and Yu.S.Ilyashenko in [35] from the slow-fast system
point of view. They obtained results on its limit cycles, as ω → 0.

An analogue of the rotation number integer quantization effect in braid
groups was discovered by A.V.Malyutin [49].

2 Preliminaries: irregular singularities, normal forms,
Stokes matrices and monodromy–Stokes data of
linear systems

2.1 Normal forms, canonical solutions and Stokes matrices

All the results presented in this subsection are particular cases of classical
results contained in [3, 37, 4, 5, 42, 57].

Recall that two germs of meromorphic linear systems of differential equa-
tions on a n-dimensional vector function Y = Y (z) at a singular point (pole),
say, 0 are analytically equivalent, if there exists a holomorphic GLn(C)-
valued function H(z) on a neighborhood of 0 such that the Y -variable change
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Y = H(z)Ỹ sends one system to the other one. Two systems are formally
equivalent, if the above is true for a formal power series Ĥ(z) with matrix
coefficients that has an invertible free term.

Consider a two-dimensional linear system

Y ′ =

(
K

z2
+
R

z
+O(1)

)
Y, Y =

(
u
v

)
, (2.1)

on a neighborhood of 0; here the matrix K has distinct eigenvalues λ1 6= λ2,
and O(1) is a holomorphic matrix-valued function on a neighborhood of
0. Then we say that the singular point 0 of system (2.1) is irregular non-
resonant of Poincaré rank 1. Then K is conjugate to K̃ = diag(λ1, λ2),
K̃ = H−1KH, H ∈ GL2(C), and one can achieve that K = K̃ by applying
the constant linear change (gauge transformation) Y = HŶ. System (2.1)
is formally equivalent to a unique formal normal form

Ỹ ′ =

(
K̃

z2
+
R̃

z

)
Ỹ , K̃ = diag(λ1, λ2), R̃ = diag(b1, b2), (2.2)

R̃ is the diagonal part of the matrix H−1RH. (2.3)

The matrix coefficient K in system (2.1) and the corresponding matrix K̃
in (2.2) are called the main term matrices, and R, R̃ the residue matrices.

Generically, the normalizing series Ĥ(z) bringing (2.1) to (2.2) diverges.
At the same time, there exists a covering of a punctured neighborhood of zero
by two sectors S0 and S1 with vertex at 0 in which there exist holomorphic
matrix functionsHj(z), j = 0, 1, that are C∞ smooth on Sj∩Dr for some r >

0, and such that the variable changes Y = Hj(z)Ỹ transform (2.1) to (2.2).
This Sectorial Normalization Theorem holds for the so-called good sectors.
Namely, consider the rays issued from 0 and forming the set {Re λ1−λ2

z = 0}.
They are called imaginary dividing rays. A sector Sj is good, if it contains
one imaginary dividing ray and its closure does not contain the other one.

Let W (z) = diag(Ỹ1(z), Ỹ2(z)) denote the canonical diagonal fundamen-
tal solution matrix of the formal normal form (2.2); here Ỹ`(z) are solutions
of its one-dimensional equations. The matrices Xj(z) := Hj(z)W (z) are
fundamental solution matrices of the initial equation (2.1) defining solution
bases in Sj called the canonical sectorial solution bases. In their definition
we choose the branches W (z) = W j(z) of the (a priori multivalued) matrix
function W (z) in Sj , j = 0, 1, so that W 1(z) is obtained from W 0(z) by
counterclockwise analytic extension from S0 to S1. And in the same way
we define yet another branch W 2(z) of W (z) in S2 := S0 that is obtained
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from W 1(z) by counterclockwise analytic extension from S1 to S0. This
yields another canonical solution matrix X2 := H0(z)W 2(z) in S0, which is
obtained from X0(z) by multiplication from the right by the monodromy
matrix exp(2πiR̃) of the formal normal form (2.2). Let Sj,j+1 denote the
connected component of intersection Sj+1∩Sj , j = 0, 1, that is crossed when
one moves from Sj to Sj+1 counterclockwise, see Fig. 7. The transition ma-
trices C0, C1 between thus defined canonical solution bases Xj ,

X1(z) = X0(z)C0 on S0,1; X2(z) = X1(z)C1 on S1,2 (2.4)

are called the Stokes matrices.

Example 2.1 Let A = diag(λ1, λ2), and let λ2 − λ1 ∈ R. Then the imag-
inary dividing rays are the positive and negative imaginary semiaxes. The
good sectors S0 and S1 covering C∗ satisfy the following conditions:

- the sector S0 contains the positive imaginary semiaxis, and its closure
does not contain the negative one;

- the sector S1 satisfies the opposite condition. See Fig. 7.

         1,2
 0

iR

R

   0S

     1 S

                        
                                    0,1S S

Figure 7: Good sectors in the case, when λ1 − λ2 ∈ R.
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Example 2.2 Let us numerate the sectors S0, S1 and the eigenvalues λ1,
λ2 so that

S0,1\{0} ⊂ {Re

(
λ1 − λ2

t

)
> 0}, S1,2\{0} ⊂ {Re

(
λ1 − λ2

t

)
< 0}. (2.5)

This holds, e.g., in the conditions of the above example, if λ2−λ1 > 0. The
canonical solutions of the formal normal form (2.2) are given by the solutions

ckz
bke−

λk
z of one-dimensional equations in (2.2). They are numerated by

indices k = 1, 2 of the eigenvalues λk of the main term matrix K. The
corresponding solutions of the initial system (2.1) in Sj , j = 0, 1, 2, i.e., the
columns of the fundamental matrix Xj(z), are also numerated by the same
index k and will be denoted by fkj(z). The norm ||f1j(z)|| is asymptotically
dominated by ||f2j(z)|| in S0,1, as z → 0, and the converse asymptotic
domination statement holds on S1,2. This implies (and it is well-known)
that f10 ≡ f11 on S0,1 and f22 ≡ f21 on S1,2. The Stokes matrices C0 and
C1 are unipotent: C0 is upper-triangular and C1 is lower-triangular. If the
numeration of either eigenvalues, or sectors (but not both) is opposite, or
if the singular point under question is ∞, not zero (see Remark 2.5 below),
then the Stokes matrices are unipotent but of opposite triangular type.

Remark 2.3 The tautological projection C2\{0} → CP1 = C sends canon-
ical sectorial basic solutions fkj(z) of system (2.1) to canonical sectorial
solutions qkj(z) of its projectivization: the corresponding Riccati equation.
These are the unique C-valued holomorphic solutions of the Riccati equation
in the sector Sj that extend C∞-smoothly to Sj ∩Dr for a sufficiently small
r > 0. Their values at 0 are the projections of the eigenlines of the main
term matrix K with eigenvalues λk.

Theorem 2.4 [3, 37, 4, 5, 42, 57] A germ of linear system at an irregular
nonresonant singular point is analytically equivalent to its formal normal
form, if and only if it has trivial Stokes matrices. Two germs of linear sys-
tems as above are analytically equivalent, if and only if their formal normal
forms are the same and their Stokes matrix collections are equivalent in the
following sense: they are simultaneously conjugated by one and the same
diagonal matrix (independent on the choice of sector Sj,j+1).

Recall that the monodromy operator of a germ of linear system at 0 acts
on the space of germs of its solutions at a point z0 6= 0 sending a local solution
to the result of its counterclockwise analytic extension along a circuit around
the origin. Let the origin be an irregular nonresonant singular point of
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Poincaré rank 1, and let S0, S1 be the corresponding good sectors. Let M be
the monodromy matrix written in the canonical sectorial basis of solutions in
S0. Let Mnorm denote the diagonal monodromy matrix of the formal normal
form in the canonical solution basis with diagonal fundamental matrix. We
will call Mnorm the formal monodromy. Recall that Mnorm = exp(2πiR̃).
The matrix M is expressed in terms of the formal monodromy Mnorm and
the Stokes matrices C0 and C1 via the following well-known formula [37,
p.35]:

M = MnormC
−1
1 C−1

0 . (2.6)

Remark 2.5 We will also deal with the case, when the singular point under
question is∞, and the above statements hold in the local coordinate z̃ := 1

z .
In the coordinate z the corresponding equation and formal normal form take
the form

Y ′ =

(
K +

R

z
+O(

1

z2
)

)
Y, Ỹ ′ =

(
K̃ +

R̃

z

)
Ỹ .

The matrices K, K̃ are called the main term matrices, and R, R̃ the residue
matrices of the corresponding systems at ∞. Let λ1, λ2 be the eigenvalues
of the matrix K. An imaginary dividing ray at infinity is a ray issued
from 0 and lying in the set {Re(λ1 − λ2)z = 0}. This yields the definition
of good sectors ”at infinity”. The Sectorial Normalization and Analytic
Classification Theorems and the definition of Stokes matrices at infinity are
stated in the same way, as above; the sectors S0, S0,1, S1, S1,2 at infinity
are also numerated counterclockwise. Formula (2.6) also holds at ∞.

2.2 Systems with two irregular singularities. Monodromy–
Stokes data

Definition 2.6 By H1
0,∞ we will denote the class of linear systems on the

Riemann sphere having two singular points, at zero and at infinity, such that
both of them are irregular nonresonant of Poincaré rank 1. Each system from
the class H1

0,∞ has the type

Y ′ =

(
K

z2
+
R

z
+N

)
Y, K,R,N ∈ End(C2), (2.7)

where each one of the main term matrices K and N at zero and at ∞ has
distinct eigenvalues.

Definition 2.7 Consider a linear system L ∈ H1
0,∞. Fix a point z0 ∈ C∗

and two pairs of good sectors (S0
0 , S0

1), (S∞0 , S∞1 ) for the main term matrices
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at 0 and∞ respectively, see Remark 2.5. Fix two paths αp in C∗ numerated
by p = 0,∞, going from the point z0 to a point in Sp0 . Let f1p, f2p be a
canonical sectorial solution basis for the system L at p in Sp0 . Consider the
analytic extensions of the basic functions fkp to the point z0 along paths α−1

p .

Let π : C2 \ {0} → CP1 denote the tautological projection. Set Φ := Y2
Y1

,

qkp := π(fkp(z0)) ∈ CP1 = CΦ. (2.8)

Let M denote the monodromy operator of the system L acting on the local
solution space at z0 (identified with the space C2 of initial conditions at z0)
by analytic extension along counterclockwise circuit around zero. The tuple

(q,M) := (q10, q20, q1∞, q2∞;M) (2.9)

taken up to the next equivalence is called the monodromy–Stokes data of
the system L. Namely, two tuples (q,M), (q′,M ′) ∈ (CP1)4 × GL2(C) are
called equivalent4, if there exists a linear operator H ∈ GL2(C) whose pro-
jectivization sends qkp to q′kp and such that H−1 ◦M ′ ◦ H = M . We will
also deal with the transition matrix Q comparing the canonical bases at 0
and at ∞ at z0: (f1∞, f2∞) = (f10, f20)Q.

Remark 2.8 The monodromy–Stokes data of a system L depends only on
the homotopy class of the pair of paths (α0, α∞) in the space of pairs of paths
in C∗ with a common (variable) starting point z0 and with endpoints lying in
given sectors S0

0 and S∞0 respectively. Indeed, let a homotopy between two
pairs of paths, (α0, α∞) with base point z0 and (α′0, α

′
∞) with base point z′0,

move z0 to z′0 along a path β in C∗. Let X(z) be the germ of fundamental
matrix of the system L at z0 such that X(z0) = Id. Let H = X(z′0) denote
the value at z′0 of the analytic extension of the fundamental matrix function
X(z) along the path β. Then H transforms the monodromy–Stokes data
corresponding to z0 and the path pair (α0, α∞) to that corresponding to z′0
and the path pair (β−1α0, β

−1α∞), as at the end of the above definition.

Proposition 2.9 One has q1p 6= q2p for every p = 0,∞. The monodromy–
Stokes data of a system L ∈ H1

0,∞ determines the collection of formal mon-
odromies Mnorm,p, the Stokes matrices Cjp at p = 0,∞, j = 0, 1, and the
transition matrix Q uniquely up to the following equivalence. Two collec-
tions (Mnorm,p, Cjp, Q) and (M ′norm,p, C

′
jp, Q

′) are equivalent, if Mnorm,p =

4Here is an equivalent group-action definition. The group PSL2(C) acts on C4×GL2(C)
by action h : qkp 7→ hqkp on points in C and conjugation M 7→ hMh−1 on matrices. The
monodromy–Stokes data is the PSL2(C)-orbit of a collection (q,M) under this action.
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M ′norm,p and there exists a pair of diagonal matrices D0, D∞ such that
C ′jp = DpCjpD

−1
p for all j, p, and Q′ = D0 ◦Q ◦D−1

∞ .

Proof The inequality q1p 6= q2p follows from linear independence of the
basic functions f1p, f2p, which implies independence of their values at z0.
A given pair of distinct points q1p, q2p ∈ CP1 defines a basis (v1p, v2p) in C2

(whose vectors are projected to qjp) uniquely up to multiplication of vectors
by constants. Recall that in the basis (f1p, f2p) of the local solution space
at z0 with fkp(z0) = vkp the monodromy matrix is given by formula (2.6):

M = Mnorm,pC
−1
1p C

−1
0p . (2.10)

Here the Stokes matrices C0p, C1p are unipotent of opposite triangular types
(determined by the main term matrix of the system L at p). Let they be, say,
upper and lower triangular respectively with the corresponding triangular
elements c0 and c1. Recall that the formal monodromy matrix Mnorm,p is
diagonal, set Mnorm,p = diag(m1p,m2p); mjp 6= 0. Then

m1p = M11, c0 = −M12M
−1
11 , m2pc1 = −M21, (2.11)

m2p = M22 −m2pc0c1 = M22 −M12M21M
−1
11 , c1 = −M21m

−1
2p . (2.12)

by (2.10). This yields expression for the formal monodromy Mnorm,p and the
Stokes matrices in terms of M . All the latter matrices depend on choice of
the basic functions fkp, which are uniquely defined by qjp up to multiplica-
tion by constant factors. These rescalings replace Mnorm,p and Cjp by their
conjugates by a diagonal matrix Dp, and this does not change the diagonal
matrix Mnorm,p. The first statement of the proposition is proved. Its other
statements follow from the first one and the above arguments. 2

Remark 2.10 Recall that two global linear systems on the Riemann sphere
are globally analytically (gauge) equivalent, if and only if they are sent one
to the other by constant linear change Y 7→ HY , H ∈ GL2(C) (i.e., constant
gauge equivalent). For simplicity everywhere below whenever we work with
global systems on C we omit the word ”analytically” (”constant”), and
”gauge equivalence” means ”constant gauge equivalence”.

