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Abstract � We investigate the limit behaviour of the spectral measures of matrices following the Gibbs

measure for the Ising model on random graphs� Potts model on random graphs� matrices coupled in a chain

model or induced QCD model� For most of these models� we prove that the spectral measures converge

almost surely and describe their limit via solutions to an Euler equation for isentropic �ow with negative

pressure p��� � ���������
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� Introduction

It appears since the work of �t Hooft that matrix integrals can be seen� via Feynman diagrams expansion� as

generating functions for enumerating maps �or triangulated surfaces�� We refer here to the very nice survey

of A� Zvonkin�s ��
�� One matrix integrals are used to enumerate maps with a given genus and given vertices

degrees distribution whereas several matrices integrals can be used to consider the case where the vertices

can additionally be coloured �i�e can take di�erent states��

Matrix integrals are usually of the following form

ZN �P � �

Z
e�Ntr�P �A

N
� ���� �ANd ��dAN

� � � �dAN
d

with some polynomial function P of d�non�commutative variables and the Lebesgue measure dA on some

well chosen ensemble of N �N matrices such as the set HN �resp� SN � resp� SympN � of N �N Hermitian

�resp� symmetric� resp� symplectic� matrices� One would like to understand the full expansion of ZN �P �

in powers of N � For instance� in the case where the matrices live on HN � the formal expansion linked with

Feynamn diagrams is of the type

�

N�
logZN �P � �

X
g��

�

N�g
CP �g�
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where CP �g� enumerates some maps with genus g� Such an expansion was proved to hold rigorously in the

one matrix case by K� McLaughlin and N� Ercolani in 

�

A related issue is to understand the asymptotic behaviour of the corresponding Gibbs measure

�NP �dAN
� � � �dAN

d � �
�

ZN �P �
e�Ntr�P �A

N
� ���� �ANd ��dAN

� � � �dAN
d �

More precisely� if for aN�N matrixA� ����A�� � � � � �N �A�� denotes its eigenvalues and ��NA �� N��PN
i�� ��i�A�

its spectral measure� one would like to understand the asymptotic behaviour of ���N
AN�

� � � � � ��N
AN
d

� under the

Gibbs measure �NP when N goes to in�nity� Of course� this understanding is intimately related with the

�rst order asymptotic of the free energy FN �P � � N�� logZN �P �� In fact� the rigorous approach of the full

expansion of matrix integrals when d � � given by K� McLaughlin and N� Ercolani is based on Riemann

Hilbert problems techniques which themselves require a precise understanding of such asymptotics of the

spectral measures�

However� only very few matrix integrals could be evaluated in the physics litterature� even on a non

rigorous ground� These cases corresponds in general to the case where integration holds over Hermitian

matrices� Using orthogonal polynomial methods� Mehta ��� obtained the limiting free energy for the Ising

model on random graphs� corresponding to d � � and P �A�B� � P �A� �Q�B� �AB when P �x� � Q�x� �

gx��x�� He extended this work ��� ��� with coauthors to matrices coupled in a chain� model corresponding

to P �A�� � � � � Ad� �
Pd

i��Pi�Ai� �
Pd

i��Ai��Ai� However� he did not discuss in these works the limiting

spectral distribution of the matrices under the corresponding Gibbs measure� On a less rigorous ground� P�

Zinn Justin ��� �� discussed the limiting spectral measures of the matrices following the Gibbs measure

of the so�called Potts model on random graphs� described by P �A�� � � � � Ad� �
Pd

i��Pi�Ai� �
Pd

i��A�Ai�

Very interesting work was also achieved by V� Kazakov �in particular for the so�called ABAB interaction

case�� A� Migdal and B� Eynard for instance� We refer to the review ���� of B� Eynard for a general survey�

Matytsin ���� obtained the �rst order asymptotics for spherical integrals� from which he could study the

phase transition of diverse matrix models �see ���� for instance�� O� Zeitouni and myself ���� gave a complete

proof of part of his derivation in ���� and the present paper is actually �nishing to put his article ���� on a

�rm ground�

In this paper� we investigate the problem of the �rst order asymptotics of matrix integrals with AB

interaction� including the above Ising model� Potts model� matrix model coupled in a chain and induced

QCD models� The integration will hold over either Hermitian matrices or symmetric matrices� The case of

symplectic matrices could be handle similarly� We obtain� as a consequence of ����� the convergence of the

free energy and represent its limit as the solution of a variational problem� We here study this variational

problem and characterize its critical points� One of the main outcome of this study is to show that under

the Gibbs measure �NP of the Ising model described by

P �A�B� � P �A� �Q�B� � AB

with P �x� � ax�� b and Q�x� � cx� � d with a� b � 
� the spectral measures of �AN
� � A

N
� � converges almost

surely and to characterize its limit� More precisely� we shall prove that





Theorem ��� �� ���NA � ��
N
B � converges almost surely towards a unique couple ��A� �B� of probability measures

on IR�

�� ��A� �B� are compactly supported with �nite non�commutative entropy

���� �

Z Z
log jx� yjd��x�d��y��

�� There exists a couple ��A�B � uA�B� of measurable functions on IR � �
� �� such that �A�B
t �x�dx is

a probability measure on IR for all t � �
� �� and ��A� �B� �
A�B � uA�B� are characterized uniquely as the

minimizer of a strictly convex function under a linear constraint �see Theorem �����

In particular	 ��A�B � uA�B� are solution of the Euler equation for isentropic 
ow with negative pressure

p��� � ���

� �
� such that	 for all �x� t� in the interior of � � f�x� t� � IR� �
� ��� �A�B

t �x� �� 
g	

�
�t�

A�B
t � �x��

A�B
t uA�B

t � � 


�t��A�B
t uA�B

t � � �x��A�B
t �uA�B

t �� � ��

� ��A�B
t ��� � 


�����

with the probability measure �A�B
t �x�dx weakly converging towards �A�dx� �resp� �B�dx�� as t goes to zero

�resp� one��

Moreover	 we have

P ��x��x� 	


uA�B
� �x�� 	


H�A�x� � 
 �A�a�s and Q��x��x� 	


uA�B
� �x�� 	


H�B�x� � 
 �B�a�s�

A more detailed characterization of ��A� �B� �A�B � uA�B� is given in Theorem ����

Here� H� stands for the Hilbert transform of the probability measure � given by

H��x� � PV

Z
�

x� y
d��y� � lim

���

Z
�x� y�

�x� y�� � 
�
d��y�

To obtain such a result� we shall �rst study the limit obtained in ���� for spherical integrals� This limit was

indeed given by the in�mum of a rate function over measure�valued processes with given initial and terminal

data� We show in section  that this in�mum is in fact taken at a unique probability measure�valued path�

solution of the Euler equation for isentropic �ow described in ������ Using a saddle point method� we derive

from ���� in Theorem ��� formulae for the limiting free energy of some matrix models with AB interaction�

In the Ising model case� this free energy is indeed written as the in�mum of a strictly convex function� from

which uniqueness of the minimizers is obtained� As a consequence� we obtain the convergence of the spectral

measures under the Gibbs measure for Ising model� A variational study then shows that the limiting spectral

measures satis�es the above set of equations �see Theorem ���� � For the other considered models �q�Potts

model� matrix coupled in a chain� induced QCD�� obvious convexity arguments and therefore uniqueness is

lost in general� but still holds in certain cases� However� we can still specify some properties of the limit

points �see Theorem �����

In this paper� we shall denote C��
� ���P�IR�� the set of continuous processes with values in the set P�IR�
of probability measures on IR� endowed with its usual weak topology� For a measurable set � of IR� �
� ���

C���b ��� denotes the set of real�valued functions on � which are p times continuously di�erentiable with

respect to the ��rst� space variable and q times continuously di�erentiable with respect to the �second� time

�



variable with bounded derivatives� Cp�qc ��� will denote the functions of Cp�qb ��� with compact support in

the interior of the measurable set �� Lp�d�� will denote the space of measurable functions with �nite pth

moment under a given measure �� We shall say that an equality holds in the sense of distribution on a

measurable set � if it holds� once integrated with respect to any C���
c ��� functions�

� Study of the rate function governing the asymptotic behaviour

of spherical integrals

In ����� Ofer Zeitouni and I studied the so�called spherical integral

I
���
N �DN � EN � ��

Z
expfN tr�UDNU

�EN �gdm�
N �U ��

where m�
N denotes the Haar measure on the orthogonal group ON when 	 � � and on the unitary group

UN when 	 � � and DN � EN are diagonal real matrices whose spectral measures converge to �D� �E� We

proved �see Theorem ��� in ����� the existence and represent as solution to a variational problem the limit

I�����D� �E� �� lim
N��

N�� log I���N �DN � EN ��

This result in fact was obtained under the additionnal technical assumptions that there exists a compact

subset K of IR such that supp ��NDN
� K for all N � IN and that ��NEN �x

�� is uniformly bounded �in N �� These

hypotheses will be made throughout this section�

In this section� we investigate the variational problem which de�nes I��� and study its minimizer� We

indeed prove Matytsin�s heuristics ���� outlined in section 	 of ����� Let us recall the formula obtained in

���� for I��� �

I�����D� �E� �� �J���D � �E� � I���E�� inf
��M��IR�

I���� �
�



Z
x�d�D�x�

where� for any � �M��IR��

I���� �
�



Z
x�d��x�� 	


�����

J���D � �� is the rate function governing the deviations of the law of the spectral measure of XN � DN �WN

with a Hermitian �resp� symmetric� Gaussian Wigner matrix WN and a deterministic diagonal matrix

DN � diag�d�� � � � � dN �� �di��	i	N � IRN � with spectral measure ��NDN
� N��PN

i�� �di weakly converging

towards �D � P�IR�� It is given �see ����� by

J���D � �� �
	


inffS�D ����� � � C��
� ���P�IR�� � �� � �g� ����

if

S�D ��� ��

�
�� � if �� �� �D�

S������ �� sup
f�C���

b
�IR
����	� sup�	s	t	� �Ss�t��� f� � otherwise�

�



Here� we have set� for any f� g � C���b �IR� �
� ���� any s � t � �
� ��� and any �� � C��
� ���P�IR���

Ss�t��� f� �

Z
f�x� t�d�t�x��

Z
f�x� s�d�s�x�

�
Z t

s

Z
�uf�x� u�d�u�x�du� �



Z t

s

Z Z
�xf�x� u� � �xf�y� u�

x� y
d�u�x�d�u�y�du� ���

� f� g ��
s�t �

Z t

s

Z
�xf�x� u��xg�x� u�d�u�x�du � ����

and

�Ss�t��� f� � Ss�t��� f�� �


� f� f ��

s�t � ����

It can be shown by Riesz�s theorem �see such a derivation in ��� for instance� that any measure�valued path

