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Abstract. We construct approximate transport maps for non-critical �-matrix models,
that is, maps so that the push forward of a non-critical �-matrix model with a given potential
is a non-critical �-matrix model with another potential, up to a small error in the total
variation distance. One of the main features of our construction is that these maps enjoy
regularity estimates which are uniform in the dimension. In addition, we find a very useful
asymptotic expansion for such maps which allow us to deduce that local statistics have the
same asymptotic behavior for both models.

1. Introduction.

Given a potential V : RN ! R and � > 0, we consider the �-matrix model
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that for any V,W : RN ! R such that ZN
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However, the dependency in the dimension N of this transport map is in general unclear
unless one makes very strong on the densities [Caf00] that unfortunately are never satisfied
in our situation. Hence, it seems extremely difficult to use these maps TN to understand the
relation between the asymptotic of the two models.

The main contribution of this paper is to show that a variant of this approach is indeed
possible and provides a very robust and flexible method to compare the asymptotics of local
statistics. In the more general context of several-matrices models, it was shown in [GS] that
the maps TN are asymptotically well approximated by a function of matrices independent of
N , but it was left open the question of studying corrections to this limit. In this article we
consider one-matrix models, and more precisely their generalization given by �-models, and
we construct approximate transport maps with a very precise dependence on the dimension.
This allows us to compare local fluctuations of the eigenvalues and show universality.
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We mention that universality was first proved in the � = 2 case, where orthogonal poly-
nomial techniques can be used (see e.g. [Meh04, CK06, LL08]), and then extended to the
case � = 1, 4 [DG09]. The local fluctuations of more general �-ensembles were only derived
recently [VV09, RRV11] in the Gaussian case. Universality in the �-ensembles was addressed
in [BEYa, BEYb, KRV, Shca].

The main idea of this paper is that we can build a smooth approximate transport map
which at the first order is simply a tensor product, and then it has first order corrections
of order N�1 (see Theorem 1.4). This continues the long standing idea developed in loop
equations theory to study the correlation functions of �-matrix models by clever change of
variables, see e.g. [AM90, BEMPF12]. On the contrary to loop equations, the change of
variable has to be of order one rather than infinitesimal.

The first order term of our map is simply the monotone transport map between the
asymptotic equilibrium measures; then, corrections to this first order are constructed so that
densities match up to a priori smaller fluctuating terms. As we shall see, our transport map
is constructed as the flow of a vector field obtained by approximately solving a linearized
Jacobian equation and then making a suitable ansatz on the structure of the vector field.
The errors are controlled by deriving bounds on covariances and correlations functions thanks
to loop equations, allowing us to obtain a self-contained proof of universality (see Theorem
1.5). Although optimal transportation will never be really used, it will provide us the correct
intuition in order to solve this problem (see Sections 2.2 and 2.3).

We notice that this last step could also be performed either by using directly central
limit theorems, see e.g. [Shca, BG13, Shcb], or local limit laws [BEYa, BEYb]. However,
our approach has the advantage of being pretty robust and should generalize to many other
mean field models. In particular, it should be possible to generalize it to the several-matrices
models, at least in the perturbative regime considered in [GS], but this would not solve yet
the question of universality as the transport map would be a non-commutative function of
several matrices. Even in the case of GUE matrices, there are not yet any results about the
local statistics of the eigenvalues of such non-commutative functions, except for a few very
specific cases.

We now describe our results in detail. Given a potential V : R ! R, we consider the
probability measure (1.1). We assume that V goes to infinity faster than � log |x| (that is
V (x)/� log |x| ! +1 as |x| ! +1) so that in particular ZN

V

is finite.
We will use µ

V

to denote the equilibrium measure, which is obtained as limit of the spectral
measure and is characterized as the unique minimizer (among probability measures) of

(1.2) I
V

(µ) :=

ˆ
V (x)dµ(x)� �

2

ˆ
log |x� y|dµ(x)dµ(y) .

We assume hereafter that another smooth potential W is given so that V +W goes to infinity
faster than � log |x|. We denote V

t

:= V + tW , and we shall make the following assumption:

Hypothesis 1.1. We assume that µ
V0 and µ

V1 have a connected support and are non-critical,
that is, there exists a constant c̄ > 0 such that, for t = 0, 1,

dµ
Vt

dx
= S

t

(x)
p

(x� a
t

)(b
t

� x) with S
t

� c̄ a.e. on [a
t

, b
t

].

Remark 1.2. The assumption of a connected support could be removed here, following the
lines of [Shca, BG]. Indeed, only a generalization of Lemma 3.2 is required, which is not
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difficult. However, the non-criticality assumption cannot be removed easily, as criticality
would result in singularities in the transport map.

Finally, we assume that the eigenvalues stay in a neighborhood of the support [a
t

�✏, b
t

+✏]
with large enough PN

V

-probability, that is with probability greater than 1� C N�p for some
p large enough. By [BG, Lemma 3.1], the latter is fulfilled as soon as:

Hypothesis 1.3. For t = 0, 1,

(1.3) U
Vt(x) := V

t

(x)� �

ˆ
dµ

Vt(y) log |x� y|

achieves its minimal value on [a, b]c at its boundary {a, b}

All these assumptions are verified for instance if V
t

is strictly convex for t 2 {0, 1}.
The main goal of this article is to build an approximate transport map between PN

V

and
PN

V+W

: more precisely, we construct a map TN

: RN!RN such that, for any bounded
measurable function �,
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for some constant C independent of N , and which has a very precise expansion in the
dimension (in the following result, T

0

: R ! R is a smooth transport map of µ
V

onto µ
V+W

,
see Section 4):

Theorem 1.4. Assume that V 0,W are of class C30 and satisfy Hypotheses 1.1 and 1.3.
Then there exists a map TN

= (TN,1, . . . , TN,N

) : RN!RN which satisfies (1.4) and has the
form
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where T
0

: R ! R and TN,i

1

: RN ! R are smooth and satisfy uniform (in N) regularity
estimates. More precisely, TN is of class C23 and we have the decomposition TN,i

1

= XN,i

1

+

1
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2
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for some constant C > 0 independent of N . In addition, with probability greater than
1�N�N/C,
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As we shall see in Section 5, this result implies universality as follows (compare with
[BEYb, Theorem 2.4]):

Theorem 1.5. Assume V 0,W 2 C30, and let T
0

be as in Theorem 1.4 above. Denote ˜PN

V

the distribution of the increasingly ordered eigenvalues �
i

under PN

V

. There exists a constant
ˆC > 0, independent of N , such that the following two facts hold true:

(1) Given m 2 N, assume that, under ˜PN

V
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)
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⌧
p
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N,m
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Lipschitz function f on Rm,
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V

(resp. µ
V+W

), so
that supp(µ

V

) ⇢ [a
V

,1) (resp. supp(µ
V+W

) ⇢ [a
V+W

,1)). Given m 2 N, assume
that, under ˜PN

V

, the numbers N2/3

(�
i

� a
V

)

1im

are bounded by M
N,m

⌧ N1/3 with
probability 1� p

N,m

. Then, for any Lipschitz function f on Rm,
����
ˆ

f
�
N2/3

(�
1

� a
V+W

), . . . , N2/3

(�
m

� a
V+W

)

�
d ˜P V+W

N

�
ˆ

f
⇣
N2/3T 0

0

(a
V

)

�
�
1

� a
V

�
, . . . , N2/3T 0

0

(a
V

)

�
�
m

� a
V

�⌘
d ˜P V

N

����


✓
ˆC
(logN)

3

N
+ p

N,m

◆
kfk1 +

ˆC

✓p
m

(logN)

3

N4/3

+

M2

N,m

N2/3

+

logN

N1/3

◆
krfk1.

The same bound holds around the largest point in the support of µ
V

.

Remark 1.6. The condition that V 0,W 2 C30 in the theorem above is clearly non-optimal
(compare with [BEYa]). For instance, by using Stieltjes transform instead of Fourier trans-
form in some of our estimates, we could reduce the regularity assumptions on V 0,W to C21

by a slightly more cumbersome proof. In addition, by using [BEYb, Theorem 2.4] we could
also weaken our regularity assumptions in Theorem 1.4, as we could use that result to esti-
mate the error terms in Section 3.4. However, the main point of this hypothesis for us is to
stress that we do not need to have analytic potentials, as often required in matrix models
theory. Moreover, under this assumption we can provide self-contained and short proofs of
Theorems 1.4 and 1.5.

Note that Theorem 1.4 is well suited to prove universality of the spacings distribution in
the bulk as stated in Theorem 1.5, but it is not clear how to directly deduce the universality
of the rescaled density, see e.g [BEYa, Theorem 2.5(i)]. Indeed, this corresponds to choosing
test functions whose uniform norm blows up like some power of the dimension, so to apply
Theorem 1.4 we should have an a priori control on the numbers of eigenvalues inside sets of
size of order N�1 under both PN

V

and PN

V+W

. Notice however that [BEYa, Theorem 2.5(ii)]
requires � � 1, while our results hold for any � > 0. In particular, the edge universality
proved in Theorem 1.5(2) is completely new for � 2 (0, 1). In addition our strategy is very
robust and flexible. For instance, although we shall not pursue this direction here, it looks
likely to us that one could use it prove the universality of the asymptotics of the law of
{N(�

i

� x)}
1im

under ˜P V

N

for given i and x.