Theorem 2.11 Two systems L1,L2 ∈ H1
0,∞ are gauge equivalent, if and

only if they have the same formal normal forms at each singular point and
the same monodromy–Stokes data. In this case each linear automorphism of
the fiber {z = z0} ' C2 sending the monodromy–Stokes data of one system to
that of the other system extends to a gauge equivalence of systems. Here both
monodromy–Stokes data correspond to the same sectors and path collections.
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Proof The statement of the theorem holds if one replaces the monodromy–
Stokes data by collection of Stokes matrices and the transition matrix up
to equivalence from the above proposition, see [39, proposition 2.5, p.319].
The collection of Stokes and transition matrices (taken up to the latter
equivalence) is uniquely determined by the monodromy–Stokes data, by the
same proposition. Conversely, the monodromy–Stokes data can be restored
from the formal monodromy and Stokes and transition matrices. Namely,
the monodromy matrix M in the basis (f10, f20) is found from (2.10). Let
us choose coordinates on C2 in which f10(z0) = (1, 0), f20(z0) = (0, 1). Then
one has q10 = (1 : 0), q20 = (0 : 1), and q1∞, q2∞ are the projections of the
columns of the transition matrix Q. Theorem 2.11 is proved. 2

3 Isomonodromic deformations and Painlevé 3 equa-
tion

Here we introduce general Jimbo’s isomonodromic deformations of linear
systems in H1

0,∞, which form a one-dimensional holomorphic foliation of the

space H1
0,∞ (Subsection 3.2). Afterwards we study its restriction to the so-

called Jimbo type systems, where isomonodromic deformations are described
by solutions of Painlevé 3 equation (3.16) (Subsection 3.3). In Subsection
3.4 we consider the space of real Jimbo type systems (i.e., defined by real
matrices) with R21 > 0 > R12. We introduce the space JN (R+) of their
appropriate normalizations with R21 = −R12 > 0 by gauge transformations
and variable rescalings: the so-called normalized R+-Jimbo type systems.
Their space JN (R+) contains the space Jos of systems (1.6) and is foliated
by isomonodromic families obtained from Jimbo deformations by the above
normalizations. We show that the family Jos is transversal to the isomon-
odromic foliation of JN (R+), and it corresponds to poles of order 1 with
residue 1 of solutions of Painlevé equations (3.16). A background material
on isomonodromic deformations is recalled in Subsection 3.1.

3.1 Isomonodromic deformations: definition and Frobenius
integrability sufficient condition

Let us give the following definition of isomonodromic family of linear systems
in H1

0,∞, which is equivalent to the classical definition, by Proposition 2.9.

Definition 3.1 A family of systems inH1
0,∞ is isomonodromic, if the residue
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matrices of formal normal forms at their singular points and the monodromy–
Stokes data remain constant: independent on the parameter of the family.

Remark 3.2 If a family of systems in question is continuously parametrized
by a connected parameter space, then constance of the monodromy–Stokes
data automatically implies constance of the residue matrices R̃p of the formal
normal forms. Indeed, constance of formal monodromies Mnorm,p follows by

Proposition 2.9. The formula Mnorm,p = exp(2πiR̃p) implies that the residue

matrices R̃p are uniquely determined by Mnorm,p up to addition of integer
diagonal matrices. Hence, they are constant, by continuity and connectivity.

Theorem 3.3 [39],[25, Theorem 4.1] A holomorphic family of linear sys-
tems in H1

0,∞ depending on a parameter t from a simply connected domain
D ⊂ C,

Y ′ =
dY

dz
=

(
K2(t)

z2
+
K1(t)

z
+K0(t)

)
Y (3.1)

is isomonodromic if there is a rational in z (with possible poles only at
z = 0,∞) and analytic in t matrix differential 1-form Ω = Ω(z, t) on C×D
such that

Ω|fixed t =

(
K2(t)

z2
+
K1(t)

z
+K0(t)

)
dz, (3.2)

dΩ = Ω ∧ Ω. (3.3)

Condition (3.3) means that Ω is integrable in the Frobenius sense. See,
e.g., [11, proof of theorem 13.2].

An isomonodromic deformation with a scalar parameter is often defined
by a system of PDEs [25] {

∂Y
∂z = U(z, t)Y
∂Y
∂t = V (z, t)Y,

(3.4)

where U(z, t), V (z, t) are rational in z ∈ C and analytic in t ∈ D. In
that case, one can take Ω = U(z, t)dz + V (z, t)dt. Then condition (3.2) of
Theorem 3.3 is satisfied if

U(z, t) =
K2(t)

z2
+
K1(t)

z
+K0(t).

Condition (3.3) is equivalent to the equation

[U, V ] = UV − V U =
∂V

∂z
− ∂U

∂t
. (3.5)
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3.2 General Jimbo’s isomonodromic deformation

In this section, we consider an isomonodromic deformation introduced by
M. Jimbo in [38, p.1156, (3.11)] and describe its integrability condition (3.3).
The deformation space will be a simply connected domainD ⊂ C∗ containing
R+. Though the deformation in [38] was written in a seemingly special case,
it works in the following general case. We are looking for isomonodromic
families of systems L(t) ∈ H1

0,∞ given by system (3.4) of the following type:∂Y
∂z =

(
− K̃(t)

z2
+ R(t)

z +N(t)
)
Y := L(t)

∂Y
∂t = 1

ztK̃(t)Y,
t ∈ D. (3.6)

After the time variable change t = es (which cancels ”t” in the latter denom-
inator), the integrability condition (3.5) takes the form of a system of au-
tonomous polynomial ordinary differential equations on matrix coefficients
in K̃, R, N (here and in what follows [U, V ] := UV − V U):

K̃ ′s = [R, K̃] + K̃

R′s = [K̃,N ]

N ′s = 0.

(3.7)

In the initial time variable t and the new matrix variable K := 1
t K̃ system

(3.7) takes the following simplified, though non-autonomous, form:
tK ′ = [R,K]

R′ = [K,N ]

N ′ = 0.

(3.8)

Remark 3.4 Vector field (3.7) is a polynomial vector field on the space
H1

0,∞ identified with a connected open dense subset in the space C12 with
coordinates being matrix coefficients. Its complex phase curves form a one-
dimensional holomorphic foliation of the space H1

0,∞ by isomonodromic fam-
ilies. The corresponding system (3.8) considered as a non-autonomous dif-
ferential equation in the linear-system-valued function L(t) ∈ H1

0,∞ has the
following first integrals:

- the matrix N ;
- the conjugacy class of the matrix K = 1

t K̃;
- the residue matrices of the formal normal forms of L(t) at 0 and at ∞;
- the conjugacy class of the monodromy operator of the system L(t).
Invariance of residues and monodromy follows from Theorem 3.3. In-

variance of residues can be also deduced directly from (3.8) and (2.3).
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Proposition 3.5 Vector field (3.7) is equivariant under gauge transforma-
tions acting on H1

0,∞. Its real flow preserves the space of systems in H1
0,∞

defined by real matrices.

The proposition follows immediately from expression (3.7).

3.3 Isomonodromic deformations of special Jimbo type sys-
tems

Definition 3.6 A special Jimbo type linear system is a system of type

Y ′ =

(
−tK
z2

+
R

z
+

(
−1

2 0
0 0

))
Y, R =

(
−` ∗
∗ 0

)
, (3.9)

such that there exists a matrix G ∈ GL2(C) for which

K = G

(
1
2 0
0 0

)
G−1, G−1RG =

(
−` ∗
∗ 0

)
. (3.10)

In (3.9) and (3.10) the symbol ∗ stands for an arbitrary unknown matrix
element. Here all the matrices are complex.

Remark 3.7 The formal normal form at ∞ of a system (3.9) is

Y ′ =

(
diag(−1

2
, 0) +

1

z
diag(−`, 0)

)
Y.

Condition (3.10) is equivalent to the statement saying that its formal normal
form at 0 is

Y ′ =

(
t

z2
diag(−1

2
, 0) +

1

z
diag(−`, 0)

)
Y,

by (2.3).

Proposition 3.8 The space of Jimbo type systems (3.9), (3.10) correspond-
ing to a given ` ∈ C is invariant under the flow of field (3.7) and hence, is
a union of its phase curves. The number ` is a first integral.

The proposition follows from Remark 3.4.
We study Jimbo’s isomonodromic families of systems (3.9) given by (3.8),

which take the following form:
tK ′ = −[K,R]

R′ =

[(
1
2 0

0 0

)
,K

]
.

(3.11)
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We denote the upper right entries of K(t) and R(t) by K12(t) and R12(t)
respectively. If we eliminate all unknown functions except for the fraction

y(t) = −R12(t)/K12(t) (3.12)

in (3.11), we get the second order non-linear differential equation

y′′ =
(y′)2

y
− y′

t
− `

2

y2

t2
+

1

t

(
`− 1

2

)
+

1

4

y3

t2
− 1

4

1

y
, t ∈ D, (3.13)

which is a particular form of

y′′ =
(y′)2

y
− y′

t
+ α̃

y2

t2
+
β̃

t
+ γ̃

y3

t2
+
δ̃

y
, t ∈ D. (P̃3(α̃, β̃, γ̃, δ̃))

Equation P̃3 is equivalent to the Painlevé 3 equation (shortly P3) with
α = 4α̃, β = 4β̃, γ = 4γ̃, δ = 4δ̃, and it leads to the well know fact from
[38], which we formulate for our choice of parameters.

Theorem 3.9 [38, pp. 1156–1157] Set

y(t) = −R12(t)

K12(t)
, τ =

√
t, w(τ) =

y(τ2)

τ
. (3.14)

For every Jimbo’s isomonodromic family (3.11) of Jimbo type systems (3.9)
the corresponding function w(τ) satisfies the Painlevé 3 equation5

w′′ =
(w′)2

w
− w′

τ
+ α

w2

τ
+ β

1

τ
+ γw3 + δ

1

w
, (P3(α, β, γ, δ))

whose parameters are expressed via the first integral ` in the following way

α = −2`, β = 2`− 2, γ = 1, δ = −1 : (3.15)

w′′ =
(w′)2

w
− w′

τ
− 2`

w2

τ
+ (2`− 2)

1

τ
+ w3 − 1

w
. (3.16)

Remark 3.10 The deformation considered in Jimbo’s paper [38, pp. 1156–
1157] was of the type

∂Y
∂x =

(
− t̃A(t̃)

x2
+ B(t̃)

x +

(
1 0

0 0

))
Y, A(t̃) = G(t̃)

(
1 0

0 0

)
G−1(t̃)

∂Y
∂t̃

= A(t̃)
x Y

(3.17)

5There is another frequently mentioned isomonodromic deformation that leads to the
Painlevé 3 equation [40, 25].
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with the (constant) residue matrices of formal normal forms at 0 and at ∞
being equal to 1

2 diag(θ0,−θ0) and −1
2 diag(θ∞,−θ∞) respectively. Jimbo’s

family (3.17) with θ∞ = −θ0 = ` can be transformed to our family (3.9),
(3.11) by multiplication of the vector function Y (x) by the scalar monomial

x−
`
2 , variable rescaling z = −2x, and parameter rescaling t = −4t̃. Our

function w(τ) is obtained from analogous function y(τ̃) from [38, p.1157]
by rescaling w(τ) = −iy(− i

2τ), which transforms the Painlevé 3 equation
satisfied by y(τ̃) (with parameters from [38, p.1157]) to (3.16).

3.4 Isomonodromic families of normalized R+-Jimbo systems

Definition 3.11 An R+-Jimbo type system is a system (3.9) given by real
matrices K, R satisfying (3.10) with R12 < 0 < R21 and t > 0. (The matrix
G, whose inverse diagonalizes K, can be chosen real and unimodular.) The
space of R+-Jimbo type systems will be denoted by J(R+).

Remark 3.12 The space J(R+) of R+-Jimbo type systems is a union of real
isomonodromic families L(t): real phase curves of vector field (3.7). This
follows from Proposition 3.5. Each R+-Jimbo type system can be normalized
by a unique diagonal gauge transformation (Y1, Y2) 7→ (Y1, λY2), λ > 0, to
have R21 = −R12 > 0. Furthermore, we apply the variable change z = τζ,
τ =
√
t > 0, which transforms (3.9) to a system

Y ′ζ =

(
−τ K

ζ2
+
R

ζ
+ τ

(
−1

2 0
0 0

))
Y, R =

(
−` −R21

R21 0

)
, R21 > 0,

(3.18)
where K and R satisfy (3.10). Each isomonodromic family L(t) ⊂ J(R+) can
be normalized to an isomonodromic family of systems L̃(τ) of type (3.18) by
a family of gauge transformations as above with λ = λ(t), the above change
z = τζ and replacing dependence on t by dependence on τ =

√
t.

Definition 3.13 A system (3.18) with real matrices satisfying (3.10), where
τ > 0 is an arbitrary number, will be called a normalized R+-Jimbo type
system. The space of normalized R+-Jimbo type systems will be denoted by
JN (R+). The above-constructed isomonodromic families L̃(τ) of systems in
JN (R+) will be referred to, as normalized real isomonodromic families.

Example 3.14 The space Jos of linear systems of Josephson type, i.e.,
family (1.6), is contained in JN (R+). Its natural inclusion to JN (R+)
transforms a system (1.6) with parameters (µ, `, ω) to a system (3.18) with
K = diag(1

2 , 0) and the parameters τ = 2µ, `, R21 = 1
2ω .
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Proposition 3.15 (Rigidity). No two distinct systems in JN (R+) are
gauge equivalent.

Proof A gauge equivalence should be diagonal: it should keep the main
term matrix at∞ diagonal. It should also preserve the equality R12 = −R21

and the inequality R21 > 0. Therefore, it is a constant multiple of identity,
and leaves the system in question invariant. This proves the proposition. 2

Lemma 3.16 Let H1,0
0,∞ ⊂ H1

0,∞ be the open subset consisting of systems

with R21, R12 6= 0. The set JN (R+) is a 4-dimensional real-analytic sub-
manifold in H1,0

0,∞. The normalized real isomonodromic families form a real

analytic foliation on JN (R+) (which we will denote by F) that is tangent
to a nonsingular real analytic vector field with non-zero τ -component. They
correspond to some real solutions of (3.11) (and, hence, real solutions of
Painlevé 3 equation (3.16)) via the normalization from Remark 3.12.

Proof Let us show that the closed subset JN (R+) ⊂ H1,0
0,∞ is a 4-dimensional

submanifold. For every matrix K ∈ Mat2(C) with distinct eigenvalues and
any their fixed order (λ1, λ2), the matrix G such that G−1KG = diag(λ1, λ2)
is uniquely defined up to multiplication from the right by a non-degenerate
diagonal matrix. We will cover H1,0

0,∞ by two open subsets W1,W2 ⊂ H1,0
0,∞:

W1 := {G11 6= 0}; W2 := {G12 6= 0}.

