
ON CLASSICAL ANALOGUES OF FREE ENTROPY DIMENSION.
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Abstract. We define a classical probability analog of Voiculescu’s free entropy dimension
that we shall call the classical probability entropy dimension. We show that the classical
probability entropy dimension is related with diverse other notions of dimension. First, it
equals the fractal dimension. Second, if one extends Bochner’s inequalities to a measure by
requiring that microstates around this measure asymptotically satisfy the classical Bochner’s
inequalities, then we show that the classical probability entropy dimension controls the
rate of increase of optimal constants in Bochner’s inequality for a measure regularized by
convolution with the Gaussian law as the regularization is removed. We introduce a free
analogue of the Bochner inequality and study the related free entropy dimension quantity.
We show that it is greater or equal to the non-microstates free entropy dimension.

1. Introduction.

In [11], using his notion of free entropy χ, Voiculescu introduced the free entropy dimension
of a non-commutative law. If X1, . . . , Xn ∈ (M, τ) are self-adjoint non-commutative random
variables in a tracial W ∗-probability space, then

δ(X1, . . . , Xn) = n + lim sup
t→0

χ(X t
1, . . . , X

t
n)

| log t| ,

where X t
j = Xj + tSj and S1, . . . , Sn form a free semicircular family, free from X1, . . . , Xn.

Voiculescu’s motivation was to introduce a kind of asymptotic Minkowski content of matricial
microstate spaces associated to the joint law of X1, . . . , Xn. Indeed, for a variation of the
definition of free entropy dimension, K. Jung has proved a formula that involves asymptotic
packing numbers [7]. Moreover, he proved (again, for a version of the definition above), that
one obtains the same number whether one uses semicircular perturbations or some other
perturbation X t

j = Xj + tYj, where Y1, . . . , Yn are some n-tuple, free from X1, . . . , Xn and
having finite free entropy.

The free entropy dimension is a remarkable quantity, with unexpected connections to
other branches of mathematics. For example, if X1, . . . , Xn generate the group algebra of a
discrete group Γ, δ(X1, . . . , Xn) is related by an inequality to the L2-Betti numbers of the
group Γ (this is based on a number of results, see [5, 8]). Unfortunately, the exact values of
free entropy dimension are known in only a few cases. For example, in the case of a single
variable X with law given by a probability measure µ on R, δ(µ) = 1 − ∑

t∈R
µ({t})2.

One of the most important questions surrounding δ is the question of its invariance under
various functional calculi. It is hoped that δ(X1, . . . , Xn) = δ(Y1, . . . , Ym) if X1, . . . , Xn and
Y1, . . . , Ym generate the same von Neumann algebra (i.e., are “non-commutative measurable
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functions of each other”). However, the question is open even if it is asked for continuous
functions (that is, assuming that the C∗-algebras generated by X1, . . . , Xn and Y1, . . . , Ym

are the same). What is known, for a version of the definition of free entropy dimension, is
that its value is preserved under algebraic changes of generators. Solving these problems
would be of great interest to von Neumann algebra theory.

In the first part of the present paper, we turn to look at the classical analog of free entropy
dimension. Given a probability measure µ on Rn (which can be though of as the law of n real
random variables X1, . . . , Xn), we consider the measure µt = µ ∗ νt, where νt is the Gaussian
law

νt(
∏

dxj) =
1

(2πt2)n/2
exp(− 1

2t2

∑

x2
j )

∏

dxj .

Thus µt is the law of X t
1, . . . , X

t
n with X t

j = Xj + tGj, and G1, . . . , Gn independent Gaussian
random variables, independent from X1, . . . , Xn. We then set

δc(µ) = n − lim inf
t→0

H(µt)

| log t| ,

where for a non negative Lebesgue absolutely-continuous measure p(x)dx,

H(p(x)dx) =

∫

p(x) log p(x)dx.

(The change of sign here is due to the fact that H(µt) ∈ (−∞, +∞] behaves as the analog
of −χ, since the free entropy χ is valued in [−∞, +∞)).

The main result of this paper relates δc(µ) with a kind of average fractal dimension of
the measure µ. In particular, we prove that δc(µ) remains the same if µ is replaced by a
push-forward by a Lipschitz function. However, the value of δc(µ) may change if we push
forward µ by a continuous or measurable function.

We also prove a number of technical properties of δc. Among the ones of independent
interest is the fact that (in the case that lim sup in its definition is a limit) δc is affine:
δc(

∑

αjµj) =
∑

αjδc(µj) in the case that µj are probability measures and αj ≥ 0,
∑

αj = 1.
The second part of the paper relates the rate of increase of optimal constants in Bochner’s

inequality with entropy dimension. We say that a probability measure µ satisfies Bochner’s
inequality with constant (n, K(n)) ∈ (R+)2 if for all smooth f ,

(1) µ(Γ2(f, f)) ≥ 1

n
µ((∆f)2) − K(n)µ(Γ(f, f)),

where Γ(f, f) and Γ2(f, f) are the carré du champ and carré du champ itéré, respectively.
Intuitively, one should think of n as the dimension of the support of µ and K as an estimate
for the smallest eigenvalue of the Ricci curvature of the support in the sense that if µ = δx,
we recover the classical Bochner inequality at the point x, with n the dimension of the
manifold where x lives and −K(n) a lower bound on the Ricci curvature (cf. e.g. [1, 2]).
The definition is actually obtained by considering the microstates ΓN(µ, ε) := {x1, · · · , xN ∈
RN : d(N−1

∑N
i=1 δxi

, µ) < ε}, viewing it as a submanifold of RN with some dimension [nN ]
and Ricci curvature bounded below by −K(n). Letting then N going to infinity gives (1).
We now replace µ with µε = µ ∗ νε and study the functions ε 7→ K(n, ε) ≥ 0 for which the
inequality

(2) µε(Γ2(f, f)) ≥ 1

n
µε((∆f)2) − K(n, ε)µε(Γ(f, f))
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is satisfied for all smooth f and a given n ≥ 0. We then set

δ� = 1 − inf(lim inf
ε→0

∫ 1

ε
K(y, n)dy

| log ε| + 1)n,

where the inf is taken over all n ≥ 0 and functions K(n, ε) for which (2) holds. We prove
that with this definition, δ� = δc.

In the third and final part of the paper, we study the free non-commutative analog of the
inequality (2) and the related free entropy dimension quantity, which we show to be less
than or equal to the non-microstates free entropy dimension.

2. Equivalent definitions of δc.

The main result of this section is that one can replace in the definition of δc(µ) the
convolution with the Gaussian measure by convolution with dilations of any other probability
measure ν that has finite entropy. We first consider some properties of δc, which are of
independent interest. Throughout this section, it will be convenient to assume that ν is
a finite positive measure, but to drop the assumption that its total mass is 1. We will
also denote by Dt : R → R the dilation map x 7→ tx. For simplicity of notation, we give all
statements and proofs for a measure on R. However, these go through unaltered for measures
on Rn. Also, all lim inf could be replaced by lim sup if one would prefer to define δc with a
lim sup.

Lemma 2.1. (a) Let ν be a Lebesgue absolutely continuous finite measure on R, νt = D∗
t (ν)

(where Dt is the map x 7→ tx is a dilation). Then for any probability measure µ and any
constant α > 0 we have

lim inf
t→0

H(αµt)

log t
= α lim inf

t→0

H(µt)

| log t|

(b) Let ν be a non negative Lebesgue absolutely continuous measure for which ν(R) = δ < ∞.
Let µ be a probability measure on R and denote νt = D∗

t (ν) and µt = µ ∗ νt. Let pt(x) be the
density of µt.

If

(3)

∫

log(1 + |x|)dν(x) < ∞, and

∫

log(1 + |x|)dµ(x) < ∞,

then

0 ≤ lim inf
t→0

H(µt)

| log t| .

On the other hand, if H(ν) < ∞, then

lim inf
t→0

H(µt)

| log t| ≤ lim sup
t→0

H(µt)

| log t| ≤ δ.

(Here and below H(q(x)dx) =
∫

q(x) log q(x)dx for any non-negative measurable function
q, even if q(x)dx is not a probability measure).

Proof. (a) follows from the formula H(αµ) = αH(µ) + µ(R) log α and the fact that µt(R) =
ν(R) is independent of t ∈ R.

(b)We may assume without loss of generality that δ = 1 by a rescaling up to using (a).
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For the first inequality, recall that for any probability measure ν, any non negative function
f , Jensen’s inequality implies that

∫

f(x) log f(x)dν(x) ≥
∫

f(x)dν(x) log

(
∫

f(x)dν(x)

)

.