The paper is structured as follows: In Section 2 we describe the general strategy to con-
struct our transport map as the flow of vector fields obtained by approximately solving a
linearization of the Monge-Ampère equation (see (2.2)). As we shall explain there, this idea
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comes from optimal transport theory. In Section 3 we make an ansatz on the structure of
an approximate solution to (2.2) and we show that our ansatz actually provided a smooth
solution which enjoys very nice regularity estimates that are uniform as N ! 1. In Section
4 we reconstruct the approximate transport map from PN

V

to PN

V+W

via a flow argument.
The estimates proved in this section will be crucial in Section 5 to show universality.

Acknowledgments: AF was partially supported by NSF Grant DMS-1262411. AG was
partially supported by the Simons Foundation and by NSF Grant DMS-1307704.

2. Approximate Monge-Ampère equation

2.1. Propagating the hypotheses. The central idea of the paper is to build transport
maps as flows, and in fact to build transport maps between PV

N

and PVt
N

where t 7! V
t

is a smooth function so that V
0

= V , V
1

= V + W . In order to have a good interpolation
between V and V +W , it will be convenient to assume that the support of the two equilibrium
measures µ

V

and µ
V+W

(see (1.2)) are the same. This can always be done up to an affine
transformation. Indeed, if L is the affine transformation which maps [a

1

, b
1

] (the support
of µ

V1) onto [a
0

, b
0

] (the support of µ
V0), we first construct a transport map from PV

N

to
L⌦N

]

PV+W

N

= P V+

˜

W

N

where

(2.1) ˜W = V � L�1

+W � L�1 � V,

and then we simply compose our transport map with (L�1

)

⌦N to get the desired map from
PV

N

to PV+W

N

. Hence, without loss of generality we will hereafter assume that µ
V

and µ
V+W

have the same support. We then consider the interpolation µ
Vt with V

t

= V + tW , t 2 [0, 1].
We have:

Lemma 2.1. If Hypotheses 1.1 and 1.3 are fulfilled for t = 0, 1, Hypothesis 1.1 is also fulfilled
for all t 2 [0, 1]. Moreover, we may assume without loss of generality that V goes to infinity
as fast as we want up to modify PV

N

and PV+W

N

by a negligible error (in total variation).

Proof. Let ⌃ denote the support of µ
V

and µ
V+W

. Following [BG13, Lemma 5.1], the measure
µ
Vt is simply given by

µ
Vt = (1� t)µ

V

+ tµ
V+W

.

Indeed, µ
V

is uniquely determined by the fact that there exists a constant c such that

�

ˆ
log |x� y|dµ

V

(x)� V  c

with equality on the support of µ
V

, and this property is verified by linear combinations. As
a consequence the support of µ

Vt is ⌃, and its density is bounded away from zero on ⌃. This
shows that Hypothesis 1.1 is fulfilled for all t 2 [0, 1].

Furthermore, we can modify PV

N

and PV+W

N

outside an open neighborhood of ⌃ without
changing the final result, as eigenvalues will quit this neighborhood only with very small
probability under our assumption of non-criticality according to the large deviation estimate
[BG]:
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lim sup

N!1

1

N
lnPV
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[9 i : �
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2 F ]  ��
2
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x2F
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lim inf

N!1

1

N
lnPV
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[9 i : �
i

2 ⌦] � ��
2

inf

x2⌦
˜UV

(x).

with ˜UV

:= UV � inf UV . ⇤

Thanks to the above lemma and the discussion immediately before it, we can assume that
µ
V

and µ
V+W

have the same support, that W is bounded, and that V goes to infinity faster
than xp for some p > 0 large enough.

2.2. Monge-Ampère equation. Given the two probability densities PN

Vt
to PN

Vs
as in (1.1)

with 0  t  s  1, by optimal transport theory it is well-known that there exists a
(convex) function �N

t,s

such that r�N

t,s

pushes forward PN

Vt
onto PN

Vs
and which satisfies the

Monge-Ampère equation

det(D2�N

t,s

) =

⇢
t

⇢
s

(r�N

t,s

)

, ⇢
⌧

:=

dPN

V⌧

d�
1

. . . d�
N

(see for instance [Vil, Chapters 3 and 4] or the recent survey paper [DF] for an account on
optimal transport theory and its link to the Monge-Ampère equation).

Because �
t,t

(x) = |x|2/2 (since r�
t,t

is the identity map), we can differentiate the above
equation with respect to s and set s = t to get

(2.2) � N

t

= cN
t

� �
X

i<j

@
i

 N

t

� @
j

 N

t

�
i

� �
j

+N
X

i

W (�
i

) +N
X

i

V 0
t

(�
i

)@
i

 N

t

,

where  N

t

:= @
s

�N

t,s

|
s=t

and

cN
t

:= �N

ˆ X

i

W (�
i

) dPN

Vt
= @

t

logZN

Vt
.

Although this is a formal argument, it suggests to us a way to construct maps TN

0,t

: RN ! RN

sending PN

V

onto PN

Vt
: indeed, if TN

0,t

sends PN

V

onto PN

Vt
then r�N

t,s

� TN

0,t

sends PN

V

onto PN

Vs
.

Hence, we may try to find TN

0,s

of the form TN

0,s

= r�N

t,s

� TN

0,t

+ o(s � t). By differentiating
this relation with respect to s and setting s = t we obtain @

t

TN

0,t

= r N

t

(TN

0,t

).
Thus, to construct a transport map TN from PN

V

onto PN

V+W

we could first try to find
 N

t

by solving (2.2), and then construct TN solving the ODE ˙XN

t

= r N

t

(XN

t

) and setting
TN

:= XN

1

. We notice that, in general, TN is not an optimal transport map.
Unfortunately, finding an exact solution of (2.2) enjoying “nice” regularity estimates that

are uniform in N seems extremely difficult. So, instead, we make an ansatz on the structure
of  N

t

(see (3.2) below): the idea is that at first order eigenvalues do not interact, then at
order 1/N eigenvalues interact at most by pairs, and so on. As we shall see, in order to
construct a function which enjoys nice regularity estimates and satisfies (2.2) up to a error
that goes to zero as N ! 1, it will be enough to stop the expansion at 1/N . Actually,
while the argument before provides us the right intuition, we notice that there is no need to
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assume that the vector field generating the flow XN

t

is a gradient, so we will consider general
vector fields YN

t

= (YN

1,t

, . . . ,YN

N,t

) : RN ! RN that approximately solve

(2.3) divYN

t

= cN
t

� �
X

i<j

YN

i,t

� YN

j,t

�
i

� �
j

+N
X

i

W (�
i

) +N
X

i

V 0
t

(�
i

)YN

i,t

,

We begin by checking that the flow of an approximate solution of (2.3) gives an approxi-
mate transport map.

2.3. Approximate Jacobian equation. Here we show that if a C1 vector field YN

t

ap-
proximately satisfies (2.3), then its flow

˙XN

t

= YN

t

(XN

t

), XN

0

= Id,

produces almost a transport map.
More precisely, let YN

t

: RN ! RN be a smooth vector field and denote

RN

t

(YN

) := cN
t

� �
X

i<j

YN

i,t

� YN

j,t

�
i

� �
j

+N
X

i

W (�
i

) +N
X

i

V 0
t

(�
i

)YN

i,t

� divYN

t

.

Lemma 2.2. Let � : RN ! R be a bounded measurable function, and let XN

t

be the flow of
YN

t

. Then ����
ˆ
�(XN

t

) dPN

V

�
ˆ
� dPN

Vt

����  k�k1
ˆ

t

0

kRN

s

(YN

)k
L

1
(PN

Vs
)

ds.

Proof. Since YN

t

2 C1, by Cauchy-Lipschitz Theorem its flow is a bi-Lipchitz homeomor-
phism.

If JXN

t

denotes the Jacobian of XN

t

and ⇢
t

the density of PN

Vt
, by the change of variable

formula it follows that ˆ
� dPN

Vt
=

ˆ
�(XN

t

)JXN

t

⇢
t

(XN

t

) dx

thus

(2.4)
����
ˆ
�(XN

t

) dPN

V

�
ˆ
� dPN

Vt

����  k�k1
ˆ

|⇢
0

� JXN

t

⇢
t

(XN

t

)| dx =: A
t

Using that @
t

(JXN

t

) = divYN

t

JXN

t

and that the derivative of the norm is smaller than the
norm of the derivative, we get

|@
t

A
t

| 
ˆ ���@

t

�
JXN

t

⇢
t

(XN

t

)

���� dx

=

ˆ
|divYN

t

JXN

t

⇢
t

(XN

t

) + JXN

t

(@
t

⇢
t

)(XN

t

) + JXN

t

r⇢
t

(XN

t

) · @
t

XN

t

| dx

=

ˆ
|RN

t

(Y)|(XN

t

) JXN

t

⇢
t

(XN

t

) dx

=

ˆ
|RN

t

(Y)| dPN

Vt
.

Integrating the above estimate in time completes the proof. ⇤
By taking the supremum over all functions � with k�k1  1, the lemma above gives:
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Corollary 2.3. Let XN

t

be the flow of YN

t

, and set ˆPN

t

:= (XN

t

)

#

PN

V

the image of PN

V

by
XN

t

. Then

kˆPN

t

� PN

Vt
k
TV


ˆ

t

0

kRN

s

(YN

)k
L

1
(PN

Vs
)

ds.

3. Constructing an approximate solution to (2.2)

Fix t 2 [0, 1] and define the random measures

(3.1) L
N

:=

1

N

X

i

�
�i and M

N

:=

X

i

�
�i �Nµ

Vt .