Let us show that the intersection JN (R+) ∩ W1 is a 4-dimensional sub-
manifold in W1. Then we prove the similar statement for the intersection
JN (R+) ∩W2. For every system in JN (R+) ∩W1 the corresponding matrix
G can be normalized as above in a unique way so that

detG = 1, G11 = 1; G22 = 1 +G12G21. (3.19)

Hence, its matrix K is defined by two parameters G12 and G21, and the cor-
respondence (G12, G21) 7→ K is bijective. Let us write the second equation
in (3.10) for a normalized system with R12 = −R21. It says that the matrix

G−1RG =

(
1 +G12G21 −G12

−G21 1

)(
−` −R21

R21 0

)(
1 G12

G21 1 +G12G21

)

=

(
∗ ∗

G21`+R21 G21R21

)(
∗ G12

∗ 1 +G21G12

)
has zero right-lower element. This is the equation

G21G12`+R21G12 +G21R21 +G2
21G12R21 = 0, (3.20)
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which is equivalent to the equation

G12 = − G21R21

G21`+R21(1 +G2
21)

(3.21)

saying that G12 is a known rational function of three independent variables
G21, R21, `. The latter equivalence holds outside the exceptional set where
the numerator and the denominator in (3.21) vanish simultaneously. Van-
ishing of the numerator is equivalent to vanishing of G21 (since R21 6= 0,
by assumption), and in this case the denominator equals R21 6= 0. Thus,
the exceptional set is empty. This implies that W1 ∩ JN (R+) is a real 4-
dimensional analytic submanifold in W1 (the fourth parameter is τ =

√
t).

Let us now prove the above statement for JN (R+) ∩W2. If G12 6= 0,
then we can normalize the matrix G in a unique way so that

detG = 1, G12 = 1; G21 = G11G22 − 1. (3.22)

Then the second equation in (3.10), which says that the matrix

G−1RG =

(
G22 −1
−G21 G11

)(
−` −R21

R21 0

)(
G11 1
G21 G22

)
has zero right-lower element, is (G11G22 − 1)(` + G22R21) + G11R21 = 0,
which is equivalent to the equation

G11 =
`+G22R21

R21(1 +G2
22) + `G22

.

Now it suffices to show that the above numerator and denominator cannot
vanish simultaneously, as in the previous discussion. Indeed, their vanishing
means that G22R21 = −` and R21 − `G22 + `G22 = R21 = 0, which is
impossible. The first statement of the lemma is proved.

The space J(R+) of R+-Jimbo type systems is a manifold projected to the
space JN (R+) via the normalizations from Remark 3.12. The projection is
an analytic bundle with fiber R+, by the same remark and since JN (R+) is a
submanifold. The space JN (R+) is identified (via the above projection) with
the quotient of the space J(R+) by gauge equivalence, by Proposition 3.15.
The restriction to J(R+) of vector field (3.7) has a well-defined projection to
the quotient, by equivariance (Proposition 3.5). Therefore the lifting of the
projected field to JN (R+) is a well-defined real-analytic vector field. Its real
orbits are exactly normalized real isomonodromic families, by construction.
Positivity of τ -component follows by construction, since t = τ2 has positive
derivative t′s = t = es along the restriction of field (3.7) to J(R+). The last
statement of the lemma is straightforward. Lemma 3.16 is proved. 2
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3.5 Transversality property of Josephson type systems

Lemma 3.17 Consider an arbitrary system L ∈ Jos. Let w(τ) be the germ
of solution of Painlevé equation (3.16) defining its real isomonodromic de-
formation in the space JN (R+) at the point τ0 corresponding to the system
L. Then w(τ) has first order pole at τ0 with residue 1. Conversely, every
system in JN (R+) corresponding to a first order pole τ0 > 0 of solution of
equation (3.16) with residue 1 lies in Jos.

Proof It is well-known that non-zero singular points of solutions of equation
(3.16) are poles of order 1 with residues ±1 [33, p.158]. Let us check that
systems in Jos correspond to poles with residue 1. The first matrix equation
in (3.11) is equivalent to the following system of equations:

tK ′11 = R12K21 −K12R21

tK ′12 = K12(R11 −R22) +R12(K22 −K11)

tK ′21 = K21(R22 −R11) +R21(K11 −K22)

(3.23)

Here and in the rest of the proof the derivatives are taken in t. Let now
an R+-Jimbo type system L corresponding to some value t = t0 6= 0 have
K = diag(1

2 , 0), R21 > 0 > R12. (This is equivalent to the statement that
the normalization of the system L in JN (R+) is of Josephson type.) Set
τ0 =

√
t0. The second equation in (3.23) written at the point t0 yields

tK ′12 = −`K12 −
1

2
R12, (3.24)

since R11−R22 = −` and K22−K11 = −1
2 . One has K12(t0) = 0. Therefore,

K12(t) ' −R12(t0)

2t
(t− t0) ' −R12(t0)

τ0
(τ − τ0), as t→ t0,

K12 6≡ 0, w(τ) = − R12
τK12

= 1+O(τ−τ0)
τ−τ0 has simple pole with residue 1 at τ0.

Conversely, let a system L ∈ J(R+) correspond to a first order pole
τ0 6= 0 with residue 1 of a solution w(τ) of (3.16). Set t0 = τ2

0 . Note that

R12(t0) 6= 0, by assumption. Thus, K12(t0) = −w−1(τ0)R12(t0)
τ0

= 0, see

(3.14), K(t0) is a lower triangular matrix with diagonal elements 1
2 and 0

(placed in some unknown order). Hence, the two following cases are possible.
Case 1): K11(t0) = 1

2 and K22(t0) = 0. Then G12(t0) = 0. This together
with (3.10), (3.20) implies that G21(t0) = 0, since R21 6= 0. Thus, the matrix
G(t0) is diagonal, K(t0) = diag(1

2 , 0), the normalization of the system L in
JN (R+) lies in Jos. (Here we did not use the information on residue value.)
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Case 2): K11(t0) = 0 and K22(t0) = 1
2 . Then the second equation in

(3.23) written at t0 = τ2
0 is

τ2
0K
′
12 = −`K12 +

1

2
R12.

Repeating the discussion following (3.24), but now with opposite sign at R12

yields that τ0 is a pole with residue −1. The contradiction thus obtained
shows that case 2) is impossible. Lemma 3.17 is proved. 2

Lemma 3.18 (Key Lemma). The submanifold Jos ⊂ JN (R+) is transver-
sal to the isomonodromic foliation F from Lemma 3.16.

Proof Way 1 of proof. The derivative of the element K12 along the vector
field directing the foliation F is non-zero at L ∈ Jos, by (3.24) and since
K12 = 0 if L ∈ Jos. Hence, this field is transversal to the hypersurface Jos.

Way 2 of proof. Points of the hypersurface Jos correspond to simple
poles of solutions of equation (3.16) satisfied along leaves. This together
with the fact that a simple pole of an analytic family of functions depends
analytically on parameter implies the statement of Lemma 3.18. 2

4 Analytic families of constrictions. Proof of The-
orem 1.11

For every linear system L let M(L) denote its monodromy operator.
In the proof of Theorem 1.11 we use the following proposition.

Proposition 4.1 [28, proposition 3.2, lemma 3.3] A point (B,A;ω) is a
constriction, if and only if A,ω 6= 0 and the corresponding system (1.6) has
trivial monodromy.

Corollary 4.2 The systems (1.6) corresponding to constrictions lie in the
set

Σ := {L ∈ JN (R+) | M(L) = Id}.

For every system L ∈ JN (R+) let us choose good sectors S0 and S1 that
contain the upper (respectively, lower) half-plane punctured at 0, see Fig.
7. Consider its monodromy–Stokes data (q10, q20, q1∞, q2∞;M) defined by
the base point ζ0 = 1 ∈ S1,2 ⊂ S0 ∩ S1 and trivial paths α0, α∞ ≡ 1. Set

R(L) :=
(q10 − q1∞)(q20 − q2∞)

(q10 − q2∞)(q20 − q1∞)
∈ C. (4.1)
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We will call R(L) the transition cross-ratio of the system L. It depends only
on the monodromy–Stokes data and not on choice of its representative.

For the proof of Theorem 1.11 we first prove the following theorem and
lemma in Subsections 4.1 and 4.2 respectively.

Theorem 4.3 (Key Theorem). The subset Σ ⊂ JN (R+) is a two-dimensional
analytic submanifold, a union of leaves of real isomonodromic foliation F .
One has ` ∈ Z for every system in Σ. The function R is constant on leaves
of F in JN (R+). The restriction R|Σ is real-valued; it is an analytic sub-
mersion Σ→ RP1 = R ∪ {∞}. The vector function (R, τ) : Σ→ RP1 × R+

is a local diffeomorphism.

For every ` ∈ Z by Σ` ⊂ Σ we denote the subset of systems with given `.

Lemma 4.4 For every ` ∈ Z the subset Constr` ⊂ (R2
+)(µ,η), η = ω−1, is

a real-analytic one-dimensional submanifold identified with the intersection
Jos ∩ Σ`. The restriction of the function R to the latter intersection yields
a mapping Constr` → R \ {0, 1} that is a local analytic diffeomorphism.

Afterwards in Subsection 4.3 we prove the following more precise version of
the first two statements of Theorem 1.11.

Theorem 4.5 1) For every connected component C of the submanifold Constr`
the mapping R : C → R is a diffeomorphism onto an interval I = (a, b).

2) Let C := R−1 : I → C denote the inverse function. For every c ∈
{a, b} \ {0} there exists a sequence xn ∈ I, xn → c, as n → ∞, such that
ηn = η(C(xn))→∞, i.e., ω(C(xn))→ 0.

In Subsection 4.4 we prove constance of the rotation number and type of
constriction on each connected component in Constr` and finish the proof
of Theorem 1.11.

4.1 Systems with trivial monodromy. Proof of Theorem 4.3

In the proof of Theorem 4.3 we use a series of propositions.

Proposition 4.6 Every system L ∈ H1
0,∞ with trivial monodromy (e.g., ev-

ery system in Σ) has trivial Stokes matrices and trivial formal monodromies
at both singular points 0, ∞. In particular, the residue matrices of its formal
normal forms have integer elements. If L ∈ Σ, then one has ` ∈ Z.
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Proof The proof repeats arguments from [28, proof of lemma 3.3]. Trivi-
ality of the Stokes matrices follows from formulas (2.11) and (2.12). Then
M = Mnorm = Id, by (2.6). Hence, ` ∈ Z, if L ∈ Σ. 2

Proposition 4.7 Let in a system L ∈ H1
0,∞, see (2.7), the matrices K,

R, N be real, and let each one of the matrices K, N have distinct real
eigenvalues. Let the Stokes matrices of the system L at 0 and at ∞ be
trivial. Then the transition cross-ratio R(L) is either real, or infinite.

Proof Let f1j,p, f2j,p denote the canonical sectorial solution basis of the
system L at point p = 0,∞ in the sector Sj , j = 0, 1, see Fig. 7. The
complex conjugation σ̂ : (Y1, Y2; z) 7→ (Y 1, Y 2; z̄) leaves L invariant and
sends graphs of its solutions to graphs of solutions. Its projectivization
σ : (Φ, z) 7→ (Φ, z̄), Φ := Y2

Y1
, permutes the sectors S0, S1 and graphs of the

projectivized solutions

gk0,p := π ◦ fk0,p, gk1,p := π ◦ fk1,p.

Here π : C2 \ {0} → CP1 = CΦ is the tautological projection. This fol-
lows from uniqueness of projectivized sectorial basic solutions (Remark 2.3).
Triviality of Stokes matrices implies that gk0,p = gk1,p is a global holo-
morphic C-valued function on C∗. In particular, for every z ∈ R one has
gk0,p(z) = gk1,p(z); hence, (gk0,p(z), z) is a fixed point of the involution σ
and gk0,p(z) ∈ R∪{∞}. Finally, qkp = gk0,p(1) ∈ R∪{∞} for every k = 1, 2
and p = 0,∞, and thus, R(L) ∈ R ∪ {∞}. Proposition 4.7 is proved. 2

Proposition 4.8 For every system L ∈ Σ the corresponding collection of
points qkp, k = 1, 2, p = 0,∞ consists of at least three distinct points. One
has q1p 6= q2p for every p = 0,∞.

Proof One has qkp = gk0,p(1) = π ◦ fk0,p(1), where f10,p, f20,p form the
canonical basis of solutions of the system in S0. Their linear indepen-
dence implies linear independence of their values at z = 1, and hence,
the inequality q1p 6= q2p. Let us now prove that among the points qkp
there are at least three distinct ones. To do this, we use the fact that
gk,p(z) := gk0,p(z) = gk1,p(z) are two meromorphic functions on C∗ ∪ {p},
p = 0,∞. Meromorphicity on C∗ follows from Proposition 4.6 and the
proof of Proposition 4.7. Meromorphicity at p follows from Remark 2.3.
Suppose the contrary: there are only two distinct points among qkp. Then
g1,0 ≡ gk1,∞, g2,0 ≡ gk2,∞, where (k1, k2) is some permutation of (1, 2).
Therefore, g1,p and g2,p are meromorphic on C, by the above discussion.
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Their graphs are disjoint, since so are graphs of their restrictions to C∗ (be-
ing phase curves of the Riccati foliation on CP1×C defined by L) and their
values at each point p ∈ {0,∞} are distinct and equal to (1 : 0) ∈ CP1

(Y1:Y2)

and (0 : 1) respectively (Remark 2.3). But graphs of two meromorphic
functions on C with values in CP1 = C may be disjoint only if the func-
tions are constant. Indeed, H2(C× C,Z) = Z⊕ Z (Künneth Formula), and
the intersection form on the latter homology group is given by the formula
< (m1, n1), (m2, n2) >= m1n2 + m2n1. See the corresponding background
material in [32, chapter 0, section 4]. The homology class of graph of a
rational function F of degree n is (n, 1); n > 0, if F 6≡ const. Therefore, if
F 6≡ const, then the intersection index of its graph with the graph of any
rational function is positive. Hence, g1,p ≡ (1 : 0), g2,p ≡ (0 : 1), and the
constant functions Φ(z) ≡ 0, Φ(z) ≡ ∞ are solutions of the Riccati equa-
tion corresponding to L. This implies that the matrices of the system L
are diagonal, which is obviously impossible for a system from JN (R+). The
contradiction thus obtained proves the proposition. 2

Proposition 4.9 For every collection C0 = (q10, q20, q1∞, q2∞) ∈ C4
that

has at least three distinct points there exists a neighborhood V = V(C0) ⊂ C4

such that two collections in V lie in the same PSL2(C)-orbit, if and only if
they have the same cross-ratio.