Therefore, if we let ν(dx) = p(x)dx be a probability measure absolutely continuous with
respect to the Lebesgue measure, we can write

H(f(x)dx) =

∫

f(x)

p(x)
log

f(x)

p(x)
p(x)dx +

∫

log p(x)f(x)dx ≥
∫

log p(x)f(x)dx

if
∫

f(x)dx = 1. We can for instance take p(x) = 1
2(1+|x|)2 to obtain the lower bound

H(f(x)dx) ≥ − log 2 − 2

∫

log(1 + |x|)f(x)dx

for all f ≥ 0 so that
∫

f(x)dx = 1.
Now, since ν is absolutely continuous with respect to Lebesgue measure, so is the measure

µt(dx) = ft(x)dx. Applying the above to ft, we deduce

H(µt) ≥ − log 2 − 2

∫

log(1 + |x|)dµt(x)

≥ − log 2 − 2

∫

log(1 + |x|)(1 + t|y|)dµ(x)dν(y)

≥ − log 2 − 2

∫

log(1 + |x|)dµ(x) − 2

∫

log(1 + |y|)dν(y)

where the last bound holds for t ≤ 1. Hence, when (3) is satisfied, H(µt) is bounded below
independently of t ≤ 1, which gives the desired lower bound.

We next prove the upper bound. By the entropy power inequality (see e.g. [10]), we have
that

exp(−2H(µt)) ≥ exp(−2H(µ)) + exp(−2H(νt))

≥ exp(−2H(νt))

= exp(−2H(ν) + 2 log t).

Thus
H(µt) ≤ H(ν) − log t

so that

lim sup
t→0

H(µt)

| log t| ≤ lim sup
t→0

H(ν) − log t

| log t| = 1

as claimed. �

Lemma 2.2. Let n ∈ N and µ =
∑n

i=1 µi for some non negative measures (µi, 1 ≤ i ≤ n) so
that µi(R) = ai > 0,

∑n
i=1 ai = 1. Let ν be a probability measure on R so that H(ν) < ∞.

Then

(4) lim inf
t→0

H(µ ∗ νt)

| log t| = lim inf
t→0

1

| log t|
∑

aiH(a−1
i µi ∗ νt).

Note that since H(ν) is assumed finite, H(a−1
i µi ∗ νt) ≤ | log t| by the previous Lemma

and so the sum in the right hand side of (4) is well defined.
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Proof. Since ν is absolutely continuous with respect to Lebesgue measure with density p, so
is µ ∗ νt and

pµ(x) =
dµ ∗ νt

dx
(x) =

1

t

∫

p

(

x − y

t

)

dµ(y).

We assume first that n = 2 and denote in short pi(x) = a−1
i pµi

(x) for i = 1, 2, so that
∫

pi(x)dx = 1. Then the density of µ ∗ νt is given by
∑

aipi(x) and hence

H(µ ∗ νt) =

∫

∑

i

aipi(x) log
∑

j

ajpj(x) dx =
∑

i

ai

∫

pi(x) log(
∑

j

ajpj(x))dx.

As a consequence,

H(µ ∗ νt) −
∑

aiH(a−1
i µi ∗ νt) =

∑

i

ai

∫

pi(x) log

(

∑

j ajpj(x)

aipi(x)

)

dx +
2

∑

i=1

ai log ai.

Then for each i = 1, 2
∑

j

ajpj(x)/aipi(x) = 1 +
ajpj(x)

aipi(x)

where in the last term i, j ∈ {1, 2} and i 6= j.
Since for y ≥ 0, 0 ≤ log(1 + y) ≤ y and since pj(x), pi(x) ≥ 0, we conclude that

0 ≤ log

(

1 +
ajpj(x)

aipi(x)

)

≤ ajpj(x)

aipi(x)
.

Hence

0 ≤ H(µ ∗ νt) −
2

∑

i=1

aiH(a−1
i µi ∗ νt) ≤

∑

j

∫

ajpj(x)dx +
∑

ai log ai ≤ 1 +
∑

ai log ai.

If µ =
∑n

i=1 µi for n > 2, we first apply the above bound with µ′
1 = µ1, µ

′
2 =

∑n
i=2 µi and

a′
1 = a1, a′

2 =
∑n

i=2 ai, and then proceed by induction, replacing µ by (
∑n

i=2 ai)
−1

∑n
i=2 µi.

We get in this way

0 ≤ H(µ ∗ νt) −
n

∑

i=1

aiH(a−1
i µi ∗ νt) ≤ n − 1 +

n
∑

i=1

ai log ai.

Thus

lim
t→0

H(µ ∗ νt) −
∑n

i=1 aiH(a−1
i µi ∗ νt)

| log t| = 0,

which implies the claim. �

We have as an immediate corollary a somewhat surprising property of δc:

Corollary 2.3. Assume that µj are probability measures for which lim sup in the definition
of δc is a limit. Then the map µ 7→ δc(µ) is affine: if αj ≥ 0,

∑

αj = 1, then δc(
∑

αjµj) =
∑

αjδc(µj).

Note that this property is very particular to the commutative case. Indeed, recall that the
formula for the free entropy dimension of a single variable with law µ can be equivalently
written as

δ(µ) = 1 −
∑

t∈R

µ × µ({(t, t)})
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so that δ(µ) is quadratic in µ. By the Cauchy-Schwartz inequality, δ(
∑n

i=1 aiµi) ≥
∑n

i=1 aiδ(µi)
but equality can hold only if for all t ∈ R, µi({t}) does not depend on i ∈ {1, · · · , n}.

Lemma 2.4. Let for n ∈ N, ν =
∑n

i=1 ν(i) so that ν(i)(R) = ai. Assume that H(a−1
i ν(i)) is

finite for all i. Then

lim inf
t→0

H(µ ∗ νt)

| log t| = lim inf
t→0

1

| log t|
∑

aiH(a−1
i µ ∗ ν

(i)
t ).

Proof. The proof is very similar to that of Lemma 2.2 and we first assume n = 2. We let

ν
(i)
t = D∗

t ν
(i) where Dt : R → R is the map Dt(x) = tx. We have:

µ ∗ νt =
∑

i

µ ∗ ν
(i)
t =

∑

i

ai(a
−1
i µ ∗ ν

(i)
t ).

Thus if we set

pi(x) = d(a−1
i µ ∗ ν

(i)
t )/dx

then the density of µ ∗ νt is given by
∑

aipi(x) and hence

H(µ ∗ νt) =

∫

∑

i

aipi(x) log
∑

j

ajpj(x) dx =
∑

i

ai

∫

pi(x) log(
∑

j

ajpj(x))dx.

Hence, we deduce as in the proof of Lemma 2.2 that

0 ≤ H(µ ∗ νt) −
∑

aiH(pi(x)dx) ≤
∑

j

∫

ajpj(x)dx +
∑

aj log aj ≤ 1 +
∑

aj log aj.

Thus

lim
t→0

H(µ ∗ νt) −
∑

aiH(pi(x)dx)

| log t| = 0,

which implies the claim. �

Corollary 2.5. Given ν(dx) = f(x)dx, with ν(R) = 1 and H(ν) < ∞, set νt = D∗
t (ν)

where Dt : R → R, given by Dt(x) = tx. Let µ be a probability measure on R . Then
given ε > 0 there exists M sufficiently large so that if we denote by νM the measure
ν([−M, M ])−1ν|[−M,M ], νM

t = Dt(ν
M ) and by µM the measure µM = µ[−M, M ]−1µ|[−M,M ],

then
∣

∣

∣

∣

lim inf
t→0

H(µ ∗ νt)

| log t| − lim inf
t→0

H(µM ∗ νM
t )

| log t|

∣

∣

∣

∣

< ε.