�� � C��
� ���M��IR�� in fS�D ��g is such that there exists a process k� so that

��

inf
f�C���

b
�IR
����	�

� f � k� f � k ��
���� 


� �� � �D and for any f � C���b �IR� �
� ���� any 
 � s � t � ��

Ss�t��� f� �� f� k ��
s�t � ����

Then� it is not hard to show that

S�D ���� �
�


� k� k ��

��� �

Therefore� J���D� �� is given also by

J���D � �� �
	

�
inff� k� k ��

���� ��� k� satis�es �C�g� ��	�

with �C� the condition

�C� � �� � �D	 �� � �	 �xk � C����IR� �
� ����
L��d�tdt�

	 and	 for any f � C���b �IR� �
� ���	 any s� t � �
� ��	

Ss�t��� f� �� f� k ��
s�t

The main Theorem of this section states as follows

Theorem ��� Let �E � fJ���D� �� ��g with �nite entropy �� Then	 the in�mum in J���D� �E� is reached

at a unique probability measures�valued path �� � C��
� ���P�IR�� such that

	 ��� � �D� �
�
� � �E �

	 For any t � �
� ��	 ��t is absolutely continuous with respect to Lebesgue measure � ��t �dx� � ��t �x�dx�

t � �
� ��
 ��t � P�IR� is continuous and therefore limt�� ��t � �D	 limt�� ��t � �E �

�



	 Let k� be such that the couple ���� k�� satis�es �C�� Then	 if we set

u�t � �xk
�
t �H��t �y��

���� u�� satis�es the Euler equation for isentropic 
ow described by the equations	 for t � �
� ��	

�t�
�
t �x� � ��x���t �x�u�t �x�� ����

�t��
�
t �x�u

�
t �x�� � ��x���t �x�u�t �x�� �

��

�
��t �x�

�� ����

in the sense of distributions that for all f � C���
c �IR � �
� ���	Z �

�

Z
�tf�t� x�d�

�
t �x�dt�

Z �

�

Z
�xf�t� x�u

�
t �x�d�

�
t �x�dt � 


and	 for any 
 � 
	 any f � C���
c ���� with �� �� f�x� t� � IR� �
� �� � ��t �x� � 
g	Z �

u�t �x��tf�x� t� �
�
u�t �x�

� � ����t �x�
�
�
�xf�x� t�

�
dxdt � 
� ����

If we assume that ��D � �E� are compactly supported probability measures	 we additionnally know that ���� u��

are smooth in the interior of ��	 which guarantees that ����� and ���� hold everywhere in the interior of

��� Moreover	 �� is bounded in IR � �
� ��� Furthermore	 there exists a sequence ������ of functions such

that if we set

��t�x� �� ����maxf�t� � �����x���� 
g� ��

then Z
�u�t �x�� �x

�t�x�


��d��t �x�dt�

��

�

Z
���t �x�� ��t�x��

� ���t �x� � ��t�x�� dxdt

���
Z
j�t� � �����x��� � ����t�x�

�jd��t �x�dt � 
�

As a consequence� if we let ��t �x� �
R x

u�t �y�dy� which should be thought as the limit in H���
�
t �x�dxdt� of

the sequence ��������� we �nd that it satis�es� in the sense of distributions in ���

�t�
�
t � ��


��x�

�
t �
� �

��


���t �

��

which is Matytsin �s equation �����

The �non trivial� existence of solutions to the Euler equation for isentropic �ow ����� ����� is a conse�

quence of our variational study� The uniqueness of the solutions to these equations could be derived� under

some additional regularity properties� from a convexity property of our rate function S�D � Even when such

solutions are not unique� we know that our minimizer is unique due to a convex property of S�D which is a

consequence of its representation of Property ���� below �see Property ����

	



Property ��� Let �E � fJ���D � �� ��g having �nite entropy �� Then	

�� For any � � C��
� ���P�IR��	 if ��� k� veri�es �C� and ut�x� � �xkt�x� �H�t�x�	

S�� ��� �
�



Z �

�

Z
�ut�x��

�d�t�x�dt�
�



Z �

�

Z
�H�t�x��

�d�t�x�dt� �


������� �������

�� Consequently	 we can write J� under the following form

J���D � �E� �
	

�

�Z �

�

Z
�u�t �x��

�d��t �x�dt�
Z �

�

Z
�H��t �x��

�d��t �x�dt� ����E� � ���D��

�
���
�

with ���� u�� as in Theorem ���� Note here that ��t �dx� � ��t �x�dx for t � �
� �� and ��� � L��dxdt�	 so

that Z �

�

Z
�H��t �x��

�d��tdt �
��

�

Z �

�

Z
���t �x��

�dxdt�

�� As a consequence	

I�����D � �E� � �	
�

�Z �

�

Z
�u�t �x��

�d��t �x�dt�
Z �

�

Z
�H��t �x��

�d��t �x�dt
�

�	
�
����E� � ���D�� �

�



Z
x�d�D�x� �

�



Z
x�d�E�x�� inf I� � �����

In ����� a similar result was announced �see formulae ����� and ���� of ������ However� it seems �as far as

I could understand� that in formulae ���
����� of ����� the �rst term as the opposite sign� But� in �����

formula ������ the very same result is stated�

Let us also notice that the minimizer ��t has the following representation in the free probability context�

Let �A� � � be a non�commutative probability space on which an operator D with distribution �D� an operator

E with distribution �E and a semi�circular variable S� free with �D�E�� live� Then� there exists a joint

distribution of �D�E� such that ���t �t�����	 is the law of a free Brownian bridge

Xt � tE � ��� t�D �
p
t��� t�S�

The isentropic Euler equation which governs �� hence partially specify the joint law of �D�E�� More

speci�cally� for any t � �
� ��� our result implies that for any p � IN�

lim
N��

Z
�tUENU

� � ��� t�DN �p
eNtr�UENU

�DN �

I
���
N �DN � EN �

dm�
N �U � � � ��tE � ��� t�D�p� �

Z
xpd��t �x�

if ��t is the unique compactly supported probability measure such that� if S is a semicircular variable free

with �D�E�� for any p � IN�Z
xpd��t �x� � �

�
�tE � ��� t�D �

p
t��� t�S�p

�
�

Z
xpd��t � �t���t��x�

where � denotes the free convolution and �	 the semicircular variable with covariance ��

�



��� Study of S��

Hereafter and to simplify the notations� �D � �� and �E � �� with some probability measures ���� ���

on IR� We shall in this section study the rate function S�� and show that it achieves its minimal value on

f� � C��
� ���P�IR�� � �� � ��g at a unique continuous measure�valued path ���

����� S�� achieves its minimal value

Recall that for any probability measure �� � P�IR�� S�� is a good rate function on C��
� ���P�IR�� �see Theo�

rem ����� of ������ Therefore� the in�mumde�ning J����� ��� is� when it is �nite� achieved in C��
� ���P�IR���
We shall in the sequel restrict ourselves to ���� ��� such that J����� ��� is �nite�

����� A new formula for S��

In this section� we shall give a simple formula of S�� ��� in terms of u� � H�� � �xk� and � when �k� ��

satis�es �C�� We begin with the following preliminary Lemma

Lemma ��� Let ���� ��� � f� � P�IR� � ���� � ��g and �� � C��
� ���P�IR�� such that �� � ��� �� � ��

and �� � fS�� ��g� Then	 for almost all t � �
� ��	 �t�dx�� dx andZ �

�

Z
�H�t�x��

�
d�t�x�dt �

��

�

Z �

�

Z �
d�t�x�

dx

��

dxdt ���

The idea of the proof of the lemma is quite simple � we make� in the de�nition of S�� � the change of variable

f�x� t�
 f�x� t�� R log jx� yjd�t�x�� However� because �x� t�
 R
log jx� yjd�t�x� is not in C����IR� �
� ���

in general� the full proof requires approximations of the path �� and becomes rather technical� This is the

reason why I defer it to the appendix� section ��� We shall now prove the following

Property ��� Let ���� ��� � f� � P�IR� � ���� � ��g and �� � C��
� ���P�IR�� such that �� � ��� �� � ��

and �� � fS�� ��g� Then	 if ��� k� satis�es �C� and if we set ut �� �xkt�x� �H�t�x�� we have

S�� ��� �
�



Z �

�

Z
�ut�x��

�d�t�x�dt�
�



Z �

�

Z
�H�t�x��

�d�t�x�dt� �


������� �������

Proof�

Let us recall that ��� k� satisfying condition �C� implies that for any f � C���b �IR� �
� ����

Z
f�x� t�d�t�x��

Z
f�x� s�d�s�x� �

Z t

s

Z
�vf�x� v�d�v�x�ds

�
�



Z t

s

Z Z
�xf�x� v� � �xf�y� v�

x� y
d�v�x�d�v�y�dv

�

Z t

s

Z
�xf�x� s��xk�x� s�d�s�x� ����

with �xk � L��d�t�x�� dt�� Observe that by ���� p� ��
� for any s � �
� �� such that �s is absolutely contin�

uous with respect to Lebesgue measure with density �s � L��dx�� for any compactly supported measurable

�



function �xf��� s�� Z Z
�xf�x� s� � �xf�y� s�

x� y
d�s�x�d�s�y� � 

Z
�xf�x� s�H�s�x�dxds�

Since by Lemma ��� for almost all s � �
� ��� �s�dx�� dx with a density �s � L��dx� we conclude that� in

the sense of distributions on IR� �
� ��� ���� implies

�s�s � �x�us�s� � 
� �����

i�e for any compactly supported f � C���
c �IR� �
� ��� vanishing at the boundary of IR� �
� ���Z �

�

Z
IR
��sf�x� s� � us�xf�x� s���s�x�dx � 
�

Note here that� by dominated convergence theorem� we can equivalently take f � C���b �IR� �
� ����

Moreover� since H�� belongs to L��d�s � ds� by Lemma ��� we can write

S�� ���� �� k� k ��
��� �

Z �

�

Z
IR
�us�x��

�d�s�x�ds �

Z �

�

Z
IR
�H�s�x��

�d�s�x�ds

�
Z �

�

Z
IR
H�s�x�us�x�d�s�x�ds �����

We shall now see that the last term in the above right hand side only depends on ���� ���� The only di�culty

in the proof of this point lies in the fact that x� s � IR� �
� ��
 R
log jx� yjd�s�y� is not in C���c �IR� �
� ����

However� following Lemma ���	 in ���� if � denotes the free convolution �see �	� for a de�nition�� if for

any � � 
� �	 denotes the semicircular law with covariance �� and if u	t denotes the �eld corresponding to

�t � �	�

���� � �	�� ���� � �	� � 

Z �

�

Z
IR
H��s � �	��x�u

	
s�x�d�s � �	�x�ds� �����

It is well known that � 
 ��� � �	� is continuous �see ���� Theorem �� for the lower semicontinuity and

use the well known upper semi�continuity�� Moreover� if Xs is a random variable with distribution �s and S

a semicircular variable� free with Xs� living in a non commutative probability space �A� � �� by Theorem ��

in ���� the �eld u	 is given� �s � �	 almost surely� by

u	s � � ��xk�Xs� s�jXs �
p
�S� �H�s � �	�

Consequently�Z
IR
H��s � �	��x�u

	
s�x�d�s � �	�x� � �

�
�xk�Xs� s�H��s � �	��Xs �

p
�S�

�
��

�
H��s � �	��Xs �

p
�S��

�
�

Moreover� by Voiculescu ���� Proposition ��� and Corollary 	���� if �s�dx� � �s�x�dx � L��dx��

lim
	��

�
�
�H��s � �	��Xs �

p
�S� �H�s�Xs��

�
�
� 
�

�



Therefore� for any such s � �
� ���

lim
	��

Z
IR
H��s � �	��x�u

	
s�x�d�s � �	�x� �

Z
IR
H�s�x�us�x�d�s�x�� ���	�

Note that by Lemma ��� this convergence holds for almost all s � �
� �� since �� � L��dxdt�� Finally� by

