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Abstract. Consider a deterministic self-adjoint matrix Xn with spectral measure con-
verging to a compactly supported probability measure, the largest and smallest eigenval-
ues converging to the edges of the limiting measure. We perturb this matrix by adding
a random finite rank matrix with delocalized eigenvectors and study the extreme eigen-
values of the deformed model. We give necessary conditions on the deterministic matrix
Xn so that the eigenvalues converging out of the bulk exhibit Gaussian fluctuations,
whereas the eigenvalues sticking to the edges are very close to the eigenvalues of the
non-perturbed model and fluctuate in the same scale.
We generalize these results to the case when Xn is random and get similar behavior
when we deform some classical models such as Wigner or Wishart matrices with rather
general entries or the so-called matrix models.
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1. Introduction

Most of the spectrum of a large matrix is not much altered if one adds a finite rank
perturbation to the matrix, simply because of Weyl’s interlacement properties of the
eigenvalues. But the extreme eigenvalues which, depending on the strength of the per-
turbation, should either stick to the extreme eigenvalues of the non-perturbed matrix or
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deviate to some larger values. This phenomenon was made precise in [9], where a sharp
phase transition, known as the BBP transition [34, 27, 38, 29], was exhibited for finite
rank perturbations of a complex Gaussian Wishart matrix. In this case, it was shown that
if the strength of the perturbation is above a threshold, the largest eigenvalue of the per-
turbed matrix deviates away from the bulk and has then Gaussian fluctuations, otherwise
it sticks to the bulk and fluctuates according to the Tracy-Widom law. The fluctuations
of the extreme eigenvalues which deviate from the bulk were studied as well when the
non-perturbed matrix is a Wishart (or Wigner) matrix with non-Gaussian entries; they
were shown to be Gaussian if the perturbation is chosen randomly with i.i.d. entries in
[7], or with completely delocalised eigenvectors [18, 19], whereas in [12], a non-Gaussian
behaviour was exhibited when the perturbation has localised eigenvectors. The influence
of the localisation of the eigenvectors of the perturbation was studied more precisely in
[13].

In this paper, we also focus on the behavior of the extreme eigenvalues of a finite rank
perturbation of a large matrix, this time in the framework where the large matrix is deter-
ministic whereas the perturbation has delocalised random eigenvectors. We show that the
eigenvalues which deviate away from the bulk have Gaussian fluctuations whereas those
which stick to the bulk are extremely close to the extreme eigenvalues of the non-perturbed
matrix. In a one-dimensional perturbation situation, we can as well study the fluctuations
of the next eigenvalues, for instance showing that if the first eigenvalue deviates from the
bulk, the second eigenvalue will stick to the first eigenvalue of the non-perturbed ma-
trix, whereas if the first eigenvalue sticks to the bulk, the second eigenvalue will be very
close to the second eigenvalue of the non-perturbed matrix. Hence, for a one dimensional
perturbation, the eigenvalues which stick to the bulk will fluctuate as the eigenvalues of
the non-perturbed matrix. We can also extend these results beyond the case when the
non-perturbed matrix is deterministic. In particular, if the non-perturbed matrix is a
Wishart (or Wigner) matrix with rather general entries, or a matrix model, we can use
the universality of the fluctuations of the extreme eigenvalues of these random matrices,
to show that the pth extreme eigenvalue which sticks to the bulk fluctuates according to
the pth dimensional Tracy-Widom law. This proves the universality of the BBP transition
at the fluctuation level, provided the perturbation is delocalised and random.
The reader should notice however that we do not deal with the asymptotics of eigenvalues
corresponding to critical deformations. This probably requires a case-by-case analysis and
may depend on the model considered.

Let us now describe more precisely the models we will be dealing with. We consider
a deterministic self-adjoint matrix Xn with eigenvalues λn

1 ≤ · · · ≤ λn
n satisfying the

following hypothesis.

Hypothesis 1.1. The spectral measure µn := n−1
∑n

l=1 δλn
l

of Xn converges towards a
deterministic probability measure µX with compact support. Moreover, the smallest and
largest eigenvalues of Xn converge respectively to a and b, the lower and upper bounds of
the support of µX.

We study the eigenvalues λ̃n
1 ≤ · · · ≤ λ̃n

n of a perturbation X̃n := Xn + Rn obtained
from Xn by adding a finite rank matrix Rn =

∑r
i=1 θiu

n
i u

n∗

i . We shall assume r and the
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θi’s to be deterministic and independent of n, but the column vectors (un
i )1≤i≤r chosen

randomly as follows. Let ν be a probability measure on R or C satisfying

Assumption 1.2. The probability measure ν satisfies a log-Sobolev inequality, is centred
and has variance one. If ν is not concentrated on R, we assume moreover that its real
part and its imaginary part are independent and identically distributed (i.i.d.).

We consider now a random vector vn = 1√
n
(x1, . . . , xn)T with (xi)1≤i≤n i.i.d. real or

complex random variables with law ν. Then

(1) Either the un
i ’s (i = 1, . . . , r) are independent copies of vn

(2) Or (un
i )1≤i≤r are obtained by the Gram-Schmidt orthonormalisation of r indepen-

dent copies of a vector vn.

We shall refer to the model (1) as the i.i.d. model and to the model (2) as the orthonor-
malised model.

Before giving a rough statement of our results, let us make a few remarks.
In the orthonormalised model, if ν is the standard real (resp. complex) Gaussian law,
(un

i )1≤i≤r follows the uniform law on the set of orthogonal random vectors on the unit
sphere of Rn (resp. Cn) and by invariance by conjugation, the model coincides with the
one studied in [10].
For a general ν satisfying Assumption 1.2, the r i.i.d. random vectors obtained are not
necessarily linearly independent almost surely so that the orthonormal vectors described
in (2) are not always almost surely well defined. However, as the dimension goes to
infinity, they are well defined with overwhelming probability. This means the following:
we shall say that a sequence of events (Cn)n≥1 occurs with overwhelming probability1 if
there exists two constants C, η > 0 independent of n such that for n large enough,

P(Cn) ≥ 1 − Ce−nη

.

Consequently, in the sequel, we shall restrict ourselves to the event when the model (2)
is well defined without mentioning it explicitly.

In this work, we study the asymptotics of the eigenvalues of X̃n outside of the spectrum
of Xn.

It has already been observed in similar situations, see [9], that these eigenvalues converge
to the boundary of the support of Xn if the θi’s are small enough, whereas for sufficiently
large values of the θi’s, they stay away from the bulk of Xn. More precisely, if we let GµX

be the Cauchy-Stieltjes transform of µX , defined, for z < a or z > b, by the formula

GµX
(z) =

∫
1

z − x
dµX(x),

then the eigenvalues of X̃n outside the bulk converge to the solutions of GµX
(z) = θ−1

i if
they exist.

1Note that this is a bit different from what is called overwhelming probability by Tao and Vu but will
be sufficient for our purpose.
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Indeed, if we let

θ :=
1

limz↓b GµX
(z)

≥ 0, θ :=
1

limz↑a GµX
(z)

≤ 0

and

ρθ :=





G−1
µX

(1/θ) if θ ∈ (−∞, θ) ∪ (θ, +∞),

a if θ ∈ [θ, 0),

b if θ ∈ (0, θ],

then we have the following theorem.

Theorem 1.3. Assume that Hypothesis 1.1 and Assumption 1.2 are satisfied. Let r0 ∈
{0, . . . , r} be such that

θ1 ≤ · · · ≤ θr0 < 0 < θr0+1 ≤ · · · ≤ θr.

Then for all i ∈ {1, . . . , r0} we have

λ̃n
i

a.s.−→ ρθi

and for all i ∈ {r0 + 1, . . . , r},
λ̃n

n−r+i
a.s.−→ ρθi

.

Moreover, for all i > r0 (resp. for all i ≥ r − r0),

λ̃n
i

a.s.−→ a (resp. λ̃n
n−i

a.s.−→ b).

The uniform case was proved in [10, Theorem 2.1] and we will follow a similar strategy
to prove it under our assumptions in Section 2 (see Lemma 2.1).

We study the fluctuations of the extreme eigenvalues of X̃n. Precise statements will be
given in Theorems 3.2, 3.4, 4.3 and 4.4 and Corollary 4.5 but the results roughly state as
follows.

Theorem 1.4. Under additional hypotheses,

(1) Let α1 < · · · < αq be the different values of the θi’s such that ρθi
/∈ {a, b} and

denote, for each j, by Ij the set of indices i so that θi = αj. Set kj = |Ij| and q0

the largest index so that αq0 < 0. Then, the law of the random vector
(√

n(λ̃n
i − ραj

), i ∈ Ij

)
1≤j≤q0

∪
(√

n(λ̃n
n−r+i − ραj

), i ∈ Ij

)
q0+1≤j≤q

converges to the law of the eigenvalues of (cjMkj
)1≤j≤q with the Mkj

’s being in-
dependent matrices following the law of a kj × kj matrix from the GUE or the
GOE, depending whether ν is supported on the complex plane or the real line. The
constant cj is explicitly defined in Equation (6).

(2) If none of the θi’s are critical, with overwhelming probability, the extreme eigenval-
ues converging to a or b are at distance at most n−1+ǫ of the extreme eigenvalues
of Xn for some ǫ > 0.

(3) If r = 1 and θ1 = θ > 0, we have the following more precise picture about the next
eigenvalues
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• If ρθ > b,
√

n(λ̃n
n − ρθ) converges towards a Gaussian variable, whereas

n1−ǫ(λ̃n
n−i − λn−i+1) vanishes in probability as n goes to infinity for any fixed

i ≥ 1 and some ǫ > 0.
• If ρθ = b and θ 6= θ, n1−ǫ(λ̃n

n−i − λn−i) vanishes in probability as n goes to
infinity for any fixed i ≥ 1 and some ǫ > 0.

The first part of this theorem will be proved in Section 3, whereas Section 4 will be
devoted to the study of the eigenvalues sticking to the bulk, i.e. to the proof of the
second and third parts of the theorem. Moreover, our results can be easily generalised
to non-deterministic self-adjoint matrices Xn that satisfy our hypotheses with probability
tending to one. This will allow us to study in Section 5 the deformations of various
classical models. This will include the study of the Gaussian fluctuations away from the
bulk for rather general Wigner and Wishart matrices, hence providing a new proof of
the first part of [18, Theorem 1.1] and of [5, Theorem 3.1] but also a new generalisation
to non-white ensembles. The study of the eigenvalues that stick to the bulk requires a
finer control on the eigenvalues of Xn in the vicinity of the edges of the bulk, which we
prove for random matrices such as Wigner and Wishart matrices with entries having a
sub-exponential tail. This result complements [18, Theorem 1.1] where the fluctuations
of the largest eigenvalue of a non-Gaussian Wishart matrix perturbed by a delocalised
but deterministic rank one perturbation was studied. One should remark that our result
depends very little on the law ν (only through its fourth moment in fact).

Our approach is based upon a determinant computation (see Lemma 6.1), which shows

that the eigenvalues of X̃n we are interested in are the solutions of the equation

fn(z) := det
([

Gn
i,j(z)

]r
i,j=1

− diag(θ−1
1 , . . . , θ−1

r )
)

= 0, (3)

with

Gn
i,j(z) := 〈un

i , (z − Xn)−1un
j 〉,

where 〈·, ·〉 denotes the usual scalar product in C
n.