Proof. This follows from first decomposing µ as µ|[−M,M ] + µ|[−M,M ]c, so that Lemma 2.2
shows that

∣

∣

∣

∣

lim inf
t→0

H(µ ∗ νt)

| log t| − µ([−M, M ]) lim inf
t→0

H(µM ∗ νt)

| log t|

∣

∣

∣

∣

≤ µ([−M, M ]c) lim sup
t→0

H(µ([−M, M ]c)−1µ|[−M,M ]c ∗ νt)

| log t| ≤ µ([−M, M ]c)

where the last inequality is due to Lemma 2.1.(b) since ν(R) = 1.
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We next decompose ν as ν|[−M,M ] + ν|[−M,M ]c and apply Lemma 2.4. Since H(ν) is finite,
also H(ν|[−M,M ]) and H(ν|[−M,M ]c) are finite and so

∣

∣

∣

∣

lim inf
t→0

H(µM ∗ νt)

| log t| − ν([−M, M ]) lim inf
t→0

H(µM ∗ νM
t )

| log t|

∣

∣

∣

∣

≤ ν([−M, M ]c) lim sup
t→0

H(µ|[−M,M ] ∗ D∗
t (νM)

| log t|
≤ ν([−M, M ]c)

again by Lemma 2.1(b). Since
∣

∣

∣

∣

(µ([−M, M ])ν([−M, M ]) − 1) lim inf
t→0

H(µM ∗ νM
t )

| log t|

∣

∣

∣

∣

≤ µ([−M, M ]c) + ν([−M, M ]c)

the proof is complete if we take M big enough so that 2(µ([−M, M ]c)+ν([−M, M ]c)) ≤ ε. �

Lemma 2.6. Assume that ν(dx) = f(x)dx with suppf = E a bounded subset of R, and that
for some constant C > ε > 0, |f − C| < ε on E. Let ν ′(dx) = CχEdx and set νt = D∗

t (ν),
ν ′

t = D∗
t (ν

′). Assume furthermore that the support of µ is a bounded subset of R. Then
∣

∣

∣

∣

lim inf
t→0

H(µ ∗ ν ′
t)

| log t| − lim inf
t→0

H(µ ∗ νt)

| log t|

∣

∣

∣

∣

≤ ελ(E).

Proof. Recall that

pt(x) :=
dµ ∗ νt

dx
(x) =

∫

f(t−1(x − y))
1

t
dµ(y)

p′t(x) :=
dµ ∗ ν ′

t

dx
(x) = C

∫

χE(t−1(x − y))
1

t
dµ(y).

Using the fact that µ is a probability measure, we have:

|pt(x) − p′t(x)| ≤
∫

εχE(t−1(x − y))
1

t
dµ(y) =

ε

C
p′t(x).

In particular, we have that
∣

∣

∣

∣

pt(x)

p′t(x)
− 1

∣

∣

∣

∣

≤ C−1ε.

Thus
∫

pt(x) log pt(x)dx =

∫

pt(x) log p′t(x)dx −
∫

pt(x) log
pt(x)

p′t(x)
dx,

implies

|
∫

pt(x) log pt(x)dx −
∫

pt(x) log p′t(x)dx| ≤ max | log(1 ± C−1ε)| = f(C−1ε),

with f(C−1ε) → 0 as C−1ε → 0. Hence

|H(µ ∗ ν ′
t) − H(µ ∗ νt)| ≤ |

∫

(pt(x) − p′t(x)) log p′t(x)dx| + f(C−1ε)

≤ ε

C

∫

p′t(x)| log p′t(x)|dx + f(C−1ε).
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It follows that

(5)

∣

∣

∣

∣

lim inf
t→0

H(µ ∗ ν ′
t)

| log t| − lim inf
t→0

H(µ ∗ νt)

| log t|

∣

∣

∣

∣

≤ ε

C
lim sup

t→0

∫

p′t(x)| log p′t(x)|dx

| log t| .

Now, let At = {x : 0 < p′t(x) ≤ 1} ⊂ tE + suppµ. Then log p′t(x) > 0 for x /∈ At and
log p′t(x) ≤ 0 for x ∈ At. Therefore,

∫

p′t(x)| log p′t(x)|dx =

∫

p′t(x) log p′t(x)dx − 2

∫

At

p′t(x) log p′t(x)dx.

Since for y ∈ [0, 1], the function y log y is bounded from below by −e−1 and from above by
0, we get that for x ∈ At, 0 ≤ −p′t(x) log p′t(x) ≤ e−1. Since At ⊂ E + suppµ for t ≤ 1, the
Lebesgue measure λ(At) is bounded uniformly in t. Thus, we find that

lim inf
t→0

∫

p′t(x)| log p′t(x)|dx

| log t| = lim inf
t→0

∫

p′t(x) log p′t(x)

| log t| = lim inf
t→0

H(µ ∗ ν ′
t)

| log t| .

But since H(ν ′) = Cλ(E) log C is finite, we can use Lemma 2.1 to conclude that the right
hand side above is bounded by Cλ(E), the mass of ν. Hence, we have proved with (5) that

∣

∣

∣

∣

lim inf
t→0

H(µ ∗ ν ′
t)

| log t| − lim inf
t→0

H(µ ∗ νt)

| log t|

∣

∣

∣

∣

≤ ελ(E).

�

Theorem 2.7. Let ν be an arbitrary probability measure with H(ν) finite. Assume that µ
is a probability measure, and assume that µ and ν satisfy (3).Then if we denote by D∗

t the
push-forward of a measure by the dilation x 7→ tx, we have that

lim inf
t→0

H(µ ∗ D∗
t (ν))

| log t| = lim inf
t→0

H(µ ∗ D∗
t (χ[0,1]))

| log t| .

In particular, the limit is independent of the measure ν.

Proof. Fix ε > 0. By Corollary 2.5, we may assume, without changing lim inf t→0
H(µ∗D∗

t (ν))

| log t|

by more than ε/2, that µ and ν are supported on bounded sets. In particular, ν is Lebesgue
absolutely continuous with density q(x) ∈ L1(R) with E = suppq a subset of finite Lebesgue
measure. Given ε > 0 we may find a subset E0 ⊂ R and a constant M so that q(x) < M
on E0 and ν(E0)

−1 ≤ 1 − ε/8. By Corollary 2.5 we may replace ν by ν(E0)
−1ν|E0

without

affecting the value of lim inf t→0
H(µ∗D∗

t (ν))

| log t|
by more than ε/4. Next, since the density p(x) of

ν is now a bounded function on the support of ν, we may find a finite collection of disjoint
subsets Ej ⊂ E0 and constants Cj with the property that on each Ej , |pj − Cj | < ε/λ(E)8
and that Cj is the average value of f on Ej (in particular,

∑

Cjλ(Ej) =
∫

f(x)dx = 1).
According to Lemma 2.6 we may replace on each Ej ν|Ej

with χEj
at a penalty of at most

ελ(Ej)/8. Hence we may replace ν with the probability measure
∑

CjχEj at a penalty of
at most (ελ(E)/8) · ∑ λ(Ej) ≤ ε/8. By Lemma 2.4 it follows that

lim inf
t→0

H(µ ∗ νt)

| log t| = lim inf
t→0

∑ H(µ ∗ D∗
t (CjχEj

))

| log t| .

Finally, by Lebesgue almost everywhere differentiability theorem, we may find, for each

Ej disjoint intervals I
(j)
1 , . . . , I

(j)
kj

of rational length with the property that Ej and ∪kI
(j)
k

differ by at most λ(Ej) · ε/8. Applying once again Lemma 2.2 and Lemma 2.4, we conclude
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that we may assume at a further penalty of ε/8 that ν =
∑

KrχEr where Er are a finite
collection of intervals. Up to subdivision, we may assume that all the Er have the same
Lebesgue measure (or length). We conclude that

lim inf
t→0

H(µ ∗ νt)

| log t| = lim inf
t→0

∑

Kr
H(µ ∗ D∗

t (χEr))

| log t| + o(ε),

where Kr is a family of non negative real numbers so that
∑

Krλ(Er) = 1 and Er are
intervals.

Since H(q(x)dx) = H(q(x−y)dx), we may replace any interval Er in the previous formula
by a shifted interval Ej + kj for any constant kj. Hence, since all the Er have the same
length, H(µ ∗ D∗

t (χEr)) does not depend on r and so we have

lim inf
t→0

H(µ ∗ νt)

| log t| = lim inf
t→0

1

λ(E1)

H(µ ∗ D∗
t (χE1

))

| log t| + o(ε),

here E1 is an interval with right hand point at the origin. Note that E1 could be chosen as
small as wished and so letting ε going to zero we have

lim inf
t→0

H(µ ∗ νt)

| log t| = lim
a↓0

lim inf
t→0

H(µ ∗ D∗
t χ[0,a])

a| log t| .

This shows in particular that lim inft→0
H(µ∗νt)
| log t| does not depend on the probability measure

ν with finite entropy and so we also have

lim inf
t→0

H(µ ∗ νt)

| log t| = lim inf
t→0

H(µ ∗ D∗
t χ[0,1])

| log t| .