Propositions ��� and ��� of ���� for any s such that H�s is well de�ned�

H�s � �	�Xs �
p
�S� � � �H�s�Xs�jXs �

p
�S�

so that for any � � 


�
�
�H�s � �	�Xs �

p
�S���

�
� �

�
�H�s�Xs��

�
�
�

Therefore� dominated convergence theorem and ���	� imply that

lim
	��

Z �

�

Z
IR
H�s � �	�x�u

	
s�x�d�s � �	�x�ds �

Z �

�

Z
IR
H�s�x�us�x�d�s�x�ds�

Thus� ����� extends to � � 
 which proves� with ������ Property ���

����� Uniqueness of the minimizers of S��

We shall use the formula for S�� obtained in the last section to prove that

Property ��� For any ���� ��� � P�IR� with �nite entropy �	 there exists a unique measures�valued path

�� such that

J����� ��� �
	


inffS�� ���� � �� � ��g � 	


S�� ��

���

In the following� �� shall always denote the minimizer of Property �� and �xk
�� u� its associated �elds�

Proof�According to the previous section� the minimizers of S�� also minimize

S�u� �� �
��

�

Z �

�

Z
IR
��t�x��

�dxdt�

Z �

�

Z
IR
�ut�x��

��t�x�dxdt

under the constraint �t�t � �x��tut� � 
 in the sense of distributions� �t � 
 almost surely w�r�t Lebesgue

measure and
R
�t�x�dx � �� and with given initial and terminal data for � given by

lim
t��

�t�x�dx � ���dx�� lim
t��

�t�x�dx � ���dx�

where convergence holds in the weak sense �with respect to bounded continuous functions� and is simply

due to the fact that S�� is �nite only on continuous measure�valued paths�

Let m � u� be the corresponding momentum� In the variables �m� ��� S���m� reads

S�m� �� � ��

�

Z �

�

Z
IR
��t�x��

�dxdt�

Z �

�

Z
IR

�mt�x��
�

�t�x�
dxdt

with the convention �
� � 
� whereas the constraint becomes linear

�




�t��t�x�� � �x�mt�x�� � 
� �t�x�dx � P�IR� �t � �
� ��� lim
t��

�t�x�dx � ���dx�� lim
t��

�t�x�dx � ���dx��

We now observe that S is a strictly convex function� Indeed� if �m�� ��� and �m�� ��� are any two couples

of measurable functions in fS ��g� it is easy to see that for any � � �
� ��

��
S��m� � ��� ��m�� ��� � ��� ����� � ��
Z �

�

Z
IR
���t �x� � ��t �x��

�����t �x� � ��� ����t �x��dxdt

�

Z �

�

Z
IR

���t �x�m
�
t �x�� ��t �x�m

�
t �x��

�

����t �x� � ��� ����t �x��
�

dxdt�

Hence� ��
S��m� � ��� ��m�� ��� � ��� ����� � 
 for some � � �
� �� unless for almost all t � �
� ��

��t �x� � ��t �x� � �t�x�� and u�t �x� �
m�
t �x�

��t �x�
�

m�
t �x�

��t �x�
� u�t �x� �t�x�dxdt a�s�

In other words� S is strictly convex� By standard convex analysis� the strict convexity of S results with

the uniqueness of its minimizers given a linear constraint� and in particular in J�� More precisely� from the

above� the minimizer �� in J� is de�ned uniquely for almost all t � �
� �� �and then everywhere by continuity

of ��� and its �eld u�� or equivalently �xk�� is then de�ned uniquely ��t �dx�dt almost surely�

��� A priori properties of the minimizer ��

In this section� we shall see that the minimizer �� has to be the distribution of a free Brownian bridge when at

least one of the probability measure �� or �� are compactly supported� the other having �nite variance �since

we rely on �����s results�� To simplify the statements� we shall assume throughout this section that both

probability measures are compactly supported� This property will unable us to obtain a priori properties on

the laws of the minimizers� such as existence� boundedness� and smoothness of their densities�

����� Free Brownian bridge characterization of the minimizer

Let us state more precisely the theorem obtained in this section� A free Brownian bridge between �� and ��

is the law of

Xt � �� � t�X� � tX� �
p
t��� t�S �����

with a semicircular variable S� free with X� and X�� with law �� and �� respectively� We let FBB���� ��� �
C��
� ���P�IR�� denote the set of such laws �which depend of course not only on ��� �� but on the joint

distribution of �X�� X�� too�� Then� we shall prove that

Theorem ��� Assume ��� �� compactly supported� Then	

J����� ��� �
	


inffS���� �� � ��� �� � ��g

�
	


inffS��� � � � FBB���� ���g�

��



Therefore	 since FBB���� ��� is a closed subset of C��
� ���P�IR��	 the unique minimizer �� in the above

in�mum belongs to FBB���� ����

The proof of Theorem �	 is rather technical and goes back through the large random matrices origin of J��

We therefore defer it to the appendix�

����� Properties of the free Brownian motion paths

As a consequence of Theorem �	� we shall prove that

Corollary ��� Assume �� and �� compactly supported� Then	

a� There exists a compact set K � IR so that for all t � �
� ��	 ��t �Kc� � 
� For all t � �
� ��	 the support

of ��t is the closure of its interior�

b� ��t �dx�� dx for all t � �
� ��� Let ��t �x� �
d��t �x�
dx

�

c� There exists a �nite constant C �independent of t� so that	 ��t almost surely	

��t �x�
� � �H��t �x��

� � �t��� t����

and

ju�t �x�j � C�t��� t���
�
� �

d� ���� u�� are analytic in the interior of � � fx� t � IR� �
� �� � ��t �x� � 
g�
e� At the boundary of �t � fx � IR � ��t �x� � 
g	 for x � �t	

j��t �x���x��t �x�j �
�

���t���� t��
 ��t �x� �

�
�

���t���� t��

��
�

�x� x��
�
�

if x� is the nearest point of x in �c
t �

Consequently� the minimizer �� may only have shocks at the boundary of its support�

Proof�This corollary is a direct consequence of Theorem �	 and we shall collect these properties for any

free brownian bridge law� Indeed� let �A� � � be a non�commutative probability space in which two operators

X�� X� with laws �� and �� and a semicircular variable S� free with �X�� X��� live� We assume throughout

that X� and X� are bounded by C for the operator norm �i�e �����C�C�c� � �����C�C�c� � 
��

Let �t be the distribution of

Xt � tX� � ��� t�X� �
p
t��� t�S�

Clearly� since S is bounded by  for the operator norm� Xt is bounded by C �  for all t � �
� ��� Thus�

proposition � in ��� �nishes the proof of a�� Following Voiculescu �see Proposition ��� and Corollary ��� in

����� the Hilbert transform of �t is given� �t�almost surely� by

H�t�x� � � ��
p
t��� t��

��
SjXt�

with � � jXt� the conditionnal expectation with respect to Xt� i�e the orthogonal projection on the sigma

algebra generated by Xt� We deduce that since S is bounded for the operator norm by � �t�almost surely�

�



jH�t�x�j � �p
t�� � t�

�

Further� following ���� the stochastic di�erential equation satis�ed by Xt shows that� for any twice continu�

ously di�erentiable function f on IR�

�t�f� � ���f� �
�



Z t

�

Z Z
�xf�x� � �xf�y�

x� y
d�s�x�d�s�y�ds �

Z t

�

Z
�xf�x��xks�x�d�s�x�ds �����

with k the element of L��d�sds� given by

�xks�x� � � �
Xs �X�

s� �
jXs��

Hence�

ut �� �xkt �H�t � � �
Xt �X�

t� �
jXt� � � �

p
�t��� t�

��
SjXt� � � �X� �X� �

��� t�


p
t��� t�

SjXt�� �����

Therefore� �t�almost surely�

jutj � C �
�p

t��� t�
� ��
�

Moreover� by Biane�s results ���� we know that� for t � �
� ��� �t is absolutely continuous with respect to

Lebesgue measure� We denote by �t its density� Then� we also know that for all t � �
� ��� �t�almost surely�

�t�x�
� � �H�t�

��x� � �

t��� t�
� ����

Let us mention the regularity properties that ��t�t������ will inherite from its free Brownian bridge formula�

If �t denotes the law of tX� � ��� t�X�� we have� following Biane ���� corollary �� that if we set

v�u� t� � inffv � 
j
Z

d�t�x�

�u� x�� � v�
� �t�� � t����g�

� inffv � 
j� ���tX� � ��� t�X� � u�� � v����
� � �t�� � t����g�

��u� t� � u� t��� t�

Z
�u� x�d�t�x�

�u� x�� � v�u� t��
�

then

H�t���u� t�� �

Z
�u� x�d�t�x�

�u� x�� � v�u� t��
�

while

�t���u� t�� �
v�u� t�

�t��� t�
�

From these formulae� we observe that ��� is analytic in the interior of � since �� is bounded below by a

positive constant there �see Biane ���� p ��� and the obvious analyticity in the time parameter t � �
� �� ��

it is clear that � is C� in �� Hence� the weak equation ����� is veri�ed in the strong sense in � and we �nd

that in �� ut�x� � �t�x���
R�
x

�t�t�y�dy is C��

At the boundary of �t � fx � �x� t� � �g� Biane ����� corollary �� also noticed that

j�t�x���x�t�x�j � �

���t���� t��
 �t�x� �

�
�

���t���� t��

� �
�

�x� x��
�
�

with x� the nearest point of the boundary of �t from x�

��



��� The variational problem

We now turn to the analysis of the variational problem de�ning J� � we shall prove that

Property ��	 Assume that �� and �� are probability measures on IR such that ����� and ����� are �nite�

Then	 the path �� � C��
� ���P�IR�� minimizing J����� ��� satis�es �

����� � �� and ��� � ���

�� For any t � �
� ��	 ��t �dx� � dx� Let ���t �t������ denote the corresponding density� By continuity of

��	 ��t �dx� � ��t �x�dx converges towards �� �resp� ��� as t goes to zero �resp� one� in the usual weak sense

on P�IR��
�� �� is characterized as the unique continuous measure�valued path such that ��� � �� and ��� � �� and	

for any � � fS�� ��g so that ��� k� satis�es �C� and �� � ��	 we have	 with u � �xk �H�	Z
�

