Random Matrices
and the Enumeration of Maps
Alice Guionnet

CNRS, Ecole Normale Sup érieure de Lyon,
Unit € de Math ématiques Pures et Appliqu ées,
46, all ée d’Italie, 69364 Lyon Cedex 07, France

ICM, August, 25 2006

Based on join works with G. Ben Arous, E. Maurel-Segala and O. Zeitouni



Random Matrices and the enumeration of maps
Three parts

e Combinatorics — We shall describe what are maps and the problem of
enumerating them.

eRandom Matrices — For more than thirty years, random matrices have
been used to model diverse physical systems (String theory, Quantum
field theory, Statistical models on random graphs etc). We shall relate
(rigorously) the enumeration of maps and random matrices.

e Probability — Enumerating maps thus becomes a question about
estimating matrix integrals. We shall describe the few models which were
solved (in particular by large deviation techniques).



A map is a connected graph which is embedded into a surface in such a
way that edges do not cross and faces (obtained by cutting the surface
along the edges) are homeomorphic to a disk.

The genus of the map is the genus of the surface in which it is embedded.

2 — 2g={ vertices
+ f faces
- #f edges. !

2-2g =243 -3=2
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A map is a connected graph which is embedded into a surface in such a
way that edges do not cross and faces (obtained by cutting the surface
along the edges) are homeomorphic to a disk.

The genus of the map is the genus of the surface in which it is embedded.

2 — 2g={ vertices
+ f faces
- #f edges.

2-2g =241 -3=0

Proposition [Zvonkin,Edmonds,Heffter,Hamilton| Any given
cyclic order at the ends of edges of a graph around each vertex
uniquely determines the embedding of the graph into a surface,
1.e a map.



Problem :

Count the number M ((n,d); g) of maps with genus ¢g and n vertices
of valence d.
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Problem :

Count the number M ((n,d); g) of maps with genus ¢g and n vertices
of valence d.

Example:
g =2y,
n =4,
d = 3.

The counting is done up to homeomorphisms.



Dual Problem :

Count the number M ((n,d); g) of ways to cover a surface with genus
g with n polygons of degree d.




Tutte (60’s): count rooted planar maps.
A root= A distinguished oriented edge.

Prescribing a root reduces the number of symmetries;

Unrooted map Rooted map L abeled map

A rooted map with n edges has (2n — 1)! possible labellings of its
half-edges. A map M with n edges has 2n/fAutomorphism(M ) possible
roots.



Theorem (Tutte)

Mioot((n,3);0) = #{rooted triangulations of the sphere with n triangles}
n!(2n + 2)!
Idea of the proof:

Surgery on maps =Induction relations on number of maps

Myoot((n,3);0) :iH: { \/j \é Yj}
=4 Y Y Y
— MI’OOt((n_27 3)? (17 4)5 0>+2Mr00t(<n_17 3)7 (17 1)5 0)
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More complicated problems

More general maps — Find the number of rooted maps with genus g and

n, vertices of degree dy, ..., n, vertices of degree d,,.
Example

9=70,

p =2,

ny = 2, d1 — 3,

n2:2,d2:4
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More complicated problems

Colored maps — What if the half-edges are colored 7 We replace a vertex
with valence d by a vertex with colored half-edges and require that gluing
only holds between half-edges of the same color.
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Colored maps: Example of the Ising model on random graphs

Count the number of maps with genus g, n vertices of valence 4 either
blue or red such that the total number of red-blue gluings is equal to m.

Ising model in Z?: count the number of configurations of spins
(0i)1<i<n € {—1,4+1}" in a box of size v/n X y/n in Z* with m nearest
neighbours of different signs.

Difference: sum over configurations and underlying graphs.
Map

drawn

with

g=1

#\ Ising model on the lattice Ising model on random graphs
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Recently, combinatorial methods have been developped to tackle some of
these challenges (cf Bousquet-M élou, Schaeffer etc). However, these
problems have been studied in physics for more than thirty years by using
matrix integrals/matrix models.