As we explained in the previous section, a natural ansatz to find an approximate solution of
(2.2) is given by
(3.2)

 N

t

(�
1

, . . . ,�
N

) :=

ˆ h
 
0,t

(x) +
1

N
 
1,t

(x)
i
dM

N

(x) +
1

2N

¨
 
2,t

(x, y) dM
N

(x) dM
N

(y),

where (without loss of generality) we assume that  
2,t

(x, y) =  
2,t

(y, x).
Since we do not want to use gradient of functions but general vector fields (as this gives us

more flexibility), in order to find an ansatz for an approximate solution of (2.3) we compute
first the gradient of  :

@
i

 N

t

=  0
0,t

(�
i

) +

1

N
 0
1,t

(�
i

) +

1

N
⇠N
1,t

(�
i

,M
N

), ⇠N
1,t

(x,M
N

) :=

ˆ
@
1

 
2,t

(x, y) dM
N

(y).

This suggests us the following ansatz for the components of YN

t

:
(3.3)

YN

i,t

(�
1

, . . . ,�
N

) := y
0,t

(�
i

) +

1

N
y
1,t

(�
i

) +

1

N
⇠
t

(�
i

,M
N

), ⇠
t

(x,M
N

) :=

ˆ
z
t

(x, y) dM
N

(y),

for some functions y
0,t

,y
1,t

: R ! R, z
t

: R2 ! R.
Here and in the following, given a function of two variables  , we write  2 Cs,v to denote

that it is s times continuously differentiable with respect to the first variable and v times
with respect to the second.

The aim of this section is to prove the following result:

Proposition 3.1. Assume V 0,W 2 Cr with r � 30. Then, there exist y
0,t

2 Cr�2, y
1,t

2
Cr�8, and z

t

2 Cs,v for s+ v  r � 5, such that

RN

t

:=

✓
cN
t

� �
X

i<j

YN

i,t

� YN

j,t

�
i

� �
j

+N
X

i

W (�
i

) +N
X

i

V 0
t

(�
i

)YN

i,t

◆
� divYN

t

satisfies

kRN

t

k
L

1
(PN

Vt
)

 C
(logN)

3

N

for some positive constant C independent of t 2 [0, 1].

The proof of this proposition is pretty involved, and will take the rest of the section.
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3.1. Finding an equation for y
0,t

,y
1,t

, z
t

. Using (3.3) we compute

divYN

t

= N

ˆ
y0
0,t

(x) dL
N

(x) +

ˆ
y0
1,t

(�) dL
N

(x) +

ˆ
@
1

⇠
t

(x,M
N

) dL
N

(x) + ⌘(L
N

),

where, given a measure ⌫, we set

⌘(⌫) :=

ˆ
@
2

z
t

(y, y) d⌫(y).

Therefore, recalling that M
N

= N(L
N

� µ
Vt) we get

RN

t

= ��N
2

2

¨ y
0,t

(x)� y
0,t

(y)

x� y
dL

N

(x) dL
N

(y) +N2

ˆ
V 0
t

y
0,t

dL
N

+N2

ˆ
W dL

N

� �N

2

¨ y
1,t

(x)� y
1,t

(y)

x� y
dL

N

(x) dL
N

(y) +N

ˆ
V 0
t

y
1,t

dL
N

� �N

2

¨
⇠
t

(x,M
N

)� ⇠
t

(y,M
N

)

x� y
dL

N

(x) dL
N

(y) +N

ˆ
V 0
t

(x) ⇠
t

(x,M
N

) dL
N

(x)

� 1

N
⌘(M

N

)�N
⇣
1� �

2

⌘ ˆ
y0
0,t

dL
N

�
⇣
1� �

2

⌘ ˆ
y0
1,t

dL
N

�
⇣
1� �

2

⌘ ˆ
@
1

⇠
t

(x,M
N

) dL
N

(x)� ⌘(µ
Vt) + c̃N

t

,

where c̃N
t

is a constant and we use the convention that, when we integrate a function of the
form f(x)�f(y)

x�y

with respect to L
N

⌦ L
N

, the diagonal terms give f 0
(x).

We now observe that L
N

converges towards µ
Vt as N ! 1 [AG97], and the latter min-

imizes I
Vt (see (1.2)). Hence, considering µ

"

:= (x + "f)
#

µ
Vt and writing that I

Vt(µ"

) �
I
Vt(µVt), by taking the derivative with respect to " at " = 0 we get

(3.4)
ˆ

V 0
t

(x)f(x) dµ
Vt(x) =

�

2

¨
f(x)� f(y)

x� y
dµ

Vt(x) dµVt(y)

for all smooth bounded functions f : R ! R. Therefore we can recenter L
N

by µ
Vt in the

formula above: more precisely, if we set

(3.5) ⌅f(x) := ��
ˆ

f(x)� f(y)

x� y
dµ

Vt(y) + V 0
t

(x)f(x),

then

N2

ˆ
V 0
t

f dL
N

� �N2

2

¨
f(x)� f(y)

x� y
dL

N

(x) dL
N

(y)

= N

ˆ
⌅f dM

N

� �

2

¨
f(x)� f(y)

x� y
dM

N

(x) dM
N

(y)
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Applying this identity to f = y
0,t

,y
1,t

, ⇠
t

(·,M
N

) and recalling the definition of ⇠
t

(·,M
N

) (see
(3.3)), we find

RN

t

= N

ˆ
[⌅y

0,t

+W ] dM
N

+

ˆ ✓
⌅y

1,t

+

⇣�
2

� 1

⌘
y0
0,t

+

ˆ
@
1

z
t

(z, ·)dµ
Vt(z)

�◆
dM

N

+

¨
dM

N

(x) dM
N

(y)

✓
⌅z

t

(·, y)[x]� �

2

y
0,t

(x)� y
0,t

(y)

x� y

◆
+ CN

t

+ E
N

,

where

⌅z
t

(·, y)[x] = ��
ˆ

z
t

(x, y)� z
t

(x̃, y)

x� x̃
dµ

Vt(x̃) + V 0
t

(x)z
t

(x, y),

CN

t

is a deterministic term, and E
N

is a reminder that we will prove to be negligible:

E
N

:= � 1

N

ˆ
@
2

z
t

(x, x) dM
N

(x)� 1

N

⇣
1� �

2

⌘ ˆ
y0
1,t

dM
N

� 1

N

⇣
1� �

2

⌘¨
@
1

z
t

(x, y) dM
N

(x) dM
N

(y)

� �

2N

¨ y
1,t

(x)� y
1,t

(y)

x� y
dM

N

(x) dM
N

(y)

� �

2N

˚
z
t

(x, y)� z
t

(x̃, y)

x� x̃
dM

N

(x) dM
N

(y) dM
N

(x̃).

(3.6)

Hence, for RN

t

to be small we want to impose
⌅y

0,t

= �W + c,

⌅z
t

(·, y)[x] = ��
2

y
0,t

(x)� y
0,t

(y)

x� y
+ c(y),

⌅y
1,t

= �
⇣�
2

� 1

⌘
y0
0,t

+

ˆ
@
1

z
t

(z, ·) dµ
Vt(z)

�
+ c0,

(3.7)

where c, c0 are some constant to be fixed later, and c(y) does not depend on x.

3.2. Inverting the operator ⌅. We now prove a key lemma, that will allow us to find the
desired functions y

0,t

,y
1,t

, z
t

.

Lemma 3.2. Given V : R ! R, assume that µ
V

has support given by [a, b] and that

dµ
V

dx
(x) = S(x)

p
(x� a)(b� x)

with S(x) � c̄ > 0 a.e. on [a, b].
Let g : R!R be a Ck function and assume that V is of class Cp. Set

⌅f(x) := ��
ˆ

f(x)� f(y)

x� y
dµ

V

(x) + V 0
(x)f(x)

Then there exists a unique constant c
g

such that the equation

⌅f(x) = g(x) + c
g
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has a solution of class C(k�2)^(p�3). More precisely, for j  (k� 2)^ (p� 3) there is a finite
constant C

j

such that

(3.8) kfk
C

j
(R)  C

j

kgk
C

j+2
(R),

where, for a function h, khk
C

j
(R) :=

P
j

r=0

kh(r)k
L

1
(R).

Moreover f (and its derivatives) behaves like (g(x) + c
g

)/V 0
(x) (and its corresponding

derivatives) when |x| ! +1.
This solution will be denoted by ⌅

�1g.

Note that Lf(x) = ⌅f 0
(x) can be seen as the asymptotics of the infinitesimal generator of

the Dyson Brownian motion taken in the set where the spectral measure approximates µ
V

.
This operator is central in our approach, as much as the Dyson Brownian motion is central
to prove universality [ESYY12, BEYa, BEYb].

Proof. As a consequence of (3.4), we have

(3.9) � PV

ˆ
1

x� y
dµ

V

(y) = V 0
(x) on the support of µ

V

.

Therefore solving the equation ⌅f(x) = g(x) + c
g

on the support of µ
V

amounts to

(3.10) � PV

ˆ
f(y)

x� y
dµ

V

(y) = g(x) + c
g

8 x 2 [a, b].

Let us write
d(x) := dµ

V

/dx = S(x)
p

(x� a)(b� x)

with S positive inside the support [a, b]. We claim that S 2 Cp�3

([a, b]).
Indeed, by (3.4) with f(x) = (z � x)�1 for z 2 [a, b]c, we find that the Stieltjes transform

G(z) =
´
(z � y)�1 dµ

V

(y) satisfies, for z outside [a, b],

�

2

G(z)2 = G(z)V 0
(<(z)) + F (z), with F (z) =

ˆ
V 0

(y)� V 0
(<(z))

z � y
dµ

V

(y) .