By the law of large numbers for i.i.d. vectors, by [10, Proposition 9.3] for uniformly
distributed vectors or by applying Theorem 6.4 (with An = (z − Xn)−1), it is easy to see
that for any z outside the bulk,

lim
n→∞

Gn
i,j(z) = 1i=jGµX

(z)

and hence it is clear that one should expect the eigenvalues of X̃n outside of the bulk to
converge to the solutions of GµX

(z) = θ−1
i if they exist. Studying the fluctuations of these

eigenvalues amounts to analyze the behavior of the solutions of (3) around their limit.
Such an approach was already developed in several papers (see e.g [7] or [12]). However,
to our knowledge, the model we consider, with a fixed deterministic matrix Xn, was not
yet studied and the fluctuations of the eigenvalues which stick to the bulk of Xn was never
achieved in such a generality.

For the sake of clarity, throughout the paper, we will call “hypothesis” any hypothesis
we need to make on the deterministic part of the model Xn and “assumption” any hy-
pothesis we need to make on the deformation Rn.
Moreover, because of concentration considerations that are developed in the Appendix
of the paper, the proofs will be quite similar in the i.i.d. and orthonormalised models.
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Therefore, we will detail each proof in the i.i.d. model, which is simpler and then check
that the argument is the same in the orthonormalised model or detail the slight changes
to make in the proofs.

2. Almost sure convergence of the extreme eigenvalues

For the sake of completeness, we prove in this section Theorem 1.3.

Using [10, Lemma 6.1], Theorem 1.3 will be a direct consequence of the following
Lemma.

Lemma 2.1. Assume that Hypothesis 1.1 and Assumption 1.2 are satisfied. Let δ > 0
and Sδ = [a − δ, b + δ] ∪ (∪1≤i≤r[ρθi

− δ, ρθi
+ δ]). Then, for any δ > 0, the eigenvalues of

X̃n belong to Sδ with overwhelming probability.

Proof. To prove the first statement, by (3), it is enough to prove that fn does not vanish
on Sc

δ .
The i.i.d. model. Fix some z ∈ Sc

δ and n large enough. By Proposition 6.2 with A =
(z − Xn)−1, whose operator norm is bounded by 2δ−1, we find that for any ǫ > 0, there
exists c > 0 such that

P

(∣∣∣∣G
n
i,j(z) − 1i=j

1

n
Tr((z − Xn)−1)

∣∣∣∣ ≥
δ−1

n1/2−ǫ

)
≤ 4e−cn2ǫ

. (4)

By convergence of the spectral measure, 1
n
Tr((z −Xn)−1) converges towards the Stieltjes

transform GµX
(z) and hence fn(z) is arbitrarily close to f(z) :=

∏r
i=1(GµX

(z) − 1
θi

) with
overwhelming probability.

Note now that z ∈ Sc
δ 7→ fn(z) is Lipschitz with constant of order δ−2 and therefore,

with zk = kn−1, k ∈ [−Mn, Mn] integer and M large enough, we have

sup
z∈[−M,M ]\Sδ

|fn(z) − f(z)| ≤ max
k∈[−Mn,Mn],zk∈Sc

δ

|fn(zk) − f(zk)| + Cδ−2n−1 ,

which insures with the above control that for δ ≥ Cn− 1
2
+ǫ, for any ǫ > 0,

P

(
sup

z∈[−M,M ]\Sδ

|fn(z) − f(z)| ≥ 2δ−1

n1/2−ǫ

)
≤ 8Mne−cn2ǫ

. (5)

Note also that the eigenvalues are bounded by 1 + max{|a|, |b|} +
∑r

i=1 |θi| for n large
enough and take M greater than this constant. Since f does not vanish on Sc

δ , we conclude

that fn does not vanish either on Sc
δ and therefore that the extreme eigenvalues of X̃n

belong to Sδ with overwhelming probability.
The orthonormalised model can be treated similarly, by writing Un = W nGn with

√
nW n

a matrix converging to identity with overwhelming probability by Proposition 6.3.

�

3. Fluctuations of the eigenvalues away from the bulk

Let p+ be the number of i’s such that ρθi
> b and p− be the number of i’s such that

ρθi
< a. In this section, we study the fluctuations of the eigenvalues of X̃n with limit
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out of the bulk, that is (λ̃n
1 , . . . , λ̃

n
p−

, λ̃n
n−p++1, . . . , λ̃

n
n). We shall assume throughout this

section that the spectral measure of Xn converges to µX faster than 1/
√

n. More precisely,

Hypothesis 3.1. For all z ∈ {ρα1 , . . . , ραq},
√

n(Gµn(z) − GµX
(z)) converges to 0.

Our theorem concerns the limiting joint distribution of the following random variables

γn
i =

√
n(λ̃n

i − ρθi
) if i ≤ p−

γn
p−+p+−r+i =

√
n(λ̃n

n−r+i − ρθi
) if r − p+ + 1 ≤ i ≤ r.

Let us recall that for k ≥ 1, GOE(k) (resp. GUE(k)) is the distribution of a k × k
symmetric (resp. Hermitian) random matrix [gi,j]

k
i,j=1 such that the random variables

{ 1√
2
gi,i ; 1 ≤ i ≤ k} ∪ {gi,j ; 1 ≤ i < j ≤ k} (resp. {gi,i ; 1 ≤ i ≤ k} ∪ {

√
2ℜ(gi,j) ; 1 ≤

i < j ≤ k} ∪ {
√

2ℑ(gi,j) ; 1 ≤ i < j ≤ k}) are independent standard Gaussian random
variables.

The limiting behaviour of the eigenvalues with limit outside the bulk will depend on
the law ν through the following quantity, called the fourth cumulant of ν

κ4(ν) :=

{∫
x4dν(x) − 3 in the real case,∫
|z|4dν(z) − 2 in the complex case.

Note that if ν is Gaussian standard, then κ4(ν) = 0.

We recall that the αj ’s and the kj ’s have been defined in Theorem 1.4.

Theorem 3.2. Suppose that Assumption 1.2 holds with κ4(ν) = 0, as well as Hypotheses
1.1 and 3.1. Then the law of

(γn
Pi−1

ℓ=1 kℓ+i
, 1 ≤ i ≤ kj)1≤j≤q

converges to the law of the eigenvalues of (cjMj)1≤j≤q with Mj being independent matrices
following the law of a kj × kj matrix from the GUE (resp. the GOE) if ν is supported on
the complex plane (resp. the real line). The constant cj is given by

c2
j =





1
R

(ραj−x)−2dµX(x)
in the i.i.d. model,

R dµX (x)

(ραj
−x)2

− 1

α2
j

(
R

(ραj
−x)−2dµX(x))

2 in the orthonormalised model.

(6)

When κ4(ν) 6= 0, we need a bit more than Hypothesis 3.1, namely

Hypothesis 3.3. For all z ∈ R\[a, b], there is a finite number l(z) such that




1
n

∑n
i=1((z − Xn)−1)2

i,i −→
n→∞

l(z) in the i.i.d. model,

1
n

∑n
i=1(((z − Xn)−1)i,i − 1

n
Tr((z − Xn)−1))2 −→

n→∞
l(z) in the orthonormalised model.

We then have a similar result.
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Theorem 3.4. In the case when Assumption 1.2 holds with κ4(ν) 6= 0, under Hypotheses
1.1, 3.1 and 3.3, Theorem 3.2 stays true, replacing the matrices cjMj by matrices cjMj +
Dj where the Dj’s are independent diagonal random matrices, independent of the Mj’s,
and such that for all j, the diagonal entries of Dj are independent centred real Gaussian
random variables, with variance −l(ραj

)κ4(ν)/G′
µX

(ραj
).

Let us prove Theorems 3.2 and 3.4. For any real numbers

x1(i) < y1(i) < x2(i) < y2(i) < · · · < yki
(i) (1 ≤ i ≤ q),

since, by Theorem 1.3, for all ε > 0, for n large enough, fn vanishes exactly at p− + p+

points in R\[a − ε, b + ε], we have that
[
xℓ(i) < γn

Pi−1
m=1 km+ℓ

< yℓ(i), ∀ℓ = 1, . . . , ki, ∀i = 1, . . . q
]

⇐⇒[
∀i = 1, . . . , q,

fn

(
ραi

+ y1(i)√
n

)
fn

(
ραi

+ x1(i)√
n

)
< 0, . . . , fn

(
ραi

+
yki

(i)√
n

)
fn

(
ραi

+
xki

(i)√
n

)
< 0
]
.

Therefore, to study the asymptotics of the joint law of the γn
i ’s, we have to understand

those of the fn(ραi
+ x√

n
)’s. We set ρi

n(x) := ραi
+ x√

n
. They are given by the following

Lemma 3.5. Under the hypotheses of Theorem 3.2, each finite dimensional marginal of
the random process



n
ki
2

G′
µX

(ραi
)ki

det

([
Gn

s,t

(
ρi

n(x)
)]

s,t∈Ii
− 1

αi
I

) ∏

1≤s≤r
s/∈Ii

(
Gn

s,s

(
ρi

n(x)
)
− 1

θs

)



1≤i≤q, x∈R

converges weakly to the corresponding marginal of

det[xI − cαi

Mαi
]
∏

1≤s≤r
s/∈Ii

θs − αi

αiθs




1≤i≤q, x∈R

Theorem 3.2 is then a direct consequence of the following lemma, which shows that the
first order of fn around some ραi

is dominated by the convergence stated in Lemma 3.5,
so that it changes sign at the eigenvalues of cαi

Mαi
.

Lemma 3.6. Let us fix i ∈ {1, . . . , q}. The following convergence in probability holds
uniformly as x varies in any compact subset of R:

n
ki
2


fn(ρi

n(x)) − det

(
[Gn

s,t(ρ
i
n(x))]s,t∈Ii

− 1

αi
I

) ∏

1≤s≤r
s/∈Ii

(
Gn

s,s(ρ
i
n(x)) − 1

θs

)

 −→

n→∞
0.

Proof of Lemma 3.5. We shall only treat the i.i.d. model (the orthonormalised one can
be treated in the same way).
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Firstly, by (4), we have the almost sure convergence (for each i and x)

∏

1≤s≤r
s/∈Ii

(
Gn

s,s

(
ραi

+
x√
n

)
− 1

θs

)
−→
n→∞

∏

1≤s≤r
s/∈Ii

θs − αi

αiθs

. (7)

The rest of the proof is based on a Central Limit Theorem for quadratic forms that we
detail in the Appendix. Indeed, we need to give the joint limit distribution, as n goes to
infinity, of

Mn
s,t(i, x) :=

√
n

(
Gn

s,t(ρ
i
n(x)) − 1

αi
1s=t

)
=: Mn,1

s,t (i, x) + Mn,2
s,t (i, x) + Mn,3

s,t (i, x)

where

Mn,1
s,t (i, x) :=

√
n

(
〈un

s , (ρ
i
n(x) − Xn)−1un

t 〉 − 1s=t
1

n
Tr((ρi

n(x) − Xn)−1)

)
,

Mn,2
s,t (i, x) := 1s=t

√
n(Gµn(ρi

n(x)) − Gµn(ραi
)),

Mn,3
s,t (i, x) := 1s=t

√
n(Gµn(ραi

) − GµX
(ραi

)).