Z
u�t �utd�t � u�td�

�
t ��

Z
�u�t �

��d�t � d��t � � ��
Z
���t �

��d�t � d��t ��dt � 
 ���

��As a consequence	 ���� u�� satis�es the Euler equation for isentropic 
ow described by the equations	

for t � �
� ��	

�t�
�
t �x� � ��x���t �x�u�t �x�� ����

�t��
�
t �x�u

�
t �x�� � ��x���t �x�u�t �x�� �

��

�
��t �x�

�� ����

in the sense of distributions that for all f � C���
c �IR� �
� ���	Z �

�

Z
�tf�t� x�d�

�
t �x�dt�

Z �

�

Z
�xf�t� x�u

�
t �x�d�

�
t �x�dt � 


and	 for any 
 � 
	 any f � C���
c ���� with �� �� f�x� t� � IR� �
� �� � ��t �x� � 
g	Z �

u�t �x��tf�x� t� �
�
u�t �x�

� � ����t �x�
�
�
�xf�x� t�

�
dxdt � 
� ����

Let us now assume that ���� ��� are compactly supported� Then

�� ������ is true everywhere in the interior of ��� Moreover	 ������ can be improved by the statement

that Z �

�

Z
IR
u�t �x���tf�t� x� � u�t �x��xf�t� x��d�

�
t �x�dt �

��

�

Z �

�

Z
IR
���t �x��

��xf�t� x�dxdt

for all f � C���b �IR� �
� ����

�� There exists a sequence ������ of functions such that if we set

��t�x� �� ����maxf�t� � �����x���� 
g� ��

then

��



Z
�u�t �x�� �x

�t�x�


��d��t �x�dt�

��

�

Z
���t �x�� ��t�x��

� ���t �x� � ��t�x�� dxdt

���
Z
j�t� � �����x��� � ����t�x�

�jd��t �x�dt � 
�

Discussion ��
 Matytsin ��� noticed that if we set

f�x� t� � u�t �x� � i���t �x��

then the Euler equation for isentropic 
ow implies that f the Burgers equation� Hence	 if one assumes that

f can be smoothly extended to the complex plan	 we �nd by usual characteristic methods that for z � IC

f�f�z� 
�t � z� t� � f�z� 
�

and therefore	 setting G
�z� � z � f�z� 
� and G��z� � z � f�z� ��	 we see that our problem boils down to

solve

G
 �G��z� � G� �G
�z� � z

with ��G
��x� � ����x� and ��G���x� � �����x� if �� and �� are the densities of ��� �� respectively� This

kind of characterization is in fact reminiscent to the description of minimizers provided by P� Zinn Justin

����� However	 such a result would require more smoothness of ���� u�� than what we proved here�

Proof of Property ��	 � By property ��� we want to minimize

S��� u� ��

Z �

�

Z
�ut�x��

��t�x�dxdt�
��

�

Z �

�

Z
��t�x��

�dxdt

under the constraint �C�� �

�t�t � �x�ut�t� � 
� lim
t��

�t�x�dx � ��� lim
t��

�t�x�dx � ��

and when �t�x�dx � P�IR� for all t � �
� ��� To study the variational problem associated with this energy� I

know essentially three ways� The �rst is to make a perturbation with respect to the source� This strategy was

followed by D� Serre in �� but applies only when we know a priori that ���� u���� are uniformly bounded�

Since this case corresponds to the case where ��� �� are compactly supported� we shall consider it in the

second part of the proof� One can also use a target type perturbation� which is a standard perturbation on

the space of probability measure� viewed as a subspace of the vector space of measures� This method gives

��� in Property �� as we shall see� The last way is to use convex analysis� following for instance Y� Brenier

�see ���� section ���� We shall also detail these arguments� since it provides some approximation property

of the �eld u�� as described in Property ���	��

We begin with the target type perturbation� In the following� we denote ���� u�� the minimizer of S

under the constraint �C��� Let ��� u� � fS � �g satisfying the constraint �C��� Then� for any � � �
� ��� we

set� with m � �u and m� � ��u��

�
 � ��� ���� � ��� m
 �� ��� �����u�� � ���u� �� �
u
� u
 � �m
��
��

��



It is then not hard to check that S��
� u
� � � for all � � �
� ��� Moreover� by the convexity of  � � 

��
t �x��

���m

t �x��

���������
t �x��� for all admissible ���m�� ����m��� we see that ���������
�� decreases
as �
 
 showing� by monotone convergence theorem the existence of �
S��


� u
��

� and

�
S��

� u
��

� �

Z
���u����� � �u���� � mu� � ���������� ����dxdt

�

Z
�u��m �m��� �u����� � ��� � ��������� � ����dxdt�

Hence� for any ��� u� � fS ��g� we have

�
S��

� u
��

� �

Z
�u��m�m�� � �u����� � ��� � ��������� � ����dxdt � 
 ��	�

Reciprocally� since S is convex in ���m�� we know that

S��
� u
� � S��� � u�� � �
S��

� u
��

��

so that ��	� implies that S��
� u
� � S���� u�� for all � � �
� �� and ��� u� � fS � �g� Hence� ��	�

characterizes our unique minimizer� which proves Property ������ We can apply this result with

� � �� � 
�x� m � m� � 
�t

for some  � C���c ����� 
 � 
� such that �x��� 
� � �x��� �� � 
� insuring that S��� u� has �nite entropy�

This yields the second point of Property ������ Conditions at the boundary of the support can also be

deduced from ��	�� but they are hardly understandable� since the conditions over the potentials  become

more stringent�

To prove the last points of our property which concerns the case where ���� ��� are compactly supported�

we follow D� Serre �� and Y� Brenier ����

The idea developped in �� is basically to set at�x� � a�t� x� � ���t �x�� ��t �x�u�t �x�� so that div�at�x�� � 


and perturbe a by considering a family

ag � Jg�a�rx�th� � g � Jg��
���th� u��xh�� � g

with a C� di�eomorphism g of Q � �
� ��� IR with inverse h � g�� and Jacobian Jg� Such an approach

yields the Euler�s equation ���� of Property �� �use the boundedness of ���� u�� obtained in Corollary ��

to apply theorem � of ���� Moreover� since we saw in Corollary ���d� that �� and u� are smooth in the

interior of ��� ���� results with Property ������

We now developp convex analysis for our problem following ���� By Corollary ���a�� we see that there

exists a compact K such that ��t �Kc� � 
 for all t � �
� ��� We set Q � K � �
� �� and E � Cb�Q� � Cb�Q� �
Cb�Q��

For any continuous functions �F�G�H� � E � we set

��F�G�H� �


��

Z
Q

jH�x� t�j �� dxdt

�	



if H � 
 and F � �G� �
� � 
� on Q� and �� otherwise� For any ���M� e�� � E�� let us consider

�����M� e�� � supf
Z
Q

F �x� t���dx� dt��

Z
Q

G�x� t�M �dx� dt��

Z
Q

H�x� t�e��dx� dt�� ��F�G�H�g�

It is not hard to see that �����M� e�� � � i� � is non negative� M is absolutely continuous w�r�t �

and e� is absolutely continuous w�r�t Lebesgue measure with density in L��dxdt�� Moreover� if we denotee��dx� dt� � e�t�x�dxdt�M �dx� dt� � ut�x�d��x� t�� it is not hard to see that �����M� e�� � R u��x� t�d��x� t��
��

�

R e�t�x��dxdt� Now� let
	�F�G�H� �

Z
Q

F �x� t���t �x�dxdt�
Z
Q

G�x� t�u�t �x��
�
t �x�dxdt�

Z
Q

H�x� t���t �x�dxdt

if there exists  � C���b �Q� such that

F �x� t� �H�x� t� � �t�x� t�� G�x� t� � �x�x� t�

for all �x� t� � Q� and is equal to �� otherwise� We consider

	����M� e�� � supf
Z
Q

F �x� t���dx� dt��

Z
Q

G�x� t�M �dx� dt��

Z
Q

H�x� t�e��dx� dt�� 	�F�G�H�g

Then� 	� is in�nite unless
R
Q
�t�x� t����x� t� � ��t �x��dxdt �

R
Q
�x�x� t��x� t��M �x� t�� m�

t �x��dxdt � 


for all  � C����Q� and
R
H�x� t����dx� dt� � e��dx� dt�� � 
 for all H � Cb�Q�� Therefore� � � e� and

�t� � �xM � 
 in the sense of distributions�
R
��x� t�dx � � for almost all t � �
� �� and limt�� ��dx� dt� �

d���x�� limt�� ��dx� dt� � d���x�� As a consequence�

inff�����M� e�� � 	����M� e��g � inffS���m� � ���m� satis�es �C�� and �tjKc � 
 �t � �
� ��g
�  inffS�� ��� � �� � ��g� ������ ������� �� Z���� ���

where in the last line we have used Property �� and Corollary ���a��

Observe that �� 	 are convex functions with values in � ������ Moreover� there is at least one point

�F�G�H� � E� namely F � ��� G � 
� H � � for which � is continuous for the uniform topology on E

and 	 �nite �this is the reason why we need to work on a compact set K instead of IR�� Thus� following ����

by the Fenchel�Rockafellar duality theorem �see th�eor eme ���� in �	��� we have

inff�����M� e�� � 	����M� e��� ���M� e�� � E�g � supf���F�G�H�� 	��F��G��H� � �F�G�H� � Eg

and the in�mum is achieved� More precisely�

Z���� ��� � supf
Z
Q

�tt�x��
�
t �x�dxdt�

Z
Q

�xt�x�m
�
t �x�dxdt�



��

Z
Q

�H�
�
� dxdtg

where the supremum is taken over  � C���b �Q� and H in Cb�Q� such that H � 
� �t � ��x��
� � H�

Optimizing over H yields

��



Z���� ��� � supf
Z
Q

�tt�x��
�
t �x�dxdt�

Z
Q

�xt�x�m
�
t �x�dxdt�



��

Z
Q

�
maxf�t� ��x��

�� 
g��� dxdtg
As a consequence� there exists a sequence of functions � in C���b �Q� such that if we set

������� � maxf�te � �����x��� 
g�

Z
u�t �x�

�d��t �x�dt�
��

�

Z
��t �x�

�dxdt �
Z

��t
�
t�x� � u�t �x��x

�� d��t �x�dt�
��

�

Z
��t�x�

�dxdt� 
�

for all 
 � 
� which implies

Z
�u�t �x�� �x

�t�x�


��d��t �x�dt � ��

Z
��t�x�

���t �x�dxdt�
��

�

Z
��t�x�

�dxdt� ��

�

Z
��t �x�

�dxdt

���
Z
j�t� � �

�x
�


�� � ��������j��t �x�dxdt� 
�

� ��
�

�

Z
���t �x�� ��t�x��

����t�x� � ��t �x��dxdt

���
Z
j�t� � �

�x
�


�� � ��������j��t �x�dxdt� 
� ����

which completes the proof of the Property�

� Applications to matrix integrals

In physics� several matrix integrals have been of interests in the �
�s and �
�s for their applications to

quantum �elds theory as well as string theory� We refer here to the works of M� Mehta� A� Matytsin� A�

Migdal� V� Kazakov� P� Zinn Justin and B� Eynard for instance� Among these integrals� are often considered

the following �

	 The random Ising model on random graphs described by the Gibbs measure

�NIsing�dA� dB� �
�

ZN
Ising

eNtr�AB��Ntr�P��A���Ntr�P��B��dAdB

with ZN
Ising the partition function

ZN
Ising �

Z
eNtr�AB��Ntr�P��A���Ntr�P��B��dAdB

and two polynomial functions P�� P�� The limiting free energy for this model was calculated by M�

Mehta ��� in the case P��x� � P��x� � x��gx� and integration holds over HN � However� the limiting

spectral measures of A and B under �NIsing were not considered in that paper� A discussion about this

problem can be found in P� Zinn Justin ����

��



	 One can also de�ne the Potts model on random graphs described by the Gibbs measure

�NPotts�dA�� ���� dAq� �
�

ZN
Potts

qY
i��

eNtr�A�Ai��Ntr�Pi�Ai��dAie
�Ntr�P��A���dA��

The limiting spectral measures of �A�� � � � � Aq� are discussed in ��� when Pi � gx� � x� �!��

	 As a straightforward generalization� one can consider matrices coupled by a chain following S� Chadha�

G� Mahoux and M� Mehta ��� given by

�Nchain�dA�� ���� dAq� �
�

ZN
chain

qY
i��

eNtr�Ai��Ai��Ntr�Pi�Ai��dAie
�Ntr�P��A���dA��

q can eventually go to in�nity as in �����

	 Finally� we can mention the so�called induced QCD studied in ����� It is described� if " � ��q� q�D �
ZZD� by

�NQCD�dAi� i � "� �
�

ZN
QCD

Y
i��

Z
eN
P�D

j�� tr�UjAi�ejU
�
j Ai�

�DY
j��

dm�
N �Uj�

Y
i��

e�Ntr�P �Ai��dAi

where �ej��	j	�D is a basis of ZZD� The description of the limit behaviour of the spectral measures

of A�� � � � � Aq is given in ���� in the case q � �� We impose periodic boundary conditions at the

boundary of the lattice points "�

In this section� we shall study the asymptotic behaviour of the free energy of these models as well as describe

the limit behaviour of the spectral measures of the matrices under the corresponding Gibbs measures�

The theorem states as follows

Theorem ��� Assume that Pi�x� � cix
� � di with ci � 
 and some �nite constants di� Hereafter	 	 � �

�resp� 	 � � when dA denotes the Lebesgue measure on SN �resp� HN�� Then	

��



FIsing � lim
N��

�

N�
logZN

Ising

� � inff��P � � ��Q�� I������ ��� 	


����� 	


����g �  inf

��P�IR�
I���� �����

FPotts � lim
N��

�

N�
logZN

Potts

� � inff
qX
i��

�i�Pi��
qX
i��

I������� �i� � 	



qX
i��

���i�g � q inf
��P�IR�

I���� ����

Fchain � lim
N��

�

N�
logZN

chain

� � inff
qX
i��

�i�Pi��
qX
i��

I�����i��� �i�� 	



qX
i��

���i�g � q inf
��P�IR�

I���� �����

FQCD � lim
N��

�

N�
logZN

QCD

� � inff
X
i��

�i�P ��
X
i��

�DX
j��

I�����i
ej � �i��
	



X
i��

���i�g � Dj"j inf
��P�IR�

I���� �����

Remark ��� The above theorem actually extends to polynomial functions going to in�nity like x�� However�

the case of quadratic polynomials is trivial since it boils down to the Gaussian case and therefore the next

interesting case is quartic polynomial as above� Moreover� Theorem ��� fails in the case where P�Q go

to in�nity only like x�� However� all our proofs would extends easily for functions P �i s such that Pi�x� �
ajxj�
� � b with some a � 
 and 
 � 
�

Theorem ��� will be proved in the next section� but merely boils down to a Laplace�s �or saddle point�

method�

We shall then study the variational problems for the above energies� We prove the following for the Ising

model�

Theorem ��� Assume P��x� � ax� � b� P��x� � ax� � b for some positive constant a� Then

	 The in�mum in FIsing is achieved at a unique couple ��A� �B� of probability measures�

	 ��A� �B� are compactly supported measures with �nite entropy ��

	 Let ��A�B � uA�B� be the minimizer of S�A on f�� � �Bg as described in Theorem ��� Then	

��A� �B� �
A�B �mA�B � �A�BuA�B� is the unique minimizer of the strictly convex energy

L��� nu� ���m�� �� ��P� � �


x�� � ��P�� �


x��� 	

�
����� � �����

�
	

�

�Z �

�

Z
�m�

t �x��
�

��t �x�
dxdt�

��

�

Z �

�

Z
��t �x�

�dxdt

�






Thus	 we �nd that ��A� �B� �A�B �mA�B� are characterized by the property that for any ��� �� ���m�� �
fL ��g	

Z
�P� � �


x��d��� �A� �

Z
�P� � �


x��d�� � �B�

�	


Z Z
log jx� yjd�A�y��d� � d�A��x�� 	



Z Z
log jx� yjd�B�y��d� � d�B��x�

�
	

�

Z
�uA�B�m� �mA�B�� �uA�B����� � �A�B� � ����A�B����� � �A�B��dxdt � 


	 ��A�B �mA�B� satis�es the Euler equation for isentropic 
ow with pressure p��� � ���

� �
� in the strong

sense in the interior of � � f�x� t� � IR� �
� �� � �A�B
t �x� �� 
g and satisfy the conclusions of Property

���

	 Moreover	

	H�A�x� � P ���x�� x� 	


uA�B
� �x�� �Aa�s	

and

	H�B�x� � P ���x�� x�
	


uA�B
� �x�� �Ba�s�

For the other models� we unfortunately loose obvious convexity� and therefore uniqueness of the mini�

mizers in general� We can still prove the following

Theorem ��� 	 For any given ��	 there exists at most one minimizer ���� � � � � �q� in FPotts but unique�

ness of �� is unclear in general	 except in the case q � � The critical points in FPotts are compactly

supported	 with �nite entropy ��

Let ���� � � � � �q� be a critical point and for i � f� � � � � qg	 denote ��i� ui� the unique minimizer described

in Theorem �� with �i��dx� � ���dx� and �i��dx� � �i�dx�� Then

P ���x� � qx�
	



qX
i��

ui��x��
	


�q � ��H���x�

���almost surely and

P �i �x� � x� 	


ui��x� �

	


H�i�x��  � i � q

�i�almost surely�

	 There exists at most one minimizer in FChain	� The minimizer ���� � � � � �q� is compactly supported

with �nite entropy �� The critical points ���� � � � � �q� in Fchain are such that for i � f� � � � � qg	W It

is such that if we denote ��i� ui� the minimizer described in Theorem �� with �i��dx� � �i���dx� and

�i��dx� � �i�dx�	 we have

P ���x� � x�
	


u�� �

	


H���x� and P �i �x� � x� 	


�ui� � ui
�� ��  � i � q�

���almost surely and �i�almost surely respectively�

�



	 Again	 uniqueness of the critical points in FQCD is unclear in general	 except in the case D � � where

uniqueness holds� In this case	 the minimizer �i is symmetric	 yielding �i � � for all i � " and the

unique path ��� u� described in Theorem �� with boundary data ��� ��	 satis�es u���x� � �u���x� and

P ��x�� x� 	u���x� � 
 � a�s�

��� Proof of Theorem ���

The proof of Theorem ��� follows a standard Laplace�s method� We shall only detail it in the Ising model

case� the generalization to the other models being straightforward�

Let P�Q be two polynomial functions and de�ne� for N � IN� "N �P�Q� � IR � f��g by

"�N �P�Q� �

Z
expf�N tr�P �A��� N tr�Q�B�� � N tr�AB�gdAdB

where the integration holds over orthogonal �resp� Hermitian� matrices if 	 � � �resp� 	 � ��

We claim that

Lemma ��� Assume that there exists a� c � IR
�	 and b� d � IR such that

P �x� � ax� � b and Q�x� � cx� � d� for all x � IR�

Then	 we have

lim
N��

�

N�
log"N �P�Q� � sup

����P�IR�

f���P �� ��Q� � I������ �� �
	


����� � �����g �  inf

��P�IR�
I����

Remark here that the result could be extend to P �x� � ax� � b and Q�x� � cx� � d with ac � � but that

the Gaussian case being uninteresting� we shall use the above and simpler hypothesis�

Proof�

Observe that for any 
 � 
�

jtrN �AB� � trN

�
A

� � 
A�

B

� � 
B�

�
j � 


				trN � A�

� � 
A�
B

�				� 


				trN � A

� � 
A�

B�

� � 
B�

�				
� 


��
trN

�
A�

�� � 
A���

���
� �

trNB
�
� �
�

�

�
trN

�
B�

�� � 
B���

���
� �

trNA
�
� �
�

�
� p



��

trN �A��
� �
�
�
trN �B��

� �
� �

�
trN �B

��
� �
�
�
trNA

�
� �
�

�
� p



�
trN �A

�� � trN �B�� � trN �A�� � trN �B
��
�

Therefore� if we set

�NIsing�dA� dB� �
�

"�N �P�Q�
expf�N tr�P �A�� �N tr�Q�B�� �N tr�AB�gdAdB





and

#N �
� ��

					 �

N�
log

R
expf�N tr�P �A���N tr�Q�B�� �N tr� A

�
�A�
B

�
�B� �gdAdB
"�N �P�Q�

					 �
�

				 �

N�
log�NIsing

�
expfN tr�

A

� � 
A�

B

� � 
B�
�� N tr�AB�g

�				 �
we get

#N �
� � �

N�
log�NIsing

�
expfp
N tr�A� �A�� �

p

N tr�B� � B��g�

� �

qN�
log�NIsing

�
expfqp
N tr�A� �A�� � q

p

N tr�B� � B��g�

where we used Jensen�s inequality with q � �� Now� under our hypothesis� and since jABj � A� � B�� it

is clear that if q
p

 is chosen small enough �e�g smaller than a � c�� the above right hand side is bounded

uniformly� Hence� we take q � �
�a�cp� and obtain

lim sup
N��

#N �
� � C
p

 �����

with a �nite constant C� Moreover� for any 
 � 
� we can use saddle point method �see ��� for a full rigorous

derivation� and Theorem ��� of ���� to obtain

lim
N��

�

N�
log

Z
expf�N tr�P �A��� N tr�Q�B�� � N tr�

A

� � 
A�

B

� � 
B�
�gdAdB

� sup
����P�IR�

f���P �� ��Q� � I����� � ��� � � � ��� � �
	


����� � �����g �  inf I�

with ��x� � �� � 
x����x and � � ��� �f� � ��f � ��� Thus� ����� results with

lim
N��

�

N�
log"N �P�Q� � lim

���
sup

����P�IR�

f���P �� ��Q�� I����� � ��� � � � ��� � �
	


����� � �����g�  inf I��

Moreover� we can prove as for ����� that for any �� � such that ��x�� �M and ��x�� �M �

jI����� � ��� � � � ��� � � I������ ��j � C�M �
p

�

Using the fact that

jI������ ��j � �


���x�� � ��x����

as well as

���� � ���� � C���x�� � ��x�� � ��

for some �nite constant C� we see that the supremum above is taken at �� � such that ��x�� and ��x�� are

bounded by some �nite constant depending only on P�Q� Hence� we can take the limit 
 going to zero above

and conclude�

�



��� Proof of Theorem ��� and ���

����� The Ising model

Let us recall that

FIsing �  inf
��P�IR�

I���� � � inff��P�� � ��P��� I������ ��� 	


����� 	


����g

Observe that since I������ �� � ����x��� ����x��� the minimizer ��A� �B� in the above right hand side is

such that

�A�P� � �


x�� � �B�P� � �


x��� 	


���A� � 	


���B� � �FIsing �  inf

��P�IR�
I���� ���

Hence� since P� � ��x� and P� � ��x� are bounded below under our hypotheses �for well chosen a�� we

conclude that ���A� and ���B� are bounded below and hence �nite� Further� if n� �resp� n�� is the

degree of P� �resp� P�� for n�� n� � � we also see that

�A�x
�n�� ��� �B�x

�n�� ��� ���	�

Thus� we can use Property �� to get

FIsing �  inf
��P�IR�

I���� � � inf

�
��P� � �


x�� � ��P� � �


x��� 	

�
����� � �����

�
	

�
inf

�u�������C����
f
Z �

�

Z
u�t �x�

�d��t �x�dt�
Z �

�

Z
H��t �x�

�d��t �x�dtg
�

� � inf
����P�IR�

�u�������C����

�
��P� � �


x�� � ��P� � �


x��� 	

�
����� � �����

�
	

�

�Z �

�

Z
u�t �x�

�d��t �x�dt�
��

�

Z �

�

Z
��t �x�

�dxdt

��
�� � inf

����P�IR�
�u�������C����

L��� �� ��� u��

where �u�� ��� � �C���� means that in the sense of distributions

�t�
�
t � �x��

�
tu

�
t � � 
� lim

t��
��t �dx� � �� lim

t��
��t �dx� � �

and we have used in the last line that when the above in�mum is �nite� ��t is absolutely continuous with

respect to Lebesgue measure for almost all t � �
� �� and with density �� � L��dxdt� �see Lemma ����

Observe that if L��� �� ��� u�� � L��� �� ���m�� with m� � ��u�� L is a strictly convexe function of

��� �� ���m�� �recall that �� is convex� see ��� for instance� and that the constraint �C���� is linear in the

variables ��� �� ���m��� Therefore� the above minimumis achieved at a unique point ��A� �B � �A�B
� �mA�B

� ��

We now perform a measure type perturbation to characterize the in�mum� Take ��� �� ���m�� � fL ��g
and set� for � � �
� ���

��
� �
� �
�m
� � ���� �� ���m�� � ��� ����A� �B� �
A�B
� � uA�B

� ��

�



Then� we �nd that we must have

Z
�P� � �


x��d��� �A� �

Z
�P� � �


x��d�� � �B�

�	


Z Z
log jx� yjd�A�y��d� � d�A��x�� 	



Z Z
log jx� yjd�B�y��d� � d�B��x�

�
	

�

Z
�uA�B�m� �mA�B�� �uA�B����� � �A�B � � ����A�B����� � �A�B��dxdt � 
 �����

Taking � � �A and � � �B � we see that ��A�B � uA�B� must satisfy Property ��� Now� if ��dx� � �A�dx��

�x��x�dx� ��dx� � �B�dx���x��x�dx and m� � mA�B��t� ��t � �A�B��x with  � C���
b �IR��
� ���

such that Z
�A�B ��

�mA�B
t � 
�t�

�

�A�B � 
�x
dxdt ���

Z
�A�B��

��t�
�

�x
dxdt ��� �����

we obtain by �����Z
�P� � �


x���x��x�dx�

Z
�P� � �


x���x��x�dx

�	


Z Z
log jx� yjd�A�y��x��x�dx� 	



Z Z
log jx� yjd�B�y��x��x�dx

�
	

�

Z
�uA�B�t� �uA�B���x� ����A�B���x�dxdt � 
 �����

which becomes an equality if  is supported in � � f�x� t� � IR � �
� �� � �A�B �� 
g by symmetry� If we

assume that uA�B is su�ciently smooth� in particular continuously di�erentiable with respect to the time

variable around t � 
 and t � �� we can use integration by parts to see thatZ
�uA�B�t� �uA�B���x� ����A�B ���x�dxdt � �

Z
�A�B
t �xtdx�

�
�

yielding that there exists two constants l�� l� such that

P��x� � �


x� � 	



Z
log jx� yjd�A�y� � �A�B

� �x� � l� �A a�s ����
�

P��x�� �


x� � 	



Z
log jx� yjd�B�y� � �A�B

� �x� � l� �B a�s ������

P��x� � �


x� � 	



Z
log jx� yjd�A�y� � �A�B

� �x� � l� if x � supp��A�
c

P��x�� �


x� � 	



Z
log jx� yjd�B�y� � �A�B

� �x� � l� if x � supp��B�
c

Such a result would generalize the usual equations obtained in the one matrix case� However� since we could

not prove such a regularity property of ��A�B � uA�B�� we shall now obtain a Schwinger�Dyson type formula

following ���� theorem ��� and proposition ���� to obtain a weak form of ����
��������� Let us brie�y recall

�



the ideas in the case 	 �  �the case 	 � � being similar�� which is based on an in�nitesimal change of

variables�

If� in ZN
Ising� we change A 
 A � N��h�A�B� with some smooth bounded functions h of two non�

commutative variables �take for instance h belonging to the set CCst�IC� of Stieljes functionals de�ned in

��� ���see also its de�nition in appendice ����� it turns out that� due to Kadison�Fuglede determinant formula

�see ���� the proof of theorem ��� and proposition ����

ZN
Ising �

Z
etr�h�A�B���P

�
��A�
B��
N

��tr�tr�DAh�A�B��
O����Ntr�P��A�
P��B��AB�dAdB

with DA the non commutative derivation with respect to A given by

DA�hg� � DAh� �� g � h� ��DAg� �h� g � CCst�IC�� DAB � 
� DAA � �� ��

Therefore� we can �nd a �nite constant C�h� such that for any 
 � 


�NIsing

�
j���N� � ���N��DAh�A�B�� � ���N����P ���A� �B�h�A�B��j � 


�
� �� e��N
C�h� �����

with ���N� the empirical distribution of A�B de�ned by

���N��h� � trN �h�A�B��� �h � CCst�IC��

Of course� the same type of formula holds when A is replaced by B� It is not hard to see that ���N� is tight

under �NIsing for the topology described in ���� corresponding to the CCst�IC��weak topology �see ��� for proof

of similar statements�� Let � be a limit point� Taking� for 
 � 
 and � � 
� h�A�B� � �� � �A���pj�A��� �


B���� with j�x� �
Q

�	i	n�zi�x��� for some zi � ICnIR and n � IN� and p large enough �p larger than half

the degree of P ��� so that DAh�A�B� � CCst�IC� � CCst�IC� and �� � �A���p�P ���A� � B��� � 
B����j�A� �
CCst�IC�� we deduce from ����� that � must satis�es for any 
� � � 
 and p large enough�

� � � �DA�� � �A���pj�A� � �� �� � 
B����� � � ��P ���A�� B��� � �A���pj�A��� � 
B������ ������

Similarly for any 
� � � 
� and p large enough�

� � � �DB�� � �B���pj�B� � �� �� � 
B����� � � ��P ���B� �A��� � �A���pj�B��� � 
A������ ������

Now� by ���	�� P ���A� �B and P ���B� � A belongs to L��� � so that we can let �� 
 going to zero to conclude

by dominated convergence theorem that

� � � �DAj�A�� � � ��P ���A�� B�j�A��� � � � �DBj�B�� � � ��P ���B� � A�j�B��� ������

We next show that ������ implies that �A and �B are compactly supported when n� �  and n� � � and �rst

that all their moments are �nite� To this end� take j�x� �
�
�� � 
x����x

�n
� 
�n

�
� � i
���x� i
�����

�n
�x�

i
����n for n � IN� yielding

�A

�
P ���x�

�
�� � 
x����x

�n�
� �

�
� �BjA� ��� � 
A����A

�n�
� � � � �DAj�A�� ����	�

	



with� since Df can be represented in the tensor product space as Df�x� y� � �x� y����f�x� � f�y���

� � � �DAj�A�� �
n��X
p��

�A
�
��� � 
x����x�p

�
�A
�
��� � 
x����x�n���p

�

�

n��X
p��

�A
�
��� � 
x����x�p
�

�
�A
�
��� � 
x����x�n�p

�
�

When n is odd� it is not hard to see that we can �nd c � 
� dn � IR such that P ��x�xn � cx�n���
n � dn� so

that we deduce from ����	� that

c�A

�
j x

� � 
x�
j�n���
n

�
� dn � n sup

p	n
�A

�
�

x

� � 
x�
�p
��

� �A

�
j x

� � 
x�
jnq
� �

q

�B�jxjp�
�
p ������

where we have used in the last line H$older�s inequality with conjugate exponents p� q� We take q � n���n��
� � n�� p � �n� � �����n� � � � n�� Similarly� we obtain for �B� and q � n���n� � � � n�� p �

�n� � �����n� � � � n��

c�B

�
j x

� � 
x�
j�n���
n

�
� dn � n sup

p	n
�B

�
�

x

� � 
x�
�p
��

� �B

�
j x

� � 
x�
jnq
� �

q

�A�jxjp�
�
p � ������

Now� we have seen that

�A�x
�n�� ��� �B�x

�n�� ��
so that ������������� yields

�A�x
�n���
n� � sup

���
�A
�
��� � 
x����x��n���
n

�
�� for n� � � � n � mA

� �� n��n� � ��

�B�x
�n���
k� � sup

���
�B
�
��� � 
x����x��n���
k

�
�� for n� � � � k � mB

� �� n��n� � ��

and then by induction for n� � � � n � mA
p �� mB

p���n� � ��� n� � � � k � mB
p �� mA

p���n� � �� for all

p � � Since n� � � � � and n� � � � �� mA
p and mB

p go to in�nity with p� which proves that �A and �B

have �nite moments of all orders�

As a consequence� we can extend by dominated convergence theorem ����	� to polynomial functions �i�e�

take 
 � 
� resulting with

�A �P ���x�x
n� � � �� �BjA�An� �

n��X
p��

�A �xp��A
�
xn���p

�
� ������

and a similar equation for the moments of �B � Let us write P ���x� � ��x
�n��� �

P�n�
p�� �px

�n��p� P ���x� �

	�x
�n��� �

P�n�
p�� 	px

�n��p with �� � 
� 	� � 
� Setting an � j�A�xn�j and bn � j�B�xn�j� we deduce that

��a�n���
n �
�n�X
p��

j�pja�n��p
n �
n��X
p��

apan���p � a
�
q
qnb

�
p
p ���
�

	�b�n���
n �
�n�X
p��

j	pjb�n��p
n �
n��X
p��

bpbn���p � b
�
q
qna

�
p
p �����

�



with conjuguate exponents �p� q� to be chosen later�

Now� we make the induction hypothesis that for some R � IR
� for some m � IN�

ap � RpCp� bp � RpCp� for p � m

with Cp the Catalan numbers given by

Cp �

p��X
n��

CnCp���n� C� � ��

Of course� up to take R big enough� we can always assume that m � n��n�� Now� plugging this hypothesis
into ���
������� with m � � � n� � � � n and q � mn��� we obtain