Solving this quadratic equation so that G ! 0 as |z| ! 1 yields

(3.11) G(z) =
1

�

⇣
V 0

(<(z))�
p

[V 0
(<(z))]2 + 2�F (z)

⌘
.

Notice that V 0
(<(z))2 + 2�F (z) becomes real as z goes to the real axis. Hence, since

�⇡�1=G(z) converges to the density of µ
V

as z goes to the real axis (see e.g [AGZ10,
Theorem 2.4.3]), we get

(3.12) �S(x)2(x� a)(b� x) = (�⇡)�2

⇥
V 0

(x)2 + 2�F (x)
⇤
.

This implies in particular that {a, b} are the two points of the real line where V 0
(x)2+2�F (x)

vanishes. Moreover F (x) = �
´ ´

1

0

V 00
(↵y+(1�↵)x) d↵ dµ

V

(y) is of class Cp�2 on R (recall
that V 2 Cp by assumption), therefore (V 0

)

2

+ 2�F 2 Cp�2

(R). Since we assumed that S
does not vanish in [a, b], from (3.12) we deduce that S is of class Cp�3 on [a, b].

To solve (3.10) we apply Tricomi’s formula [Tri57, formula 12, p.181] and we find that, for
x 2 [a, b],

�f(x)
p

(x� a)(b� x)d(x) = PV

ˆ
b

a

p
(y � a)(b� y)

y � x
(g(y) + c

g

)dy + c
2

:= h(x)
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for some constant c
2

, hence

h(x) = �f(x)(x� a)(b� x)S(x)

= PV
´

b

a

p
(y�a)(b�y)

y�x

(g(y) + c
g

)dy + c
2

= PV
´

b

a

p
(y � a)(b� y)g(y)�g(x)

y�x

dy + (g(x) + c
g

)PV
´

b

a

p
(y�a)(b�y)

y�x

dy + c
2

=

´
b

a

p
(y � a)(b� y)g(y)�g(x)

y�x

dy � ⇡
�
x� a+b

2

�
(g(x) + c

g

) + c
2

,

where we used that, for x 2 [a, b],

PV

ˆ
b

a

p
(y � a)(b� y)

y � x
dy = �⇡

⇣
x� a+ b

2

⌘
.

Set

h
0

(x) =

ˆ
b

a

p
(y � a)(b� y)

g(y)� g(x)

y � x
dy.

Then h
0

is of class Ck�1 (recall that g is of class Ck). We next choose c
g

and c
2

such that h
vanishes at a and b (notice that this choice uniquely identifies c

g

).
We note that f 2 C(k�2)^(p�3)

([a, b]). Moreover, we can bound its derivatives in terms of
the derivatives of h

0

, g and S: if we assume j  p � 3, we find that there exists a constant
C

j

, which depends only on the derivatives of S, such that

kf (j)k
L

1
([a,b])

 C
j

max

pj

⇣
kh(p+1)

0

k
L

1
([a,b])

+ kg(p+1)k
L

1
([a,b])

⌘
 C

j

max

pj+2

kg(p)k
L

1
([a,b])

.

Let us define

k(x) := � PV

ˆ
f(y)

x� y
dµ

V

(y)� g(x)� c
g

8 x 2 R.

By (3.10) we see that k ⌘ 0 on [a, b]. To ensure that ⌅f = g + c
g

also outside the support
of µ

V

we want

f(x)

✓
� PV

ˆ
1

x� y
dµ

V

(y)� V 0
(x)

◆
= k(x) 8 x 2 [a, b]c.

Let us consider the function ` : R ! R defined as

(3.13) `(x) := � PV

ˆ
1

x� y
dµ

V

(y)� V 0
(x).

Notice that, thanks to (3.11), `(x) = �G(x) � V 0
(x) = ��

p
[V 0

(x)]2 + 2�F (x). Hence,
comparing this expression with (3.12), and recalling that S � c̄ > 0 in [a, b], we deduce that
[V 0

(x)]2 + 2�F (x) is smooth and has simple zeroes both at a and b, therefore [V 0
(x)]2 +

2�F (x) > 0 in [a� ✏, b+ ✏]\[a, b] for some ✏ > 0.
This shows that ` does not vanish in [a� ✏, b+ ✏]\[a, b]. Recalling that can freely modify

V outside [a� ✏, b+ ✏] (see proof of Lemma 2.1), we can actually assume that ` vanishes at
{a, b} and does not vanish in the whole [a, b]c.

We claim that ` is Hölder 1/2 at the boundary points, and in fact is equivalent to a square
root there. Indeed, it is immediate to check that ` is of class Cp�1 except possibly at the
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boundary points {a, b}. Moreover

PV

ˆ
1

x� y
dµ

V

(y) = S(a)

ˆ
b

a

1

x� y

p
(y � a)(b� y) dy

+

ˆ
b

a

y � a

x� y

✓ˆ
1

0

S 0
(↵a+ (1� ↵)y)d↵

◆p
(y � a)(b� y) dy.

The first term can be computed exactly and we have, for some c 6= 0,

(3.14)
ˆ

b

a

1

x� y

p
(y � a)(b� y) dy = c(b� a)

✓
x� a+b

2

b� a
�

s
⇣x� a+b

2

b� a

⌘
2

� 1

4

◆

which is Hölder 1/2, and in fact behaves as a square root at the boundary points. On the
other hand, since S is of class Cp�3 on [a, b] with p � 4, the second function is differentiable,
with derivative at a given byˆ

b

a

1

a� y

✓ˆ
1

0

S 0
(↵a+ (1� ↵)y)d↵

◆p
(y � a)(b� y) dy,

which is a convergent integral. The claim follows.
Thus, for x outside the support of µ

V

we can set

f(x) := `(x)�1k(x).

With this choice ⌅f = g + c
g

and f is of class C(k�2)^(p�3) on R \ {a, b}.
We now want to show that f is of class C(k�2)^(p�3) on the whole R. For this we need to

check the continuity of f and its derivatives at the boundary points, say at a (the case of b
being similar). We take hereafter r  (k � 2) ^ (p � 3), so that f has r derivatives inside
[a, b] according to the above considerations.
Let us first deduce the continuity of f at a. We write, with f(a+) = lim

x#a f(x),

k(x) = f(a+)`(x) + k
1

(x)

with

k
1

(x) := �

✓
PV

ˆ
f(y)

x� y
dµ

V

(y)� PV

ˆ
f(a+)

x� y
dµ

V

(y)

◆
+ g(x) + c

g

+ f(a+)V 0
t

(x).

Notice that since f = `�1k outside [a, b], if we can show that `�1

(x)k
1

(x) ! 0 as x " a then
we would get f(a�) = f(a+), proving the desired continuity.

To prove it we first notice that k
1

vanishes at a (since both k and ` vanish inside [a, b]),
hence

k
1

(x) = �

✓
PV

ˆ
f(y)� f(a+)

x� y
dµ

V

(y)� PV

ˆ
f(y)� f(a+)

a� y
dµ

V

(y)

◆
+ g̃(x)� g̃(a)

= �(a� x)PV

ˆ
f(y)� f(a+)

(x� y)(a� y)
dµ

V

(y) + g̃(x)� g̃(a),

with g̃ := g+ f(a+)V 0 2 C1. Assume 1  (k� 2)^ (p� 3). Since f is of class C1 inside [a, b]
we have |f(y)� f(a+)|  C|y� a|, from which we deduce that |k

1

(x)|  C|x� a| for x  a.
Hence `�1

(x)k
1

(x) ! 0 as x " a (recall that ` behaves as a square root near a), which
proves that

lim

x"a
f(x) = lim

x#a
f(x)
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and shows the continuity of f at a.
We now consider the next derivative: we write

k(x) =
⇥
f(a) + f 0

(a+)(x� a)
⇤
`(x) + k

2

(x)

with

k
2

(x) := �(a� x)PV

ˆ
f(y)� f(a+)� (y � a)f 0

(a+)

(x� y)(a� y)
dµ

V

(y)

+ g̃(x)� g̃(a) + f 0
(a+)(x� a)V 0

t

(x).

Since k = ` ⌘ 0 on [a, b] we have k
2

(a) = k0
2

(a+) = k0
2

(a�) = 0. Hence, since f is of class C2

on [a, b], we see that |k
2

(x)|  C|x� a|2 for x  a, therefore k
2

(x)/`(x) is of order |x� a|3/2,
thus

f(x) = f(a) + f 0
(a+)(x� a) +O(|x� a|3/2) for x  a,

which shows that f has also a continuous derivative.
We obtain the continuity of the next derivatives similarly. Moreover, away from the

boundary point the j-th derivative of f outside [a, b] is of the same order than that of g/V 0,
while near the boundary points it is governed by the derivatives of g nearby, therefore
(3.15) kf (j)k

L

1
([a,b]

c
)

 C 0
j

max

rj+2

kg(r)k
L

1
(R) .

Finally, it is clear that f behaves like (g(x) + c
g

)/V 0
(x) when x goes to infinity. ⇤

3.3. Defining the functions y
0,t

,y
1,t

, z
t

. To define the functions y
0,t

,y
1,t

, z
t

according to
(3.7), notice that Lemma 2.1 shows that the hypothesis of Lemma 3.2 are fulfilled. Hence,
as a consequence of Lemma 3.2 we find the following result (recall that  2 Cs,v means that
 is s times continuously differentiable with respect to the first variable and v times with
respect to the second).

Lemma 3.3. Let r � 7. If W,V 0 2 Cr, we can choose y
0,t

of class Cr�2, z
t

2 Cs,v for
s+ v  r � 5, and y

1,t

2 Cr�8. Moreover, these functions (and their derivatives) go to zero
at infinity like 1/V 0 (and its corresponding derivatives).