Proof Fix a neighborhood V such that 3 distinct points in C0 remain
distinct in each collection from V. Let us normalize them by the PSL2(C)
action in such a way that these points be 0, 1, ∞: such normalization is
unique. Then the fourth point is uniquely determined by the cross-ratio. 2

Proof of Theorem 4.3. A system L ∈ JN (R+) is uniquely defined by the
formal invariants `, τ and the monodromy–Stokes data (Theorem 2.11 and
Proposition 3.15). Let now M(L) = Id. Then the latter data are reduced to
the PSL2(C)-orbit of the collection (q10, q20, q1∞, q2∞). The latter collection
consists of at least three distinct points (Proposition 4.8). Therefore, each
system L ∈ Σ` has a neighborhoodW =W(L) ⊂ Σ` such that two systems in
W have the same monodromy–Stokes data, if and only if the corresponding
cross-ratios R are equal. This follows from Proposition 4.9 and the above
discussion. One has (R, τ)(L) ∈ RP1 × R, by Propositions 4.6 and 4.7.
This together with the above local determination statement imply that the
mapping Π : (R, τ) : Σ→ RP1 × R is locally injective.
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Proposition 4.10 For every ` ∈ Z and L0 ∈ Σ`, set T0 = (R0, τ0) :=
(R, τ)(L0), there exist neighborghoods V1 = V1(L0) ⊂ JN (R+), V2 = V2(T0) ⊂
RP1×R and an analytic inverse g = (R, τ)−1 : V2 → V1 with g(V2) = V1∩Σ`.

Proof We have to realize each T = (R, τ) close to T0 by a linear system
from Σ. To this end, we first realize T by an abstract two-dimensional holo-
morphic vector bundle over C with connection. Namely, we take two linear
systems defined by the given formal normal forms at 0 and ∞ respectively:

H0 : Y ′ =

(
1

z2
diag(−τ

2
, 0) +

1

z
diag(−`, 0)

)
Y ; (4.2)

H∞ : Y ′ =

(
diag(−τ

2
, 0) +

1

z
diag(−`, 0)

)
Y. (4.3)

We consider the following trivial bundles with connections over discs cov-
ering C: the bundle F0 := C2

Y 0 × D2 equipped with the system H0; the

bundle F∞ := C2
Y∞ × (C \D 1

2
) equipped with the system H∞. The bundle

realizing T is obtained by the following gluing F0 and F∞ over the annulus
A := D2 \D 1

2
. Let v1 = (1, 0), v2 = (0, 1) denote the standard basis in C2.

For every R close enough to R0 fix a linear isomorphism L = L1 : C2 → C2

such that the tautological projection to CP1 = C of the collection of vectors
L1v1, L1v2, v1, v2 has the given cross-ratio R and L1 depends analytically
on R. Let W 0(z) = diag(e

τ
2

( 1
z
−1)z−`, 1), W∞(z) = diag(e−

τ
2

(z−1)z−`, 1) be
the standard fundamental solution matrices of systems H0, H∞ normalized
to be equal to the identity at z = 1. Set

Lz = Lz,R,τ = W∞(z)L1(W 0(z))−1. (4.4)

Let E = E(R, τ) denote the disjoint union F0 t F∞ pasted by the follow-
ing identification: for every z ∈ A the point (Y 0, z) ∈ F0 is equivalent to
(Y∞, z) ∈ F∞, if Y∞ = LzY

0. The space E inherits a structure of holo-
morphic vector bundle over C with a well-defined meromorphic connection
induced by the formal normal forms H0, H∞ in the charts F0 and F∞ (which
paste together by Lz to the same connection over A). This connection has
two Poincaré rank 1 irregular nonresonant singular points at 0 and∞ where
it is analytically equivalent to H0 and H∞. Note that the monodromy–
Stokes data and the transition cross-ratio are well-defined for bundles with
connections as well, provided that the singularities at 0 and at∞ are irregu-
lar nonresonant of Poincaré rank 1. The transition cross-ratio of the bundle
E(R, τ) coincides with R, by construction.
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Let now V̂2 be a small ball centered at T0 = (R0, τ0) in the complex prod-
uct CR ×Cτ (in its local chart centered at T0). Set Ê := t

(R,τ)∈V̂2E(R, τ).

This is a holomorphic vector bundle over the product C× V̂2.
Claim 1. The bundle Ê is trivial, if the ball V̂2 is small enough.

Proof The bundle E(T0) is trivial, since it has the same monodromy–Stokes
data and formal normal forms, as the system L0 (which is a connection on
trivial bundle), and by Theorem 2.11 (which remains valid for bundles with
connections). It is glued from two trivial bundles over the domains D2

and C \D 1
2

by the transition matrix function Lz,T0 . Triviality implies that

there exist (and unique) GL2(C)-valued matrix functions U0(z) and U∞(z)
holomorphic on D2 and C \D 1

2
respectively such that U0(z) = U∞(z)Lz,T0

on A and U∞(∞) = 1. They are holomorphic on bigger domains D3 c D2,
C\D 1

3
c C\D 1

2
, by the above statement applied to the latter bigger domains

and holomorphicity of the transition matrix function Lz,T0 on C∗. Consider

the following new trivializations of the trivial bundles C2
Y 0 × (D2 × V̂2) and

C2
Y∞ × ((C \D 1

2
)× V̂2):

Ỹ 0 := U0(z)Y 0, Ỹ∞ := U∞(z)Y∞.

In the new coordinates Ỹ 0 and Ỹ∞ the fiber identifications gluing Ê of the
above trivial bundles over points (z, T ) ∈ A × V̂2 become the following: a
point (Ỹ 0, z, T ) is identified with (Ỹ∞, z, T ), if M(z, T )Ỹ 0 = Ỹ∞, where

M(z, T ) = U∞(z)Lz,TU
−1
0 (z).

Therefore, Ê can be viewed as the bundle glued from two trivial bundles
on D2 × V̂2 and (C \ D 1

2
) × V̂2 by the transition matrix function M(z, T )

holomorphic on A× V̂2. One has M(z, T0) = Id, by construction. Choosing

V̂2 small enough, one can make M(z, T ) continuous on A× V̂2 and make the

C0-norm ||M(z, T )−Id|| on A× V̂2 arbitrarily small. Therefore, the bundle
Ê glued by M(z, T ) is ”close to trivial”, and hence, is trivial, whenever V̂2 is
small enough, by [11, appendix 3, lemma 1]. (Formally speaking, this lemma
should be applied after rescaling the coordinates in the chart containing V̂2

in the parameter space to make V̂2 the unit ball.) The claim is proved. 2

Let V2 ⊂ V̂2 be the subset of real points of the complex ball V̂2, which
is a real planar disk. The claim implies that the family E(T )|T∈V2 yields a
family of connections on the trivial bundle C2 × C depending analytically
on the parameter T ∈ V2. They should be linear systems in H1

0,∞, by
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assumptions on singularities. This yields an analytic map g : V2 → V1 from
a neighborhood V2 = V2(T0) ⊂ RP1 × R to a domain V1 ⊂ H1

0,∞ such that
for every (R, τ) ∈ V2 the system g(R, τ) has trivial monodromy, transition
cross-ratio equal to R, and is analytically equivalent to formal normal forms
(4.2), (4.3) near 0 and∞ respectively. Without loss of generality we consider
that g(T0) = L0, applying a gauge transformation independent on (R, τ).
For every system in g(V2) the corresponding points qkp ∈ CΦ from the
monodromy–Stokes data given by the base point z0 = 1 and trivial paths
α0 ≡ α∞ ≡ 1 lie on the same circle, since their cross-ratio R lies in R∪{∞}.
The latter circle is unique, since there are at least three distinct points qkp:
this is true for T = T0 (Proposition 4.8) and remains valid for all T ∈ V2,
provided that V̂2 is chosen small enough . We normalize the systems in g(V2)
so that the latter circle is the real line, applying an analytic family of gauge
transformations depending on (R, τ).

Claim 2. The systems in g(V2) are defined by real matrices.
Proof The transformation σ̂ : (Y1, Y2; z) 7→ (Y 1, Y 2; z̄) applied to systems
in g(V2) preserves formal normal forms and monodromy–Stokes data, by
construction and the above normalization. Therefore, it sends each system
in g(V2) to a system gauge equivalent to it, and the collections of points qkp
in the fiber C×{1} are the same for both systems. Their gauge equivalence
restricted to the fiber C2×{1} should fix the points qkp. Hence, it is identity
up to scalar factor, since the number of distinct points qkp is at least three.
Therefore, it is globally identity and the systems in question coincide. Thus,
σ̂ fixes each system in g(V2), which means that its matrices are real. 2

The main term matrix N at ∞ of each system in g(V2) is real and has
eigenvalues −1

2 , 0. It is close to diag(−1
2 , 0), if V2 is small enough. Therefore,

it is conjugated to the diagonal matrix diag(−1
2 , 0) by a real matrix H close

to the identity. The matrix H is unique up to left multiplication by a
real diagonal matrix. It can be chosen in a unique way so that the gauge
transformation Y = H−1Ỹ makes R21 = −R12 > 0. This yields a family of
gauge transformations sending systems in g(V2) to systems lying in JN (R+),
and hence, in Σ` (triviality of monodromy). From now on, the mapping
V2 → JN (R+) thus constructed will be denoted by g. By construction, its
image lies in Σ`, and for every (R′, τ ′) ∈ V2 the transition cross-ratio R and
the formal invariant τ of the system g(R′, τ ′) are respectively R′ and τ ′.
Conversely, every system L ∈ Σ` close enough to L0 has invariants (R, τ)
lying in V2, and hence L = g(R, τ), by construction, Theorem 2.11 and
Proposition 3.15. This proves Proposition 4.10. 2

The mapping g is an immersion, since the projection L 7→ (R, τ)(L) is
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real-analytic and (R, τ)◦g = Id. This together with Proposition 4.10 implies
that Σ` is a 2-dimensional submanifold, and (R, τ) : Σ` → RP1×R is a local
diffeomorphism. Hence, the projection R : Σ` → RP1 (which is constant
along isomonodromic leaves) is a submersion. Theorem 4.3 is proved. 2

4.2 The manifold of constrictions. Proof of Lemma 4.4

The space of systems (1.6) with given ` is identified with (R+)2
µ,η, η = ω−1.

They are represented as systems in Jos ⊂ JN (R+) with parameters τ = 2µ,
`, R21 = η

2 . The constriction subset Constr` ⊂ (R+)2
µ,η is thus identified

with the intersection Jos ∩ Σ`, by Proposition 4.1. The latter intersection
is transversal, since Σ` is a union of leaves of the isomonodromic foliation
F and Jos is transversal to F (Lemma 3.18). Therefore, Constr` is a one-
dimensional submanifold transversal to the isomonodromic foliation on Σ`.
Hence, R : Constr` → RP1 is a local diffeomorphism (submersivity of the
projection R : Σ` → RP1, see Theorem 4.3). It remains to show that
R 6= 0, 1,∞ on Constr`.

Proposition 4.11 For every constriction (B,A;ω) the collection of points
qkp from the monodromy–Stokes data of the corresponding linear system
(1.6) consists of four distinct points. Or equivalently, R 6= 0, 1,∞.

Proof One has q1p 6= q2p. Hence, the only a priori possible coincidences
are the following.

Case 1): qk0 = qk∞ for some k. Then the same equality holds for the
other k, by symmetry (Φ, z) 7→ (Φ−1, z−1) of the corresponding Riccati
equation. Thus, the collection of points qkp consists of two distinct points.
This contradicts to Proposition 4.8.

Case 2): qk0 = q(3−k)∞ for some k. This means that the transition matrix
between the canonical solution base of system (1.6) at 0 and the canonical
base at∞ taken in inverse order is a triangular matrix. But this contradicts
to [29, theorem 2.10, statement (2.19)].

Finally none of cases 1), 2) is possible. Proposition 4.11 is proved. 2

Lemma 4.4 follows from Proposition 4.11 and the discussion before it.

4.3 Asymptotics and unboundedness. Proof of Theorem 4.5

The subset Constr` ⊂ (R2
+)µ,η is a submanifold that admits a locally diffeo-

morphic projection R to R \ {0, 1} (Lemma 4.4). This implies that it has
no compact components, since no compact component can admit a locally
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diffeomorphic mapping to R. Therefore, each its component C is diffeomor-
phic to an interval I = (a, b) with coordinate x := R. This implies the first
statement of Theorem 4.5. To prove its second statement, the existence of
a sequence xn → c with η(C(xn))→∞ for c ∈ {a, b} \ {0}, we will

- use the following Klimenko–Romaskevich Bessel asymptotic result [44]
to show that boundedness of η implies boundedness of µ;

- prove that (µ, η)(xn) cannot converge to (0, 0), by using solution of vari-
ational equation to (1.2) and studying local parametrization of the analytic
set in R2 containing Constr`;

- show that if η(xn)→ 0, then c = limxn = 0.
Let us recall that the boundary of the phase-lock area Lr consists of two

curves ∂Lr,0, ∂Lr,π, corresponding to those parameter values, for which the
Poincaré map of the corresponding dynamical system (1.3) acting on the
circle {τ = 0} has fixed points 0 and π respectively. These are graphs

∂Lr,s = {B = gr,p(A)}, gr,p are analytic functions on R; p = 0, π.

Theorem 4.12 [44, theorem 2]. There exist positive constants C1, C2, K1,
K2, K3 such that the following statement holds. Let r ∈ Z, A, ω > 0 be
such that

|rω|+ 1 ≤ C1

√
Aω, A ≥ C2ω. (4.5)

Let Jr denote the r-th Bessel function. Then∣∣∣∣ 1ωgr,0(A)− r +
1

ω
Jr

(
−A
ω

)∣∣∣∣ ≤ 1

A

(
K1 +

K2

ω3
+K3 ln

(
A

ω

))
, (4.6)

∣∣∣∣ 1ωgr,π(A)− r − 1

ω
Jr

(
−A
ω

)∣∣∣∣ ≤ 1

A

(
K1 +

K2

ω3
+K3 ln

(
A

ω

))
, (4.7)

Proposition 4.13 Fix an ` ∈ Z. For every η0 > 0 the intersection

Constr`,η0 := Constr` ∩ {0 < η < η0} ⊂ R+ × (0, η0)

is a one-dimensional analytic submanifold with infinitely many connected
components, and each component is bounded.

Proof Let u1 < u2 < . . . denote the sequence of points of local maxima of
the modulus |J`(−u)|, which tends to infinity.

Claim. Fix an η0 > 0 and an ` ∈ Z. For every k ∈ N large enough
(dependently on η0 and `) the interval Îk := {µ = uk

2 } × (0, η0) does not
intersect the constriction set Constr`.
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Proof In the coordinates (µ, η) inequalities (4.5) and (4.6), (4.7) can be
rewritten for r = ` respectively as

| `
η
|+ 1 ≤ C1

η

√
2µ, µ ≥ C2

2
, (4.8)∣∣∣∣ηg`,0(

2µ

η
)− `+ ηJ`(−2µ)

∣∣∣∣ ≤ η

2µ

(
K1 +K2η

3 +K3 ln(2µ)
)
, (4.9)∣∣∣∣ηg`,π(

2µ

η
)− `− ηJ`(−2µ)

∣∣∣∣ ≤ η

2µ

(
K1 +K2η

3 +K3 ln(2µ)
)
. (4.10)

For every k large enough the value µ = uk
2 satisfies inequality (4.8) for

all η ∈ (0, η0). Substituting µ = uk
2 to the right-hand in (4.9) trans-

forms it to a sequence of functions of η ∈ (0, η0) with uniform asymptotics
η(O( 1

uk
) +O( lnuk

uk
)), as k →∞. The values |J`(−uk)| are known to behave

asymptotically as 1√
uk

(up to a known constant factor). Therefore, they

dominate the right-hand side in (4.9). This together with (4.9) implies that
for every k large enough the values ω = η−1, Ak = ukω satisfy the inequality

g`,0(Ak), g`,π(Ak) 6= `ω for every ω > ω0 := η−1
0 .