�

3. δc and fractal dimension.

If µ is a probability measure on R, one can consider the (lower) point wise dimension of
µ:

fµ(x) = lim inf
t→0

µ[x − t, x + t]

log t
.

This function quantifies the logarithmic rate of growth of the measures of t-balls around x
and hence is a kind of local fractal dimension of µ. For example, certain Cantor-Lebesgue
measures

µ =
1

2
(δ−1 + δ1) ∗

1

2
(δλ + δ−λ) ∗

1

2
(δλ2 + δ−λ2) ∗ · · · , 0 < λ < 1/2,

satisfy fµ = α = − log2 λ on the Cantor set supporting µ and fµ = 0 outside of it. We show
that δc is very close to the average value (computed with respect to µ) of the function fµ,
apart from the question of exchanging integration against µ and the limit lim inft→0.

Theorem 3.1. Let µ be a probability measure on R, and let

dt(x) =
− log µ[x − t/2, x + t/2]

| log t| .

Then

δc(µ) = lim sup
t→0

∫

dt(y)dµ(y).
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Proof. By Theorem 2.7 we may write

δc(µ) = 1 − lim inf
t→0

H(µ ∗ νt)

| log t| ,

where νt = D∗
t χ[−1/2,1/2] = 1

t
χ[−t/2,t/2]. Let pt(x) be the density of µt:

pt(x) = (µ ∗ D∗
t χ[−1/2,1/2])(x) =

1

t
µ([x − t/2, x + t/2]).

Now,

H(µt) =

∫

pt(x) log pt(x)dx

=

∫∫

1

t
χ[−t/2,t/2](x − y)dµ(y) log pt(x)dx

=

∫∫

1

t
χ[−t/2,t/2](x) log pt(x + y)dxdµ(y).

Since pt(x + y) = 1
t
µ[x + y − t/2, x + y + t/2] and [y + x− t/2, y + x + t/2] ⊂ [y − t, y + t] as

long as −t/2 ≤ x ≤ t/2, we find that for |x| ≤ t/2, pt(x + y) ≤ 1
t
µ[y − t, y + t]. Thus

H(µt) ≤
∫∫

1

t
χ[−t/2,t/2](x) log

1

t
µ[y − t, y + t] dxdµ(y)

=

∫

1

t
χ[−t/2,t/2](x)dx

∫

log
1

t
µ[y − t, y + t]dµ(y)

=

∫

log
1

2t
µ[y − t, y + t]dµ(y) +

∫

log 2dµ(y) =

∫

log
1

2t
µ[y − t, y + t] + log 2

(since µ is a probability measure). It follows that

lim inf
t→0

H(µt)

| log t| ≤ lim inf
t→0

∫

log 1
t
µ[y − t/2, y + t/2]dµ(y)

| log t| = lim inf
t→0

∫

log pt(y)dµ(y)

| log t| .

Let now δ > 0 and set C = 1 + δ. Let ν ′ = χ[−C/2,C/2], ν ′′ = ν ′ − χ[−1/2,1/2]. Let
µ′

t = µ ∗ D∗
t (ν

′), µ′′
t = µ ∗ D∗

t (ν
′′). Thus µ′

t = µt + µ′′
t . Let p′t(x), p′′t (x) be the densities of µ′

t

and µ′′
t , respectively. Then we have:
∫

pt(x) log p′t(x)dx −
∫

pt(x) log pt(x)dx =

∫

pt(x) log
p′t(x)

pt(x)
dx

=

∫

pt(x) log
pt(x) + p′′t (x)

pt(x)
dx

=

∫

pt(x) log(1 + p′′t (x)/pt(x))dx.

Since 0 ≤ log(1 + z) ≤ z for z ≥ 0, we conclude that

0 ≤
∫

pt(x) log(1 + p′′t (x)/pt(x))dx

≤
∫

pt(x)p′′t (x)/pt(x) dx

=

∫

p′′t (x)dx = µ′′
t (R) = δ.
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It follows that

(6)

∣

∣

∣

∣

∫

pt(x) log p′t(x)dx −
∫

pt(x) log pt(x)dx

∣

∣

∣

∣

≤ δ.

Now, p′t(x) = 1
t
µ[x − Ct/2, x + Ct/2]. If |x| < t/2, then [y − δt/2, y + δt/2] ⊂ [y + x −

Ct/2, y + x + Ct/2]. Thus p′t(x + y) ≥ 1
t
µ[y − δt/2, y + δt/2] as long as |x| < t/2. It follows

that
∫

pt(x) log p′t(x)dx =

∫∫

1

t
χ[−t/2,t/2](x) log p′t(x + y) dµ(y)dx

≥
∫∫

1

t
χ[−t/2,t/2](x) log

1

t
µ[y − δt/2, y + δt/2] dµ(y)dx

=

∫

log
1

t
µ[y − δt/2, y + δt/2] dµ(y)

=

∫

log
1

δt
µ[y − δt/2, y + δt/2] dµ(y) + log δ.(7)

Thus, first by (6) and then (7) we obtain

lim inf
t→0

H(µt)

| log t| = lim inf
t→0

∫

pt(x) log p′t(x)dx

| log t|

≥ lim inf
t→0

∫

log 1
δt

µ[y − δt/2, y + δt/2] dµ(y)

| log t| = lim inf
t→0

∫

log pt(y)dµ(y)

| log t|
where we finally made the change of variable t′ = δt. Combining this with the previous
estimate proves that

δc(µ) = 1 − lim inf
t→0

∫

log t−1µ[x − t/2, x + t/2] dµ(x)

| log t|

= 1 − lim inf
t→0

∫
[

log µ[x − t/2, x + t/2]

| log t| +
− log t

| log t|

]

dµ(x)

= lim sup
t→0

∫

dt(x)dµ(x).

�

Corollary 3.2. Assume that µ is a probability measure, which is dimension regular; i.e.,
there exists some µ-measurable function α(x) and strictly positive constants C, c, and t0 so
that for any x in the support of µ and all 0 < t < t0 one has

(8) ctα(x) ≤ µ[x − t/2, x + t/2] ≤ Ctα(x).

Then δc(µ) =
∫

α(x)dµ(x).

Note that in all the previous results, we could have change the lim inf into a lim sup and
vice versa. Under the hypotheses of the Corollary we would thus obtain

δc(µ) = 1 − lim inf
t→0

H(µt)

| log t| = 1 − lim sup
t→0

H(µt)

| log t| =

∫

α(x)dµ(x).
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Proof. We find that

dt(x) = − log µ[x − t/2, x + t/2]

| log t|
satisfies the inequalities

α(x) log t + log c

| log t| ≤ −dt(x) ≤ α(x) log t + log C

| log t| ,

so that for t < 1,

α(x) − log c

| log t| ≥ dt(x) ≥ α(x) − log C

| log t| .

Integrating these inequalities against dµ(x), passing to the limit as t → 0 and using Theorem
3.1, we obtain that δc(µ) =

∫

α(x)dµ(x). �

Example 3.3. (i) Let 0 < α < 1 and let µα be the Cantor-Lebesgue measure given by

µα =
1

2
(δ−1 + δ1) ∗

1

2
(δλ + δ−λ) ∗

1

2
(δλ2 + δ−λ2) ∗ · · · λ = 2−α

Then µα satisfies (8) with α(x) = α for all x in the support of µα. Thus δc(µα) = α.
(ii) Let µ = δ0 be a delta measure at 0. Then (8) is satisfied with α = 0 on the support of
µ. Hence δc(µ) = 0.
(iii) Let µ be Lebesgue absolutely continuous with density p(x). Then µ = µM + µ⊥

M

where µM = µ|{x:p(x)≤M}. Furthermore, µ⊥
M(R) → 0 as M → ∞. Thus by Lemma

(2.1), limM→∞ δc(µ
⊥
M) = 0 and hence by Lemma δc(µ) = limM→∞ δc(µM) + δc(µ

⊥
M) =

limM→∞ δc(µM). Since H(µM) < ∞, we have that for all t > 0, H(µM ∗ ν) ≤ H(µM)
for any ν and so δc(µM) = 1. Thus δc(µ) = 1.