By Remark 6.5, ((Mn,1
s,t (i, x))s,t∈Ii

)1≤i≤q,x∈R converges to a family of Gaussian Wigner
matrices (Gi(x))1≤i≤q,x∈R, where the Gi(0)’s are independent and for all i, the matrices
(Gi(x))x∈R are in fact all equal, with a variance given in Theorem 6.4 and which depends
on

lim
n→∞

1

n
Tr((ρi

n(x) − Xn)−2) = −G′
µX

(ραi
). (8)

Moreover, again because ραi
is at distance of order one from the support of Xn, we can

expand x/
√

n in Mn,2
s,t (i, x) to deduce that

lim
n→∞

Mn,2
s,t (i, x) = xG′

µX
(ραi

)1s=t. (9)

Finally, by Hypothesis 3.1, we have

lim
n→∞

Mn,3
s,t (i, x) = 0. (10)

Equations (7), (8), (9) and (10) prove the lemma (using the fact that Mαi
has the same

law as −Mαi
). �

Proof of Lemma 3.6. Firstly, note that by the convergence of Mn
s,t(i, x) obtained in the

proof of the previous lemma, we have for all s, t ∈ {1, . . . , r} such that s 6= t or s ∈ Ii, for
all κ < 1/2,

nκ

(
Gn

s,t(ρ
i
n(x)) − 1s=t

1

θs

)
−→
n→∞

0 (convergence in probability). (11)

Let us prove the lemma. By the formula

fn(ρn) =
∑

σ∈Sr

sgn(σ)

r∏

s=1

(
Gn

s,σ(s)(ρ
i
n(x)) − 1s=σ(s)

1

θs

)
,

it suffices to prove that for any σ ∈ Sr such that for some i0 ∈ {1, . . . , r}\Ii, σ(i0) 6= i0,

n
ki
2

r∏

s=1

(
Gµn

s,σ(s)
(ρi

n(x)) − 1s=σ(s)
1

θs

)
−→
n→∞

0 (convergence in probability). (12)
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It follows immediately from (11) since for any κ < 1/2, in the above product, all the terms
with index in Ii are of order at most n−κ, giving a contribution n−kiκ, and i0 is not in
Ii and satisfies σ(i0) 6= i0, yielding another term of order at most n−κ. Hence, the other
terms being bounded because ρn stays bounded away from [a, b], the above product is at
most of order n−κ(ki+1) and so taking κ ∈ ( ki

2(ki+1)
, 1

2
) proves (12). �

Remark 3.7 (Gelfand-Telstin pattern). Let us fix θ < θ and let the rank of the deforma-
tion increase in the following way: we define

γn
i (1) :=

√
n(λi(Xn + θun

1u
n∗

1 ) − ρθ) (1 ≤ i ≤ n)

γn
i (2) :=

√
n(λi(Xn + θun

1u
n∗

1 + θun
2u

n∗

2 ) − ρθ) (1 ≤ i ≤ n)

γn
i (3) :=

√
n(λi(Xn + θun

1u
n∗

1 + θun
2u

n∗

2 + θun
3u

n∗

3 ) − ρθ) (1 ≤ i ≤ n)
...

...

One can easily adapt our proofs to show that under Hypotheses 1.1 and 3.1, if κ4(ν) = 0,
the finite dimensional marginals of the process

γn
1 (1)

γn
1 (2) γn

2 (2)
γn

1 (3) γn
2 (3) γn

3 (3)
. . . . . . . . . . . .

converge to the ones of the ordered eigenvalues of the principal minors of cM , where M
is an infinite GUE (resp. GOE) matrix and the constant c is defined by (6).

4. The sticking eigenvalues

4.1. Statement of the results. To study the fluctuations of the eigenvalues which stick
to the bulk, we need a more precise information on the eigenvalues of Xn in the vicinity of
their extremes. More explicitly, we shall need the following additional hypothesis, which
depends on a positive integer p and a real number α ∈ (0, 1). Note that this hypothesis
has two versions: one adapted to the study of the smallest eigenvalues (it is the version
detailed below) and one adapted to the study of the largest eigenvalues (this version is
only outlined below).

Hypothesis 4.1. [p, α] There exists a sequence mn of positive integers tending to infinity
such that mn = O(nα), η2 > 0 and η4 > 0, so that for any δ > 0, for n large enough

n∑

i=mn+1

1

(λn
p − λn

i )2
≤ n2−η2 ,

1

n

n∑

i=mn+1

1

λn
p − λn

i

≥ 1

θ
− δ. (13)

and
n∑

i=mn+1

1

(λn
p − λn

i )4
≤ n4−η4 (14)

(respectively we replace λn
p − λn

i by λn
n−p+1 − λn

n−i+1, and the second inequality becomes

1

n

n∑

i=mn+1

1

λn
n−p+1 − λn

n−i+1

≤ 1

θ
+ δ ).
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For rank one perturbation, we will only require the two first conditions (13) whereas
for higher rank perturbations, we will need in addition (14) to control the off-diagonal
terms of the determinant.

Moreover, we shall not study the critical case where for some i, θi ∈ {θ, θ}.
Assumption 4.2. For all i, θi 6= θ (respectively for all i, θi 6= θ).

The fact that the eigenvalues of the non-perturbed matrix are sufficiently spread at the
edges to insure the above hypothesis allow the eigenvalues of the perturbed matrix to be
very close to them, as stated in the following theorem.

Theorem 4.3. Let Ia = {i ∈ [1, r] : ρθi
= a} = [p− + 1, r0] (resp. Ib = {i ∈ [1, r] :

ρθi
= b} = [r0 + 1, r− p+]) be the set of indices corresponding to the eigenvalues λ̃n

i (resp.

λ̃n
n−r+i) converging to the lower (resp. upper) bound of the support of µX. Let us suppose

Hypothesis 1.1, Hypothesis 4.1[r, α] and Assumptions 1.2 and 4.2 to hold. Then for any
α′ > α, we have, for all i ∈ Ia (resp. i ∈ Ib),

min
1≤k≤i+r−r0

|λ̃n
i − λn

k | ≤ n−1+α′

,

(resp. min
n−r+i−r0≤k≤n

|λ̃n
n−r+i − λn

n| ≤ n−1+α′

)

with overwhelming probability.

Moreover, in the case where the perturbation has rank one, we can locate exactly in
the neighborhood of which eigenvalues of the non-perturbed matrix the eigenvalues of the
perturbed matrix lie.

We state hereafter the result for the smallest eigenvalues, but of course a similar state-
ment holds for the largest ones.

Theorem 4.4. Let (λ̃n
i )i≥1 be the eigenvalues of Xn + θu1u

∗
1. Then, under Assumption

1.2 and Hypothesis 1.1, if (13) in Hypothesis 4.1 [p,α] holds for some α ∈ (0, 1) and a
positive integer p, then for any α′ > α, we have

• If θ < θ, λ̃n
1 converges to ρθ < a whereas n1−α′

(λ̃n
i+1 − λn

i )1≤i≤p−1 vanishes in
probability as n goes to infinity,

• If θ ∈ (θ, 0), n1−α′

(λ̃n
i − λn

i )1≤i≤p vanishes in probability as n goes to infinity.

Note moreover that in the rank one case, we do not need (14) to hold (indeed, it is used
to neglect the off diagonal terms (Gn

ij(z), 1 ≤ i < j ≤ r)). At least in the i.i.d. model, this
is enough to precisely localise the eigenvalues which stick to the bulk, and complement
Theorem 4.3.

Corollary 4.5. Consider the i.i.d. model and let (λ̃n
i )i≥1 be the eigenvalues of Xn +∑r

i=1 θiuiu
∗
i . We assume Assumptions 1.2 and 4.2, Hypothesis 1.1, that Hypothesis 4.1

[p,α] (at both extremes) holds for some α ∈ (0, 1) and a positive integer p, and that for
some α′ > α,

lim
n→∞

n1−α′

max
1≤i≤p

|λn
i − λn

i+1| = +∞ .
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Then, with p− (resp. p+) the number of indices i so that ρθi
< a (resp. ρθi

> b), for all
finite integer i ≤ p − (p− + p+),

n1−α′

(λ̃n
p−+i − λn

p++i) and n1−α′

(λ̃n
n−p+−i − λn

n−p−−i)

both vanish in probability as n goes to infinity.

4.2. Proofs. Let us first prove Theorem 4.3. Let us choose i0 ∈ Ia and study the be-

haviour of λ̃n
i0

(the case of the largest eigenvalues can be treated similarly). We assume
throughout the section that Hypotheses 1.1, 4.1 [r, α] and Assumptions 1.2 and 4.2 are
satisfied. We also fix α′ > α.

We know, by Lemma 6.1, that the eigenvalues of X̃n which are not eigenvalues of Xn

are the z’s such that

the matrix Mn(z) :=
[
Gn

i,j(z)
]r
i,j=1

− diag(θ−1
1 , . . . , θ−1

r ) is not invertible, (15)

where for all i, j,
Gn

i,j(z) = 〈un
i , (z − Xn)−1un

j 〉.
Recall that by Weyl’s interlacing inequalities,

λ̃n
i0
≤ λn

i0+r−r0
.

Let ζ be a fixed constant such that max1≤i≤p− ρθi
< ζ < a. By Lemma 2.1, we know

that

Lemma 4.6. With overwhelming probability, λ̃n
i0 > ζ.

We want to show that (15) is not possible on

Ωn :=

{
z ∈ [ζ, λn

i0+r−r0
] ; min

1≤k≤i0+r−r0

|z − λn
k | > n−1+α′

}
.

The following lemma deals with the asymptotic behaviour of the off-diagonal terms of
the matrix Mn(z) of (15).

Lemma 4.7. For i 6= j and κ > 0 small enough,

sup
z∈Ωn

|Gn
i,j(z)| ≤ n−κ

with overwhelming probability.

The following lemma deals with the asymptotic behaviour of the diagonal terms of the
matrix of (15).

Lemma 4.8. For any δ > 0,

inf
z∈Ωn

min
1≤i≤r

Gn
i,i(z) ≥ 1

θ
− δ

with overwhelming probability, and there exists a finite M so that

sup
z∈Ωn

|Gn
i,i(z)| ≤ M (16)

with overwhelming probability.
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Let us assume these lemmas proven for a while and complete the proof of Theorem 4.3.
By these two lemmas, for z ∈ Ωn, we find by expanding the determinant that

det(Mn(z)) =

r∏

i=1

(
Gn

i,i(z) − 1

θi

)
+ O(n−κ).

But for all i ∈ Ia, by Lemma 4.8,

Gn
i,i(z) − 1

θi

≥ 1

θ
− 1

θi

− δ

is bounded from below by a positive constant if δ is chosen small enough because we have
θ < θi < 0.

Moreover, for z ∈ Ωn, z ≥ ζ , thus for all i /∈ Ia, Gn
i,i(z) − 1

θi
≤ Gn

i,i(ζ) − 1
θi

, which, with
overwhelming probability, is bounded from above by a negative constant, by definition of
ζ and by Proposition 6.2.

We conclude that det(Mn(z)), z ∈ Ωn, is bounded away from zero, and hence λ̃i0 6∈ Ωn,
by (15), with overwhelming probability. It completes the proof of the theorem. �

We finally prove the two last lemmas.

Proof of Lemma 4.7. We first prove this estimate for a fixed z ∈ Ωn. Moreover, we treat
simultaneously the orthonormalised model and the i.i.d. model (in the i.i.d. model, one
just takes W n = I and replaces ‖(Gn(W n)T )i‖2 by

√
n in the proof below). Observe that

if we write Xn = O∗DnO with Dn = (λn
1 , . . . , λ

n
n) and O a unitary or orthogonal matrix,

Gn
i,j(z) = 〈un

i , (z − Xn)
−1un

j 〉

=
n∑

l=1

(Oun
i )l(Oun

j )l

z − λn
l

The first step is to show that for any ǫ > 0, with overwhelming probability,

max
l,i∈{1,...,n}

|(Oun
i )l| ≤ n− 1

2
+ǫ. (17)

Indeed, with Ol the lth row vector of O and using the notations of Section 6.2,

(Oun
i )l = 〈Ol, u

n
i 〉 =

1

‖(Gn(W n)T )i‖2

r∑

j=1

W n
i,j〈Ol, g

n
j 〉.