Therefore the points (`ω,Ak;ω) are not constrictions for all ω > ω0. This
proves the claim. 2

For every point q ∈ Constr` and every k large enough dependently on
q the connected component of the point q in Constr` is separated from
infinity by the segment Îk from the above claim. This proves boundedness
of connected components. Infiniteness of number of connected components
follows from their boundedness and the fact that for every given ` ∈ Z and
ω > 0 the vertical line Λ` = {B = ω`} contains an infinite sequence of
constrictions with A-ordinates converging to +∞, see [44, the discussion
after definition 2]. This finishes the proof of Proposition 4.13. 2

Lemma 4.14 For every ` ∈ Z the subset Constr` ⊂ R2
+ does not accumu-

late to zero. That is, there exists no sequence of constrictions (Bk, Ak;ωk)
with Bk = `ωk where ωk → +∞ and µk := Ak

2ωk
→ 0, as k →∞.

For the proof of Lemma 4.14 (given below) let us recall that the first equation
in system (1.3) describing model of Josephson junction takes the following
form in the new parameters µ and η:

θ̇ :=
dθ

dτ
= η cos θ + `+ 2µ cos τ, η = ω−1, µ =

A

2ω
. (4.11)
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The constrictions correspond to those values of (µ, η) ∈ R2
+ for which the

time 2π flow map
h = h2π = hµ,η

of equation (4.11) acting on the θ-circle {τ = 0} is identity. For the proof of
the lemma it suffices to show that (0, 0) is an isolated point in the analytic
subset {hµ,η = Id} ⊂ R2

µ,η. This is done by using the following formulas for
a solution θ(τ) of (4.11) and its derivatives in parameters for η = 0.

Proposition 4.15 Let θ(τ, θ0;µ, η) denote the solution of equation (4.11)
with initial condition θ(0) = θ0. One has the following formulas for the
solution and its partial derivatives in the parameters (µ, η):

θ(τ, θ0;µ, 0) = θ0 + `τ + 2µ sin τ, hµ,0 = Id, (4.12)

θ(τ, θ0) := θ(τ, θ0, 0, 0) = θ0 + `τ, (4.13)

θ′η =
∂θ

∂η
=

1

`
(sin(θ0 + `τ)− sin θ0) at the locus {µ = η = 0}, (4.14)

θ′µ = 2 sin τ, θ(k)
µ...µ =

∂kθ

∂µk
= 0 for k ≥ 2 at the locus {η = 0}. (4.15)

The following two formulas holds at the locus {µ = η = 0}:

∂2θ

∂η2
= −τ

`
+

1

2`2
(sin 2(θ0 + `τ)− sin 2θ0)− 2

`2
sin θ0(cos(θ0 + `τ)− cos θ0);

(4.16)

∂k+1θ̇

∂η∂µk
= 2ksk(θ0 + `τ) sink τ, where sk(y) =

{
(−1)

k
2 cos y for even k

(−1)
k+1
2 sin y for odd k.

(4.17)
Here ”dot” is the derivative in τ .

Proof Formulas (4.12) and (4.13) are obvious. The equation in variations
for the derivative θ′η is

θ̇′η = cos(θ0 + `τ + 2µ sin τ) +O(η), as η → 0. (4.18)

The derivative θ′η is a solution of (4.18) vanishing at τ = 0. Therefore, for
µ = η = 0 it is given by (4.14). Formulas (4.15) follow immediately by
differentiating (4.12) in µ. Formula (4.17) follows by differentiating (4.18)
in µ and taking the value thus obtained at µ = η = 0. It remains to
prove (4.16). Differentiating equation (4.11) in η twice at η = µ = 0 and
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substituting (4.14) yields the following differential equation for the derivative

θ′′ηη = ∂2θ
∂η2

:

θ̇′′ηη = −2 sin θθ′η = −2

`
sin(θ0 + `τ)(sin(θ0 + `τ)− sin θ0).

Taking primitive in τ of the right-hand side that vanish at τ = 0 yields
(4.16). The proposition is proved. 2

Proposition 4.16 Let ` ∈ N. The Taylor expansion in (µ, η) of the time
2π flow map hµ,η(θ0) takes the form

hµ,η(θ0) = θ0 −
π

`
η2 + g(θ0)ηµ` + o(η2) + o(ηµ`), as µ, η → 0, (4.19)

where g(θ0) is a non-constant function of θ0 that is equal to either sin θ0, or
cos θ0 up to non-zero constant factor.

Proof The Taylor coefficient of the difference hµ,η(θ0) − θ0 at µkηm at

the locus µ = η = 0 equals 1
k!m!

∂k+mθ
∂µk∂ηm

(τ, θ0; 0, 0) where τ = 2π. The

latter derivatives with (k,m) = (0, 1), (n, 0) vanish, by (4.14), (4.15). For
(k,m) = (0, 2) it equals −2π

` , by (4.16).
Claim. The above (k, 1)-th derivative is 2π-periodic in τ , if 1 ≤ k ≤

`− 1. If k = `, it is equal to g(θ0)τ plus a 2π-periodic function; here g(θ0)
has the same type, as in Proposition 4.16.
Proof The (k, 1)-th derivative equals the primitive of the right-hand side
in (4.17). The latter right-hand side is a linear combination of values of sin
(or cos) of θ0 + rτ , r ∈ Z, ` − k ≤ r ≤ ` + k. Moreover, the coefficient at
the ”lower term”, the sin (cos) of θ0 + (`− k)τ , is non-zero, by elementary
trigonometry. Therefore, the primitive of the latter right-hand side in (4.17)
is a linear combination of cos (sin) of the above arguments, except for a
possible term with r = 0, which is τ cos θ0 (τ sin θ0) up to constant factor.
For k ≤ ` − 1 the latter term does not arise. For k = ` it arises with a
non-zero constant factor, by the above discussion. The claim is proved. 2

One has ∂k+mθ
∂µk∂ηm

(0, θ0; 0, 0) = 0, by definition. This together with the
above claim and discussion implies the statements of Proposition 4.16. 2

Proof of Lemma 4.14. Suppose the contrary: the set Constr` accumu-
lates to zero. Recall that it lies in the ambient analytic set in R×R defined
by the equation hµ,η = Id. (The Poincaré map hµ,η is Möbius, being the re-
striction to S1 = {|Φ| = 1} of the monodromy map of Riccati equation (1.5);
the equation hµ,η = Id is written in the Lie group Aut(D1) ' PSL2(R).)
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Therefore, the latter analytic set contains an irreducible germ of analytic
curve Γ at 0 with η|Γ 6≡ 0. Hence, Γ can be considered as a graph of (may
be singular) analytic function µ = cηα(1 + o(1)), α > 0, c 6= 0. Substituting
the latter expression for µ to the Taylor formula (4.19) yields

hµ,η(θ0) = θ0 −
π

`
η2 + c`g(θ0)η1+`α + o(η2) + o(η1+`α). (4.20)

The right-hand side in (4.20) should be identically equal to θ0, since hµ,η =
Id for (µ, η) ∈ Γ. This together with (4.20) implies that its second and third
terms should cancel out: 1 + `α = 2 and g(θ0) ≡ c−` π` . But we know that
g(θ0) 6≡ const. The contradiction thus obtained proves Lemma 4.14. 2

Proof of the second statement of Theorem 4.5. Suppose the contrary:
as x ∈ I tends to a non-zero endpoint c ∈ {a, b} of the interval I, the function
η = η(C(x)) is bounded from above. But then µ(C(x)) is also bounded
from above, by Proposition 4.13. The component C being a non-compact
submanifold in R2

+, it should go to ”infinity” (to the boundary), as x → c.
Therefore, there exists a sequence xk → c such that C(xk) → C∗ ∈ {µη =
0 | µ, η ≥ 0} (boundedness of µ and η). One has C∗ 6= (0, 0), by Lemma
4.14. Let show that two other possible cases treated below are impossible.

Case 1): C∗ = (0, η), η > 0. Then the equations (4.11) corresponding to
C(xk) = (µk, ηk) have identity Poincaré map and limit to the equation

dθ

dτ
= η cos θ + `, (4.21)

which should also have identity Poincaré map. In the case, when ` = 0, this
is obviously impossible, since the dynamical system on T2 given by (4.21) is
hyperbolic with an attracting periodic orbit θ ≡ π

2 . In the case, when ` ∈ N,
the rotation number of the above system is an integer non-negative number
ρ < `. This follows from the fact that the `-th phase-lock area L` intersects
the B-axis {A = 0} = {µ = 0} at the so-called growth point with known
abscissa B(`, ω) =

√
`2ω2 + 1, ω = η−1, see [18, corollary 3], while C(xk)

correspond to constrictions with one and the same abscissa `ω < B(`, ω).
Therefore, the points C(xk) ∈ Constr` also correspond to the same rotation
number ρ < `, whenever k is large enough (continuity of the rotation number
function and its integer-valuedness on the points (Bk, Ak;ωk) corresponding
to C(xk)). Thus, the points C(xk) correspond to constrictions lying on the
axis Λ` = {B = `ω} with non-negative rotation number ρ < `. But all the
constrictions lying in Λ` should correspond to rotation numbers no less than
`, by [28, theorem 1.2]. The contradiction thus obtained shows that the case
under consideration is impossible.
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Case 2): C∗ = (µ, 0), µ > 0. Then the linear system (1.6) corresponding
to C∗ is diagonal, and hence, has zero cross-ratio R = x. Hence, the cross-
ratios xk corresponding to C(xk) tend to zero. But their limit c is non-zero,
by assumption. The contradiction thus obtained shows that Case 2) is also
impossible and finishes the proof of Theorem 4.5. 2

4.4 Constance of rotation number and type. Proof of Theo-
rem 1.11

Without loss of generality we can and will consider that ` ∈ Z≥0 (symmetry).
All the statements of Theorem 1.11 except for the last one follow im-

mediately from Theorem 4.5. Let us prove its last statement: constance of
rotation number and type. Fix a connected component C of the manifold
Constr`. Constance of the rotation number function on C follows from its
continuity and integer-valuedness. Constance of the constriction type is ob-
vious for ` = 0: the A-axis lies in L0, hence, all its constrictions are positive.
Thus, everywhere below we consider that ` ∈ N (symmetry). To prove con-
stance of type, we use the following proposition. To state it, let us recall
that for every ω > 0 a generalized simple intersection is a point (B,A;ω)
with ` = B

ω ∈ Z, A 6= 0 and ρ = ρ(B,A;ω) ≡ `(mod 2Z) that lies in the
boundary of the phase-lock area Lρ = Lρ(ω) and that is not a constriction
[30, definition 1.16]; they exist only for ` 6= 0.

Proposition 4.17 A constriction C = (B,A;ω) cannot be a limit of gen-
eralized simple intersections with some ωk → ω.

Proof One has ` = B
ω ∈ Z. Without loss of generality we can and will con-

sider that ` ≥ 1 (symmetry). Generalized simple intersections correspond
to special double confluent Heun equations (1.8) having polynomial solution
[13, theorem 1.15]. If, to the contrary, the constriction C were a limit of
generalized simple intersections, then it would also corresponds to equation
(1.8) having polynomial solution. But this is impossible, by [12, theorems
3.3 and 3.10]. The contradiction thus obtaines proves the proposition. 2

Let a constriction C(x0) ∈ Constr` be negative. Let us show that for
every x close to x0 the constriction C(x) = (B(x), A(x);ω(x)) is also nega-
tive: the case of positive constriction is treated analogously. (Note that each
constriction is either positive, or negative, by [29, theorem 1.8].) Let ρ ∈ Z
denote the rotation number of the constriction C(x0). Set ω0 := ω(x0),
Λ`(ω) := {B = `ω} ⊂ R2

B,A. For every r > 0 let Ur ⊂ R2 denote the disk of
radius r centered at (B(x0), A(x0)). Fix an r > 0 such that (B(x0), A(x0))
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is the only point of intersection ∂Lρ(ω0) ∩ Λ`(ω0) lying in U2r. Such an r
exists, since the latter intersection is discrete, by analyticity of the graphs
∂0,πLρ forming ∂Lρ, and since none of the latter graphs is a vertical line.

Case 1). Let for every x close enough to x0 the point (B(x), A(x)) be
the only point of intersection ∂Lρ(ω(x)) ∩ Λ`(ω(x)) lying in Ur. Then all
the above constrictions C(x) have the same, negative type, by definition.

Case 2). Let now the unique point C(x0) of intersection ∂Lρ(ω(x0)) ∩
Λ`(ω(x0)) split into several intersection points, as we perturb x = x0 slightly,
Then all these points are constrictions, by Proposition 4.17 and since ρ ≡
`(mod 2), see [28, theorem 3.17]. Their number is finite, and they split the
intersection Λ`(ω(x))∩Ur into a finite number of intervals. Any two adjacent
division intervals either both lie outside the phase-lock area Lρ(ω(x)), or
both lie inside Lρ(ω(x)), since the constriction separating them is either
negative, or positive (see [29, theorem 1.8] and Remark 1.8). The division
intervals adjacent to ∂Ur should lie outside, since this is true for x = x0 and
by continuity. Therefore, all the above intervals lie outside. Hence, all the
constrictions bounding them are negative. Theorem 1.11 is proved.

5 Slow-fast methods. Absence of ghost constric-
tions for small ω

We prove Theorem 1.12 in Subsections 5.1–5.5. Theorems 1.4 and 1.7 will
be proved in Subsection 5.6.