It is curious to note that one has a classical analog of the connection between free entropy
dimension and group cohomology. In the classical case, the L2 Betti numbers are replaced
with ordinary Betti numbers and the statement greatly trivializes:

Theorem 3.4. Let Γ be a finitely generated discrete abelian group with generators γ1, . . . , γn.
Identify CΓ ⊂ L∞(Γ̂, µ), where µ is a Haar measure of Γ̂, normalized to have measure 1 at

each connected component of Γ̂. Let ν be the law of the 2n-tuple X1, . . . , X2n, X2k = γk+γ−1
k ,

X2k−1 = −i(γk − γ−1
k ). Then

δc(ν) = dimC H1(Γ; C)

Proof. Let Γ = Γ1 ⊕ Γ2, where Γ1 is a finite group of order l and Γ2 is a free abelian group
on p generators. Then Γ̂ = Γ1 × Tp, where T denotes the unit circle in the complex plane.
Since µ is the Haar measure on Γ̂, it is dimension regular of dimension p. Hence δc(ν) = lp.

On the other hand, H1(Γ; C) = H1(Γ̂; Cp) = Cp and thus also has dimension lp. �

4. δc via Fisher information and a notion of Ricci curvature.

In this section, we relate δc with quantities related with differential calculus. Let us remark,
in the spirit of Voiculescu [12], that we can express δc via the asymptotics of the associated
Fisher information. To that end, recall that for a probability measure µ(dx) = p(x)dx
absolutely continuous with respect to Lebesgue measure, the Fisher information is given by

F (µ) =

∫

(∂x log p(x))2p(x)dx.
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Note that if µs = µ ∗ νs with νs the centered Gaussian law with covariance s, since ∂s
dνs

dx
=

1
2
(dνs

dx
)′′ ∂sH(µs) = −1

2
F (µs) from which one sees that the entropy H and the Fisher inform-

ation F are related by

H(µ) − H(µ1) =

∫ 1

0

F (µs)ds.

Taking µ = µt gives, since H(µ1) which is always bounded, that

(9) δc(µ) = 1 − lim inf
t→0

∫ 1

t
F (µs)ds

| log t| .

Observe that if ps is the density of µs

∂x log ps(x) =
1√
s
E[g|X +

√
sg]

when g is a standard Gaussian variable independent from X with law µ. This shows by
Cauchy-Schwartz inequality that

(10) 0 ≤ F (µs) ≤
1

s

and so proves again that 0 ≤ δc(µ) ≤ 1. Moreover, (9) already reveals that δc(µ) is related
with the behaviour of the Fisher information of µt for small t and in fact, with the way that
µt approaches µ as t goes to zero. Let us give some heuristics by assuming that we have the
stronger statement that

F (µt) ≈t→0
1 − δc(µ)

t
(1 + o(1))

and show that this entails that the convergence of µt towards µ is at least of order
√

(1 − δc(µ))t.
In fact, Fisher’s information can be equivalently defined by

F (µt) := 2 sup
f
{µt(∆f) − 1

2
µt((f

′)2)} = sup
f

(µt(∆f))2

µt((f ′)2)

where the supremum is taken over all twice differentiable functions f (and is achieved here
at log pt). Consequently, we find that for all twice differentiable function f ,

(µt(∆f))2 ≤ F (µt)‖f ′‖2
∞.

As a consequence,

|µt(f) − µ(f)| ≤
∫ t

0

|∂sµs(f)|ds

=
1

2

∫ t

0

|µs(∆f)|ds

≤ 1

2
‖f ′‖∞

∫ t

0

√

1 − δc(µ)

s
(1 + o(1))ds

≤ ‖f ′‖∞
√

(1 − δc(µ))t(1 + o(1)).

Extending this inequality to all Lispchitz functions gives a bound on the Duddley distance
between µt and µ;

d(µt, µ) := sup
f Lipschitz with norm≤1

|µt(f) − µ(f)| ≤
√

(1 − δc(µ))t(1 + o(1)).
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We believe that the relation between the short time asymptotics of µt and δc should be deeper
that this result even though we could not prove it here. However, we shall prove here another
definition for δc which is closely related with Bochner’s inequality, a classical tool to estimate
the short time asymptotics of the heat kernel in a compact Riemaniann manifold. We shall
restrict ourselves here to measures on R but could as well consider measures on a compact
Riemaniann manifold with Ricci curvature bounded below (eventually by a negative real
number). To make this generalization more transparent, we denote ∆ the Laplace Baltrami
operator on R (i.e the second spatial derivative). We let Γ be the carré du champ given by

Γ(f, g) =
1

2
(∆(fg) − f∆g − g∆f) ,

and Γ2 be the carré du champ itéré

Γ2(f, f) =
1

2
(∆Γ(f, f) − 2Γ(f, ∆f)) .

In the case where M = R, we simply have

Γ(f, f) = (f ′)2, Γ2(f, f) = (f ′′)2.

Note that in the case of a connected Riemanian manifold with metric g, Laplace Baltrami
operator ∆ and gradient ∇, the same definitions hold and give

Γ(f, f) = g(∇f,∇f), Γ2(f, f) = (Hessf, Hessf)g + Ric(∇f,∇f)

with Ric the Ricci tensor. Bochner’s (or curvature-dimension) inequality CD(n, K) states
that

Γ2(f, f)(x) ≥ 1

n
(∆f)2(x) − KΓ(f, f)(x)

for all smooth function f and at all points x of the manifold. n corresponds to the dimension
of the manifold whereas the best constant −K corresponds to the smallest eigenvalue of the
Ricci tensor. It is well known (see Bakry and Ledoux [2], Bakry and Qian [1] etc) that the
coefficient n governs the short time scaling of the heat kernel (as t−

n
2 ). Here n ≥ 0 and K is

a real number which we will assume finite for a while. In the real one dimensional case, we
clearly have K = 0 and n = 1, but the constant n of course is universal and does not depend
on any measure. We next define the measure-dependent Bochner inequality as follows.

Notation 4.1. We write µε = Pε ∗ µ, where Pε is the Gaussian measure of variance ε.

Definition 4.2. We say that a probability measure µ on R satisfies Bochner’s inequality
with constants CDm(K, n) if there exists δ > 0 so that for all 0 ≤ ε′ ≤ δ, all smooth functions
f ,

Pε′ ∗ µ(Γ2(f, f)) ≥ 1

n
[Pε′ ∗ µ(∆f)]2 − K(ε′, n)Pε′ ∗ µ(Γ(f, f)).

In the sequel, it will appear that interesting cases appear when the constant K(n, ε′) may
blow up with ε′, reason why K will be later some non negative arbitrary function. n is some
positive real number.

Remark. Note here that assuming that Bochner’s inequality is true in expectation would
lead to the stronger definition

Pε′ ∗ µ(Γ2(f, f)) ≥ 1

n
Pε′ ∗ µ[(∆f)2] − K(ε′, n)Pε′ ∗ µ(Γ(f, f)).
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However, the idea is that what we want is that the points belonging to the microstates

Γδ,µ := {x1, · · · , xN : d(
1

N

∑

δxi
, µ) < δ}

approximately satisfy Bochner’s inequality when N goes to infinity and ε goes to zero. Apply-
ing the classical Bochner’s inequality to functions of the form F (x1, · · · , xN) = N−1

∑

f(xi+
εgi) for independent standard Gaussian variables (g1, · · · , gN), ε > 0 and letting N go to in-
finity gives our actual definition of measure-dependent Bochner’s inequality. Hence, roughly
speaking, (n,−K(ε, n)) represent the dimension and the smallest eigenvalue of the Ricci
tensor of a manifold where the entries (x1+

√
εg1, · · · , xN +

√
εgN) live when the (x1, · · · , xN)

belong to Γδ,µ, for δ arbitrarily small.
Based on measure-dependent Bochner’s inequalities we shall now define a new entropy

dimension

Definition 4.3. Let µ be a probability measure on R. We define the CD- dimension as

δ�(µ) := 1 − inf
µ satisfies CDm(n,K)

(lim inf
ε→0

∫ 1

ε
K(y, n)dy

log ε−1
+ 1)n.

Above, the infimum is taken over all couple (n, K(., n)) such that µ satisfies CDm(n, K).

We now prove that δ� equals δc. We first prove that

Lemma 4.4. For any probability measure µ on Rd,

δ�(µ) ≤ δc(µ).

Proof. Note that for d = 1, (∆f)2 = Γ2(f, f) but that the following argument will generalize
to dimension d by Cauchy-Schwartz inequality which gives dΓ2(f, f) ≥ (∆f)2. Integrating
with respect to µ implies that for all ε ≥ 0

[µε(∆f)]2 ≤ µε[(∆f)2] ≤ µε[Γ2(f, f)].