But g 7→ 〈Ol, g
n
i 〉 is Lipschitz for the Euclidean norm with constant one. Hence, by

concentration inequality due to the log-Sobolev hypothesis (see e.g. [1, section 4.4]),
there exists c > 0 such that for all δ > 0,

P (|〈Ol, g
n
i 〉| > δ) ≤ 4e−cδ2

so that

P

(
max

l,i∈{1,...,n}
|〈Ol, g

n
i 〉| ≥ nǫ

)
≤ 4n4e−cn2ǫ

.

From Proposition 6.3, we know that with overwhelming probability, ‖(Gn(W n)T )i‖2 is
bounded below by

√
nn−ǫ and the entries of W n are of order one. This gives therefore

(17).
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We now make the following decomposition

Gn
i,j(z) =

mn∑

l=1

(Oun
i )l(Oun

j )l

z − λn
l︸ ︷︷ ︸

:=An(z)

+
n∑

l=mn+1

(Oun
i )l(Oun

j )l

z − λn
l

︸ ︷︷ ︸
:=Bn(z)

.

Note that as |(Oun
i )l|, 1 ≤ l ≤ mn, are smaller than n− 1

2
+ǫ′ by (17), for any ǫ′ > 0, with

overwhelming probability, we have, uniformly on z ∈ Ωn,

|An(z)| ≤ mnn
1−α′

n−1+2ǫ′ = O(nα−α′+2ǫ′)

We choose 0 < ǫ′ ≤ (α′ − α)/4 and now study Bn(z) which can be written

Bn(z) = 〈un
i , P (z − Xn)−1Pun

j 〉
with P the orthogonal projection onto the eigenvectors of Xn corresponding to the eigen-
values (λn

mn+1, . . . , λ
n
n). By the second point in Proposition 6.2, with z ∈ Ωn, for all

s 6= t,

P

(∣∣〈gn
s , P (z − Xn)−1Pgn

t 〉
∣∣ ≥ δ

√
Tr(P (z − Xn)−2) + κ

√
Tr(P (z − Xn)−4)

)

≤ 4e−cδ + 4e−c min(κ,κ2).

Moreover, by Hypothesis 4.1, for n large enough, for all z ∈ Ωn,

Tr(P (z − Xn)−2) ≤ n2−η2 and Tr(P (z − Xn)−4) ≤ n4−η4 .

We deduce that there is C, η > 0 such that for all z ∈ Ωn,

P

(∣∣∣∣
1

n
〈gn

s , P (z − Xn)−1Pgn
t 〉
∣∣∣∣ > n− η2∧η4

8

)
≤ Ce−nη

(18)

A similar control is verified for s = t since we have, by Proposition 6.2,

P

(∣∣∣∣
1

n
〈gi, P (z − Xn)−1Pgi〉 −

1

n
Tr
(
P (z − Xn)−1

)∣∣∣∣ ≥ δ

)
≤ 4e−cδ2nη2

(19)

whereas Hypothesis 4.1 insures that the term 1
n
Tr(P (z−Xn)−1) is bounded uniformly on

Ωn. Thus, up to a change of the constants C and η, there is a constant M such that for
all z ∈ Ωn,

P

(∣∣∣∣
1

n
〈gi, P (z − Xn)−1Pgi〉

∣∣∣∣ ≥ M

)
≤ Ce−nη

.

Therefore, with Proposition 6.3 and developing the vectors un
i ’s as the normalised column

vectors of Gn(W n)T , we conclude that, up to a change of the constants C and η, for all
z ∈ Ωn,

P

(
|Bn(z)| ≥ n− η2∧η4

8

)
≤ Ce−nη

. (20)

Hence, we have proved that there exists κ > 0, C and η > 0 so that for all z ∈ Ωn,

P
(∣∣Gn

i,j(z)
∣∣ ≥ n−κ

)
≤ Ce−nη

.
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We finally obtain this control uniformly on z ∈ Ωn by noticing that z→Gn
i,j(z) is Lipschitz

on Ωn, with constant bounded by (min |z − λi|)−2 ≤ n−2+2α′

. Thus, if we take a grid
(zn

k )0≤k≤cn2 of Ωn with mesh ≤ n−2+2α′−κ (there are about n2 such zn
k ’s) we have

sup
z∈Ωn

∣∣Gn
i,j(z)

∣∣ ≤ max
1≤k≤cn2

∣∣Gn
i,j(z

n
k )
∣∣+ n−κ.

Since there are at most cn2 such k and n2 possible i, j, we conclude that

P

(
sup
z∈Ωn

|Gn
i,j(z)| ≥ 2n−κ

)
≤ c2n4Ce−nη

which completes the proof. �

Proof of Lemma 4.8. Again, we first prove the estimate for a fixed z ∈ Ωn, the uniform
estimate on z being obtained by a grid argument as in the previous proof (a key point being
that the constants C and η of the definition of overwhelming probability are independent
of the choice of z ∈ Ωn). We recall that P is the orthogonal projection on the vector space
generated by the eigenvectors of Xn with eigenvalues (λn

mn+1, . . . , λ
n
n) and write

Gn
i,i(z) = 〈un

i , P (z − Xn)−1Pun
i 〉 + 〈un

i , (1 − P )(z − Xn)−1(1 − P )un
i 〉

≥ 〈un
i , P (λn

i0+r−r0
− Xn)−1Pun

i 〉 − n1−α′‖(1 − P )un
i ‖2

2,

where we used the inequalities z ≤ λn
i0+r−r0

, P (λn
i0+r−r0

−Xn)P ≤ 0 and |z−λn
k | > n−1+α′

for all 1 ≤ k ≤ mn. But as in the previous proof, we have

〈un
i , P (λn

i0+r−r0
−Xn)−1Pun

i 〉 =
n

‖(Gn(W n)T )i‖2
2

i∑

j,k=1

W n
i,kW

n
i,j

1

n
〈gn

j , P (λn
i0+r−r0

−Xn)−1Pgn
k 〉

with, by (18), the off diagonal terms j 6= k of order n−η2∧η4/8 with overwhelming probabil-
ity, whereas the diagonal terms are close to 1

n
Tr(P (λn

i0+r−r0
− Xn)−1) with overwhelming

probability by (19). Hence, we deduce with Proposition 6.3 that for any δ > 0,
∣∣∣∣〈un

i , P (λn
i0+r−r0

− Xn)−1Pun
i 〉 −

1

n
Tr(P ((λn

i0+r−r0
− Xn)−1))

∣∣∣∣ ≤ δ

with overwhelming probability. Hence, by Hypothesis 4.1, for any δ > 0 and n large
enough

〈un
i , P (λn

i0+r−r0
− Xn)−1Pun

i 〉 ≥
1

θ
− δ (21)

with overwhelming probability. On the other hand

‖(1 − P )un
i ‖2

2 =
1

‖(Gn(W n)T )i‖2
2

r∑

j,k=1

W n
i,jW

n
i,k〈(1 − P )gn

j , (1 − P )gn
k 〉

By Proposition 6.3, the denominator is of order n with overwhelming probability, whereas
by Proposition 6.2, the numerator is of order mn + nǫ√mn (since Tr(1 − P ) = mn) with
overwhelming probability. As W n is bounded by Proposition 6.3 we conclude that

‖(1 − P )un
i ‖2

2 ≤ 2
mn

n
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with overwhelming probability. Putting everything together we have proved that for any
z ∈ Ωn, any δ > 0,

Gn
i,i(z) ≥ 1

θ
− δ

with overwhelming probability. Finally, we also have

Gn
i,i(z) ≤ 〈un

i , P (ζ − Xn)−1Pun
i 〉 + n1−α′‖(1 − P )un

i ‖2
2

and we can bound the above right hand side by the same arguments to obtain (16) for a
fixed z ∈ Ωn. We do not detail the grid argument which is similar to what we did in the
proof of the previous lemma. �

Proof of Theorem 4.4. In the one dimensional case, the eigenvalues of X̃n which do not
belong to the spectrum of Xn are the zeroes of

fn(z) =
1

n
〈g, (z − Xn)−1g〉 − εn(g)

1

θ
(22)

with εn(g) = 1 or ‖g‖2
2/n according to the model we are considering. A straightforward

study of the function fn tells us that the eigenvalues of X̃n are distinct from those of Xn

as soon as Xn has no multiple eigenvalue and

(matrix of the eigenvectors of Xn)∗ × g

has no null entry, which we can always assume up to modify Xn and g so slightly that
the fluctuations of the eigenvalues are not affected. We do not detail these arguments but
the reader can refer to Lemmas 9.3, 9.4 and 11.2 of [11] for a full proof in the finite rank
case.
Therefore, (22) characterises all the eigenvalues of X̃n. Moreover, by Weyl’s interlacing
properties, for θ < 0,

λ̃n
1 < λn

1 < λ̃n
2 < λn

2 < · · · < λ̃n
n < λn

n .

Theorems 1.3 and 4.3 thus already settle the study of λ̃n
1 . We consider α′ > α and

i ∈ {2, . . . , p} and define

Λn :=

]
λn

i−1 +
n−1+α′

2
, λn

i − n−1+α′

2

[

Note first that if Λn is empty, then the eigenvalue of X̃n which lies between λn
i−1 and λn

i

is within n−1+α′

to both λn
i−1 and λn

i , so we have nothing to prove. Now we want to prove
that fn does not vanish on Λn and that according to the sign of 1

θ
− 1

θ
, it vanishes on one

side or the other of Λn in ]λn
i−1, λ

n
i [.

The proof of this fact will follow the same lines as the proof of Lemma 4.8 and we recall
that P was defined above as the projection onto the eigenspace of the (λn

mn+1, . . . , λ
n
n).

Then, exactly as for (21), we can show that for all δ > 0 and n large enough,

sup
z∈[λn

1 ,λn
p ]

∣∣∣∣
1

n
〈g, P (z − Xn)−1Pg〉 − 1

θ

∣∣∣∣ ≤ δ

with overwhelming probability. Moreover, for any z ∈ Λn, for any j ∈ [1, mn], we have

|z − λn
j | ≥ min{z − λn

i−1, λ
n
i − z} ≥ n−1+α′

2
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and for any ǫ > 0,

sup
z∈Λn

∣∣∣∣
1

n
〈g, (1− P )(z − Xn)−1(1 − P )g〉

∣∣∣∣ ≤ 2n−α′〈g, (1 − P )g〉 ≤ nǫn−α′

mn

with overwhelming probability. We choose ǫ in such a way that the latter right hand side
goes to zero. Therefore, we know that uniformly on Λn,

fn(z) =
1

θ
− 1

θ
+ o(1)

with overwhelming probability. Since for all n, fn is decreasing, going to +∞ (resp.
−∞) as z goes to any λn

i−1 on the right (resp. λn
i on the left), it follows that according

to the sign of 1
θ
− 1

θ
, the zero of fn in ]λn

i−1, λ
n
i [ is either in ]λn

i−1, λ
n
i−1 + n−1+α′

[ or in

]λn
i − n−1+α′

, λn
i [. �

Proof of Corollary 4.5. We can finally prove Corollary 4.5 by induction. We first add
the small perturbations to Xn, that is consider X̃1

n = Xn + θuu∗ with θ ∈ (θ, θ). In this
setting, Theorem 4.4 shows that the p largest (resp. smallest) eigenvalues are at distance
smaller than n−1+α′

from the eigenvalues of Xn. Moreover, by the interlacing properties,
for all p < i,

0 ≤ 1

λ̃n
i − λ̃n

p

≤ 1

λn
i−1 − λn

p+1

so that if Xn verifies Hypothesis 4.1[p,α], X̃1
n verifies Hypothesis 4.1[p-1,α]. Thus, we can

proceed with X̃1
n instead of Xn and conclude that when we have added all these small

perturbations, the resulting matrix have extreme eigenvalues which are at distance smaller
than n−1+α′

from the eigenvalues of Xn and it satisfies Hypothesis 4.1[p−r+p−+p+, α]. We

next add the big perturbation with positive coefficients, X̃r−p−−p++1
n = X̃r−p−−p+

n +θruru
∗
r.