��a�n���
n �
�n�X
p��

j�pjR�n��p
nC�n��p
n � RnCn �Rn
��Cm�
n
m �C� m

m�n 	
�
�
m�n
m

� Cm
�R
m
��

�n�X
p��

j�pjR�p �Rn���m �Rn�m�

where we have used that Cm increases with m� Thus� our induction hypothesis is veri�ed as soon as

�n�X
p��

j�pjR�p �R��n� � R����n�� � ��

�n�X
p��

j	pjR�p �R��n� � R����n�� � 	�

which is clearly the case for R large enough since we asumed n� � n� � � Since m�� logCm goes to � as m

goes to in�nity� we deduce that

lim sup
m��

�

m
log�A�x

�m� � R� �� lim sup
m��

�

m
log�B�x

�m� � R � ��

implying that �A and �B are supported into ��R � �� R � �� for R �nite satisfying the above induction

hypothesis �plus the condition imposed by the �rst n� � n� moments��

Let us now go back to ������ and notice that since the Stieljes functions are dense in Cc�IR� and P ���� �AjB�

belongs to L��� �� it can be extended to j � C�b �IR� �Z Z
j�x� � j�y�

x� y
d�A�x�d�A�y� � � ��P ��x�� � �BjA��j�x�� ����

Since ��A� �B� are compactly supported� we can use the conclusions of section ��� We see that �A�B
t �

almost surely�

uA�B
t � � �B �AjXt� � ��� t�H�A�B

t �x�

�



so that

uA�B
� � � �BjA� � x�H�A

at least in the sense of distribution as in ����� Thus� by uniqueness of the solutions to the Euler equation

given the initial and �nal data ��A� �B� proved in Property ��� we conclude that

H�A�x� � P ���x�� x� uA�B
� �x�

in the sense of distribution that

�



Z Z
h�x�� h�y�

x� y
d�A�x�d�A�y� �

Z
�P ���x�� x� uA�B

� �x��h�x�d�A�x� �����

for all h � C�b �IR�� We now show that this weak equality in fact yields the almost equality� Indeed� taking

h � P� � g with P� the Cauchy law with parameter 
� one obtains from the weak equalityZ
H�P� � �A��x�g�x�dP� � �A�x� � � ��P ���A�� A� uA�B

� �A��g�A � C����

Therefore� for any bounded measurable function g� if we set MA �� supx�supp��A� jP ���x� � x� uA�B
� �x�j�

j
Z
H�P� � �A��x�g�x�dP� � �A�x�j �MA

Z
jg�x�jdP� � �A�x�

from which we deduce that� since P� � �A � dx with a non zero density everywhere on IR� for all 
 � 


jH�P� � �A��x�j �MA a�s�

Consequently� for any 
 � 
�Z �
dP� � �A

dx

��
�x�dx �

�

��

Z
H�P� � �A��x��dP� � �A�x� � �

��
M�

A�

As a consequence� we claim that �A � dx andZ �
d�A
dx

��

�x�dx � �

��
M�

A�

Indeed� if f is a Lipschitz function with Lipschitz constant jf jL� we know that

j
Z
f�x�d�A�x�j � 
jf jL � j

Z
f�x�dP� � �A�x�j � 
jf jL �

�
�

��
M�

A

� �
�
�Z

jf�x�j �� dx
��

�

�

We can now let 
 going to zero to conclude that

j
Z
f�x�d�A�x�j �

�
�

��
M�

A

��
�
�Z

jf�x�j �� dx
��

�

�

which proves the claim�

As a consequence� by Tricomi ��� ����� gives for all h � L��d�A�Z
�P ���x�� x� uA�B

� �x� �H��A��x��h�x�d�A�x� � 
�

�



and hence the �A almost sure equality�

The second equation is derived similarly and one �nds that

H�B�x� � P ���x� � � �AjB��x� � P ���x�� �x� uA�B
� �x��H�B�x��

resulting with

H�B�x� � P ���x�� x� uA�B
� �x�

�B almost surely� Note also that by Property ��� the fact that ��A� �B� are compactly supported implies

that ��A�B � uA�B� satis�es the isentropic Euler equation in the strong sense in ��

��� q�Potts model

In this case� we �nd that

FPotts � � inff
qX
i��

�i�Pi��
qX
i��

I������� �i� � 	



qX
i��

���i�g � q inf
��P�IR�

I����

� � inff���P� � q


x�� �

qX
i��

�i�Pi � x�


�

�
	

�

qX
i��

inf
�u�������C�����i

�Z �

�

Z
�u�t �x��

�d��t �x�dt�
Z �

�

Z
�H��t �x��

�d��t �x�dt
�

�	
�

qX
i��

���i� �
	

�
�q � �������g � q inf

��P�IR�
I���� �����

When q � �� the above functionnal is not anymore clearly convex in �� since ����� is concave� Hence�

the uniqueness of the minimizers is now unclear� Note however that the Euler�Lagrange term may still

contain su�cient convexity in �� to insure uniqueness but simply that the above formula does not show it�

In the case q � �� the functional is still convex� and strictly convex in the arguments ����m��� Therefore�

uniqueness of the minimizers still holds since if ��� �� ��� u�� and �e�� e�� e��� eu��� we would still �nd that by

convexity e�� � �� and therefore � � ��� � e��� � e�� � � ��� � e��� � e�� The above formula already shows that

the critical points satisfy �i�Pi� � � and have �nite entropy �� We can also obtain the Schwinger�Dyson

equations in this case and deduce as for the Ising model that the critical points are compactly supported

and satisfy the equations of Theorem ����

�




��� Chain model

In this case�

Fchain � � inff
qX
i��

�i�Pi� �
qX
i��

I�����i��� �i�� 	



qX
i��

���i�g � q inf
��P�IR�

I���� �����

� � inff���P� � x�


� �

qX
i��

�i�Pi � x��

�
	

�

qX
i��

inf
�u�������C��i��i��

�Z �

�

Z
�u�t �x��

�d��t �x�dt�
Z �

�

Z
�H��t �x��

�d��t �x�dt
�

�	
�
�����g � q inf

��P�IR�
I���� ���	�

Here� we still have convexity and strict convexity on the term coming from I���� Hence� uniqueness of the

minimizers hold� Again� we can prove the conclusions of Theorem ��� as for the Ising model�

��� Induced QCD model

FQCD � � inff
qX
i��

�i�P ��
X
i��

�DX
j��

I�����i
ej � �i��
	



X
i��

���i�g � Dj"j inf
��P�IR�

I����

� � inff
qX
i��

�i�P �Dx��� 	


�� �D�

X
i��

���i�

�
X
i��

�DX
j��

inf
�ui����i�����C��i��i��

�Z �

�

Z
�ui��t �x���d�i��t �x�dt�

Z �

�

Z
�H�i��t �x���d�i��t �x�dt

�
g

�Dj"j inf
��P�IR�

I����

Again� obvious convexity disappears and uniqueness of the minimizers becomes unclear whenD � �� Unique�

ness of the minimizers still holds when D � �� Then� clearly �i � � for all i � " and u�� � �u�� at the

minimizing path with ���� u�� the solution of the Euler equation with with boundary data ��� ��� � then

satis�es

P ��x�� x� 	u���x� � 


in the sense of distributions in supp���� which corresponds to the result obtained by Matytsin ������ ������

when 	 � � Actually� since we can prove as for the Ising model that � is compactly supported� it turns out

that P ��x�� x� 	u���x� is in every Lp�d�� and therefore that P ��x�� x� 	u���x� � 
 almost everywhere

in the support of ��

��



� Appendice

��� Free Brownian motion description of the minimizers

Let us return to the probability aspect of the story� In fact� by de�nition� if

XN
t � XN

� �HN
t

with a Hermitian �if 	 � � otherwise symmetric if 	 � �� matrix XN
� with spectral measure ��N� and a

Hermitian �resp� symmetric� Brownian motion HN � if we denote ��Nt the spectral measure of XN
t � then� if

��N� converges towards a compactly supported probability measure ��� for any �� � P�IR��

lim sup
	��

lim sup
N��

�

N�
log IP�d���N� � ��� � �� � lim inf

	��
lim inf
N��

�

N�
log IP�d���N� � ��� � �� � �J����� ����

Let us now reconsider the above limit and show that the limit must be taken at a free Brownian bridge�

More precisely� we shall see that� if � denotes the joint law of �X�� X�� �the precise sense of which being

given below� and �� the law of the free Brownian bridge ����� associated with �X�� X���

lim sup
	��

lim sup
N��

�

N�
log IP�d���N� � ��� � �� � sup

��X��� ���

��X��� ���

lim sup
	��

lim sup
N��

�

N�
log IP� max

�	k	n
d���Ntk � �

�
tk
� � ��

for any family ft�� � � � � tng of times in �
� ��� Therefore� the large deviation estimate obtained in ���� yields

lim sup
	��

lim sup
N��

�

N�
log IP�d���N� � ��� � �� � �	


inffS��� �� � �X��

� � ��� � �X��
� � ��g�

The lower bound estimate obtained in ���� therefore guarantees that

inffS���� �� � ��� �� � ��g � inffS��� �� � �X��
� � ��� � �X��

� � ��g�

Such kind of result were already obtained in ��� and ����

Let us now be more precise� We recall that we can de�ne the joint law of the two matrices XN
� � XN

� by

the family

��N����F � � trN �F �XN
� � X

N
� ��

when F is taken into a natural set F of test functions of two non�commutatives variables and trN �A� �

N��PN
i��Aii� It is common in free probability to consider polynomial test functions� In ���� bounded

analytic test functions were introduced for self�adjoint non�commutatives variables� F � CCst�IC� is there

the complex vector space generated by

F �X�� X�� �
�Y

�	i	n

�

zi � ��iX� � ��iX�

where �zi��	i	n belongs to �ICnIR�n� ��ki � � � k � �ni�� to �IR��n� and
�Y

is the non�commutative product�

We shall here use the very same set of functions and recall then that the space

M��� � f� � F� � � �I� � �� � �FF �� � 
� � �FG� � � �GF �g

�



is a compact metric space� We denote by D a metric on M���� Let us recall ��� that if one considers the

restriction �k � � �X��
k of � to functions which only depends on one of the variables Xk� k � �� � then �k is

a probability measure on IR �in fact the spectral measure of Xk� and that the topology inherited by duality

from F is the vague topology� i�e� the topology generated by continuous compactly supported functions�

Since M��� is compact� for any 
 � 
� we can �nd M � IN� ��k��	k	M so that M��� � ��	k	Mf� �

D��� �k� � 
g and therefore

lim sup
	��

lim sup
N��

�

N�
log IP�d���N� � ��� � �� � max

�	k	M
lim sup
N��

�

N�
log IP�d���N� � ��� � ��D���N���� �k� � 
�

Now� conditionnally to XN
� �

dXN
t � dHN

t � XN
t �XN

�

�� t
dt

or equivalently

XN
t � tXN

� � ��� t�XN
� � ��� t�

Z t

�

��� s���dHN
s �

Let us assume that ��N��� converges towards � � M��� when N goes to in�nity and that XN
� � XN

� remains

uniformly bounded for the operator norm� In particular� ��N
tXN

� 
���t�XN
�

converges for any t � �
� �� towards

��t � � � �tX� � ��� t�X�����

��t �f� � � �f�tX� � ��� t�X���

for any test function f � Therefore� Voiculescu�s result implies that ��N
XN
t

converges towards the distribution

��t of tX� � �� � t�X� � �� � t�
R t
� �� � s���dSs with a free Brownian motion S� free with tX� � �� � t�X��

We shall now extend this result in our topology and also control the dependence of this convergence with

respect to the speed of convergence of the distribution of �XN
� � XN

� � towards � �

We shall work below with given �XN
� � XN

� � � fd���N� � ��� � �� d���N� � ��� � ��D���N���� � � � 
g�
Let� for u � t� XN�t

u denote the process

XN�t
u � tXN

� � �� � t�XN
� � ��� t�

Z u

�

��� s���dHN
s �

Then� one deduces from Ito�s calculus that for any test function f

��N
X
N�t
u

�f� � ��N
tXN

� 
���t�XN
�
�f� �

��� t��



Z u

�

��N
X
N�t
s

� ��N
X
N�t
s

�
f ��x�� f ��y�

x� y
�

ds

��� s��
�MN

f �u�

with a martingale MN
f �u� such that

IE� sup
u����t	

�MN
f �u���� � jjf �jj��

N�
�

Moreover� it is not hard to check that ���N
X
N�t
u

� u � t� is tight in C��
� ���P�IR�� �see the proof of exponential

tightness of the spectral process of XN
� �HN

t given in ������ The limit points ��Xt
u
� u � t� �when D���N���� � �

goes to zero� satisfy the equation

�Xt
u
�f� � ��t �f� �

��� t��



Z u

�

�Xt
s
� �Xt

s
�
f ��x�� f ��y�

x� y
�

ds

��� s��
�

��



This equation admits a unique solution� as can be proved following the arguments of ��� or ����� p� ����

Taking f�x� � eix� and substracting both equations� we �nd� with

#N
u �R� � sup

jj	R
IE�j��N

X
N�t
u

�eix�� �Xt
u
�eix�j��

that for u � t

#N
u �R� � #N

� �R� � �R�

Z u

�

#N
s �R�ds�

R

N

which yields thanks to Gronwall lemma and taken at u � t� since ��t � �Xt
t
�

sup
jj	R

IE�j��N
XN
t
�eix�� ��t �e

ix�j� � �
R

N
� sup
jj	R

IE�j��N
tXN

� 
���t�XN
�
�eix� � ��t �e

ix�j��e�R�t�

Therefore� if we de�ne the distance dF on P�IR� by

dF ��� �
�� �

Z
j��eix�� ���eix�je���d�

we have proved that there exists a �nite constant C such that for all t � �
� ���

IE�dF ���
N
XN
t
� ��t �� � CdF ���

N
tXN

� 
���t�XN
�
� ��t � �

C

N
�

It is not hard to convince ourselves that dF is a distance compatible with the weak topology on P�IR��
Observe now that on fd���N� � ��� � �� d���N� � ��� � �g� ���NtX�
���t�X�

� t � �
� ��� is tight for the usual weak

topology so that for any 
 � 
 we can �nd � � 
 so that for any � and t � �
� ��� D��� ��N���� � 
 implies

dF ���
N
tXN

� 
���t�XN
�
� ��t � � ��

Therefore� for any t�� � � � � tn � �
� ��� for any �XN
� � XN

� � � fd���N� � ��� � �� d���N� � ��� � ��D���N���� � � � 
g�
Chebyshev inequality yields

IP� max
�	k	n

dF ���
N
XN
tk

� ��tk� � �jXN
� � � nC���

�

N
�

with ��t � �Xt
the distribution of Xt � tX� � ��� t�X� �

p
t��� t�S when the law of �X�� X�� is � � Hence

for any �� when � �i�e 
� is small enough and N large enough�

IP� max
�	k	n

dF ���
N
XN
tk

� ��tk� � �jXN
� � �

�


�

Hence

IP�d���N� � ��� � ��D���N���� � � � 
� � IP�d���N� � ��� � ��D���N���� � � � 
� max
�	k	n

dF ���
N
XN
tk

� ��tk� � ���

We arrive at� for 
 small enough and any � �M����

lim sup
N��

�

N�
log IP�d���N� � ��� � ��D���N���� � � � 
� � lim sup

N��

�

N�
log IP� max

�	k	n
dF ���

N
tk
� ��tk� � ���

Using the large deviation upper bound for the law of ���Nt � t � �
� ��� from ����� we deduce

��



lim sup
N��

�

N�
log IP�d���N� � ��� � �� � �	


min

�	p	M
inf

max��k�n dF ��tk ��
�p
tk
�		

S���

We can now let 
 going to zero� and then � going to zero� and then n going to in�nity� to obtain� since S is

a good rate function� that

lim sup
	��

lim sup
N��

�

N�
log IP�d���N� � ��� � �� � �	


inf

����X��
�

���

��X��
�

���

S��� ��

Since it was also proved in ���� that

lim inf
	��

lim inf
N��

�

N�
log IP�d���N� � ��� � �� � �	


inf

�����
�����

S���

we obtain

inf
�����
�����

S��� � inf
����X

��
� ���

��X
��
� ���

S��� ��

Hence� if FBB���� ��� is the set of laws of free Brownian bridges between �� and ��� i�e

FBB���� ��� � f�� � � �X��
� � ��� � �X��

� � ��g�

we have seen that

inffS���� �� � ��� �� � ��g � inffS���� � � FBB���� ���g�

To �nish the proof of Theorem �	� we need to show that FBB���� ��� is a closed subset of C��
� ���P�IR��
so that indeed the in�mum is reached in FBB���� ����

Observe here that �� does depend only partially on � since it only depends on f��t � t � �
� ��g� Noting

that

��t �x
p� �

pX
r��

tr� �Pr�p�X� �X�� X���

with Pr�p�X�Y � the sum over all the monomial functions with total degree p and degree r in X� we see that

�� only depends on the restriction of � to polynomial functions P � S � fPr�p� 
 � r � p ��g� Of course�

MS�C
��� � f� jS � � �M���� � �X

�p � Y �p� � C�p� �p � INg

is closed for the dual topology generated by the polynomial functions of S� Here C denotes a common

uniform bound on X� and X�� and we have

FBB���� ��� � f��jS � � �M���g � f��� � �MS�C
��� g�

We denote� for � � MS�C
��� and t � �
� ��� ��t � P�IR� the distribution of tX� � �� � t�X� when the joint

distribution of �X�� X�� restricted to S is �� Then� ��t � ��t � �t���t�� We now show that FBB���� ��� is a

closed set of C��
� ���P�IR��� which insures� since S is a good rate function on C��
� ���P�IR��� that the in�mum

��



is achieved on FBB���� ���� Indeed� if �n is a sequence of FBB���� ��� given by f��nt � �t���t�� t � �
� ��g�
the weak convergence of �n implies the weak convergence of �n� Indeed� for any p � IN� any t � �
� ���

�nt �x
p� � ��nt �xp� � Pt��

n
t �x

l�� l � p� ��

with a polynomial function Pt� Hence� by induction� the convergence of ��nt �x
p��

p�IN �recall that �n is

supported by ��C � � C � � for any n so that weak convergence is equivalent to moments convergence�

results with the convergence of ���nt �xp���
p�IN� and again� since ���nt �

n�IN is supported by ��C�C�� with

the weak convergence of ��nt towards some probability measure �t� Since this convergence holds for any

t � �
� ��� we can expend the moments in powers of the time variable to conclude that �n converges towards

� � MS�C
��� � Again by free convolution calculus� this convergence results with the convergence of �n towards

�� � FBB���� ���� Hence� FBB���� ��� is closed�

��� Proof of Lemma ����

In ���� �see ����� and Lemma ��
� O� Zeitouni and I proved that for any path � � C���
� ���P�IR��� there
exists a path ��� such that

lim sup
����

S�������� � S�� ����

This path was constructed as follows� Let P� be the Cauchy law with parameter 
 and set �� � P� � � be

the convoluted path with the Cauchy law� Moreover� if 
 � t� � t� � � � � � tn � � with ti � �i � ��#� we

set� for t � �tk� tk
���

���t � ��tk �
�t� tk�

#
���tk�� � ��tk��

Let us therefore consider S��������� Because we took the convolution with respect to the Cauchy law� the

Hilbert transform H���t is well de�ned� and actually a continuously di�erentiable function with respect to

the time variable and an analytic function with respect to the space variable� Henceforth� in the supremum

de�ning S��������� we can actually make the change of function f�t� x� 
 f�t� x� � R log jx � yjd���t �y��

Observing that� with ��i � �i �P� for i � f
� �g�Z �

�

Z
�t

�Z
log jx� yj��d���t �y�

�
d���t �x�dt �

�


������� � ������� �

we �nd that

S�������� �
�


������� �������� �

�



Z �

�

Z
�H���t ��d���t dt

� sup
f�C���

b
�����	
IR�

f
Z
f�d�

�
� �

Z
f�d�

�
� �

Z �

�

Z
�tftd�

��
t dt� �


� f� f ����

���	
g

� �


������� �������� �

�



Z �

�

Z
�H���t ��d���t dt

where in the last line we observed that

�	



sup
f�C���

b
�����	
IR�

f
Z
f�d�

�
� �

Z
f�d�

�
� �

Z �

�

Z
�tftd�

��
t dt� �


� f� f ����

���	
g

� sup
f�C���

b
�����	
IR�

sup
��IR

f�
Z
f�d�

�
� � �

Z
f�d�

�
� � �

Z �

�

Z
�tftd�

��
t dt� ��


� f� f ����

���	
g

�
�


sup

f�C���
b

�����	
IR�



�
R
f�d�

�
� �

R
f�d�

�
� �

R �
�

R
�tftd�

��
t ��

� f� f ����
���	

�
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Observing that Z �

�

Z
�H���t ��d���t dt � #

� �	 	X
k��

Z
�H��tk�

�d��tk

converges since t
 H��t and t
 ��t are continuous for any � � C��
� ���P�IR��� we arrive at

lim inf
��

S�������� � �


�������� ������� �

�



Z �

�

Z
�H��t �

�d��tdt �����

Notice that for t � f
� �g�

����t � �

Z
log jx� yj��dP� � �t�x�dP� � �t�y� � �



Z
log��x� y�� � 
����d�t�x�d�t�y��

Hence� monotone convergence theorem asserts that

lim
���

����t � � ���t��

Now� recall that for any � � L�� Tricomi ��� p� �	� asserts that

��


��x�� �

�


�H����x��H���H����x� �

so that Z
�H����x���x�dx �

��

�

Z
���x���dx�

Since� for any 
 � 
� ��t is absolutely continuous with respect to Lebesgue measure with density ��t � L��dx�

for almost all t � �
� ��� we conclude by Fatou�s lemma that that

�� � lim inf
���

lim inf
��

S�������� � �


������� ������ �

��

	

Z �

�

Z
lim inf
���

���t�x��
�dxdt�

Finally� it is easy to see that ����� implies that �t�dx� � �t�x�dx for almost all t � �
� �� and then that ��t�x�

converges towards �t almost surely� Hence� we have proved that

��



S������ � �


������ ������� �

��

	

Z �

�

Z
��t�x��

�dxdt�
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