On the other hand, with pε the density of µε with respect to Lebesgue measure,

[µε(∆f)]2 = (µε[f
′(log pε)

′])
2

≤ µε[(f
′)2]µε[((log pε)

′)2]

= µε[Γ1(f, f)]F (µε)

Therefore, for all α ∈ [0, 1], we have

[µε(∆f)]2 ≤ αµε[Γ2(f, f)] + (1 − α)F (µε)µε[Γ1(f, f)]

and so µ satisfies CDm(n, K) with n = α and

K(ε, n) = n−1(1 − n) F (µε)

for all α ∈ [0, 1]. Then,

lim inf
ε→0

(log ε−1)−1

∫ 1

ε

K(y, n)dy ≤ (1 − n)n−1 lim inf
ε→0

(log ε−1)−1

∫ 1

ε

F (µy)dy,

and so

δ�(µ) ≥ 1 − inf
n≤d

[n + (1 − n) lim inf
ε→0

(log ε−1)−1

∫ 1

ε

F (µy)dy] = δc(µ)
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where we used (log ε−1)−1
∫ 1

ε
F (µy)dy ≤ d = 1 by (10) to say that the infimum is taken at

n = 0. �

Proposition 4.5. If a probability measure µ on R satisfies CDm(K, n), then

lim inf
ε→0

(log ε−1)−1

∫ 1

ε

F (µy)dy ≤ lim inf
ε→0

[(log ε−1)−1

∫ 1

ε

K(y, n)dy + 1]n.

As an immediate corollary of Proposition 4.5 we have

Theorem 4.6. For any probability measure µ on R,

δ�(µ) = δc(µ)

Whereas it can be easily seen that the characteristic (n,−K) of a manifold are invariant by
Lipschitz map (simply by taking local quadratic functions), invariance is not so transparent
for measure-dependent Bochner’s inequality and we could not prove interesting invariance
property of δ�. However, the above theorem and section 5 show that δ� is invariant under
Lipschitz maps.

Proof. Let us first put µε = Pε ∗ µ with ε > 0 and write

F (µε) = 2 sup
f
{Pδ ∗ µε(∆f) − 1

2
Pδ ∗ µε(Γ(f, f))}

Now, let for x ∈ [0, δ], φ(x) = Px ∗ µε(Γ(Pδ−xf, Pδ−xf)). Differentiating with respect to x,
we find that

φ′(x) = Px ∗ µε(Γ2(Pδ−xf, Pδ−xf))

≥ 1

n
[Px ∗ µε(∆Pδ−xf)]2 − K(x + ε, n)Px ∗ µε(Γ(Pδ−xf, Pδ−xf))

=
1

n
((µε∆Pδf)2) − K(x + ε, n)φ(x)

where we used the fact that Px is a semigroup which commutes with the Laplacian. Also,
we have used our measure-dependent Bochner’s inequality with f → Pδ−xf and ε′ = x + ε.

We set L(x) = e
R

1

x
K(y,n)dy. Integrating x ∈ [0, δ], we deduce that

Pδ ∗ µε(Γ(f, f)) ≥ µε(Γ(Pδf, Pδf))
L(ε + δ)

L(ε)
+

1

n
µε((∆Pδf))2

∫ δ

0

L(ε + δ)

L(ε + x)
dx(11)

We thus obtain that for all a ∈ [0, 1],

F (µε+δ) ≤ 2 sup
f
{aµε(∆Pδf) − 1

2
µε(Γ(Pδf, Pδf))

L(ε + δ)

L(ε)

+(1 − a)µε(∆Pδ ∗ f) − 1

2n

∫ δ

0

L(ε + δ)

L(ε + x)
dx(µε(∆Pδf))2}

≤ a2 L(ε)

L(ε + δ)
F (µε) + (1 − a)2 n

∫ δ

0
L(ε+δ)
L(ε+x)

dx.
(12)

The optimum with respect to a is taken at

a =
n

L(ε)
L(ε+δ)

∫ δ

0
L(ε+δ)
L(ε+x)

dxF (µε) + n
.



ON CLASSICAL ANALOGUES OF FREE ENTROPY DIMENSION. 17

We conclude

F (µε+δ) ≤
n L(ε)

L(ε+δ)
F (µε)

∫ δ

0
L(ε)

L(ε+x)
dxF (µε) + n

(13)

= n∂δ[log(

∫ δ

0

L(ε)

L(ε + x)
dxF (µε) + n)].

Integrating with respect to δ ∈ [0, 1 − ε] thus gives

n−1

∫ 1

ε

F (µx)dx ≤ log(n−1

∫ 1

ε

L(ε)

L(x)
dxF (µε) + 1)

≤ log(n−1ε−1

∫ 1

ε

L(ε)

L(x)
dx + 1)

where we used again εF (µε) ≤ 1 by (10). Consequently

n−1 lim inf
ε→0

(log ε−1)−1

∫ 1

ε

F (µx)dx ≤ lim inf
ε→0

(log ε−1)−1 log(n−1ε−1d

∫ 1

ε

L(ε)

L(x)
dx + 1)

= lim inf
ε→0

(log ε−1)−1 log(ε−1

∫ 1

ε

L(ε)

L(x)
dx)

Now,
∫ 1

ε

L(ε)

L(x)
dx ≤ e

R

1

ε
K(y,n)dy

and so we arrive at

n−1 lim inf
ε→0

(log ε−1)−1

∫ 1

ε

F (µx)dx ≤ 1 + lim inf
ε→0

(log ε−1)−1

∫ 1

ε

K(y, n)dy(14)

which is the desired inequality. �

We finally give a lower bound of δ� in the spirit of [9]. To do this, let us defined, for a
Cb

1(R, R) function g,

Fg(µ) = 2 sup
f
{µ(g∆f) − 1

2
µ(Γ1(f, f))}

Proposition 4.7. For any probability measure µ on R
d,

δc(µ) = δ�(µ) ≥ 1 − inf
h∈F̄µ

µ[(1 − h)2]

with F̄µ the set of continuous functions so that

lim inf
δ→∞

(log δ−1)−1

∫ 1

δ

Fh(µx)dx = 0.

This lower bound has the advantage to give a more intuitive picture of the dimension;
for instance, if µ has a smooth density such that the gradient of its logarithm is uniformly
bounded, on a subset A of M , we take h = 1 in some interior set As of A, |h| ≤ 1 and h = 0
outside A. It is easy to see that Fh(µ) < ∞ and so h ∈ Fµ. Thus, we get

δ∗(µ) = δ�(µ) ≥ µ(A).

Note however that such a lower bound is already contained in Theorem 3.1.
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Proof. (of Proposition 4.7). We take h ∈ Fµ. We can assume without loss of generality that
µ[(1− h)2] 6= 0 since otherwise the bound is trivial (h being equal to one almost surely, and
hence Fh = F implying that δc = δ� = d). We now write

µε(∆f) = µε(h∆f) + µε((1 − h)∆f)

= µε(Jhf
′) + µε((1 − h)∆f)

Now,
[µε(Jhf

′)]2 ≤ Fh(µε)µε(Γ(f, f))

whereas

[µε((1 − h)∆f)]2 ≤ µε((1 − h)2)µε((∆f)2)

≤ µε((1 − h)2)[µε(Γ2(f, f)) + Kdµε(Γ1(f, f))]

Using that for all α > 0, for all x, y ∈ R, (x + y)2 ≤ (1 + α)x2 + (1 + α−1)y2 we thus derive
the inequality

[µε(∆f)]2 ≤ (1 + α)Fh(µε)µε(Γ(f, f)) + (1 + α−1)µε((1 − h)2)[µε(Γ2(f, f)) + Kµε(Γ1(f, f))]

that is the CDm(n, K) inequality with

n = n(ε) = (1 + α−1)µε((1 − h)2), K(ε, n) = n−1[(1 + α)Fh(µε) + (1 + α−1)K]

Since h is continuous, µε((1 − h)2) converges towards µ((1 − h)2) 6= 0 and since

lim inf(log ε−1)−1
∫ 1

ε
Fh(µx)dx goes to zero ,

lim inf
ε→0

(log ε−1)−1

∫ 1

ε

K(x, n)dx = 0.