We can apply Theorem 4.4 and conclude that the largest eigenvalues of X̃r−p−−p++1
n which

stick to the bulk are at distance smaller than n−1+α′

from the largest eigenvalues of Xn.
Moreover, the same argument as before shows that the same is true for the smallest
eigenvalues except the smallest eigenvalue of X̃r−p−−p++1

n sticks to the second smallest
eigenvalue of Xn, etc. Again, we check that Hypothesis 4.1[p−r+p−+p+−1, α] is satisfied.
We then can continue to add the p+th positive perturbation, giving a matrix X̃r−p−

n with
p+ eigenvalues away from the bulk, the ith (resp. n − i − p+th) eigenvalue of X̃r−p−

n

being at distance of order n−1+α′

of the (i + p+)th (resp. n − ith) eigenvalue of Xn. We
next add the perturbation with negative coefficients. Considering the largest eigenvalues,
we see that the new matrix keeps eigenvalues in the small n−1+α′

neighborhood of the
large isolated non-perturbed matrix, whereas inside the bulk, the first pth eigenvalue
inside [λn

n−p − cn−1+α′

, λn
n−p+1 + cn−1+α′

] is close to λn
n−p. For the smallest, one eigenvalue

deviates from the bulk whereas the second one is close to λn
p+

. We can then continue by
induction to finish the proof of Corollary 4.5. �

5. Application to classical models of matrices

Our goal in this section is to show that if Xn belongs to some classical ensembles of
matrices, the extreme eigenvalues of perturbations of such matrices have their asymptotics
obeying to Theorems 1.3, 3.2 and 4.3. For that, a crucial step will be the following
statement. If (Xn) is a sequence of random matrices, we say that it satisfies an hypothesis



18 F. BENAYCH-GEORGES, A. GUIONNET, M. MAIDA

H in probability if the probability that Xn satisfies H converges to one as n goes to infinity
(for example, if H states a convergence to a limit ℓ, “H in probability” is the convergence
in probability to ℓ).

Theorem 5.1. Let (Xn) be a sequence of random matrices independent of the un
i ’s. Under

Assumption 1.2,

(1) If Hypothesis 1.1 holds in probability, Theorem 1.3 holds.
(2) If κ4(ν) = 0 and Hypotheses 1.1 and 3.1 hold in probability, Theorem 3.2 holds.

If κ4(ν) 6= 0 and Hypotheses 1.1 and 3.3 hold in probability, Theorem 3.4 holds.
(3) Under Assumption 4.2, if Hypotheses 1.1 and 4.1 hold in probability, Theorem 4.3

holds “with probability converging to one” instead of “with overwhelming probabil-
ity”; Theorems 4.4 and Corollary 4.5 hold.

This result follows from the results with deterministic sequences of matrices Xn. In-
deed, to prove that a sequence converges to a limit ℓ in a metric space, it suffices to prove
that any of its subsequences has a subsequence converging to ℓ. If the convergences of the
hypotheses hold in probability, then from any subsequence, one can extract a subsequence
for which they hold almost surely. Then up to a conditioning by the σ-algebra generated
by the Xn’s, the hypotheses of the various theorems hold.

The remaining of this section is devoted to showing that such results hold if Xn, inde-
pendent of (un

i )1≤i≤r, is a Wigner or a Wishart matrix or a random matrix which law has
density proportional to e−Tr V for a certain potential V . In each case, we have to check
that the hypotheses hold in probability.

5.1. Wigner matrices. Let µ1 be a centred distribution on R (respectively on C) and
µ2 be a centred distribution on R, both having a finite fourth moment (in the case where
µ1 is not supported on the real line, we assume that the real and imaginary part are
independent). We define σ2 =

∫
z∈C

|z|2dµ1(z).

Let (xi,j)i,j≥1 be an infinite Hermitian random matrix which entries are independent
up to the condition xj,i = xi,j such that the xi,i’s are distributed according to µ2 and the
xi,j ’s (i 6= j) are distributed according to µ1. We take Xn = 1√

n
[xi,j ]

n
i,j=1 , which is said

to be a Wigner matrix. For certain results, we will also need an additional hypothesis,
which we present here:

Hypothesis 5.2. The probability measures µ1 and µ2 have a sub-exponential decay, that
is there exists positive constants C, C ′ such that if X is distributed according to µ1 or µ2,
for all t ≥ C ′,

P(|X| ≥ tC) ≤ e−t.

Moreover, µ1 and µ2 are symmetric.

The following Proposition generalizes some results of [36, 18, 12, 13] which study the
effect of a finite rank perturbation on a non-Gaussian Wigner matrix. In particular, it
includes the study of the eigenvalues which stick to the bulk.

Proposition 5.3. Let Xn be a Wigner matrix. Assume that Assumption 1.2 holds. The

limits of the extreme eigenvalues of X̃n are given by Theorem 1.3 and the fluctuations of



EXTREME EIGENVALUES OF DEFORMED RANDOM MATRICES 19

the ones which limits are out of [−2σ, 2σ] are given by Theorem 3.2, where the parameters
a, b, ρθ, cα are given by the following formulas : b = −a = 2σ,

ρθ :=





θ + σ2

θ
if |θ| > σ,

2σ if 0 < θ ≤ σ,

−2σ if −σ ≤ θ < 0,

and

cα =





√
α2 − σ2 in the i.i.d. model,

σ
√

α2−σ2

α
in the orthonormalized model.

Assume moreover that, for all i, θi 6∈ {−σ, σ} and Hypothesis 5.2 holds. If the pertur-
bation has rank one, we have the following precise description of the fluctuations of the
sticking eigenvalues :

• If θ > σ (resp. θ < −σ), for all p ≥ 2, n2/3(λ̃n
n−p+1 − 2σ) (resp. n2/3(λ̃n

p − 2σ))
converges in law to the p − 1th Tracy Widom law.

• If 0 ≤ θ < σ (resp. −σ < θ ≤ 0), for all p ≥ 1, n2/3(λ̃n
n−p+1 − 2σ) (resp.

n2/3(λ̃n
p − 2σ)) converges in law to the pth Tracy Widom law.

If the perturbation is rank more than one and Assumption 4.2 holds, the extreme eigen-

values of X̃n are at distance less than n−1+ǫ for any ǫ > 0 to the extreme eigenvalues of
Xn, which have Tracy-Widom fluctuations.

Remark 5.4. All the Tracy-Widom laws involved in the statement of the proposition
above, are the ones corresponding respectively to the GOE if µ1 is supported on R and to
the GUE if µ1 is supported on C.

According to Theorem 5.1, it suffices to verify that the hypotheses hold in probability
for (Xn)n≥1. We study separately the eigenvalues which stick to the bulk and those which
deviate from the bulk.

•Deviating eigenvalues.

If Xn is a Wigner matrix (that is, with our terminology, with entries having a finite
fourth moment), the fact that Xn satisfies Hypothesis 1.1 in probability is a well known
result (see for example [4, Th. 5.2]) for µX the semicircle law with support [−2σ, 2σ].
The formulas for ρθ and cα can be checked with the well known formula [1, Sect. 2.4]:

∀z ∈ R\[−2σ, 2σ], GµX
(z) =

z − sgn(z)
√

z2 − 4σ2

2σ2
.

Moreover, [5, Th. 1.1] shows that Tr(f(Xn)) − n
∫

f(x)dσ(x) converges in law to a
Gaussian distribution for any function f which is analytic in a neighborhood of [−2σ, 2σ].
For any fixed z /∈ [−2σ, 2σ], applied for f(t) = 1

z−t
, we get that n(Gµn(z) − GµX

(z))

converges in law to a Gaussian distribution, hence
√

n(Gµn(z) − GµX
(z)) converges in

probability to zero, so that Hypothesis 3.1 holds in probability.

•Sticking Eigenvalues.
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We now assume moreover that the laws of the entries satisfy Hypothesis 5.2. Let us
first recall that by [41, 39], the extreme eigenvalues of the non-perturbed matrix Xn, once
re-centred and renormalised by n2/3, converge to the Tracy-Widom law (which depends
on whether the entries are complex or real). We need to verify that Hypothesis 4.1[p,α]
for any finite p and an α < 1/3 is fulfilled in probability. By [41], the spacing between the
two smallest eigenvalues of Xn is of order greater than n−γ for γ > 2/3 with probability
going to one and therefore, by the inequality

n∑

i=mn+1

1

(λn
p − λn

i )
k
≤ (λn

p+1 − λn
p )1−k ×

n∑

i=mn+1

1

λn
i − λn

p

, (k = 2 or 4),

it is sufficient to prove the third point of Hypothesis 4.1[p,α]. We shall prove it by
replacing first the smallest eigenvalue by the edge −2 thanks to a lemma that Benjamin
Schlein [40] kindly communicated to us. We will then prove that the sum of the inverse
of the distance of the eigenvalues to the edge indeed converges to the announced limit,
thanks to both Soshnikov paper [41] (for sub-Gaussian tails) or [39] (for finite moments),
and Tao and Vu article [42].

Lemma 5.5 (B. Schlein). Suppose the entries of Xn have a uniform sub-exponential tail.
Then for all δ > 0, for all integer number p,

lim
n→∞

P

(∣∣∣∣∣
1

n

n∑

j=p+1

1

λn
j − λn

p

− 1

n

n∑

j=p+1

1

λn
j + 2

∣∣∣∣∣ ≥ δ

)
= 0.

Proof. We write

1

n

n∑

j=p+1

1

λn
j − λn

p

− 1

n

n∑

j=p+1

1

λn
j + 2

=
λn

p + 2

n

n∑

j=p+1

1

(λn
j − λn

p )(λn
j + 2)

.

Hence for any K1 > 0,

P

(∣∣∣∣∣
1

n

n∑

j=p+1

1

λn
j − λn

p

− 1

n

n∑

j=p+1

1

λn
j + 2

∣∣∣∣∣ ≥ δ

)

≤ P(|λn
p + 2| ≥ K1n

−2/3)

+P

(
K1

n5/3

n∑

j=p+1

1

|(λn
j − λn

p)(λ
n
j + 2)| ≥ δ and |λn

p + 2| < K1n
−2/3

)
. (23)

Now, for any K2 > K1, on the event {|λn
p + 2| < K1n

−2/3}, for any κ > 0, we have

K1

n5/3

n∑

j=p+1

1

|(λn
j − λn

p)(λ
n
j + 2)| ≤ K1

n5/3

+∞∑

ℓ=0

Nn[2K2n
−2/3 + ℓn−κ, 2K2n

−2/3 + (ℓ + 1)n−κ]

(K2n−2/3 + ℓn−κ)2

+
K1

n5/3

n∑

j=p+1

1λj+2≤2K2n−2/3

|(λn
j − λn

p)(λ
n
j + 2)| , (24)

where Nn[a, b] := ♯{i ; −2 + a ≤ λn
i ≤ −2 + b}. Note that, from the upper bound on the

density of eigenvalues in microscopic intervals, due to [15, Theorem 4.6], we know that
for any κ < 1, there is a constant M independent of n so that for all ℓ ≥ 1

E(Nn[2K2n
−2/3 + ℓn−κ, 2K2n

−2/3 + (ℓ + 1)n−κ]) ≤ Mn1−κ. (25)
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Let us fix κ ∈ (2
3
, 1). It follows that the first term of the r.h.s. of (24) can be estimated

by

P

(
K1

n5/3

+∞∑

ℓ=0

Nn[2K2n
−2/3 + ℓn−κ, 2K2n

−2/3 + (ℓ + 1)n−κ]