Proof. By Lemma 3.2 we have y
0,t

= ⌅

�1W 2 Cr�2. For z
t

, we can rewrite

⌅z
t

(·, y)[x] = ��
2

ˆ
1

0

y0
0,t

(↵x+ (1� ↵)y) d↵ + c(y)

= ��
2

ˆ
1

0

[y0
0,t

(↵x+ (1� ↵)y) + c
↵

(y)] d↵

where we choose c
↵

(y) to be the unique constant provided by Lemma 3.2 which ensures that
⌅

�1

[y0
0,t

(↵x+ (1� ↵)y) + c
↵

(y)] is smooth. This gives that c(y) =
´

1

0

c
↵

(y)d↵. Since ⌅

�1 is
a linear integral operator, we have

z
t

(x, y) = ��
2

ˆ
1

0

⌅

�1

[y0
0,t

(↵ ·+(1� ↵)y)](x) d↵ .

As the variable y is only a translation, it is not difficult to check that z
t

2 Cs,v for any
s+ v  r � 5. It follows that

�
⇣�
2

� 1

⌘
y0
0,t

+

ˆ
@
1

z
t

(z, ·) dµ
Vt(z)

�
+ c0
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is of class Cr�6 and therefore by Lemma 3.2 we can choose y
1,t

2 Cr�8, as desired.
The decay at infinity is finally again a consequence of Lemma 3.2. ⇤

3.4. Getting rid of the random error term E
N

. We show that the L1

PN
Vt

-norm of the error
term E

N

defined in (3.6) goes to zero. To this end, we first make some general consideration
on the growth of variances.

Following [MMS, Theorem 1.6], up to assume that V
t

goes sufficiently fast at infinity
(which we did, see Lemma 2.1), we have that there exists a constant ⌧

0

> 0 so that for all
⌧ � ⌧

0

,

PN

Vt

✓
D(L

N

, µ
Vt) � ⌧

r
logN

N

◆
 e�c⌧

2
N logN ,

where D is the 1-Wasserstein distance

D(µ, ⌫) := sup

kf 0k11

����
ˆ

f(dµ� d⌫)

����.

Since M
N

= N(L
N

� µ
Vt) we get

(3.16) D(L
N

, µ
Vt) =

1

N
sup

kf 0k11

����
ˆ

f dM
N

����,

hence for ⌧ � ⌧
0

(3.17) PN

Vt

✓
sup

kfkLip1

����
ˆ

f dM
N

���� � ⌧
p

N logN

◆
 e�c⌧

2
N logN .

This already shows that, if f is sufficiently smooth,
´
f(x, y)dM

N

(x) dM
N

(y) is of order at
most N logN . More preciselyˆ

f(x, y) dM
N

(x) dM
N

(y) =

ˆ
ˆf(⇣, ⇠)

✓ˆ
ei⇣xdM

N

(x)

ˆ
ei⇠xdM

N

(x)

◆
d⇠ d⇣,

so that with probability greater than 1� e�c⌧

2
0N logN we have

(3.18)
����
ˆ

f(x, y) dM
N

(x) dM
N

(y)

����  ⌧ 2
0

N logN

ˆ
| ˆf(⇣, ⇠)| |⇣| |⇠| d⇣ d⇠ .

To improve this estimate, we shall use loop equations as well as Lemma 3.2. Given a
function g and a measure ⌫, we use the notation ⌫(g) :=

´
g d⌫.

Lemma 3.4. Let g be a smooth function. Then, if ˜M
N

= NL
N

�NE
Vt [LN

], there exists a
finite constant C such that

�
(1)

N

(g) :=

����
ˆ

M
N

(g) dPN

Vt

����  C m(g) =: B1

N

(g)

�
(2)

N

(g) :=

ˆ ⇣
˜M
N

(g)
⌘
2

dPN

Vt
 C

⇣
m(g)2 +m(g)kgk1 + k⌅�1gk1kg0k1

⌘
=: B2

N

(g)

�
(4)

N

(g) :=

ˆ ⇣
˜M
N

(g)
⌘
4

dPN

Vt

 C
⇣
k⌅�1gk1kg0k1�(2)

N

(g) + kgk31m(g) +m(g)2�
(2)

N

(g) +m(g)4
⌘
=: B4

N

(g),
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where

m(g) :=
���1�

�

2

���k(⌅�1g)0k1 +

�

2

logN

ˆ
|ˆ⌅�1g|(⇠) |⇠|3 d⇠.

Proof. First observe that, by integration by parts, for any C1 function f

(3.19)
ˆ ✓

N
X

i

V 0
(�

i

)f(�
i

)� �
X

i<j

f(�
i

)� f(�
j

)

�
i

� �
j

◆
dPN

Vt
=

ˆ X

i

f 0
(�

i

) dPN

Vt

which we can rewrite as the first loop equation

(3.20)
ˆ

M
N

(⌅f) dPN

Vt
=

ˆ ⇣
1��

2

⌘ ˆ
f 0dL

N

+

�

2N

ˆ
f(x)� f(y)

x� y
dM

N

(x)dM
N

(y)

�
dPN

Vt
.

We denote

F
N

(g) :=
⇣
1� �

2

⌘ ˆ
(⌅

�1g)0 dL
N

+

�

2N

ˆ
⌅

�1g(x)� ⌅

�1g(y)

x� y
dM

N

(x) dM
N

(y)

so that taking f := ⌅

�1g in (3.20) we deduce
ˆ

M
N

(g) dPN

Vt
=

ˆ
F
N

(g) dPN

Vt
.

To bound the right hand side above, we notice that ⌅

�1g goes to zero at infinity like 1/V 0

(see Lemma 3.2). Hence we can write its Fourier transform and get
ˆ

⌅

�1g(x)� ⌅

�1g(y)

x� y
dM

N

(x) dM
N

(y)

= i

ˆ
d⇠ ⇠ ˆ⌅�1g(⇠)

ˆ
1

0

d↵

ˆ
ei↵⇠x dM

N

(x)

ˆ
ei(1�↵)⇠y dM

N

(y),

so that we deduce (recall (3.16))

sup

D(LN ,µVt )⌧0

p
logN/N

F
N

(g)  (1 + ⌧ 2
0

)m(g).

On the other hand, as the mass of M
N

is always bounded by 2N , we deduce that F
N

(g)
is bounded everywhere by Nm(g). Since the set {D(L

N

, µ
Vt) � ⌧

0

p
N logN} has small

probability (see (3.17)), we conclude that

(3.21)
����
ˆ

M
N

(g) dPN

Vt

����  Ne�c⌧

2
0N logNm(g) + (1 + ⌧ 2

0

)m(g)  C m(g),

which proves our first bound.
Before proving the next estimates, let us make a simple remark: using the definition of

M
N

and ˜M
N

it is easy to check that, for any function g,

(3.22)
���M

N

(g)� ˜M
N

(g)
��� =

����
ˆ

M
N

(g) dPN

Vt

����.
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To get estimates on the covariance we obtain the second loop equation by changing V (x)
into V (x) + � g(x) in (3.19) and differentiating with respect to � at � = 0. This givesˆ

M
N

(⌅f) ˜M
N

(g) dPN

Vt
=

ˆ
L
N

(fg0) dPN

Vt

+

ˆ ⇣
1� �

2

⌘ ˆ
f 0dL

N

+

�

2N

ˆ
f(x)� f(y)

x� y
dM

N

(x)dM
N

(y)

�
˜M
N

(g) dPN

Vt
.

(3.23)

We now notice that M
N

(⌅f) � ˜M
N

(⌅f) is deterministic and
´

˜M
N

(g) dPN

Vt
= 0, hence the

left hand side is equal to ˆ
˜M
N

(⌅f) ˜M
N

(g) dPN

Vt
.

We take f := ⌅

�1g and we argue similarly to above (that is, splitting the estimate depending
whether D(L

N

, µ
Vt) � ⌧

0

p
N logN or not, and use that | ˜M

N

(g)|  Nkgk1) to deduce that
�
(2)

N

(g) :=
´
| ˜M

N

(f)|2dPN

Vt
satisfies

�
(2)

N

(g)  kg0⌅�1gk1 +

ˆ
|F

N

(g)|| ˜M
N

(g)|dPN

Vt

 k⌅�1gk1 kg0k1 +N2e�c⌧

2
0N logNkgk1m(g) + C m(g)

ˆ
| ˜M

N

(g)|dPN

Vt

= k⌅�1gk1kg0k1 +N2e�c⌧

2
0N logNm(g)kgk1 + C m(g)�

(2)

N

(g)1/2.

(3.24)

Solving this quadratic inequality yields

�
(2)

N

(g)  C
h
m(g)2 +m(g)kgk1 + k⌅�1gk1kg0k1

i

for some finite constant C.
We finally turn to the fourth moment. If we make an infinitesimal change of potential

V (x) into V (x) + �
1

g
2

(x) + �
2

g
3

(x) and differentiate at �
1

= �
2

= 0 into (3.23) we get,
denoting g = g

3

,

ˆ
M

N

(⌅f) ˜M
N

(g
1

)

˜M
N

(g
2

)

˜M
N

(g
3

) dPN

Vt
=

ˆ X

�

L
N

(fg0
�(1)

)

˜M
N

(g
�(2)

)

˜M
N

(g
�(3)

)

�
dPN

Vt
+

ˆ ⇣
1� �

2

⌘ ˆ
f 0 dL

N

+

�

2N

ˆ
f(x)� f(y)

x� y
dM

N

(x) dM
N

(y)

�
M

N

(g
1

)

˜M
N

(g
2

)

˜M
N

(g
3

) dPN

Vt
,

(3.25)

where we sum over the permutation � of {1, 2, 3}. Taking ⌅f = g
1

= g
2

= g
3

= g, by (3.22),
(3.21), and Cauchy-Schwarz inequality we get

�
(4)

N

(g)  C
h
kg0⌅�1gk1�(2)

N

(g) + kgk31m(g) +m(g)�
(4)

N

(g)3/4 +m(g)2�
(2)

N

(g)
i
,

which implies

�
(4)

N

(g)  C
h
kg0⌅�1gk1�(2)

N

(g) + kgk31m(g) +m(g)2�
(2)

N

(g) +m(g)4
i
.