Thus, δ�(µ) ≥ 1 − infα(1 + α−1)µ((1 − h)2) = 1 − µ((1 − h)2) and optimizing over h ∈ F̄µ

yields the desired estimate. �

5. Lipschitz invariance.

Our main result is that δc is invariant under push-forwards by bi-Lipschitz maps:

Theorem 5.1. Let f : R → R be bi-Lipschitz, i.e., we assume that for some m, M > 0 and
all x, y ∈ R,

m|x − y| ≤ |f(x) − f(y)| ≤ M |x − y|.
Let η = f ∗µ be the push-forward of µ. Then δc(µ) = δc(η).

Proof. For any y = f(x),

η[y − t/2, y + t/2] = µ(f−1[y − t/2, y + t/2]) ≥ µ[x − t/(2M), x + t/(2M)].

It follows that
∫

log
1

t
η[y − t/2, y + t/2]dη(y) ≥

∫

log
1

t
µ[f−1(y) − t/(2M), f−1(y) + t/(2M)]dη(y)

=

∫

log
1

t
µ[x − t/(2M), x + t/(2M)]dµ(x)

=

∫

log
1

t/M
µ[x − t/(2M), x + t/(2M)]dµ(x) − log M.

Using Theorem 2.7 we conclude that

δc(η) ≤ δc(µ).
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Replacing f by its inverse yields the reverse inequality. �

It should be noted that one cannot expect much more invariance for δc than is given by
Theorem 5.1. Indeed, Cantor sets in R can be made homeomorphic in a way that distorts
their fractal dimensions.

6. Non-commutative Bochner’s inequality

In this last section, we generalize the notion of measure-dependent Bochner’s inequality of
section 4. To this end, we first define the appropriate notions of carré du champ and carré
du champ itéré.

6.1. Carré du champ. We recall first that the carré du champ and the carré du champ
itéré in Rn are given, for f : Rn → C by

Γ(f, f) =
n

∑

i=1

|∂if |2, Γ2(f, f) =
n

∑

i,j=1

|∂xi
∂xj

f |2

In the case of m Hermitian matrices XN with complex entries xk
ij , 1 ≤ i ≤ j ≤ N , 1 ≤ k ≤ m,

∆ = 2

m
∑

k=1

∑

1≤i<j≤N

∂xk
ij
∂x̄k

ij
+

m
∑

k=1

∑

1≤i≤N

∂xk
ii
∂xk

ii

and so, if f, g : R2mN2 → C, we set

Γ1(f, g) = 2
m

∑

k=1

∑

i<j

∂xk
ij
f∂x̄k

ij
ḡ +

m
∑

k=1

∑

i<j

∂xk
ii
f∂xk

ii
ḡ

and

Γ2(f, g) =

m
∑

k,l=1

∑

ij

∑

ml

(∂xl
ij
∂xk

ml
f∂x̄l

ij
∂x̄k

ml
ḡ).

Again, to define the notion of carré du champ and carré du champ itéré for tracial states, the
idea is that if we consider f((xk

ml)
1≤k≤m
1≤m≤l≤N ) := F (X) = tr(P (X1, · · · , Xm)) when µ̂N(Q) :=

N−1tr(Q(X1, · · · , Xm)) goes to τ(Q) for all polynomial Q and some non-commutative law
τ . We denote ∗ the involution

(zXi1 · · ·Xik)
∗ = z̄Xik · · ·Xi1

for any il ∈ {1, · · · , m}. Since tr(P ) = tr(P ∗), applying the above recipe we find,

Γµ̂N

1 (P, Q) =:
∑

k

∑

i,j

∂xk
ij
(tr(P (X1, · · · , Xm)))∂x̄k

ij
(tr(Q∗(X1, · · · , Xm)))

= N−1
∑

k

∑

i,j

[DkP (X)]ij[DkQ(X)∗]ji

=
∑

k

N−1tr(DkP (X)(DkQ(X))∗)

≈
∑

k

τ(DkP (X)(DkQ(X))∗) := Γτ
1(P, Q)
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where we have denoted Dk the cyclic derivative on polynomial, given by DkP =
∑

P=P1XkP2
P2P1

if P is a monomial (and extending by linearity to all polynomial then) and noticed, as can
be readily checked on monomials, that (DkP )∗ = DkP

∗. Similarly,

Γµ̂N

2 (P, Q) =:
m

∑

k,l=1

∑

i,j

∑

pq

∂Xl
ij
∂Xk

pq
(tr(P (X1, · · · , Xm)))∂X̄l

ij
∂X̄k

pq
(tr(Q∗(X1, · · · , Xm)))

= N−2
m

∑

k,l=1

[∂l ◦ DkP]1pq]ij[∂l ◦ DkQ
∗]1qp]ji

≈
m

∑

k,l=1

τ ⊗ τ((∂l ◦ DkQ)∗ ? ∂l ◦ DkP ) := Γτ
2(P, Q)

where ∂k denotes the non-commutative derivative with respect to the variable Xk (∂kP =
∑

P=P1XkP2
P1 ⊗P2 for a monomial P ), A⊗B]C = ACB, (A⊗B)∗ = B∗ ⊗A∗ and A⊗B ?

A′ ⊗ B′ = BA′ ⊗ AB′. 1kl is the matrix with zeroes except in kl. Hence, we define

Definition 6.1. For any non-commutative law τ of m self-adjoint variables, we define its
non-commutative carré du champ to be the bilinear function on C〈X1, · · · , Xm〉 so that for
any P, Q ∈ C〈X1, · · · , Xm〉,

Γτ
1(P, Q) =

m
∑

i=1

τ(DiP (DiQ)∗)

and its non-commutative carré du champ itéré to be the bilinear function on C〈X1, · · · , Xm〉
so that for any P, Q ∈ C〈X1, · · · , Xm〉,

Γτ
2(P, Q) =

m
∑

k,l=1

τ ⊗ τ((∂l ◦ DkQ)∗ ? ∂l ◦ DkP ).

We also denote in short
Γτ

i (P, Q) =< P, Q >τ,i .

Observe that the above notation makes sense since Γτ
i are positive bilinear forms. This is

obvious for Γτ
1. For Γτ

2 , one needs to observe that if τ is a tracial state, P, Q → τ ⊗ τ(P ?Q∗)
is non negative. But if P =

∑

αiAi ⊗ Bi,

τ ⊗ τ(P ? P ∗) =
∑

αiᾱjτ(AiA
∗
j)τ(BiBj∗) ≥ 0

since the matrices (τ(AiA
∗
j ))i,j, (τ(BiB

∗
j ))i,j are non-negative.

Further, when the Laplacian ∆ =
∑

∂xk
ij
∂x̄k

ij
on the entries acts on F (X l

ij) = f(X1, · · · , Xm),

we get if

D2
k ≡ 1

2
(∂k ⊗ 1 + 1 ⊗ ∂k) ◦ ∂k

and
M(A ⊗ B ⊗ C) ≡ B ⊗ AC

and
Lτ :=

∑

k

τ ⊗ IM ◦ ∂2
k
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that

∆F = Lτf

when the law of X approximate τ . If F = N−1tr(P ), we get

∆F ≈ τ(LτP ).

Note here that

τ(LτP ) =
m

∑

i=1

τ ⊗ τ(∂i ◦ DiP )

as can be readily checked by taking P to be a monomial. Let S = (S1, · · · , Sm) be a free
Brownian motion, free with X = (X1, · · · , Xm) with law τ , and φ a tracial state on a von
Neumann algebra containing S and X. We then have

P (X + St) = P (X) +

∫ t

0

LφX+Ss
(P )(X + Ss)ds +

∫ t

0

m
∑

i=1

∂iP (X + Ss)]dSi
s

where the last term is a martingale. We denote τt the distribution of (X1+S1
t , · · · , Xm+Sm

t ).

6.2. Non-commutative Bochner’s inequality. We recall that Bochner’s inequality reads
in the classical context as

Γ2(f, f) ≥ 1

n
(∆f)2 − KΓ1(f, f)

for some fixed constants n ≥ 0, K ∈ R. Remark that n is of the order of the dimension,
so of order N2 in the context of matrices, so we let N = n/N2 and apply this inequality to
F = tr(P ) we get if µ̂N

X ≈ τ , as N goes to infinity,

< P, P >τ,2≥
1

N [τ(LτP )]2 − K < P, P >τ,1 .

Therefore,

Definition 6.2. We shall say that a non-commutative law τ satisfies a CDm(K,N ) inequality
iff for all ε small enough,

< P, P >τε,2≥
1

N [τε(LτεP )]2 −K(N , ε) < P, P >τε,1

for any polynomial function P .

We can therefore define

Definition 6.3.