't Hooft noticed in 1974 that ma-
trix integrals are generating func-

tions for the enumeration of maps.

We restrict ourselves here to Gaussian matrices from the GUE.
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Combinatorial interpretations of Gaussian moments : Feynmann diagrams

Wick formula: If (G1,--- ,Gey,) is a centered Gaussian vector,
E[G1 Gy Gap] = > ][ ElG,, G,
1331<§2;<.3ng2n ]:1

Example: If for all 7, G; = G follow the standard Gaussian distribution,

~

{ number of rooted
E[G""] =4 maps with one vertex = 1
with valence 2n }
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The Gaussian Unitary Ensemble (GUE)

Let Hy = {A c MNxN<C); A= A*} The law pn of the GUE is the
probability measure on H

]_ N 2
dun(A) = Ee—ﬂ“ JdA .

In other words, A;, = Ag for1 <k <1< N and

1

(gkt +igr1) for k<1, Agr = N7 2ggy

N[

Agr = (2N)™

where the (ggi, Gri, k < 1) are i.i.d standard Gaussian variables;

P(dgr, dgra, k < 1) = H e—%(gkzﬂdgkl H 6—%(§kl)2d§kl.

27 ) V7
(27) 1<k<I<N 1<k<I<N
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Combinatorial interpretations of Gaussian Matrix moments ; one matrix

Fact: Forallp € N* alln € N,

/ (Nt (A7) dpy(4) = 3~ G(p,n, F)

5 n—
F>0 N

G(p,n, F') = {Union of labeled maps with F' faces and

n vertices of degree p }.

Recall that a connected graph can be embedded into a surface with Euler
characteristic

X = 2 — 2g = fvertices+ fifaces — fedges = n + F' — %
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Application of [ (Ntx(47))" djun(4) = 3 sy —mrtrs Glp.n. F).
Wigner (1958) already noticed that,

. 1 p 0 if p is odd,
lim —t(AP)dun(A) = G(p, 1,5 +1) =
N3oo | N 2 Cp  otherwise,

where Cg 1s the

Catalan number, i.e.
the number of rooted

planar (¢ = 0) maps — ﬂ
with one vertex of
valence p.

(Here, p =8, F = 5)

G(p,1,5 +1) = [ 2Pdo(x), where o is the semi-circular law.
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Combinatorial interpretations of Gaussian Matrix moments ; several matrices

Let m € N. To any monomial ¢(X1, -+, X)) =X, - X
associate (bijectively) a star of type g =

ipy WE

oriented vertex with half-
edges of color ¢1, 19, ...7p,
ordered clockwise, the first

half-edge being marked.
Here
Q(X) = X12X22X14X22.
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Combinatorial interpretations of Gaussian Matrix moments ; several matrices

Let m € N. To any monomial ¢( X1, , X,,) = X;, - X; , we

associate (bijectively) a star of type g =

oriented vertex with half-
edges of color ¢1, 19, ...7p,

ordered clockwise, the first

half-edge being marked.
Here
Q(X) = X12X22X14X22.

Fact: For any monomial ¢, all n € N,

/(Ntr(Q(Alv o 7Am>>>n d:uN(A1> S d:uN(Am> — Z N%];n_FGC(Q7n7 F>7
F>0

G.(q,n, F') = #{Union of labeled maps with F' faces and n stars of type ¢ }.
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Application of [ (Ntr(q(A)))" duy™(A) =3 p=g N%_R_FGc(q,n,F).
Voiculescu (1984) [see also Speicher(1997)]. Let m € N and
Q(X17°°° ’Xm> = )(,L-1 sz for 7:1,... 7ip - {1’ ’m}

lim %tr(q(fh, o Ap)) dpn (Ar) - dpn (Ar) = om(g)

N— o0

where ¢,,(¢) is the num-

ber of planar maps drawn

with a star of type ¢ by .
gluing half-edges of the o u
same color (Here, ¢(X) =
X12X,2 X4 X2 )

0., = law of m free semi-circular variables.
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Combinatorial interpretation of Matrix Models

't Hooft (1974) considered generating functions of matrix moments; the
matrix models.