⇤

Applying the above result with g = ei�· we get the following:
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Corollary 3.5. Assume that V 0,W 2 Cr with r � 8. Then there exists a finite constant C
such that, for all � 2 R, ˆ

|M
N

(ei�·)|2dPN

Vt
 C[logN(1 + |�|7)]2 ,(3.26)

ˆ
|M

N

(ei�·)|4dPN

Vt
 C[logN(1 + |�|7)]4 .(3.27)

Proof. In the case g(x) = ei�x we estimate the norms of ⌅�1g by using Lemma 3.2, and we
get a finite constant C such that

k⌅�1gk1  C|�|2, k⌅�1g0k1  C|�|3,

whereas, since ⌅

�1g goes fast to zero at infinity (as 1/V 0), for j  r� 3 we have (see Lemma
3.2)

|ˆ⌅�1g|(⇠)  C
k⌅�1gk

C

j

1 + |⇠|j  C 0kgkCj+2

1 + |⇠|j  C 01 + |�|j+2

1 + |⇠|j .

Hence, we deduce that there exists a finite constant C 0 such that

m(g)  C logN

✓
|�|3 + 1 +

ˆ
d⇠

1 + |�|7

1 + |⇠|5 |⇠|
3

◆
= C 0

logN
�
1 + |�|7

�
,

B1

N

(g)  C 0
logN

�
1 + |�|7

�
,

B2

N

(g)  C 0
(logN)

2

�
1 + |�|7

�
2

,

B4

N

(g)  C 0
(logN)

4

�
1 + |�|7

�
4

.

Finally, for k = 2, 4, using (3.22) and (3.21) we haveˆ
|M

N

(ei�·)|k dPN

Vt
 2

k�1

✓ˆ
| ˜M

N

(ei�·)|k dPN

Vt
+

�
B1

N

(g)
�
k

◆

from which the result follows.
⇤

We can now estimate E
N

.
The linear term can be handled in the same way as we shall do now for the quadratic and

cubic terms (which are actually more delicate), so we just focus on them.
We have two quadratic terms in M

N

which sum up into

E1

N

= � 1

N

⇣
1��

2

⌘¨
@
1

z
t

(x, y) dM
N

(x) dM
N

(y)� �

2N

¨ y
1,t

(x)� y
1,t

(y)

x� y
dM

N

(x) dM
N

(y).

Writing

y
1,t

(x)� y
1,t

(y)

x� y
=

ˆ
1

0

y0
1,t

(↵x+ (1� ↵)y) d↵ =

ˆ
1

0

✓ˆ
cy0
1,t

(⇠)ei(↵x+(1�↵)y)⇠d⇠

◆
d↵

we see that¨ y
1,t

(x)� y
1,t

(y)

x� y
dM

N

(x) dM
N

(y) =

ˆ
d⇠ cy0

1,t

(⇠)

ˆ
1

0

d↵M
N

(ei↵⇠·)M
N

(ei(1�↵)⇠·
),
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so using (3.26) we get
ˆ

|E1

N

| dPN

Vt
 C

(logN)

2

N

✓ˆ
d⇠ |ˆy

1,t

|(⇠) |⇠|
�
1 + |⇠|7

�
2

+

¨
d⇠ d⇣ |ˆz

t

|(⇠, ⇣) |⇠|
�
1 + |⇠|7

� �
1 + |⇣|7

�◆
.

It is easy to see that the right hand side is finite if y
1,t

and z
t

are smooth enough (recall that
these functions and their derivatives decay fast at infinity). More precisely, to ensure that

|ˆy
1,t

|(⇠) |⇠|
�
1 + |⇠|7

�
2  C

1 + |⇠|2 2 L1

(R)

and
|ˆz

t

|(⇠, ⇣) |⇠|
�
1 + |⇠|7

� �
1 + |⇣|7

�
 C

1 + |⇠|3 + |⇣|3 2 L1

(R2

),

we need y
1,t

2 C17 and z
t

2 C11,7 \ C8,10, so (recalling Lemma 3.3) V 0,W 2 C25 is enough
to guarantee that the right hand side is finite.

Using (3.26), (3.27), and Hölder inequality, we can similarly bound the expectation of the
cubic term

E2

N

=

�

2N

˚
z
t

(x, y)� z
t

(x̃, y)

x� x̃
dM

N

(x) dM
N

(y) dM
N

(x̃)

= i
�

2N

¨
d⇠ d⇣ d@

1

z
t

(⇠, ⇣)

ˆ
1

0

d↵M
N

(ei↵⇠·)M
N

(ei(1�↵)⇠·
)M

N

(ei⇣·)

to get ˆ
|E2

N

| dPN

Vt
 C

(logN)

3

N

¨
d⇠ d⇣ |ˆz

t

(⇠, ⇣)| |⇠|
�
1 + |⇠|7

�
2

�
1 + |⇣|7

�
.

Again the right hand side is finite if z
t

2 C18,7 \ C15,10, which is ensured by Lemma 3.3 if
V 0,W are of class C30.

3.5. Control on the deterministic term CN

t

. By what we proved above we haveˆ
|RN

t

� CN

t

| dPN

Vt
 C

(logN)

3

N
,

thus, in particular,
��CN

t

� E[RN

t

]

��  C
(logN)

3

N
.

Notice now that, by construction,

RN

t

= �LYN

t

+N
X

i

W (�
i

) + cN
t

with cN
t

= �E[N
P

i

W (�
i

)] and

LY := divY + �
X

i<j

Yi � Yj

�
i

� �
j

�N
X

i

V 0
(�

i

)Yi,

and an integration by parts shows that, under P V

N

, E[LY] = 0 for any vector field Y. This
implies that E[RN

t

] = 0, therefore |CN

t

|  C (logN)

3

N

.
This concludes the proof of Proposition 3.1.
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4. Reconstructing the transport map via the flow

In this section we study the properties of the flow generated by the vector field YN

t

defined
in (3.3). As we shall see, we will need to assume that W,V 0 2 Cr with r � 15.

We consider the flow of YN

t

given by

XN

t

: RN ! RN , ˙XN

t

= YN

t

(XN

t

).

Recalling the form of YN

t

(see (3.3)) it is natural to expect that we can give an expansion
for XN

t

. More precisely, let us define the flow of y
0,t

,

(4.1) X
0,t

: R ! R, ˙X
0,t

= y
0,t

(X
0,t

), X
0,t

(�) = �,

and let XN

1,t

= (XN,1

1,t

, . . . , XN,N

1,t

) : RN ! RN be the solution of the linear ODE

˙XN,k

1,t

(�
1

, . . . ,�
N

) = y0
0,t

(X
0,t

(�
k

)) ·XN,k

1,t

(�
1

, . . . ,�
N

) + y
1,t

(X
0,t

(�
k

))

+

ˆ
z
t

(X
0,t

(�
k

), y) dM
X0,t

N

(y)

+

1

N

NX

j=1

@
2

z
t

⇣
X

0,t

(�
k

), X
0,t

(�
j

)

⌘
·XN,j

1,t

(�
1

, . . . ,�
N

)

(4.2)

with the initial condition XN

1,t

= 0, and M
X0,t

N

is defined as
ˆ

f(y)dM
X0,t

N

(y) =
NX

i=1


f(X

0,t

(�
i

))�
ˆ

fdµ
Vt

�
8 f 2 C

c

(R).

If we set
XN

0,t

(�
1

, . . . ,�
N

) :=

�
X

0,t

(�
1

), . . . , X
0,t

(�
N

)

�
,

then the following result holds.

Lemma 4.1. Assume that W,V 0 2 Cr with r � 15. Then the flow XN

t

= (XN,1

t

, . . . , XN,N

t

) :

RN ! RN is of class Cr�8 and the following properties hold: Let X
0,t

and XN

1,t

be as in (4.1)
and (4.2) above, and define XN

2,t

: RN ! RN via the identity

XN

t

= XN

0,t

+

1

N
XN

1,t

+

1

N2

XN

2,t

.

Then

(4.3) sup

1kN

kXN,k

1,t

k
L

4
(PV

N )

 C logN, kXN

2,t

k
L

2
(PV

N )

 CN1/2

(logN)

2,

where

kXN

i,t

k
L

2
(PV

N )

=

✓ˆ
|XN

i,t

|2dPV

N

◆
1/2

, |XN

i,t

| :=
s X

j=1,...,N

|XN,j

i,t

|2, i = 0, 1, 2.

In addition, there exists a constant C > 0 such that, with probability greater than 1�N�N/C,

(4.4) max

1k,k

0N

|XN,k

1,t

(�
1

, . . . ,�
N

)�XN,k

0

1,t

(�
1

, . . . ,�
N

)|  C logN
p
N |�

k

� �
k

0 |.
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Proof. Since YN

t

2 Cr�8 (see Lemma 3.3) it follows by Cauchy-Lipschitz theory that XN

t

is
of class Cr�8.