(K2n−2/3 + ℓn−κ)2
≥ δ

2

)

≤ 2K1

δn5/3

+∞∑

ℓ=0

E(Nn[2K2n
−2/3 + ℓn−κ, 2K2n

−2/3 + (ℓ + 1)n−κ])

(K2n−2/3 + ℓn−κ)2

≤ 2MK1

δn2/3

1

nκ

+∞∑

ℓ=0

1

(K2n−2/3 + ℓn−κ)2

≤ 2MK1

δn2/3

1

nκ(K2n−2/3)2
+

2MK1

δn
2
3

∫ +∞

0

dt

(t + K2n
− 2

3 )2

≤ 2MK1

δK2
2n

κ−2/3
+

2MK1

δK2
. (26)

Let us now estimate the second term of the r.h.s. of (24). For any positive integer K3,
we have

P

(
K1

n5/3

n∑

j=p+1

1|λn
j +2|≤2K2n−2/3

|(λn
j − λn

p )(λn
j + 2)| ≥

δ

2

)

≤ P
(
Nn(−∞, 2K2n

−2/3] ≥ K3

)
+ P

(
K1K3

n5/3

1

minp+1≤j≤K3 |(λn
j − λn

p )(λn
j + 2)| ≥

δ

2

)

≤ P
(
λn

K3
≤ −2 + 2K2n

−2/3
)

+ P

(
min

p≤j≤K3

|λn
j + 2| ≤

√
2K1K3n

−5/6

√
δ

)

+P

(
|λn

p − λn
p+1| ≤

√
2K1K3n

−5/6

√
δ

)
(27)

From (23), (24), (26) and (27), we conclude that

P

(∣∣∣∣∣
1

n

n∑

j=p+1

1

λn
j − λn

1

− 1

n

n∑

j=p+1

1

λn
j + 2

∣∣∣∣∣ ≥ δ

)

≤ P(|λn
1 + 2| ≥ K1n

−2/3) +
2MK1

δK2
+ P

(
λK3 ≤ −2 + 2K2n

−2/3
)

+P

(
min

1≤j≤K3

|λn
j + 2| ≤

√
2K1K3n

−5/6

√
δ

)
+ P

(
|λn

2 − λn
1 | ≤

√
2K1K3n

−5/6

√
δ

)

for arbitrary 0 < K1 < K3 and K3 ≥ 1. Taking the limit n → ∞, the last two terms
disappear, because by [42, Th. 1.16], the distribution of the smallest K3 eigenvalues lives
on scales of order n−2/3 ≫ n−5/6. Therefore,

lim
n→∞

P

(∣∣∣∣∣
1

n

n∑

j=2

1

λn
j − λn

1

− 1

n

n∑

j=2

1

λn
j + 2

∣∣∣∣∣ ≥ δ

)

≤ lim
n→∞

P(|λn
1 + 2| ≥ K1n

−2/3) +
2MK1

δK2

+ lim
n→∞

P
(
λK3 ≤ −2 + 2K2n

−2/3
)
,
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still for any 0 < K1 < K3 and K3 ≥ 1. Now, note that for K1 large enough, the first term
can be made as small as we want. Then, keeping K1 fixed, K2 can be chosen in such a
way to make the second term as small as we want too. At last, keeping K2 fixed, one can
choose K3 large enough to make the third term as small as we want (as can be computed
since the limit is given by the K3 correlation function of the Airy kernel). �

To complete the proof of Hypothesis 4.1, we therefore need to show that

Lemma 5.6. Assume that the entries of Xn satisfy Hypothesis 5.2. Then, for any δ > 0,
any finite integer number p,

lim
n→∞

P

(∣∣∣∣∣
1

n

n∑

j=p+1

1

λn
j + 2

− 2

∣∣∣∣∣ > δ

)
= 0

Proof. Notice that by [41, 39] we know that the p smallest eigenvalues of Xn converge
in law towards the Tracy-Widom law, so that

lim
ǫ↓0

lim
n→∞

P

(
min

1≤j≤p
|λn

j + 2| < ǫn−2/3

)
= 0.

Thus, for any finite p, with large probability,

1

n

p∑

j=2

1

|λn
j + 2| ≤ pǫ−1n− 1

3

and therefore it is enough to prove the lemma for any particular p. As in the previous
proof, we choose p large enough so that λn

p ≥ −2 + n− 2
3 with probability greater than

1 − δ(p) with δ(p) going to zero as p goes to infinity. We shall prove that with high
probability

lim
γ↓0

lim
n→∞

1

n

[γn]∑

j=p

1

λn
j + 2

≤ 0. (28)

This is enough to prove the statement as for any γ > 0, 2 +λn
[nγ] converges to δ(γ) > 0 so

that µsc([δ(γ), 2]) = 1 − γ, see [43, Theorem 1.3],

lim
n→∞

1

n

n∑

i=[nγ]

1

λn
i + 2

=

∫ 2

δ(γ)

1

2 + x
dµsc(x),

which converges as γ goes to zero to
∫

(2 + x)−1dµsc(x) = 2. To prove (28), we choose

ρ ∈ (2/3,
√

2/3) and write, on the event λn
j + 2 ≥ λn

p + 2 ≥ n− 2
3 ≥ n−ρ for j ≥ p,

1

n

[γn]∑

j=p

1

λn
j + 2

≤
∑

1≤k≤K

nρk−1Nn[n−ρk

, n−ρk+1

] +

[γn]∑

j=2

1λn
j ≥−2+n−ρK+1

n(λn
j + 2)

=: An + Bn.

For the first term, we use Sinai-Soshnikov bound, which under the weakest hypothesis are
given in [39, Theorem 2.1] which implies that with probability going to one with M going
to infinity, for sn = o(n2/3) going to infinity,

n∑

i=1

(
λn

i

2

)sn

≤ M
n

s
3
2
n

.
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This implies, by Tchebychev’s inequality and taking sn = n+ρk+1
that

Nn[n−ρk

, n−ρk+1

] ≤ ♯

{
i :

∣∣∣∣
λi

2

∣∣∣∣ ≥ 1 − n−ρk+1

}
≤ (1 − n−ρk+1

)−sn

n∑

i=1

∣∣∣∣
λn

i

2

∣∣∣∣
sn

≤ eMn1− 3
2
ρk+1

.

Consequently we deduce that

An ≤ eM
∑

1≤k≤K

nρk

n− 3
2
ρk+1 ≤ Cn−ρK( 3

2
ρ−1)

which goes to zero as ρ > 2/3. For the second term Bn, note that by [42, Theorem 1.10],
for any ǫ > 0 small enough,

∣∣Nn[n
−ǫℓ, n−ǫ(ℓ + 1)] − nµsc([−2 + n−ǫℓ,−2 + n−ǫ(ℓ + 1)])

∣∣ ≤ n1−δ(ǫ)

with δ(ǫ) = 2ǫ−1
10

. Hence, since µsc([−2 + n−ǫℓ,−2 + n−ǫ(ℓ + 1)]) ∼ n− 3ǫ
2

√
ℓ, we deduce for

ǫ small enough that for all ℓ ≥ 1,

Nn[n
−ǫℓ, n−ǫ(ℓ + 1)] ≤ 2n1− 3ǫ

2

√
ℓ.

This allows to bound Bn by

Bn ≤ 2

[γnǫ]∑

ℓ=1

nǫ

ℓ
n− 3ǫ

2

√
ℓ ≤ 2

∫ γ

0

1√
x
dx = 2

√
γ

which goes to zero as n goes to infinity and then γ goes to zero. �

5.2. Coulomb Gases. We can also consider random matrices Xn which law is invariant
under the action of the unitary or the orthogonal group and with eigenvalues with law
given by

dPn(λ1, . . . , λn) =
1

Zn

|∆(λ)|βe−nβ
Pn

i=1 V (λi)
n∏

i=1

dλi (29)

with a polynomial function V of even degree and positive leading coefficient and β = 1, 2
or 4. We assume moreover that V is such that the limiting spectral measure µV of (Xn)
is connected and compact and that its smallest and largest eigenvalues converge to the
boundaries of the support. This set of hypotheses is often referred to as the “one-cut
assumption”. It holds in particular if V is strictly convex and this includes the classical
Gaussian ensembles GOE and GUE (with V (x) = x2/4 and β = 1, 2).

Proposition 5.7. Under the above hypothesis on V, the extreme eigenvalues of Xn con-

verge to the boundary of the support. The convergence of the extreme eigenvalues of X̃n is
given by Theorem 1.3. These eigenvalues have Gaussian fluctuations as stated in Theorem
3.2 if they deviate away from the bulk.
Suppose moreover that Assumption 4.2 holds.
If the perturbation is of rank one and is strong enough so that the largest eigenvalues

deviates from the bulk, for all k ≥ 2, the rescaled kth largest eigenvalue n
2
3 (λ̃n

n−k+1 − bV )
converges weakly towards the k − 1-th Tracy Widom law. If the perturbation is of rank

one and is weak enough, for all k ≥ 1, the rescaled kth largest eigenvalue n
2
3 (λ̃n

n−k+1− bV )
converges weakly towards the k-th Tracy Widom law.

If the perturbation is of rank more than one, the extreme eigenvalues of X̃n sticking to the
bulk are at distance less than n−1+ǫ for any ǫ > 0 from the eigenvalues of Xn.
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Proof. As explained above, it suffices to verify that the hypotheses hold in probability
for (Xn)n≥1.

Note that the convergence of the spectral measure, of the edges and the fluctuations
of the extreme eigenvalues were obtained in [47]. The fact that

√
n(Gµn(z) − Gsc(z))

converges in probability to zero is a consequence of [28] so that Hypothesis 3.1 holds.

We next check Hypothesis 4.1[p,α] for the matrix model Pn. We shall prove it for any
α > 1/3 and any integer p. We first show that

lim
n→∞

E

[
1

n

∑

i6=p

1

λn
i − λn

p

]
= −V ′(aV ) . (30)

Indeed, the joint distribution of (λn
1 , . . . , λ

n
n) is

1

Zβ
n

e−n
P

i=1 V (λi)

n∏

1≤i<j≤n

(λi − λj)
β1∆ndλ1 · · ·dλn,

with β = 1, 2 or 4, Zβ
n is the normalising constant and ∆n = {λ1 < · · · < λn}.

Therefore,

E

[
β
∑

i6=p

1

λn
i − λn

p

]
= − 1

Zβ
n

∫

∆n

e−nβ
Pn

i=1 V (λi)
∂

∂λp

n∏

1≤i<j≤n

(λi − λj)
βdλ1 · · ·dλn,

=
1

Zβ
n

∫

∆n

∂

∂λp

(
e−nβ

Pn
i=1 V (λi)

) n∏

1≤i<j≤n

(λi − λj)
βdλ1 · · ·dλn,

= −nβE
[
V ′(λn

p )
]
,

by integration by parts. Equation (30) follows, since λn
p converges almost surely to aV

(and concentration inequalities insures V ′(λn
p) is uniformly integrable). But, for any ǫ > 0,

1

n

∑

i6=p

1

λn
i − λn

p

≥ 1

n

∑

i6=p

1

ǫ + λn
i − λn

p

with, by convergence of the spectral measure and of λn
p , the right hand side converging

to −GµX
(−aV − ǫ) which converges as ǫ decreases to zero to −GµX

(−aV ) = −V ′(aV ).
Hence, 1

n

∑
i6=p

1
λn

i −λn
p

is bounded below by −V ′(aV ) with large probability for large n, and

converges in expectation to −V ′(aV ), and therefore converges in probability to −V ′(aV ).