Let m € Nand (¢, - ,¢n) be fixed monomial functions of m

non-commutative variables. Let t = (¢;)1<i<», € C" and set
V;J(le U 7X’m> — Z?:1 tiqi(Xb e 7Xm>°

1
Fy(t) == ﬁlog/fml(vt(m""’Am))duN(Al)"'dMN(Am>
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Combinatorial interpretation of Matrix Models

't Hooft (1974) considered generating functions of matrix moments; the

matrix models.

Let m € Nand (¢, -, ¢n) be fixed monomial functions of m

non-commutative variables. Let t = (¢;)1<i<, € C™ and set
Ve( X1, Xm) =D tiqi( X1, -+, Xi). As formal series,

1

log / e NIV An Ay (Ay) -+ dpuy (A)

1

klaql)a T 7(kn7qn>7g>

k1,. ,k: €N g>0 j=1
with

M ((k1,q1), -, (kn,qn); g) = t{Labeled maps of genusg with k; stars of type ¢; }

(Proof: expand exponential + log=connected graph)
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Problems

e Problem 1: Can we compute, for reasonnable V; = > ¢;q;,

t = <t17“° 7tn>7
F(t) = lim Fn(t) ?

N — 00
].
-

Can we estimate the large N’s corrections 7

Fn(t) log / e~ NUVA (A Am)) gy (A)..dpn (Anm)
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Problems

e Problem 1: Can we compute, for reasonnable V; = > t;q;,

t = (t1,~- ,tn),
F(t) = lim Fn(t) ?

N — 00

with

Fn(t) :

:m

Can we estimate the large N’s corrections 7

log [ &AL A (A, ()

e Problem 2: Are the numbers of maps we want to compute

M ((kla q1)7 T (kna Qn); O> = lim (_1>k1+”+kn afll o 8tknnFN(t)|t:0

N— o0

indeed equal to
(—1)fttbegf ol [F(t)]leo = (—1)M 0l o 9l fim Fiv(t)]lomo?

Same question for the corrections.
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Problem 2: From formal to small £;’s expansion
1 -
Fr(t) = - log/ — NtV (Aq, ’Am))duN(A1)..duN(Am), V = Zti%’-

Theorem Hypothesis: ¢y : (A1(¢7), -, Am(i]))i<; —tr(V(A)) is
real-valued. ¢y is convex (or we add a cutoff).

Forall £ >0,3¢, > 0sothatif [t| =5, |ti] < ey,

I .
1 (—t;)" 1
t):ZW Z H L] M((Qlakl)a'” 7(Qn>k ) g)+O<N2£>
g:O I{il,“',kn v

M ((q1, k1), -, (Gn, kn); g) = {maps with genusg with k; stars of type ¢; }

-m = 1: Ambjdrnet al. (95), Albeverio-Pastur-Scherbina (01), Exrcolani-McLaughlin (03)
-m > 2: G.-Maurel-Segala (¢ < 1 (05)(06)),Maurel-Segala (for all ¢ (06))

26



Idea of the proof |g = 0]: non-commutative differential calculus

Take V; = Z  1:qi. Let fia be the empirical distribution

1=

_NtI(Vt(Al,"' ) m))dluN(Al)d,uN(Am>

€
/ L r(P(Ay - AL s

forall P € C(Xy, -+, X) [ta € P(R) when m = 1].