Using the notation ˆ� = (�
1

, . . . ,�
N

) 2 RN and

XN,k,�

t

(

ˆ�) := X
0,t

(�
k

) + �
XN,k

1,t

N
(

ˆ�) + �
XN,k

2,t

N2

(

ˆ�) = (1� �)X
0,t

(�
k

) + �XN,k

t

(

ˆ�)

and defining the measure M
X

N,s
t

N

as

(4.5)
ˆ

f(y) dM
X

N,s
t

N

(y) =
NX

i=1


f
�
(1� s)X

0,t

(�
i

)+ sXN,i

t

(

ˆ�)
�
�
ˆ

f dµ
Vt

�
8 f 2 C

c

(R).

by a Taylor expansion we get an ODE for XN

2,t

:

˙XN,k

2,t

(

ˆ�) =

ˆ
1

0

y0
0,t

⇣
XN,k,s

t

(

ˆ�)
⌘
ds ·XN,k

2,t

(

ˆ�)

+N

ˆ
1

0

h
y0
0,t

⇣
XN,k,s

t

(

ˆ�)
⌘
� y0

0,t

⇣
X

0,t

(�
k

)

⌘i
ds ·XN,k

1,t

(

ˆ�)

+

ˆ
1

0

y0
1,t

⇣
XN,k,s

t

(

ˆ�)
⌘
ds ·

⇣
XN,k

1,t

(

ˆ�) +
XN,k

2,t

(

ˆ�)

N

⌘

+

ˆ
1

0

 ˆ
@
1

z
t

⇣
XN,k,s

t

(

ˆ�), y
⌘
dM

X

N,s
t

N

(y)

�
ˆ
@
1

z
t

⇣
X

0,t

(�
k

), y
⌘
dM

X0,t

N

(y)

�
ds ·

⇣
XN,k

1,t

(

ˆ�) +
XN,k

2,t

(

ˆ�)

N

⌘

+

ˆ
@
1

z
t

⇣
X

0,t

(�
k

), y
⌘
dM

X0,t

N

(y) ·
⇣
XN,k

1,t

(

ˆ�) +
XN,k

2,t

(

ˆ�)

N

⌘

+

NX

j=1

ˆ
1

0


@
2

z
t

⇣
XN,k,s

t

(

ˆ�), XN,j,s

t

(

ˆ�)
⌘
� @

2

z
t

⇣
X

0,t

(�
k

), X
0,t

(�
j

)

⌘�
ds ·XN,j

1,t

(

ˆ�)

+

NX

j=1

ˆ
1

0


@
2

z
t

⇣
XN,k,s

t

(

ˆ�), XN,j,s

t

(

ˆ�)
⌘�

ds ·
XN,j

2,t

(

ˆ�)

N
,

(4.6)

with the initial condition XN,k

2,0

= 0. Using that

ky
0,t

k
C

r�2
(R)  C

(see Lemma 3.3) we obtain

(4.7) kX
0,t

k
C

r�2
(R)  C.

We now start to control XN

1,t

. First, simply by using that M
N

has mass bounded by 2N we
obtain the rough bound |XN,k

1,t

|  C N . Inserting this bound into (4.6) one easily obtain the
bound |XN,k

2,t

|  C N2.
We now prove finer estimates. First, by (3.17) together with the fact that X

0,t

and
x 7! z

t

(y, x) are Lipschitz (uniformly in y), it follows that there exists a finite constant C
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such that, with probability greater than 1�N�N/C ,

(4.8)
����
ˆ

z
t

(·,�) dMX0,t

N

(�)

����
1

 C logN
p
N.

Hence it follows easily from (4.2) that

(4.9) max

k

kXN,k

1,t

k1  C logN
p
N

outside a set of probability bounded by N�N/C .
In order to control XN

2,t

we first estimate XN

1,t

in L4

(PV

N

): using (4.2) again, we get

(4.10)
d

dt

⇣
max

k

kXN,k

1,t

k
L

4
(PV

N )

⌘

 C

✓
max

k

kXN,k

1,t

k
L

4
(PV

N )

+ 1 +

����
ˆ

z
t

(X
0,t

(�
k

), y) dM
X0,t

N

(y)

����
L

4
(PV

N )

◆
.

To bound XN

1,t

in L4

(PV

N

) and then to be able to estimate XN

2,t

in L2

(PV

N

), we will use the
following estimates:

Lemma 4.2. For any k = 1, . . . , N ,

(4.11)
����
ˆ

z
t

(X
0,t

(�
k

), y) dM
X0,t

N

(y)

����
L

4
(PV

N )

 C logN,

(4.12)
����
ˆ
@
1

z
t

⇣
X

0,t

(�
k

), y
⌘
dM

X0,t

N

(y)

����
L

4
(PV

N )

 C logN.

Proof. We write the Fourier decomposition of ⌘
t

(x, y) := z
t

(X
0,t

(x), X
0,t

(y)) to getˆ
⌘
t

(x, y) dM
N

(y) =

ˆ
⌘̂
t

(x, ⇠)

ˆ
ei⇠y dM

N

(y) d⇠ .

Since z
t

2 Cu,v for u+ v  r � 5 and X
0,t

2 Cr�2 (see (4.7)), we deduce that

|⌘̂
t

(x, ⇠)|  C

1 + |⇠|r�5

,

so that using (3.27) we get
����sup

x

����
ˆ
⌘
t

(x, y) dM
N

(y)

����

����
L

4
(PV

N )


ˆ ���⌘̂

t

(·, ⇠)
���
1

����
ˆ

ei⇠ydM
N

(y)

����
L

4
(PV

N )

d⇠

 C logN

ˆ ���⌘̂
t

(·, ⇠)
���
1

�
1 + |⇠|7

�
d⇠

 C logN,

provided r > 13. The same arguments work for @
1

z
t

provided r > 14. Since by assumption
r � 15, this concludes the proof. ⇤

Inserting (4.11) into (4.10) we get

(4.13) kXN,k

1,t

k
L

4
(PV

N )

 C logN 8 k = 1, . . . , N,

which proves the first part of (4.3).
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We now bound the time derivative of the L2 norm of XN

2,t

: using that M
N

has mass
bounded by 2N , in (4.6) we can easily estimate

����N
ˆ

1

0

h
y0
0,t

⇣
XN,k,s

t

(

ˆ�)
⌘
� y0

0,t

⇣
X

0,t

(�
k

)

⌘i
ds ·XN,k

1,t

(

ˆ�)

����  C|XN,k

1,t

|2 + C

N
|XN,k

1,t

| |XN,k

2,t

|,

ˆ
1

0

����
ˆ
@
1

z
t

⇣
XN,k,s

t

(

ˆ�), y
⌘
dM

X

N,s
t

N

(y)�
ˆ
@
1

z
t

⇣
X

0,t

(�
k

), y
⌘
dM

X0,t

N

(y)

���� ds

 C|XN,k

1,t

|+ C

N
|XN,k

2,t

|+ C

N

X

j

✓
|XN,j

1,t

|+ 1

N
|XN,j

2,t

|
◆
,

NX

j=1

ˆ
1

0

����@2zt
⇣
XN,k,s

t

(

ˆ�), XN,j,s

t

(

ˆ�)
⌘
� @

2

z
t

⇣
X

0,t

(�
k

), X
0,t

(�
j

)

⌘���� ds |X
N,j

1,t

|

 C

N

X

j

✓
|XN,j

1,t

|2 + 1

N
|XN,j

2,t

| |XN,j

1,t

|
◆
,

hence
d

dt
kXN

2,t

k2
L

2
(PV

N )

= 2

ˆ X

k

XN,k

2,t

· ˙XN,k

2,t

dPV

N

 C

ˆ X

k

|XN,k

2,t

|2 dPV

N

+ C

ˆ X

k

|XN,k

1,t

|2|XN,k

2,t

|dPV

N

+

C

N

ˆ X

k

|XN,k

1,t

||XN,k

2,t

|2dPV

N

+ C

ˆ X

k

|XN,k

1,t

||XN,k

2,t

| dPV

N

+

C

N2

ˆ X

k

|XN,k

2,t

|3 dPV

N

+

C

N

ˆ X

k,j

|XN,j

1,t

| |XN,k

1,t

| |XN,k

2,t

| dPV

N

+

C

N3

ˆ X

k,j

|XN,k

2,t

|2 |XN,j

2,t

| dPV

N

+

X

k

ˆ
XN,k

2,t

·
ˆ

1

0

ˆ
@
1

z
t

⇣
X

0,t

(�
k

), y
⌘
dM

X0,t

N

(y)

�
ds ·XN,k

1,t

dPV

N

+

C

N

ˆ X

k,j

|XN,j

1,t

|2 |XN,k

2,t

| dPV

N

+

C

N2

ˆ X

k,j

|XN,k

2,t

| |XN,j

2,t

| |XN,j

1,t

| dPV

N

+

C

N

ˆ X

k,j

|XN,k

2,t

| |XN,j

2,t

| dPV

N

.

Using the trivial bounds |XN,k

1,t

|  C N and |XN,k

2,t

|  C N2, (4.12), and elementary inequali-
ties such as, for instance,

X

k,j

|XN,j

1,t

| |XN,k

1,t

| |XN,k

2,t

| 
X

k,j

⇣
|XN,j

1,t

|4 + |XN,k

1,t

|4 + |XN,k

2,t

|2
⌘
,
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we obtain
d

dt
kXN

2,t

k2
L

2
(PV

N )

 C

✓
kXN

2,t

k2
L

2
(PV

N )

+

ˆ X

k

|XN,k

1,t

|4 dPV

N

+

ˆ X

k

|XN,k

1,t

|2 dPV

N

+

X

k

logN kXN,k

2,t

k
L

2
(PV

N )

kXN,k

1,t

k
L

4
(PV

N )

◆
.