It suffices to prove absence of ghost constrictions with B = ω`, ` ∈ N,
and A > 0, by symmetry and since the constrictions with ` = 0 are positive
and lie in L0. Thus, everywhere below without loss of generality we consider
that ` ∈ N. It is already known that

there are no constrictions (`ω,A) with A ∈ (0, 1− `ω], (5.1)

since all the points (B,A) with |B| + |A| ≤ 1 lie in the phase-lock area L0

[13, proposition 5.22], and all the constriction in L0 lie in the A-axis.
First in Subsection 5.1 for small ω we prove absence of ghost constrictions

in the semiaxis Λ` with ordinates greater

A 1
2

= A 1
2
(ω) := 1 + (`− 1

2
)ω. (5.2)

Their absence follows from results of [29, 30], which imply that the whole ray
{`ω} × [A 1

2
,+∞) lies in the phase-lock area L`. In Subsection 5.5 we show
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that there are no constrictions (`ω,A) with A ∈ (1−`ω,A 1
2
(ω)), whenever ω

is small enough. This is done by studying family of systems (1.3) modeling
Josephson junction as a slow-fast family of dynamical systems, with small
ω and A = Aα(ω) = 1 + (` − α)ω + o(ω). The corresponding background
material on slow-fast systems is given in Subsection 5.2. The key lemma
used in the proof of absence of the above-mentioned constrictions is the
Monotonicity Lemma stated and proved in Subsection 5.4. It concerns a
pair of slow-fast families (1.3) corresponding to two families of ordinates
Aα1 and Aα2 as above with 0 < α1 < α2. It deals with their Poincaré maps
of the cross-section {τ = 0} lifted to the universal cover as maps of the line
{τ = 0} to {τ = 2π}. The Monotonicity Lemma states that the Poincaré
map of the system (1.3) corresponding to Aα2 is less than the analogous
Poincaré map for Aα1 , whenever ω is small enough. Its proof is based on
the Comparison Lemma on arrangement and disjointness of slow flowboxes
of the systems in question (stated and proved in Subsection 5.3).

5.1 Absence of ghost constrictions with big ordinates

Lemma 5.1 For every ` ∈ Z and every ω > 0 small enough dependently on
` the ray

Λ`, 1
2

:= Λ` ∩ {A ≥ A 1
2
} ⊂ Λ`,

see (5.2), lies in the phase-lock area with the rotation number `. It contains
no ghost constrictions.

Proof The intersection of the phase-lock area L` with the semiaxis Λ+
` :=

Λ` ∩ {A > 0} contains a ray S` bounded by a point P`, the so-called higher
generalized simple intersection [29, theorem 1.12]. Therefore, for the proof
of the inclusison Λ`, 1

2
⊂ L` it suffices to show that A(P`) < A 1

2
whevever ω

is small enough. Let us show that

A(P`) = 1 + (`− 1)ω + o(ω), as ω → 0. (5.3)

To do this, let us recall the definition of the point P`. Set

µ :=
A

2ω
, λ :=

1

4ω2
− µ2 =

1−A2

4ω2
.

Consider the corresponding Heun equation (1.8). Fix an ω > 0. The value

µ(P`) = A(P`)
2ω is the maximal number µ > 0 for which equation (1.8) has a

polynomial solution, see [29, definition 1.9], [13, theorem 1.15]. It was shown
in [19] that existence of polynomial solution is equivalent to the condition
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that the point (λ, µ) lies in a remarkable algebraic curve Γ` ⊂ R2, the so-
called spectral curve. Thus, for every ω > 0 the point (λ(P`), µ(P`)) lies in
Γ`, and it is the point in Γ` with the biggest coordinate µ. As ω → 0, one has
1
ω =

√
4(λ+ µ2)→∞, thus, (λ, µ)→∞. It is known that the complexified

curve Γ` intersects the complex infinity line in CP2 at ` distinct regular
real points. Their asymptotic directions correspond to the ratios λ

µ equal to
`−1, `−3, . . . ,−(`−1), and the corresponding local branches are real. This
was proved by I.V.Netay [30, proposition 1.10]. Therefore, as a point of the
curve Γ` tends to its infinite point, one has µ→∞,

λ = O(µ) = o(µ2),
1

4ω2
= λ+ µ2 ' µ2, 2ωµ = A ' 1,

λ

µ
=

1−A2

4ω2µ
' k, k ∈ {`− 1, `− 3, . . . ,−(`− 1)}.

But 1−A2

4ω2µ
= (1−A)(1+A)

2ωA ' 1−A
ω . The latter ratio should tend to a number k

as above. Therefore, as a point in Γ` tends to infinity, one of the following
asymptotics takes place:

A = 1 +mω + o(ω), m = −k ∈ {`− 1, `− 3, . . . ,−(`− 1)}.

The asymptotics corresponding to points with the maximal possible A is
given by m = `− 1. This proves (5.3). Hence, A(P`) < A 1

2
= 1 + (`− 1

2)ω,

whenever ω is small enough, by (5.3). The inclusion Λ`, 1
2
⊂ L` is proved. It

implies that all the constrictions in Λ`, 1
2

are positive, lie in L`, and hence,

are not ghost. The lemma is proved. 2

5.2 Model of Josephson junction with small ω as slow-fast
system

We study one-parameter subfamilies of vector fields (1.3) on T2 parametrized
by small ω as slow-fast families of dynamical systems, where ` = B

ω ≡ const
and A depends on ω. To do this, we recall the following results on topology
of the zero level curve of the θ-component in (1.3): the so-called slow curve

γ = γB,A := {f(θ, τ) = 0}, f(θ, τ) := cos θ +B +A cos τ.

Proposition 5.2 (see [43, proposition 2]). For every (A,B) ∈ R2
+ with

|1 − B| < A < 1 + B the curve γ is a regular strictly convex contractible
curve lying in the interior of the fundamental square [0, 2π]2 of the torus T2.
See Fig. 8a).
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Remark 5.3 The curve γ is always symmetric with respect to the horizon-
tal and vertical lines through the center of the latter square.

For completeness of presentation we give the proof of Proposition 5.2.
Proof of Proposition 5.2. Let 1 − B < A < 1 + B. Let us now show
that the curve γ does not intersect the boundary of the above fundamental
square. Indeed, on the boundary either cos θ = 1, or cos τ = 1. If cos θ = 1,
then f(θ, τ) = cos θ + B + A cos τ ≥ 1 + B − A > 0. If cos τ = 1, then
f(θ, τ) ≥ −1 + B + A > 0. Therefore, f(θ, τ) 6= 0 on the boundary of
the fundamental square, and γ lies in its interior. For the proof of strict
convexity it suffices to show that the value of the Hessian of the function f
on its skew gradient tangent to its level curves is positive on γ. That is,

∂2f

∂θ2

(
∂f

∂τ

)2

+
∂2f

∂τ2

(
∂f

∂θ

)2

− 2
∂2f

∂θ∂τ

(
∂f

∂τ

)(
∂f

∂θ

)
> 0 on γ. (5.4)

Substituting u := cos θ, v := cos τ to the latter left-hand side and divid-
ing it by A yields the following equivalent inequality:

−Au(1−v2)−v(1−u2) > 0, whenever u+B+Av = 0 and |u|, |v| ≤ 1. (5.5)

Substituting u = −B−Av to the left-hand side in (5.5) transforms it to the
polynomial

P (v) = ABv2 + v(A2 +B2 − 1) +AB.

One has P (v) > 0 for every v ∈ R, since its discriminant is negative, i.e.,
−2AB < A2 +B2−1 < 2AB. Indeed, the latter inequality can be rewritten
as |A − B| < 1 < A + B, which is equivalent to the system inequalities of
the proposition for positive A and B. The proposition is proved. 2

Proposition 5.4 In the case, when A,B > 0 and A = 1 − B, the curve γ
is regular, except for one singular point q = (π, 0) of type ”transversal dou-
ble self-intersection”. Its intersection with the interior of the fundamental
square [0, 2π]2 is a convex curve. In the case, when B > 0 and 0 < A < 1−B,
the curve γ is regular and consists of two non-contractible closed connected
components of homological type (0, 1) in the standard basis in H1(T2

θ,τ ). See
Fig. 8b),c).

Proof Consider the first the case: A = 1−B. Convexity is preserved under
passing to limit, as A > 1−B tends to 1−B. The singular point statement
and uniqueness of singular point follow by straightforward calculation, the
Implicit Function Theorem and Morse Lemma. In more detail, γ being a
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level curve of an analytic function f(θ, τ), its singular points (if any) are
the critical points of the function f contained in γ. The critical points are
those with cos θ, cos τ = ±1. The only critical point in γ is the one with
cos θ = −1, cos τ = 1, i.e., q = (π, 0). This is a Morse critical point with
index −1, i.e., the Hessian form of the function f at q has eigenvalues of

opposite signs: ∂2f
∂θ∂τ = 0, ∂2f

∂θ2
= 1, ∂2f

∂τ2
= −A < 0. Hence, it is a transversal

self-intersection singular point of the curve γ (Morse Lemma). See Fig. 8b).
As A and B vary, the topological type of the curve γ may change only

near those parameter values, for which γ is a critical level curve of the
function f(θ, τ). It follows from the above critical point description that
γ is a critical level curve, if and only if ±1 + B ± A = 0 for some of the
four possible sign choices. Therefore, the topological type is constant in the
domain {B > 0, 0 < A < 1 − B} in the parameter space. To find this
topological type, fix a point (B0, A0) ∈ R+ with A0 = 1 − B0. We show
that as A > A0 decreases and crosses the value A0, a connected contractible
curve γB0,A given by Proposition 5.2 is transformed to two disjoint curves
isotopic to the τ -circle. For A close to A0 the complement of each γB0,A to
a small disk U centered at the singular point q is a regular curve depending
analytically on the parameter A. It consists of two connected components
γB0,A;±(U) disjoint from the circle {θ = π} and projected diffeomorphically
to an interval (ε, 2π − ε) of the τ -circle; here ε = ε(U) is small. (The
projection interval is the same for both components, since the symmetries
θ 7→ −θ, τ 7→ −τ preserve each curve γB,A.) The curves γB0,A ∩ U form a
foliation in U by level curves of the function g(θ, τ) := − 1

cos τ (cos θ + B0)
with critical value A0 corresponding to a Morse critical point q of index 1.
The union of local branches of the singular curve γB0,A0 at q is invariant
under the above symmetries, and the local branches intersect transversally.
Therefore, they are transversal to the circles {θ = π}, {τ = 0}. For A > A0

close to A0 the curve γB0,A is strictly convex, and its intersection with U is
a union of two connected components separated by the circle {τ = 0}, by
Proposition 5.2. This implies that for A < A0 close to A0 the local level
curve γB0,A ∩ U consists of two components intersecting the circle {τ = 0},
diffeomorphically projected to an interval in the τ -circle and disjoint from
the circle {θ = π}. Adding the latter components to γB0,A;±(U) results
in two closed curves in T2 disjoint from the circle {θ = π} and projected
diffeomorphically onto the τ -circle. See Fig. 8c). Thus, they are isotopic to
the τ -circle. This proves the last statement of Proposition 5.4. 2

Consider family (1.3) with a fixed ` ∈ N and µ = A(ω)
2ω where

A(ω) = Aα(ω) = 1 + (`−α)ω+ o(ω), as ω → 0; α > 0 is a constant. (5.6)
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a) |1−B|<A<1+B                       b) A=1−B                             c) A<1−B
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Figure 8: Different topological types of the curve γB,A = {f(θ, τ) = 0} for
B,A > 0, A < 1 +B. We present its liftings to the universal covering R2

θ,τ .

Multiplying family (1.3) by ω yields a slow-fast family of dynamical systems{
θ̇t = fα(θ, τ ;ω)

τ̇t = ω,
t = ω−1τ, fα(θ, τ ;ω) = cos θ+`ω+Aα(ω) cos τ (5.7)

on T2 with ω → 0. Recall that the curve

γα(ω) := {fα(θ, τ ;ω) = 0} ⊂ T2 = R2
(θ,τ)/2πZ

is called the slow curve of family (5.7). Propositions 5.2 and 5.4 imply

Corollary 5.5 For every fixed `, α ∈ R+ with α 6= 2` for every ω small
enough dependently on ` and α

(i) if 0 < α < 2`, then the slow curve of system (5.7) is convex, regular,
contractible and lies in the interior of the fundamental square [0, 2π]2;

(ii) if α > 2`, then the slow curve is regular and consists of two non-
contractible closed connected components of homological type (0, 1).

Remark 5.6 Fix an arbitrary α > 0. As ω → 0, the slow curve tends to the
square with vertices (0, π), (π, 2π), (2π, π), (π, 0), whose sides are parallel
to the lines θ ± τ = const. The corresponding vector fields converge to a
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vector field with zero τ -component and whose θ-component has simple zeros
on the edges of the above square (with vertices deleted).

Below we deal with the liftings to R2 of vector fields (5.7) and their
phase portraits. The lifted fields will be denoted by the same symbol (5.7).
The slow curve γα = γα(ω) ⊂ T2 will be identified with its lifting γ0

α to
the square [0, 2π]2 ⊂ R2. Its other lifting, obtained from the latter one by
translation by the vector (2π, 0) will be denoted by γ1

α.

Definition 5.7 The interior component of the complement T2 \ γα is its
connected component containing the point (π, π). Its liftings to the squares
[0, 2π]2 and [2π, 4π] × [0, 2π] will be called the interior components of the
complements of the latter squares to the curves γ0

α and γ1
α respectively.

Fix constants h0, h1, h2 such that

3π

2
< h0 < h1 < h2 < 2π

For example, one can take, h0 = 6.5π
4 , h1 = 7π

4 , h2 = 15π
8 .

Proposition 5.8 For every ω > 0 small enough the restriction of the func-
tion fα(θ, τ) := fα(θ, τ ;ω) to the rectangle [0, 4π]× [0, 2π] is negative exactly
in the interior components of complements of the curves γjα, j = 0, 1, and
positive outside the closure of the latter components. The strip

Π := {h1 ≤ τ ≤ h2}

intersects the curve γ1
α by two disjoint graphs (called left and right)

L1,α := {θ = ψ1(τ)}, L2,α := {θ = ψ2(τ)}, τ ∈ [h1, h2], ψ1 < ψ2.

The latter graphs converge uniformly in the C1-norm to segments parallel to
the lines {τ = θ} and {τ = −θ} respectively, as ω → 0.

Proposition 5.8 follows from Remark 5.6.

Proposition 5.9 Let α > 0. Let I+ ⊂ R2 denote the horizontal segment
connecting the points (2π, h0) and (3π, h0). The intersection of the strip Π
with the orbit of the segment I+ by flow of vector field (5.7) is a flowbox
denoted by

Fα,+ = Fα,+(ω).
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It will be called a slow flowbox. Its flow lines are uniformly ω-close to
L1,α in the C1-norm. The intersections Fα,+ ∩{τ = h} with h ∈ [h1, h2] are
segments whose lengths are uniformly bounded (in h, ω) by an exponentially
small quantity exp(− c

ω ); c > 0 is independent on h and ω. See Fig. 9.

Proof The proposition follows from Proposition 5.8 and the classical theory
of slow-fast systems. See, e.g., [35, theorem 3 and proposition 4]. 2
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Figure 9: The slow flowboxes Fα,± (black) and orbits of points Cj .

Remark 5.10 The phase-portrait of vector field (5.7) is symmetric with
respect to the points

C0 := (π, π), C1 := (2π, π), C2 := (3π, π);

the symmetry changes the sign (i.e., orientation) of the field. Let I− denote
the horizontal segment symmetric to I+ with respect to the point C1, see Fig.
9. The above construction applied to the inverse vector field, the segment
I− and the heights h−j := 2π − hj yields the slow flowbox

Fα,− symmetric to Fα,+ with respect to the point C1.