δ�(τ) = m − inf
τ satisfies CDm(K,N )

(K̄(N ) + 1)N

where

K̄(N ) = lim inf
ε→0

(log ε−1)−1

∫ 1

ε

K(N , y)dy.
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We next want to compare this definition of a non-commutative dimension with already
existing entropy dimension. We recall that in the non-commutative setting, Voiculescu [13]
defined the following notion of Fisher entropy and related entropy dimension. For a tracial
state τ , we define its Fisher information by

Φ∗(τ) =
m

∑

i=1

sup
P∈C〈X1,··· ,Xm〉

{τ ⊗ τ(∂i(P + P ∗)) − τ(PP ∗)}

= sup
P∈C〈X1,··· ,Xm〉m

{
m

∑

i=1

τ ⊗ τ(∂i(Pi + P ∗
i )) −

m
∑

i=1

τ(PiP
∗
i )}

Then, as in (9), the microstates-free free entropy dimension is given by

(15) δ∗(µ) = m − lim inf
t→0

∫ 1

t
Φ∗(τs)ds

| log t| .

Here, we shall consider a variant of δ∗ based on the following definition of Fisher information
as found in [3]:

Φ̄∗(τ) = sup
P∈C〈X1,··· ,Xm〉

{
m

∑

i=1

τ ⊗ τ(∂i(DiP + DiP
∗)) −

m
∑

i=1

τ(DiPDiP
∗)}

and

δ̄∗(τ) = m − lim inf
t→0

∫ 1

t
Φ̄∗(τs)ds

| log t| .

Observe that Φ̄∗ ≤ Φ∗ and so δ̄∗(τ) ≥ δ∗(τ). Equality is achieved if the conjugate variables
belong to the cyclic gradient space, which appears to be often (if not always) the case (see
Voiculescu [13] and Cabanal Duvillard-Guionnet [4]). This is the case, in particular, if we
are dealing with the law τ of a single variable (i.e., m = 1).

In the sequel, we shall as well denote (J i
τ )1≤i≤m for the projection of the conjugate variable

on the cyclic gradient space, i.e

τ ⊗ τ(∂i ◦ DiP ) = τ(J i
τ DiP )

for all polynomials P .
We next prove

Proposition 6.4.

δ�(τ) = δ̄∗(τ).

In particular,

δ�(τ) ≥ δ̄∗(τ) ≥ δ(τ)

where δ(τ) denotes the microstates entropy dimension.

Proof. Let us first remark that by definition

τ(LτP ) =
m

∑

i=1

τ ⊗ τ(∂i ◦ DiP ) =
m

∑

i=1

τ(J i
τ DiP )

and therefore

|τ(LτP )|2 ≤ Φ̄(µ)Γτ
1(P, P ).
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On the other hand

|τ(LτP )|2 ≤ m

m
∑

i=1

|τ ⊗ τ(∂i ◦ DiP )|2

with
|τ ⊗ τ(∂i ◦ DiP )|2 ≤ τ ⊗ τ(∂i ◦ DiP ? (∂i ◦ DiP )∗)

by Cauchy-Schwartz inequality, which holds because of the positivity of the positive bilinear
form P, Q → τ ⊗ τ(∂i ◦ DiP ? (∂i ◦ DiP )∗). Hence, for any α ∈ [0, 1]

|τ(LτP )|2 ≤ mαΓτ
2(P, P ) + (1 − α)Φ̄(τ)Γτ

1(P, P ).

This proves that Bochner’s inequality is satisfied with N = mα and K(N , ε) = (1 −
N /m)Φ̄(τε)N−1 from which we get

m− δ�(τ) = inf{N (1 + K̄(N ))} ≤ inf
N∈[0,m]

{N + (1−N /m) lim inf

∫ 1

ε
Φ̄∗(τs)ds

| log ε| } = m− δ̄∗(τ)

where we used that
R 1

ε
Φ̄∗(τs)ds

| log ε|
∈ [0, m] which holds since Φ̄∗(τs) ≤ s−1.

For the other inequality, let X be an m-tuple of random variables having the law τx+ε

obtained as free convolution of the law τ with the semicircular law of variance ε. Let
0 < x < δ and let Sδ−x be an m-tuple of semicircular variables of variance δ − x, free from
X. Denote by τ(·|X) the conditional expectation onto the algebra generated by X. We then
introduce, in the spirit of the proof in the classical case, the function

φ(x) =

m
∑

i=1

τx+ε

(

|Diτ(P (X + Sδ−x)|X)|2
)

(note that τ(P (X + Sδ−x)|X) is a polynomial in X and hence is in the domain of Di).
We have

φ′(x) =
m

∑

i=1

τx+ε

(

Lτx+ε
|Diτ(P (X + Sδ−x)|X)|2

)

−2<τx+ε

(

Diτ(Lτδ+ε
P (X + Sδ−x)|X)(Diτ(P (X + Sδ−x)|X)∗

)

(16)

where we used the fact that the law of X+Sδ−x under τx+ε is the law of X+Sδ−x+S̄x+ε, with
S̄ a free Brownian motion independent from S, X, which has the same law τδ+ε of X + Sδ+ε.
Now, let us compute Lτx+ε

(PQ) for polynomials P, Q. Lτx+ε
is a second order differential

operator; it will either act on P , or Q, or both;

Lτx+ε
(PQ) = Lτx+ε

(P )Q + PLτx+ε
(Q) + R(P, Q).

To compute R(P, Q) note that this contribution comes from

∆2
k(PQ) − ∆2

k(P ) × 1 ⊗ 1 ⊗ Q − P ⊗ 1 ⊗ 1 × ∆2
k(Q) = ∂kP ?̄∂kQ

with A ⊗ B?̄A′ ⊗ B′ = A ⊗ BA′ ⊗ B′. Note that

M(A ⊗ B?̄A′ ⊗ B′) = BA′ ⊗ AB′ = A ⊗ B ? A′ ⊗ B′.

Therefore
m

∑

i=1

τx+ε (R(Diτ(P (X + Sδ−x)|X), Diτ(P (X + Sδ−x)|X)))

= Γ
τx+ε

2 (τ(P (X + Sδ−x)|X), τ(P (X + Sδ−x)|X))
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Finally, it is easy to see that

Lτx+ε
(Diτ(P (X + Sδ−x)|X)) = Diτ(Lτδ+ε

P (X + Sδ−x)|X)

so that we have proved according to (16) that

φ′(x) = Γ
τx+ε

2 (τ(P (X + Sδ−x)|X))

≥ 1

N [τx+ε[Lτx+ε
(τ(P (X + Sδ−x)|X)]2 − KΓ

τx+ε

1 (τ(P (X + Sδ−x)|X))(17)

We can now proceed exactly in the lines of the proof of Proposition 6.4 to conclude that
Φ̄∗(τε) satisfies the bound

Φ̄∗(τε) ≤
N L(ε)

L(ε+δ)
Φ̄∗(τε)

∫ δ

0
L(ε)

L(ε+x)
dxΦ̄∗(τε) + N

(18)

with L(y) = e
R 1

y
K(x,N )dx as before. The rest of the proof is exactly as in the classical case. �

Corollary 6.5. If τ is the law of a single variable (i.e., m = 1) then

δ�(τ) = δ̄∗(τ) = δ(τ) = 1 − τ ⊗ τ(χ∆)

where χ∆ is the characteristic function of the diagonal ∆ ⊂ R
2 and we identify τ with a

measure on R.

Proposition 6.6. Let X = (X1, . . . , Xm) have the given law τ , M = W ∗(X1, . . . , Xm) and
let G = (Gij) ∈ Mm×m(L2(M⊗̄Mo)) be a fixed matrix. Let Φ̄G be the Fisher information
defined by

Φ̄G = sup
P∈C〈X1,··· ,Xm〉

{
m

∑

i=1

τ ⊗ τ(∂G
i (DiP + DiP

∗)) −
m

∑

i=1

τ(DiPDiP
∗)}

where ∂G
i (Xj) = Gij. Then

δ̄∗(τ) = δ�(τ) ≥ m(1 − inf
G∈Fτ

τ(1 − G)2)

with Fτ the set of G ∈ Mm×m(L2(M⊗̄Mo)) so that (log ε−1)−1
∫ 1

ε
dtΦ̄∗

G(τt) goes to zero.

The proof is exactly the same as the previous one except that the use of Bochner inequality
is simply replaced by the fact that any measure satisfies CDm(m, 0) as we have seen in the
proof of the previous theorem.
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