Fact 1: Let 8ZP = ZP=P1X¢P2 P1 024 PQ, DZP = ZP=P1X¢P2 P2P1. The
limit points of [ia are solution of Schwinger-Dyson’s equation

T(XiQ) = @7 (0;Q) -7 (D;V Q) VQ € C(Xy, -, X)) Vie{l, -,

Fact 2: By convexity (or cutoff), IR < 00, so that |7(q)| < rdegq,

If |t| < gp, there is a unique solution

Te(q) = Z H

L k,€EN1=1

kz

)7 (C_Zlakl)a Ty <Qn7 kn)70>

[non—commutatwe derivatives=Tutte’s surgery|
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Estimating Matrix integrals [ Problem 1, g = 0]

Compute

1
F(t) = ]\;l_l;l'loo m log / €_NtI(V(A1’m ’Am))d,LLN(A1> T d,LLN(Am)

e When m = 1, one can compute the limit of the free energy. Explicit
formulae for this limit can be found for triangulations and

quadrangulations, the analysis is complicated in general.

e When m > 2, only few models could be studied. We shall focus on the
[sing model on random graphs. However, the result we are going to
present extend readily to other models ( ¢-Potts [Zinn Justin (00),G.(04)],
chain models [Mehta (87), G.(04)], dually weighted graph models
|Kazakov, Staudacher, Wynter (96), G.-Maida (05)] etc)
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Computation of the free energy: m =1

Take V; = Zil t;x'. Recall that [up to add a cutoff], for t small

1
F(t) = lm — 1Og/ —Ntl(Vt(A))dluN(A>
— kla ) 7(kD7xD);O>
kp€eN

On the other hand, diagonalizing A gives (see e.g. Ben Arous-G (97))

F(t) = lim N—logZ /e—szilvt(mHMi_Aj|e—%zA$Hd/\i

N — 00 L L
17 ]

sup { [ log |z — y|du(x)du(y) — /[Vt(:v) + %ﬂf?]du(fﬁ)} + const.
peP(R)

Explicit solution for V;(x) = tz> or tz*(Bessis, Itzykson, Zuber (80)).
Complicated in general (see Deift, Kriecherbauer and McLaughlin (98))
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Computation of the free energy: m = 2. The Ising model on random graphs

We have seen that

1 4 4
Fle.h) = Jim zlog [ e N mAm-Nutila) -Nn(s) gy ()i (B)

—cY™ (—=R)"
= Z ( C)' ( ') d{labeled planar maps with n blue or red vertices
m! n!

of valence 4 and m bicolored edges}.

Mehta (84) [see also Boulatov-Kazakov (87)] used orthogonal polynomial
methods to give an explicit formula for F'(c, h).

Combinatorial proof of the same formula by Bousquet-M élou and
Schaeffer (02).
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The Ising model on random graphs and HCIZ integral

The interacting term in the Ising model is given in terms of the
Harish-Chandra-Itzykson-Zuber integral

Iv(A\n) = /eNtI(Udiag(A)U*diag(n))dU _det ((e™V™M)1<ij<n)
[Lic; (A = A5) [Lic i (05 — ;)

Theorem G-Zeitouni (02), G. (04)[large deviations +stochastic calculus]

. N : N
Assume lim s o % D10 =, imy o0 % > i1 0, =v. Then

1

im —log In(\, )

I, v) = ]\}—mo N2

exists and an ‘explicit’ formula is given.

Allows the analysis of the Ising model for general vertices and other
models, and also provides asymptotics of Schur functions.
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Conclusion

The relation between matrix integrals and the enumeration of maps
can be made rigorous; it provides original formulae for the
generating functions of the numbers of interest.

The analysis of these formulae are a problem on their own (see e.g.
Deift, Kriechbauer and McLaughlin, WIP with S. Belinschi).

Schwinger-Dyson’s equations contain all the information.

There are many other enumerating issues where random matrices are
used (see e.g. Diaconis and Gamburd for the enumeration of magic
squares)

There is a huge literature around these subjects in physics which
should attract more mathematicians.
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