5.3 The Comparison Lemma

Lemma 5.11 (Comparison Lemma). Let 0 < α1 < α2. Consider two
families (5.7)j, j = 1, 2, of dynamical systems (5.7) with A = Aαj (ω) satis-
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fying (5.6). For every ω > 0 small enough the corresponding flowboxes Fα1+

and Fα2,+ are disjoint and Fα2,+ lies on the left from the flowbox Fα1,+.
Similarly, the flowboxes Fα1− and Fα2,− are disjoint and Fα2,− lies on the
right from the flowbox Fα1,−.

It suffices to prove the statement of the lemma for the flowboxes Fαj ,+, by
symmetry (Remark 5.10). Here and below we use the next proposition.

Proposition 5.12 For every ω small enough the following statements hold.
The vectors of the fields (5.7)1 and (5.7)2 form a positively oriented basis at
each point of the union of two strips

W := {0 ≤ τ < π

2
} ∪ {3π

2
< τ ≤ 2π}.

At each point in the ω
8 -neighborhood of the flowbox Fα1,+ the angles between

the vectors of the fields are greater than σ := arctan(2 + b)− arctan 2. The
image of the flowbox Fα1,+ under the unit time flow map of the field (5.7)2

is disjoint from Fα1,+, and its intersection with the strip Π lies on the left
from Fα1,+.

Proof The vectors of the fields (5.7)1 and (5.7)2 have the same τ -component
equal to ω. The difference of their θ-components is fα1(θ, τ ;ω)−fα2(θ, τ ;ω) =
(α2 − α1)ω(1 + o(1)) cos τ > 0 on W , whenever ω is small enough, since
cos τ > 0 on W . Therefore, the vectors of the field (5.7)2 are directed to
the left from the vectors of the field (5.7)1 on W , that is, the orientation
statement of the proposition holds. For every ω small enough one has

fα1(θ, τ ;ω)− fα2(θ, τ ;ω) > bω, b :=
cosh0

2
(α2 − α1), if τ ∈ [h0, h2], (5.8)

by the above asymptotics, and also

ω

4
< fα1(θ, τ ;ω) < 2ω on the

ω

8
− neighborhood of Fα1,+. (5.9)

Indeed, the flow lines of the field (5.7)1 in Fα1,+ C1-converge to lines τ =
θ + const (Propositions 5.8 and 5.9), hence fα1(θ, τ ;ω) ' ω on Fα1,+. This
together with (5.6), (5.7) and the obvious inequality | cos′ x| = | sinx| ≤ 1
implies (5.9). The angle lower bound statement of Proposition 5.12 follows
from (5.8) and (5.9). Its last statement on image of the flowbox Fα1,+

under the unit time flow map of the field (5.7)2 follows from the above angle
bound and the fact that the vectors of the field (5.7)2 have length no less
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than ω, while the width of the flowbox Fα1,+ is exponentially small (the last
statement of Proposition 5.9). Proposition 5.12 is proved. 2

Proof of the Comparison Lemma.
Claim. For every ω > 0 small enough for every p ∈W the positive flow

line of the field (5.7)2 through p in W lies on the left from the corresponding
flow line of the field (5.7)1.

The claim follows from the orientation statement of Proposition 5.12.
Fix an intermediate number h′1 ∈ (h0, h1). Consider the flowbox F ′α1,+

constructed as in Proposition 5.9 with Π replaced by Π′ := {h′1 ≤ τ ≤ h2}.
One obviously has Π ∩ F ′α1,+ = Fα1,+. The lengths of horizontal sections of

the flowbox F ′α1,+ are uniformly bounded by a quantity exp(− d
ω ), with d > 0

independent on ω (Proposition 5.9). Take the lower horizontal base of the
flowbox F ′α1,+, which is a segment in the line {τ = h′1} with length bounded
by the above exponent. Let q1 := (χ1, h

′
1) denote its right boundary point,

which lies in the (5.7)1-orbit of the end (3π, h0) of the segment I+.
Consider the analogous flowbox F ′α2,+ and point q2 := (χ2, h

′
1) for the

field (5.7)2. One has χ2 < χ1, by the claim. First suppose that q2 /∈ F ′α1,+.
Then the lower base of the flowbox F ′α2,+ is disjoint from the flowbox F ′α1,+

and lies on its left. This together with the above claim implies that the
flowboxes are disjoint. In the case, when q2 ∈ F ′α1,+, the image q′2 of the
point q2 under the time 1 flow map of the field (5.7)2 would lie strictly to
the left from the flowbox F ′α1,+, by Proposition 5.12. Therefore, the positive
orbit of the point q′2 also lies on its left, by the claim. Note that

τ(q′2) = τ(q2) + ω = h′1 + ω < h1,

whenever ω is small enough. Therefore, the above positive orbit intersects
the strip Π = {h1 ≤ τ ≤ h2} by an arc of curve going from its lower base
to its upper base and lying on the left from the flowbox Fα1,+. The latter
curve bounds Fα2,+ from the right, by construction. Hence, Fα2,+ is disjoint
from Fα1,+ and lies on its left. The Comparison Lemma is proved. 2

5.4 The Monotonicity Lemma

Consider two families of vector fields (5.7)j , j = 1, 2 (treated as fields lifted
to R2), as in the Comparison Lemma, corresponding to α1 > 0 and α2 > α1.
We study their Poincaré maps P τ1,τ2j : the time τ2−τ1

ω flow maps from the
line {τ = τ1} to the line {τ = τ2} considered as functions of the coordinate
θ. For simplicity, we denote

Pj(θ) := P 0,2π
j (θ).
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Lemma 5.13 (Monotonicity Lemma) For every ω > 0 small enough

P2(θ) < P1(θ) for every θ ∈ R. (5.10)

Lemma 5.13 is proved below. In its proof we use the following proposition.

Proposition 5.14 Let C0, C1, C2, h−k , Fαj ,− be the same, as in Remark
5.10. The intersection of the positive orbit of the segment [C1, C2] under the
flow of the field (5.7)j with the strip Π = {h1 ≤ τ ≤ h2} lies in the flowbox
Fαj ,+. The intersection of the negative orbit of the segment [C0, C1] with the
strip Π− := {h−2 ≤ τ ≤ h

−
1 } lies in Fαj ,−. See Fig. 9.

Proof It suffices to prove the first statement of the proposition, due to
symmetry (Remark 5.10). The segment I+ defining the flowbox Fαj ,+ is
horizontal and is obtained from the segment [C1, C2] by vertical shift up.
The shift length is fixed and equal to h0 − π > 0. Let Jl and Jr denote
respectively the segment connecting C1 (C2) to the left (respectively, right)
endpoint of the segment I+. One has fαj > 0 on Jl and fαj < 0 on Jr, which
follows from Remark 5.6 and Proposition 5.8. Thus, on the segment Jl (Jr)
the vectors of the field (5.7)j are directed to the right (respectively, left).
This implies that the time h0−π

ω flow map of the field sends the segment
[C1, C2] strictly inside the segment I+. This together with the definition of
the flowbox Fαj ,ω implies the first statement of the proposition. 2
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Figure 10: Orbits of segments [C0, C1], [C1, C2] and points aj±, bj±.
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Proof of the Monotonicity Lemma. Set h+
j := hj . One has

Pj = P
h+1 ,2π
j ◦ P̃j ◦ P

0,h−1
j , P̃j := P

h−1 ,h
+
1

j . (5.11)

Claim 1. Whenever ω is small enough, one has P
0,h−1
2 (θ) < P

0,h−1
1 (θ),

P
h+1 ,2π
2 (θ) < P

h+1 ,2π
1 (θ) for every θ ∈ R.

Proof Vector fields (5.7)2 and (5.7)1 have the same τ -components. On
the set {τ ∈ [0, h−1 ] ∪ [h+

1 , 2π]} the θ-component of the former vector field
is less than that of the latter, since cos τ > 0 on this set. This implies the
inequalities of the claim. 2

Taking into account Claim 1 and (5.11), for the proof of the Monotonicity
Lemma it suffices to prove the above inequality for the middle Poincaré maps
in (5.11) for all ω small enough:

P̃2(θ) < P̃1(θ) for every θ ∈ R. (5.12)

Consider the horizontal lines L± := {τ = h±1 }, which are the cross-sections
for the Poincaré maps in question. We identify each their point with its θ-
coordinate. For every j = 1, 2 let bj± denote the point of intersection of the
line L± with the orbit of vector field (5.7)j through the point C1 = (2π, π).
Let aj± denote the analogous intersection points with the orbit through the
point C0 = (π, π). See Fig. 10.

Claim 2. One has

a1− < b1− < a2− < b2− < a1− + 2π,

a2+ < a1+ < b2+ < a2+ + 2π < b1+ < a1+ + 2π. (5.13)

Proof The points aj− and bj− are the images of the points C0 and C1

respectively under the Poincaré map P
π,h−1
j , and θ(C0) < θ(C1), by defini-

tion. Hence, aj− < bj−. The segment [aj−, bj−] lies in the flowbox Fαj ,−,
by Proposition 5.14. The flowbox Fα1,− is disjoint from the flowbox Fα2,−
and lies on the left from it, by the Comparison Lemma. Therefore, the same
is true for the corresponding segments [a1−, b1−] and [a2−, b2−]. The four
endpoints of the latter segments are O(ω)-close to each other. Indeed the
flowboxes in question are O(ω)-close to the right arcs of the corresponding
intersections γ0

αj ∩ {h
−
2 ≤ τ ≤ h

−
1 } (Proposition 5.9). The latter arcs are ω-

close, which follows from the Implicit Function Theorem for the equations
defining the curves γ0

αj . This together with the above discussion proves
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O(ω)-closeness of the four points aj− and bj−, j = 1, 2. This proves the first
part of inequality (5.13). The proof of its second part is analogous. 2

Proof of inequality (5.12). It suffices to prove it on the segment K :=
[a1−, a1− + 2π] ⊂ L−, by periodicity. The segment K is splitted into 4
subsegments by points aj−, bj−. We check inequality (5.12) on each splitting
subsegment.

1) The segment [b2−, a1− + 2π]. One has

P̃1([b2−, a1− + 2π]) ⊂ P̃1([b1−, a1− + 2π]) = [b1+, a1+ + 2π],

P̃2([b2−, a1− + 2π]) ⊂ P̃2([b2−, a2− + 2π]) = [b2+, a2+ + 2π],

by (5.13). The latter segment-image in the right-hand side is disjoint from
the former one and lies on the left from it, by (5.13). This proves inequality
(5.12) on the segment [b2−, a1− + 2π].

2) The segment [a2−, b2−]. One has

P̃1([a2−, b2−]) ⊂ P̃1([b1−, a1− + 2π]) = [b1+, a1+ + 2π],

P̃2([a2−, b2−]) = [a2+, b2+], b2+ < b1+,

by (5.13). This proves inequality (5.12) on [a2−, b2−].
3) The segment [b1−, a2−]. One has

P̃1([b1−, a2−]) ⊂ P̃1([b1−, a1− + 2π]) = [b1+, a1+ + 2π],

P̃2([b1−, a2−]) lies on the left from the point a2+ = P̃2(a2−) < b1+,

by (5.13). This proves inequality (5.12) on [b1−, a2−].
4) The segment [a1−, b1−]. One has

P̃1([a1−, b1−]) = [a1+, b1+],

P̃2([a1−, b1−]) lies on the left from the point a2+ = P̃2(a2−) < a1+,

since b1− < a2−, see (5.13). This proves inequality (5.12) on [a1−, b1−].
Inequality (5.12) is proved on all of the segment K, and hence, on the whole
horizontal line L−. 2

The statement of the Monotonicity Lemma follows from (5.11), Claim 1
and inequality (5.12). 2
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5.5 Absence of constrictions with small ordinates

Here we prove the following theorem and then Theorem 1.12.

Theorem 5.15 For every ` ∈ N, β > 0 and every ω > 0 small enough
dependently on ` and β there are no constrictions (B,A) with B = `ω and
A ∈ [1− `ω, 1 + (`− β)ω].

Remark 5.16 Absence of constrictions with B−1 < A < B+1, B = `ω, for
small ω was numerically observed in [43, fig. 2, 3]. Theorem 5.15 confirms
a part of this experimental result theorerically.

Proof of Theorem 5.15. It suffices to prove the statement of the theorem
for arbitrarily small β, e.g., β < 1

2 . Fix an arbitrary α ∈ (0, β), set B = `ω,
Aα = 1 + (` − α)ω. The family of systems (5.7) defined by this ordinate
family Aα will be denoted by (5.7)α.

Suppose the contrary: there exists a sequence ωk → 0 such that there
exists a sequence of constrictions (Bk, Aαk) with

Bk = `ωk, Aαk = 1 + (`− αk)ωk, β ≤ lim inf αk ≤ lim supαk ≤ 2`.

Passing to a subsequence, without loss of generality we can and will consider
that αk converge to some α∗ ≥ β. Thus, the sequence of dynamical systems
corresponding to the above (Bk, Aαk) can be embedded into a continuous
family of systems (5.7) with α replaced by α∗. The latter new family of
systems (5.7) will be denoted by (5.7)α∗ .

Let P and P ∗ denote respectively the Poincaré maps P 0,2π of the line
{τ = 0} to the line {τ = 2π} defined by vector fields (5.7)α and (5.7)α∗ .
For every ω small enough the point (B, 1 + (`− α)ω) lies in the phase-lock
area L`, by Lemma 5.1 and since α < β < 1

2 . Therefore, the corresponding
system (5.7)α has a periodic orbit with rotation number `. This means that
there exists a point a in the θ-axis with P (a) = a+ 2π`. On the other hand,

P ∗ < P, P ∗(a) < P (a) = a+ 2π`, whenever ω is small enough,

by the Monotonicity Lemma and since α∗ ≥ β > α. Therefore, the rotation
number of system (5.7)α∗ is no greater than ` and a cannot be its periodic
point with rotation number at least ` for small ω. In particular, the latter
statements holds for the systems corresponding to the above constrictions
(Bk, Aαk) ∈ Λ`. On the other hand, the dynamical system (1.3) correspond-
ing to a constriction lying in Λ` should have rotation number at least ` and
all its orbits should be periodic with rotation number at least `, see [28,
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theorem 1.2 and proposition 2.2]. The contradiction thus obtained proves
Theorem 5.15. 2

Proof of Theorem 1.12. Fix an ` ∈ N. For every ω > 0 small enough
all the constrictions lying in Λ` with ordinates A ≥ A 1

2
= 1 + (` − 1

2)ω

are positive and lie in the phase-lock area L` (Lemma 5.1), and there are
no constrictions in Λ` with smaller positive ordinates (Theorem 5.15 and
statement (5.1)). Theorem 1.12 is proved. 2

5.6 Proof of Theorems 1.4 and 1.7

Let, to the contrary, there exist a ghost constriction (B,A;ω). Then ` = B
ω ∈

Z \ {0}, and without loss of generality we can and will consider that ` ≥ 1
(see the beginning of Section 5). Let C denote the connected component
of the submanifold Constr` ⊂ (R2

+)µ,η containing the corresponding point
( A2ω , ω

−1). The restriction to C of the function ω = η−1 is unbounded from
below, while all the constrictions in C are ghost (Theorem 1.11). Thus, there
exist ghost constrictions with given ` and arbitrarily small ω. This yields
a contradiction to Theorem 1.12 and proves absence of ghost constrictions.
The proof of Theorems 1.4 and 1.7 is complete.