Moreover, by [47] (see [45] in the Gaussian case), the joint law of
(
n2/3(λn

1 − aV ), n2/3(λn
2 − aV ), . . . , n2/3(λn

p − aV )
)

converges weakly towards a probability measure which is absolutely continuous with re-
spect to Lebesgue measure. As a consequence, we also deduce from the first point that
n−1

∑
i<mn

(λn
p − λn

i )−1 vanishes as n goes to infinity in probability for mn ≪ n1/3 and
therefore (30) proves the lacking point of Hypothesis 4.1.

For the two other points, observe that [47] implies that for any ǫ > 0, P(|λn
2 − λn

1 | ≤
n− 2

3
−ǫ) −→

n→∞
0. On the event {|λn

2 − λn
1 | > n− 2

3
−ǫ}, we have |λn

i − λn
1 | > n− 2

3
−ǫ for all
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i ∈ [2, n − 1], so that

1

n2

n∑

i=2

1

(λn
i − λn

1 )2
≤ n− 1

3
+ǫ 1

n

n∑

i=2

1

λn
i − λn

1

1

n4

n∑

i=2

1

(λn
i − λn

1 )4
≤ n−1+3ǫ 1

n

n∑

i=2

1

λn
i − λn

1

so that by (30) and Markov’s inequality, Hypothesis 4.1 holds in probability for any
η < 1/3, η4 < 1 and α > 1/3. �

5.3. Wishart matrices. Let Gn be an n×m real (or complex) matrix with i.i.d. centred
entries with law µ such that

∫
zdµ(z) = 0,

∫
|z|2dµ(z) = 1 and

∫
|z|4dµ(z) < ∞. Let

Xn = GnG∗
n/m. The following Proposition generalises some results first appeared in

[9, 19].

Proposition 5.8. Let n, m tend to infinity in such a way that n/m → c ∈ (0, 1). The

limits of the extreme eigenvalues of X̃n are given by Theorem 1.3 and the fluctuations
of those which limits are out of [a, b] are given by Theorem 3.2, where the parameters
a, b, ρθ, cα are given by the following formulas: a = (1 −√

c)2, b = (1 +
√

c)2

ρθ :=





θ + θ
θ−c

if |θ − c| >
√

c,

b if |θ − c| ≤ √
c and θ > 0,

a if |θ − c| ≤ √
c and θ < 0,

and

c2
α =





α2
(
1 − c

(α−c)2

)
in the i.i.d. model,

α2c
(α−c)2

(
1 − c

(α−c)2

)
in the orthonormalised model.

Assume now that the law of the entries satisfy Hypothesis 5.2. If the perturbation has
rank one, we have the following precise description of the fluctuations of the extreme

eigenvalues of X̃n :

• If θ > c +
√

c (resp. θ < c − √
c), for all p ≥ 2, n2/3(λ̃n

n−p+1 − 2σ) (resp.

n2/3(λ̃n
p − 2σ)) converges in law to the p − 1th Tracy Widom law.

• If 0 ≤ θ < c +
√

c (resp. c −√
c < θ ≤ 0), for all p ≥ 1, n2/3(λ̃n

n−p+1 − 2σ) (resp.

n2/3(λ̃n
p − 2σ)) converges in law to the pth Tracy Widom law.

If the perturbation has rank more than one and for all i, θi /∈ {c+
√

c, c−√
c}, the extreme

eigenvalues of X̃n are at distance less than n−1+ǫ for any ǫ > 0 to the extreme eigenvalues
of Xn, which have Tracy-Widom fluctuations.

Proof. Again, it suffices to verify that the hypotheses hold in probability for (Xn)n≥1.

It is known, [32], that the spectral measure of Xn converges to the so-called Marčenko-
Pastur distribution

dµX(x) :=
1

2πcx

√
(b − x)(x − a)1[a,b](x)dx,
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where a = (1 − √
c)2 and b = (1 +

√
c)2. It is known, [4, Th. 5.11], that the extreme

eigenvalues converge to the bounds of this support. The formula

GµX
(z) =

z + c − 1 − sgn(z − a)
√

(z − c − 1)2 − 4c

2cz
(z ∈ R\[a, b])

allows to compute ρθ and cα. Moreover, by [3, Th. 1.1] or [4, Th. 9.10], we also know
that a central limit theorem holds for the linear statistics of Wishart matrices, giving
Hypothesis 3.1 as in the Wigner case.

For Hypothesis 4.1, the proof is similar to the Wigner case. The convergence to the
Tracy-Widom law of the non-perturbed matrix is due to S. Péché [37] (see [33] and [20] for
the Gaussian case). The approximation of the eigenvalues by the quantiles of the limiting
law can be found in [17, Theorem 9.1] whereas the absolute continuity property needed
to prove Lemma 5.5 is derived in [17, Lemma 8.1]. This allows to prove Hypothesis 4.1
in this setting as in the Wigner case, we omit the details. �

5.4. Non-white ensembles. In the case of non-white matrices, we can only study the
fluctuations away from the bulk (since we do not have the appropriate information about
the top eigenvalues to prove Hypothesis 4.1). We illustrate this generalisation in a few
cases, but it is rather clear that Theorem 3.2 applies in a much wider generality.

5.4.1. Non-white Wishart matrices. The first statement of Proposition 5.8 can be gener-

alised to matrices Xn of the type Xn = 1
m

T
1/2
n GnG

∗
nT

1/2
n or 1

m
GnTnG

∗
n, where Gnis an n×m

real (or complex) matrix with i.i.d. centred entries with law µ such that
∫

zdµ(z) = 0,∫
|z|2dµ(z) = 1 and

∫
|z|4dµ(z) < ∞ and Tn is a positive non random Hermitian n × n

matrix with bounded operator norm, with a converging empirical spectral law and with
no eigenvalues outside any neighborhood of the support of the limiting measure for suffi-
ciently large n. Indeed, in this case, everything, in the proof, stays true (use [2, Th.1.1]
and [4, Th. 5.11]). However, when the limiting empirical distribution of Tn is not a Dirac
mass, the computation of the ρθ’s and the cα’s is not easy.

5.4.2. Non-white Wigner matrices. There are less results in the literature about the cen-
tral limit theorem for band matrices (with centring with respect to the limit) and the con-
vergence of the spectrum. We therefore concentrate on a special case, namely a Hermitian
matrix Xn with independent Gaussian centred entries so that E[|Xij |2] = n−1σ(i/n, j/n)
with a stepwise constant function

σ(x, y) =

k∑

i,j=1

1 i−1
k

≤x< i
k

i−1
k

≤y< i
k

σi,j .

In [31], matrices of the form Sn =
∑k(k+1)

j=1 aj ⊗X
(n)
j with some independent matrices X

(n)
j

from the GUE and self-adjoint matrices aj were studied. Taking aj = (ǫp,ℓ + ǫℓ,p)σp,ℓ or
i(ǫp,ℓ − ǫℓ,p)σp,ℓ with ǫp,ℓ the matrix with null entries except at (p, ℓ) and 1 ≤ p ≤ ℓ ≤ k,
we find that Xn = Sn. Then it was proved [31, (3.8)] that there exists α, ǫ, γ > 0 so that
for z with imaginary part greater than n−γ for some γ > 0,

∣∣∣∣E
[

1

n
Tr(z − Xn)−1

]
− G(z)

∣∣∣∣ ≤ (ℑz)−αn−1−ǫ (31)
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which entails the convergence of the spectrum of Xn towards the support of the limiting
measure [31, Proposition 11] with exponential speed by [31, Proof of Lemma 14]. Thus
Xn satisfies Hypothesis 1.1. Hypothesis 3.1 can be checked by modifying slightly the proof
of (31) which is based on an integration by parts to be able to take z on the real line
but away from the limiting support. Indeed, as in [23, Section 3.3], we can add a smooth
cut-off function in the expectation which vanishes outside of the event An that Xn has
all its eigenvalues within a small neighborhood of the limiting support. This additional
cut-off will only give a small error in the integration by parts due to the previous point.
Then, (31), but with an expectation restricted to this event, is proved exactly in the same
way, except that ℑz can be replaced by the distance of z to the neighborhood of the
limiting support where the eigenvalues of Xn lives. Finally, concentration inequalities, in
the local version [22, Lemma 5.9 and Part II], insure that on An,

1

n
Tr(z − Xn)−1 − E

[
1An

1

n
Tr(z − Xn)−1

]

is at most of order n−1+ǫ with overwhelming probability. This completes the proof of
Hypothesis 3.1.

5.5. Some models for which our hypothesis are not satisfied.

We gather hereafter a few remarks about some models for which the hypothesis we
made on Xn are not satisfied. For sake of simplicity, we present hereafter only the case
of i.i.d. perturbations (1).

5.5.1. I.i.d. eigenvalues with compact support. We assume that Xn is diagonal with i.i.d.
entries which law µ is compactly supported. As in the core of the paper, we denote by
a (resp. b) the left (resp. right) edge of the support of µ. We also denote by Fµ its
cumulative distribution function and assume that there is κ > 0 such that for all c > 0,

lim
x→0+

1 − Fµ(b − cx)

1 − Fµ(b − x)
= cκ (32)

In this situation, it is easy to check that Hypothesis 1.1 holds in probability with
µX = µ. But Hypothesis 3.1 is not satisfied. Indeed, by classical CLT, we have, for
ρα /∈ [a, b],

W n
α =

√
n(Gµn(ρα) − Gµ(ρα))

converges in law, as n goes to infinity to a Gaussian variable Wα with variance −G′
µ(ρα)−

Gµ(ρα)2. Moreover,

E[WαWα′ ] =

∫
1

(ρα − λ)(ρα′ − λ)
dµ(λ) − Gµ(ρα)Gµ(ρα′).

Nevertheless, Theorem 3.2 holds for this model. Indeed, the whole proof of this theorem
goes through in this context, except the proof of Lemma 3.5, where we have to make the
following decomposition Mn

s,t(i, x) = Mn,1
s,t (i, x)+Mn,2

s,t (i, x)+Mn,3
s,t (i, x) with the difference

that this time Mn,3
s,t does not go to zero but converges towards Wαi

. Hence, the eigenvalues
fluctuate according to the distribution of the eigenvalues of (cjMj +Wαj

Ikj
)1≤j≤q, with cj

and Mj as in the statement of Theorem 3.2 and Ikj
denotes the kj × kj identity matrix.
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Let us now consider the fluctuations near the bulk. We first detail the fluctuations of the
extreme eigenvalues of Xn. According to [26], the fluctuations of the largest eigenvalues
of Xn are determined by the parameter κ defined in (32), that is, if vn = Fµ(b − 1/n),

then the law of b−λn
n

b−vn
converges weakly to the law with density proportional to e−xκ

on R+.

Otherwise stated, the fluctuations of λn
n are of order n−1/κ with asymptotic distribution

the Gumbel distribution of type 2. One can check that if κ ≤ 1, then θ = 0.
One can show that, for any fixed p, for Hypothesis 4.1[p, α] to hold, we need α > 1

κ
− 1

2
and we then obtain that the distance of the extreme eigenvalues of the deformed matrix
is at distance less that n−1+α′

for any α′ > α. Therefore if κ > 4/3, this theorem allows
us to deduce that the fluctuations of the extreme eigenvalues of the deformed matrix are
the same as those of the non-deformed matrix.

5.5.2. Coulomb gases with non-convex potentials. In [35], Pastur showed that for a Coulomb
gas law (29) with a potential V so that the equilibrium measure has a disconnected sup-
port, the central limit theorem does not hold in the sense that the variance may have
different limits according to subsequences (see [35, (3.4)]. Moreover the asymptotics of√

n(Tr(Xn) − µ(x)) can be computed sometimes and do not lead to a Gaussian limit.
We might expect then that also

√
n(Gµn(x) − Gµ(x)) converges to a non-Gaussian limit,

which would then result with non-Gaussian fluctuations for the eigenvalues outside of the
bulk.