(4.14)

We now observe, by (4.13), that the last term is bounded by

kXN

2,t

k2
L

2
(PV

N )

+ (logN)

2

X

k

kXN,k

1,t

k2
L

4
(PV

N )

 kXN

2,t

k2
L

2
(PV

N )

+ C N(logN)

4.

Hence, using that kXN,k

1,t

k
L

2
(PV

N )

 kXN,k

1,t

k
L

4
(PV

N )

and (4.13) again, the right hand side of
(4.14) can be bounded by CkXN

2,t

k2
L

2
(PV

N )

+ C N(logN)

4, and a Gronwall argument gives

kXN

2,t

k2
L

2
(PV

N )

 C N(logN)

4,

thus
kXN

2,t

k
L

2
(PV

N )

 C N1/2

(logN)

2,

concluding the proof of (4.3).
We now prove (4.4): using (4.2) we have

| ˙XN,k

1,t

(

ˆ�)� ˙XN,k

0

1,t

(

ˆ�)|

 |y0
0,t

(X
0,t

(�
k

))� y0
0,t

(X
0,t

(�
k

0
))| |XN,k

1,t

(

ˆ�)|

+ |y0
0,t

(X
0,t

(�
k

0
))| |XN,k

1,t

(

ˆ�)�XN,k

0

1,t

(

ˆ�)|+ |y
1,t

(X
0,t

(�
k

))� y
1,t

(X
0,t

(�
k

0
))|

+

����
ˆ ⇣

z
t

(X
0,t

(�
k

), y)� z
t

(X
0,t

(�
k

0
), y)

⌘
dM

X0,t

N

(y)

����

+

1

N

NX

j=1

ˆ
1

0

���@
2

z
t

⇣
X

0,t

(�
k

), X
0,t

(�
j

)

⌘
� @

2

z
t

⇣
X

0,t

(�
k

0
), X

0,t

(�
j

)

⌘��� ds |XN,j

1,t

(

ˆ�)|.

Using that |X
0,t

(�
k

) �X
0,t

(�
k

0
)|  C|�

k

� �
k

0 |, the bound (4.9), the Lipschitz regularity of
y0
0,t

, y
1,t

, z
t

, and @
2

z
t

, and the fact that
����
ˆ
@
1

z
t

(·,�) dMX0,t

N

(�)

����
1

 C logN
p
N

with probability greater than 1�N�N/C (see (3.17)), we get

| ˙XN,k

1,t

(

ˆ�)� ˙XN,k

0

1,t

(

ˆ�)|  C|XN,k

1,t

(

ˆ�)�XN,k

0

1,t

(

ˆ�)|+ C logN
p
N |�

k

� �
k

0 |

outside a set of probability less than N�N/C , so (4.4) follows from Gronwall.
⇤

5. Transport and universality

In this section we prove Theorem 1.5 on universality using the regularity properties of
the approximate transport maps obtained in the previous sections. We note that the hy-
potheses in the statement of the theorem are verified when V (x) = 1

2

x2, and in that cases
the fluctuation estimates follow the Sine

�

kernel in the bulk (after rescaling by N) and the
Tracy-Widom � fluctuations at the edge (after rescaling by N2/3), see [VV09, RRV11].
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Proof of Theorem 1.5. Let us first remark that the map T
0

from Theorem 1.4 coincides with
X

0,1

, where X
0,t

is the flow defined in (4.1). Also, notice that XN

1

: RN ! RN is an
approximate transport of PN

V

onto PV+W

N

(see Lemma 2.2 and Proposition 3.1). Set ˆXN

1

:=

XN

0,1

+

1

N

XN

1,1

, with XN

0,t

and XN

1,t

as in Lemma 4.1. Since XN

1

� ˆXN

1

=

1

N

2X
N

2,1

, recalling (4.3)
and using Hölder inequality to control the L1 norm with the L2 norm, we see that

����
ˆ

g( ˆXN

1

) dPN

V

�
ˆ

g(XN

1

) dPN

V

����  krgk1
1

N2

ˆ
|XN

2,1

| dPN

V

 krgk1
1

N2

kXN

2,1

k
L

2
(PV )

 Ckrgk1
(logN)

2

N3/2

.

(5.1)

This implies that also ˆXN

1

: RN ! RN is an approximate transport of PN

V

onto PV+W

N

. In
addition, we see that ˆXN

1

preserves the order of the �
i

with large probability. Indeed, first of
all X

0,t

: R ! R is the flow of y
0,t

which is Lipschitz with some constant L, so by Gronwall
we have

e�Lt

�
�
j

� �
i

�
 X

0,t

(�
j

)�X
0,t

(�
i

)  eLt
�
�
j

� �
i

�
, 8�

i

< �
j

.

In particular,
e�L

�
�
j

� �
i

�
 X

0,1

(�
j

)�X
0,1

(�
i

)  eL
�
�
j

� �
i

�
.

Hence, using the notation ˆ� = (�
1

, . . . ,�
N

), since
����
1

N
XN,j

1,t

(

ˆ�)� 1

N
XN,i

1,t

(

ˆ�)

����  C
logNp

N
|�

i

� �
j

|

(see (4.4)) with probability greater than 1�N�N/C we get

1

C

�
�
j

� �
i

�
 ˆXN,j

1

(

ˆ�)� ˆXN,i

1

(

ˆ�)  C
�
�
j

� �
i

�

with probability greater than 1�N�N/C .
We now make the following observation: the ordered measures ˜PN

V

and ˜PN

V+W

are obtained
as the image of PN

V

and PN

V+W

via the map R : RN ! RN defined as

[R(x
1

, . . . , x
N

)]

i

:= min

]J=i

max

j2J
x
j

.

Notice that this map is 1-Lipschitz for the sup norm.
Hence, if g is a function of m-variables we have kr(g �R)k1 

p
mkrgk1, so by Lemma

2.2, Proposition 3.1, and (5.1), we get
����
ˆ

g �R(N ˆXN

1

) dPN

V

�
ˆ

g �RdPN

V+W

����  C
(logN)

3

N

⇣
kgk1 +

p
m krgk1

⌘
.

Since ˆXN

1

preserves the order with probability greater than 1 � N�N/C , we can replace
g � R(N ˆXN

1

) with g(N ˆXN

1

� R) up to a very small error bounded by kgk1N�N/C . Hence,
since R

#

PN

V

=

˜PN

V

and R
#

PN

V+W

=

˜PN

V+W

, we deduce that, for any Lipschitz function
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f : Rm ! R,
����
ˆ

f
�
N(�

i+1

� �
i

), . . . , N(�
i+m

� �
i

)

�
d ˜P V+W

N

�
ˆ

f
⇣
N
�
ˆXN,i+1

1

(

ˆ�)� ˆXN,i

1

(

ˆ�)
�
, . . . , N

�
ˆXN,i+m

1

(

ˆ�)� ˆXN,i

1

(

ˆ�)
�⌘

d ˜P V

N

����

 C
(logN)

3

N

⇣
kfk1 +

p
m krfk1

⌘
.

Recalling that

ˆXN,j

1

(

ˆ�) = X
0,1

(�
j

) +

1

N
XN,j

1,1

(

ˆ�),

we first observe that, as X
0,1

is of class C2,

X
0,1

(�
i

)�X
0,1

(�
i+k

) = X 0
0,1

(�
i

)(�
i

� �
i+k

) +O(|�
i

� �
i+k

|2).

Also, by (4.4) we deduce that, out of a set of probability bounded by N�N/C ,

(5.2) |XN,i+k

1,1

(

ˆ�)�XN,i

1,1

(

ˆ�)|  C logN
p
N |�

i+k

� �
i

|,

and the right hand side is bounded by CM
N,m

logN/
p
N on the set {N |�

i+k

��
i

|  M
N,m

}
which has probability greater than 1 � p

N,m

. Hence, we see that with probability greater
than 1� p

N,m

�N�N/C it holds

ˆXN,i

1

(

ˆ�)� ˆXN,i+k

1

(

ˆ�) = X 0
0,t

(�
i

)(�
i

� �
i+k

) +O

✓
M

N,m

logN

N3/2

+

M2

N,m

N2

◆
,

from which the first bound follows easily.
For the second point we observe that a

V+W

= X
0,1

(a
V

) and, arguing as before,
����
ˆ

f
�
N2/3

(�
1

� a
V+W

), . . . , N2/3

(�
m

� a
V+W

)

�
d ˜P V+W

N

�
ˆ

f
⇣
N2/3

�
ˆXN,1

1

(

ˆ�)�X
0,1

(a
V

)

�
, . . . , N2/3

�
ˆXN,m

1

(

ˆ�)�X
0,1

(a
V

)

�⌘
d ˜P V

N

����

 C
(logN)

3

N

✓
kfk1 +

p
m

N1/3

krfk1
◆
.

Since, by (4.3),

ˆXN,i

1

(�) = X
0,1

(�
i

) +O
L

4
(PV

N )

✓
logN

N

◆

= X
0,1

(a
V

) +X 0
0,1

(a
V

)(�
i

� a
V

) +O(�
i

� a
V

)

2

+O
L

4
(PV

N )

✓
logN

N

◆
,

we conclude as in the first point. ⇤
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