6 Some applications and open problems

6.1 Geometry of phase-lock areas

For every ` ∈ Z6=0 let P` = (`ω,A(Pl)) ⊂ R2
B,A denote the higher generalized

simple intersection lying in Λ` := {B = `ω}, see Subsection 5.1. Recall that

S` := Λ` ∩ {A ≥ A(P`)} ⊂ L+
` := L` ∩ {A > 0}, P` ∈ ∂L+

` .

The Connectivity Conjecture, see [29, conjecture 1.14], states that
the intersection L+

` ∩ Λ` coincides with the ray S`, and thus, is connected.
Theorem 1.7 implies the following corollary

Corollary 6.1 Let, to the contrary to the above conjecture, the intersection
LΛ` := L+

` ∩ Λ` ∩ {0 < A < A(P`)} be non-empty. Then its lowest point
(i.e., its point with minimal ordinate A) is a generalized simple intersection.

Proof The lowest point P ∈ LΛ` is well-defined, has positive ordinate and
lies in ∂L`, since the growth point in L`, i.e., its intersection point with the
abscissa axis, has abscissa

√
`2ω2 + 1 > `ω. Hence, it is either a constriction,
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or a generalized simple intersection, by definition. If P were a constriction,
it would be negative, since its lower adjacent interval Λ` ∩ {0 < A < A(P )}
lies outside the phase-lock area L`. But there are no negative constrictions,
by Theorem 1.7. Therefore, P is a generalized simple intersection. 2

Remark 6.2 It is known that the generalized simple intersections (`ω,A)
correspond to the parameters (λ, µ), µ = A

2ω , λ = 1
4ω2 − µ2, of those special

double confluent Heun equations (1.8) that have polynomial solutions. The
set of the latter parameters (λ, µ) is a remarkable algebraic curve: the so-
called spectral curve Γ` ⊂ R2

(λ,µ) introduced in [19] and studied in [19, 30].

It is the zero locus of the polynomial from [19, formula (21)], which is the
determinant of a three-diagonal matrix formed by diagonal terms of type
λ + const and linear functions in µ at off-diagonal places. See also [30,
formula (1.4)]. (The complexification of the spectral curve is known to be
irreducible, see [30, theorem 1.3].) For every given ω > 0 the curve Γ`
contains at most ` points (λ, µ) corresponding to the given ω with µ > 0;
the point with the biggest µ corresponds to the higher generalized simple
intersection P`. This follows from Bézout Theorem and the fact that the
spectral curve Γ` is the zero locus of a polynomial of degree ` in (λ, µ2), see
[19, p. 937].

Corollary 6.1 and the above remark reduce the Connectivity Conjecture to
the following equivalent, algebro-geometric conjecture.

Conjecture 6.3 For every ω > 0 the above real spectral curve Γ` contains
a unique point (λ, µ) with λ = 1

4ω2 − µ2 (up to change of sign at µ) for
which the corresponding rotation number ρ = ρ(`ω, 2µω) equals `. (The
point (B,A) = (`ω, 2µω) coincides with P`, see the above remark.)

Theorem 6.4 For every ` ∈ Z6=0 and every positive ω < 1
|`| the Connectivity

Conjecture holds.

Proof Let, say, ` > 0, and let 0 < ω < 1
` . Then for every r ∈ N, 0 < r < `,

the boundary ∂Lr intersects Λ+
` := Λ` ∩{A > 0} in at least two points with

positive ordinates. Indeed, the abscissa
√
r2ω2 + 1 of the growth point of

the phase-lock area Lr is greater than `ω < 1. On the other hand, each
boundary curve of the area Lr contains constrictions, which lie in the axis
Λr, and hence, on the left from the axis Λ`. Hence, each boundary curve
intersects Λ+

` in at least one point (this statement is given by [30, theorem
1.18] for all ω small enough). It cannot be a common intersection point
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for both boundary curves, i.e., it cannot be a constriction, since r = ρ < `
and by Theorem 1.4. Therefore, the intersection ∂Lr ∩Λ+

` contains at least
two distinct points. Analogously, ∂L0 intersects Λ+

` in at least one point,
since the point (1, 0) ∈ ∂L0 lies on the right from the point (`ω, 0) ∈ Λ`. If
0 ≤ r < ` and r ≡ `(mod 2), then each point of intersection ∂Lr ∩ Λ+

` is
a generalized simple intersection. Taking these intersections for all latter r
yields ` − 1 distinct generalized simple intersections lying in Λ+

` . But the
total number of generalized simple intersections in Λ+

` is no greater than
`, see the above remark. Therefore, at most one of them may correspond
to the rotation number `, and hence, is reduced to the known generalized
simple intersection P` with ρ = `. In particular, there are no generalized
simple intersections in Λ` with 0 < A < A(P`). This together with Corollary
6.1 implies that L+

` ∩ Λ` = S` and proves the Connectivity Conjecture for
0 < ω < 1

|`| . 2

Problem 6.5 [13, subsection 5.8] What is the asymptotic behavior of the
phase-lock area portrait in family (1.2), as ω → 0?

This problem is known and motivated by physical applications. V.M.Buchstaber,
S.I.Tertychnyi and later by D.A.Filimonov, V.A.Kleptsyn, I.V.Schurov per-
formed numerical experiences studying limit behavior of the phase-lock area
after appropriate rescaling of the variables (B,A). Their experiences have
shown that the interiors of the phase-lock areas tend to open subsets (the
so-called limit rescaled phase-lock areas) whose connected components form
a partition of the plane. In some planar region, the latter partition looks
like a chess table turned by π

4 . It would be interesting to prove this mathe-
matically and to find the boundaries of the limit phase-lock areas.

Some results on smallness of gaps between rescaled phase-lock areas for
small ω were obtained in [43].

To our opinion, methods elaborated in [43] and in the present paper
could be applied to study Problem 6.5.

6.2 The dynamical isomonodromic foliation

Let us consider family (1.3) modeling overdamped Josephson junction as a
three-dimensional family, with variable frequency ω. Its three-dimensional
phase-lock areas in R3

B,A,ω are defined in the same way, as in Definition
1.1. Each three-dimensional phase-lock area is fibered by two-dimensional
phase-lock areas in R2

B,A corresponding to different fixed values of ω.
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Linear systems (1.6) corresponding to (1.3) form a transversal hypersur-
face to the isomonodromic foliation of the 4-dimensional manifold JN (R+)
(Lemma 3.18). It appears that there is another four-dimensional manifold
with the latter property that has the following advantage: it consists of lin-
ear systems on C coming from a family of dynamical systems on 2-torus.
Namely, consider the following four-dimensional family of dynamical systems
on T2 containing (1.3):

dθ

dτ
= ν+a cos θ+s cos τ +ψ cos(θ−τ); ν, a, ψ ∈ R, s > 0, (a, ψ) 6= (0, 0).

(6.1)
The variable changes Φ = eiθ, z = eiτ transform (6.1) to the Riccati equation

dΦ

dz
=

1

z2

(
s

2
Φ +

ψ

2
Φ2

)
+

1

z

(
νΦ +

a

2
(Φ2 + 1)

)
+

(
s

2
Φ +

ψ

2

)
.

A function Φ(z) is a solution of the latter Riccati equation, if and only if

Φ(z) = Y2(z)
Y1(z) , where Y = (Y1, Y2)(z) is a solution of the linear system

Y ′ =

(
−sK

z2
+

R

z
+ sN

)
Y, (6.2)

K =

(
1
2 χ
0 0

)
, R =

(
−b −a

2
a
2 χa

)
, N =

(
−1

2 0
χ 0

)
;

χ =
ψ

2s
, b = ν − ψ

2s
a = ν − χa.

The residue matrix of the formal normal forms of system (6.2) at 0 and at
∞ is the same and equal to

diag(−`, 0), ` := b− χa = ν − ψa

2s
. (6.3)

Theorem 6.6 The four-dimensional family of linear systems (6.2) is ana-
lytically foliated by one-dimensional isomonodromic families defined by the
following non-autonomous system of differential equations:

χ′s = a−2χ(`+2χa)
2s

a′s = −2sχ+ a
s (`+ 2χa)

`′s = 0

. (6.4)

For every ` ∈ R the function

w(s) :=
a(s)

2sχ(s)
=
a(s)

ψ(s)
(6.5)

satisfies Painlevé 3 equation (3.16) along solutions of (6.4).
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Proof The composition of variable rescalings z = s−1ζ and gauge trans-
formations

Y =

(
1 0
−2χ 1

)
Ỹ (6.6)

sends family (6.2) to the following family of linear systems:

Y ′ζ =

(
− t

ζ2
K +

R

z
+ diag(−1

2
, 0)

)
Y, (6.7)

t = s2, K =

(
1
2 − 2χ2 χ

χ(1− 4χ2) 2χ2

)
, R =

(
−` −a

2
−2χ(`+ χa) + a

2 0

)
Let J denote the space of Jimbo type systems with real matrices. Systems
(6.7) lie in J , since the formal normal forms of a system (6.2) at 0, ∞
have common residue matrix diag(−`, 0). Every system L0 of type (6.7)
with χ 6= 0 has a neighborhood W = W (L) ⊂ J where family (6.7) forms
a hypersurface X ⊂ W so that each system L ∈ W can be projected to a
system L∗ ∈ X by a diagonal gauge transformation (Y1, Y2) 7→ (Y1, λY2), λ =
λ(L). Therefore, the Jimbo isomonodromic foliation of the neighborhood W
can be projected to an isomonodromic foliation on X along the fibration by
local orbits of diagonal gauge transformation group, as in Remark 3.12.
The vector field tangent to thus obtained isomonodromic foliation on X is
given by projection to TX of the vectors of field (3.7) at points in X . A
direct calculation of the latter projected field yields (6.4). Painlevé 3 (3.16)
equation on w(s) along isomonodromic families thus constructed follows
from Theorem 3.9, since diagonal gauge transformations do not change the
ratio R12

K12
. Equation (3.16) can be also deduced directly from (6.4). 2

The foliation from Theorem 6.6 given by (6.4) induces a one-dimensional
foliation in the 4-dimensional space of dynamical systems (6.1) given by
the following non-autonomous system of equations obtained from (6.4) by
change of the variable χ to ψ = 2sχ:{

ψ′s = a+ (1− `)ψs −
aψ2

s2

a′s = −ψ + `as + ψa2

s2
.

(6.8)

The latter foliation of family (6.1) given by (6.8) will be denoted by G and
called the dynamical isomonodromic foliation.

Lemma 6.7 The conjugacy class of flow (6.1) under diffeomorphisms T2 →
T2 isotopic to identity, its rotation number and `, see (6.3), are constant
on leaves of the dynamical isomonodromic foliation G. The hypersurface of
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systems (1.3) modeling Josephson junction is transversal to G. The function

w(s) = a(s)
ψ(s) , see (6.5), satisfies Painlevé 3 equation (3.16) along its leaves.

A point (s, ψ, a, `) corresponds to a system (1.3), if and only if ψ = 0; this
holds if and only if the function w has pole of order 1 at s with residue 1.

Proof The projectivized monodromy of linear system (6.2) is the complex-
ification of the Poincaré map of the corresponding dynamical system (6.1).
Therefore, constance of its conjugacy class along leaves implies constance of
conjugacy class of the Poincaré map and hence, of the flow and of its rotation
number; ` = const, by Theorem 6.6. Family of systems (1.3) coincides with
the hypersurface {ψ = 0}∩{a > 0} in the parameter space. It is transversal
to the vector field (6.8), since ψ′ = a > 0 at all its points. The charac-
terization of systems (1.3) in terms of poles follows from construction and
Lemma 3.17 and, on the other hand, immediately from (6.8): if ψ(s0) = 0,
then ψ(s) ' a(s0)(s− s0), w(s) = a

ψ(s) '
1

s−s0 , as s→ s0, and vice versa. 2

Problem 6.8 Study the Poincaré map of the dynamical isomonodromic
foliation G, see (6.8), acting on the transversal hypersurface given by family
of systems (1.3). The Poincaré map sends the intersection of its definition
domain with each three-dimensional phase-lock area in family (1.3) to the
same phase-lock area, by constance of the rotation number along leaves.
Study the action of the Poincaré map of the foliation G given by (6.8) on
the three-dimensional phase-lock area portrait of family (1.3).

Remark 6.9 The above Poincaré map (where it is defined) can be viewed
as the suspension over the map sending a given simple pole s0 > 0 with
residue 1 of solution w(s) of Painlevé 3 equation (3.16) to its next pole
s1 > s0 of the same type (if any). Many solutions of (3.16) have an infinite
lattice of simple poles with residue 1 converging to +∞. Our Painlevé 3
equations (3.16) admit one-dimensional family of Bessel type solutions of
(3.16), see [24], whose poles are zeros of solutions of Bessel equation and are
known to form an infinite lattice. Victor Novokshenov’s recent numerical
experience has shown that their small deformations also have an infinite
lattice of poles. Few solutions, e.g., the tronquée solutions [48], are bounded
on some semi-interval [C,+∞), and hence, do not have poles there.

Problem 6.10 Describe those parameter values of family (1.3) for which
the corresponding solution w(s) of (3.16) is tronquée. Is it true that this
holds for some special points of boundaries of the phase-lock areas?
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Problem 6.11 Study geometry of phase-lock areas6 in four-dimensional
family (6.1) of dynamical systems on T2. Study special points of bound-
aries of the phase-lock areas: analogues of growth points, constrictions and
generalized simple intersections.

Let Σ denote the subfamily in (6.1) consisting of dynamical systems with
trivial Poincaré map. The value ` = ν − ψa

2s corresponding to a system in
Σ should be integer, as in Proposition 4.6, and its rotation number ρ is
also integer. For every `, ρ ∈ Z let Σ`,ρ ⊂ Σ denote the subset consisting of
systems with given ` and ρ. Those systems (1.3) with given ` that correspond
to constrictions are contained in Σ`,`, by Theorem 1.4.

Problem 6.12 Is it true that systems (1.3) with given ` corresponding to
constrictions lie in one connected component of the set Σ`,`?

To our opinion, a progress in studying the above problems would have
applications to problems on geometry of phase-lock areas, for example, to
problems discussed in the previous subsection.

Studying Conjecture 6.3 and Problems 6.8, 6.11, 6.12 is a work in progress.
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