6. Appendix

6.1. Determinant formula. We here state formula (3), which can be deduced from the

well known formula det

(
A B
C D

)
= det(D) det(A − BD−1C).

Lemma 6.1. Let z ∈ C\{λn
1 , . . . , λ

n
n} and θ1, . . . , θr 6= 0. Set D = diag(θ1, . . . , θr) and

let V be any n × r matrix. Then

det (z − Xn − V DV ∗) = det(z − Xn) det(D) det
(
D−1 − V ∗(z − Xn)−1V

)

6.2. Concentration estimates.

Proposition 6.2. Under Assumption 1.2, there exists a constant c > 0 so that for any
matrix A := (ajk)1≤j,k≤n with complex entries, for any δ > 0, for any g = (g1, . . . , gn)T

with i.i.d. entries (gi)1≤i≤n with law ν,

P (|〈g, Ag〉 − E[〈g, Ag〉]| > δ) ≤ 4e−c min{ δ
C

, δ2

C2 }

if C2 = Tr(AA∗) and if g̃ is an independent copy of g, for any δ, κ > 0,

P

(
|〈g, Ag̃〉| > δ

√
Tr(AA∗) + κ

√
Tr((AA∗)2)

)
≤ 4e−cδ2

+ 4e−c min{κ,κ2}.

Proof. The first point is due to Hanson-Wright Theorem [24], see also [15, Proposition
4.5]. For the second, we use concentration inequalities, see e.g. [1, Lemma 2.3.3], based

on the remark that for any fixed g̃, g → 〈g, Ag̃〉 is Lipschitz with constant
√

〈g̃, AA∗g̃〉
and therefore, conditionally to g̃, for any δ > 0,

P

(
|〈g, Ag̃〉| > δ

√
〈g̃, AA∗g̃〉

)
≤ 4e−cδ2
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On the other hand, the previous estimate shows that

P

(
|〈g̃, AA∗g̃〉 − Tr(AA∗)| > κ

√
Tr(AA∗)2

)
≤ 4e−c min{κ,κ2} .

As a consequence, we deduce the second point of the proposition. �

Let Gn =
[
gn
1 · · · gn

r

]
be an n × r matrix which columns gn

1 , . . . , gn
r , are independent

copies of an n × 1 matrix with i.i.d. entries with law ν and define

V n
i,j =

1

n
〈gn

i , gn
j 〉, 1 ≤ i, j ≤ r,

and, for j ≤ i − 1, if det[V n
k,l]

i−1
k,l=1 6= 0,

W n
i,j =

det[γn,j
k,l ]

i−1
k,l=1

det[V n
k,l]

i−1
k,l=1

, with γn,j
k,l =

{
V n

k,l, if l 6= j,
−V n

k,i, if l = j.

On det[V n
k,l]

i−1
k,l=1 = 0, we give to W n

i,j an arbitrary value, say one. Putting W n
ii = 1 and

W n
ij = 0 for j ≥ i + 1, it is a standard linear algebra exercise to check that the column

vectors

vn
i =

r∑

j=1

W n
i,jg

n
j = ith column of Gn(W n)T

are orthogonal in C
n. Let us introduce, for M an r× r matrix, ‖M‖∞ = sup1≤i,j≤r |Mi,j|.

We next prove

Proposition 6.3. For any γ > 0, there exists finite positive constants c, C (depending on
r) so that for Zn = V n or W n,

P

(
‖Zn − I‖∞ ≥ n− 1

2 γ
)
≤ C

[
e−4−1cγ2

+ e−c
√

n
]
.

Moreover, with ‖v||22 =
∑n

i=1 |vi|2, for any γ ∈ (0,
√

n(2−r − ǫ) for some ǫ > 0,

P

(
max
1≤i≤r

∣∣∣∣∣
1

n
‖

r∑

j=1

Zn
ijg

n
j ‖2

2 − 1

∣∣∣∣∣ ≥ n− 1
2 γ

)
≤ C

[
e−4−1c2−rγ2

+ 4e−c
√

n
]
.

Proof. We first consider the case Zn = V n. The maximum of |V n
ij − δij| is controlled by

the previous proposition with A = n−1I, and the result follows from TrAA∗ = n−1 and
Tr((AA∗)2) = n−3, and choosing δ = γ/

√
2, κ =

√
n. The result for W n follows as on

‖V n − I‖∞ ≤ γn− 1
2 ≤ 1

| det[Vk,l]
i−1
k,l=1 − 1| ≤ 2rγn− 1

2 ,

whereas

| det[γn,j
k,l ]

i−1
k,l=1| ≤ 2rγn− 1

2 .

For the last point, we just notice that since 1
n
‖∑r

j=1 Zn
i,jg

n
j ‖2

2 = (ZV Z∗)i,i, we have

max
1≤i≤r

∣∣∣∣∣
1

n
‖

r∑

j=1

Zn
ijg

n
j ‖2

2 − 1

∣∣∣∣∣ ≤ C(r) max
Zn=V n or W n

‖Zn‖2
∞ max

Zn=V n or W n
‖Zn − I‖∞

for a finite constant C(r) which only depends on r. Thus the result follows from the
previous point. �
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6.3. Central Limit Theorem for quadratic forms.

Theorem 6.4. Let us fix r ≥ 1 and let, for each n, An(s, t) (1 ≤ s, t ≤ r) be a family
of n × n real (resp. complex) matrices such that for all s, t, An(t, s) = An(s, t)∗ and such
that for all s, t = 1, . . . , r,

• in the i.i.d. model,

1

n
Tr[An(s, t)An(s, t)∗] −→

n→∞
σ2

s,t,
1

n

n∑

i=1

|An(s, s)i,i|2 −→
n→∞

ωs, (33)

• in the orthonormalised model,

1

n
Tr[|An(s, t) − 1

n
Tr An(s, t)|2] −→

n→∞
σ2

s,t,
1

n

n∑

i=1

∣∣∣∣A
n(s, s)i,i −

1

n
Tr An(s, t)

∣∣∣∣
2

−→
n→∞

ωs.

(34)

for some finite numbers σs,t, ωs (in the case where κ4(ν) = 0, the part of the hypothesis
related to ωs can be removed). For each n, let us define the r × r random matrix

Gn :=

[√
n

(
〈un

s , A
n(s, t)un

t 〉 − 1s=t
1

n
Tr(An(s, s))

)]r

s,t=1

.

Then the distribution of Gn converges weakly to the distribution of a real symmetric (resp.
Hermitian) random matrix G = [gs,t]

r
s,t=1 such that the random variables

{gs,t ; 1 ≤ s ≤ t ≤ r}
(resp. {gs,s ; 1 ≤ s ≤ r} ∪ {ℜ(gs,t) ; 1 ≤ s < t ≤ r} ∪ {ℑ(gs,t) ; 1 ≤ s < t ≤ r})

are independent and for all s, gs,s ∼ N (0, 2σ2
s,s + κ4(ν)ωs) (resp. gs,s ∼ N (0, σ2

s,s +

κ4(ν)ωs)) and for all s 6= t, gs,t ∼ N (0, σ2
s,t) (resp. ℜ(gs,t),ℑ(gs,t) ∼ N (0, σ2

s,t/2)).

Remark 6.5. Note that if the matrices An(s, t) depend on a real parameter x in such a
way that for all s, t, for all x, x′ ∈ R,

1

n
Tr(An(s, t)(x) − An(s, t)(x′))2 −→

n→∞
0,

then it follows directly from Theorem 6.4 and from a second moment computation that
each finite dimensional marginal of the process

[√
n

(
〈un

s , A
n(s, t)(xs,t)u

n
t 〉 − 1s=t

1

n
Tr(An(s, s)(xs,s))

)]

1≤s,t≤r , xs,t∈R , xs,t=xt,s

converges weakly to the law of [gs,t]1≤s,t≤r , xs,t∈R , xs,t=xt,s.

Proof. • Let us first consider the model where the (
√

nun
s )1≤s≤r are i.i.d. vectors with i.i.d.

entries with law ν satisfying Assumption 1.2. Note that for all s, t = 1, . . . , r, by (33),
the sequence 1

n

∑n
i,j=1 An(s, t)2

i,j is bounded. Hence up to the extraction of a subsequence,
one can suppose that it converges to a limit τs,t ∈ C. Since the conclusion of the theorem
does not depend on the numbers τs,t and the weak convergence is metrisable, one can
ignore the fact that these convergences are only along a subsequence. In the case where
κ4(ν) = 0, we can in the same way add the part of the hypothesis related to ωs.
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We have to prove that for any real symmetric (resp. Hermitian) matrix B := [bs,t]
r
s,t=1,

the distribution of Tr(BGn) converges weakly to the distribution of Tr(BG). Note that

Tr(BGn) =
1√
n

(U∗
nCnUn − Tr Cn),

where Cn is the rn × rn matrix and Un is the rn × 1 random vector defined by

Cn =



b1,1A

n(1, 1) · · · b1,rA
n(1, r)

...
...

br,1A
n(r, 1) · · · br,rA

n(r, r)


 , Un =

√
n



un

1
...

un
r


 .

In the real (resp. complex) case, let us now apply Theorem 7.1 of [7] in the case K = 1.
It follows that the distribution of

Tr(BGn) =

r∑

s=1

bs,sGn,s,s +
∑

1≤s<t≤r

2ℜ(bs,t)ℜ(Gn,s,t) + 2ℑ(bs,t)ℑ(Gn,s,t)

converges weakly to a centred real Gaussian law with variance
{∑r

s=1 b2
s,s(2σ

2
s,s + κ4(ν)ωs) +

∑
1≤s<t≤r(2bs,t)

2σ2
s,t in the real case,

∑r
s=1 b2

s,s(σ
2
s,s + κ4(ν)ωs) +

∑
1≤s<t≤r(2ℜ(bs,t))

2 σ2
s,t

2
+ (2ℑ(bs,t))

2 σ2
s,t

2
in the complex case.

It completes the proof in the i.i.d. model.

• In the orthonormalised model, we can write un
s = 1

‖
Ps

i=1 W n
sigi‖2

∑s
j=1 W n

sjgj, where the

matrix W n is the one introduced in this section. It follows that, with

Bn(s, t) = An(s, t) − 1

n
Tr(An(s, t)),

by orthonormalization of the un
s ’s

√
n

(
〈un

s , A
n(s, t)un

t 〉 −
1s=t

n
Tr(An(s, t))

)

=
√

n〈un
s , B

n(s, t)un
t 〉

=
n

‖∑s
i=1 W n

sigi‖2‖
∑t

i=1 W n
tigi‖2

r∑

j,i=1

W n
siW̄

n
tj

1√
n
〈gi, B

n(s, t)gj〉.

But, by the previous result, if i 6= j,

1√
n
〈gi, B(s, t)gj〉

converges in distribution to a Gaussian law, whereas if i = j,

1√
n
〈gi, B(s, t)gi〉

=
1√
n

(〈gi, A(s, t)gi〉 − E[〈gi, A(s, t)gi〉]) +
Tr(A(s, t))√

n
(〈gi, gi〉 − E[〈gi, gi〉])

where both terms converge to a Gaussian. Thus this term is also bounded as n goes to
infinity.
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Hence, by Proposition 6.3, we may and shall replace W n by the identity (since the error

term would be of order at most n− 1
2
+ǫ), which yields

√
n〈un

s , B
n(s, t)un

t 〉 ≈
√

n
−1〈gs, B(s, t)gt〉

so that we are back to the previous setting with B instead of A. �
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