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Abstract

In this paper, we prove that in small parameter regions, arbitrary unitary matrix
integrals converge in the large N limit and match their formal expansion. Secondly
we give a combinatorial model for our matrix integral asymptotics and investigate
examples related to free probability and the HCIZ integral. Our convergence result
also leads us to new results of smoothness of microstates. We finally generalize our
approach to integrals over the othogonal group.

Key words: Matrix integrals, HCIZ integral, Schwinger-Dyson equation
PACS: 15A52,
PACS: 46L54

Introduction

Matrix integrals provide models for physical systems (2D quantum gravitation,
gauge theory, renormalization, etc...), and generating series for a wide family
of combinatorial objects (see e.g [20,28]).
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Gaussian integrals are the most studied. It was shown by Brézin, Itzykson,
Parisi and Zuber [7] that perturbations of Gaussian integrals expand formally
as a generating function of maps, sorted by their genus when the dimension
N of the matrices is regarded as a parameter. Such ‘topological’ expansions
were also shown to hold in the large N limit, and then to match with the
formal expansion on a mathematical level of rigor by two authors [16,17,23]
and previously in the one matrix case in [1,2] and [12]. The relation of Gaus-
sian matrices with the enumeration of maps is an easy consequence of Wick
calculus -or equivalently, Feynman diagrams- see [28] for a good introduction.
According to ’t Hooft [20], such topological expansion should hold in the more
general context of models invariant under unitary conjugation. This leads us
to concentrate in this article on matrix integrals given by

IN(V, AN
i ) :=

∫

Um
N

eNTr(V (Ui,U
∗
i ,AN

i ,1≤i≤m))dU1 · · ·dUm (1)

where (AN
i , 1 ≤ i ≤ m) are N ×N deterministic uniformly bounded matrices,

dU denotes the Haar measure on the unitary group UN (normalized so that∫
UN

dU = 1) and V is a polynomial function in the non-commutative variables
(Ui, U

∗
i , AN

i , 1 ≤ i ≤ m). Tr denotes the usual trace on N × N matrices given
by Tr(A) =

∑N
i=1 Aii.

We will study in this article the first order asymptotics of matrix integrals
given by (1) when the joint distribution of the (AN

i , 1 ≤ i ≤ m) converges;
namely for all polynomial function P in m non-commutative indeterminates

lim
N→∞

1

N
Tr(P (AN

i , 1 ≤ i ≤ m)) = τ(P ) (2)

for some linear functional τ on the set of polynomials. Without loss of gener-
ality, we will assume that (AN

i , 1 ≤ i ≤ m) are Hermitian matrices.

For technical reasons, we assume that the polynomial V satisfies
Tr(V (Ui, U

∗
i , AN

i , 1 ≤ i ≤ m)) ∈ R, for all Ui ∈ UN , all Hermitian matrices
AN

i , for all i ∈ {1, · · · , m} and N ∈ N .

Under those very general assumptions, the only result proved so far is the
formal convergence of these matrix integrals. Namely, it was proved in [8] by
one author that for each k, the quantity

∂k

∂zk
N−2 log

∫

Um
N

ezNTr(V (Ui,U
∗
i ,AN

i ,1≤i≤m))dU1 · · ·dUm|z=0

converges towards a constant fk(V, τ) depending only on the limiting distribu-
tion of the AN

i ’s and V . Besides, if V is polynomial with integer coefficients,
then fk(V, τ) is a polynomial function with integer coefficients of the limit
moments of the AN

i ’s.
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In this paper we will answer affirmatively to the following, previously open
questions:

(1) Does the limit of the matrix integrals exist for small parameters z?

(2) Does the power series
∑

k
zk

k!
fk(V, τ) have a strictly positive radius of

convergence?
(3) Is the limit of the matrix integral equal to the sum of the power series?

The following Theorem is a precise decription of our results:

Theorem 0.1 Under the above hypotheses and if we further assume that the
spectral radius of the matrices (AN

i , 1 ≤ i ≤ m, N ∈ N) is uniformly bounded
(by say M), there exists ε = ε(M, V ) > 0 so that for z ∈ [−ε, ε], the limit

FV,τ (z) := lim
N→∞

1

N2
log

∫

Um
N

ezNTr(V (Ui,U
∗
i ,AN

i ,1≤i≤m))dU1 · · ·dUm

exists. Moreover, FV,τ (z) is an analytic function of z ∈ C∩B(0, ε) = {z ∈ C :
|z| ≤ ε} and for all k ∈ N,

∂k

∂zk
FV,τ (z)

∣∣∣∣∣
z=0

= fk(V, τ).

This also implies that the series FV,τ (z) has a positive radius of convergence, a
result which had not been proved by the techniques of [8] based on Weingarten
functions.

Our approach is based on non-commutative differential calculus (in particular
on the resulting Schwinger-Dyson or Master loop equations) and perturbation
analysis as developed in the context of Gaussian matrices in [16,17,23]. An-
other possibility to prove the equality between real and formal limits would
have been to show convergence of the integrals for complex parameters z. We
have not yet been able to follow this line successfully, and this remains an
open question.

An important example of unitary matrix integral is the so-called spherical
integral, studied by Harish-Chandra and by Itzykson and Zuber,

HCIZ(A, B) :=
∫

U∈UN

eNTr(U∗AUB)dU.

This integral is of fundamental importance in analytic Lie theory and was com-
puted for the first time by Harish-Chandra in [19]. In the last two decades it has
also become an issue to study its large dimension asymptotics [18,36,11,15].

Theorem 0.1 holds true for the HCIZ integral. It thus relates the results of
[8] (which computed the formal limit of the HCIZ integral) and those of [18]
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(where the limit of HCIZ(A, B) was obtained (regardless of any small pa-
rameters assumptions) by using large deviations techniques). Let us recall the
limit found in [18]. Let us define

I(µ) =
1

2
µ(x2) +

1

2

∫ ∫
log |x − y|dµ(x)dµ(y).

If µA (resp. µB) denote the limiting spectral measure of A (resp. B), assume
that I(µA) and I(µB) are finite. Then, the limit of N−2 log HCIZ(A, B) is
given, according to [18], by

I(µA, µB) := lim
N→∞

1

N2
log HCIZ(A, B) (3)

= −I(µA) − I(µB) − 1

2
inf
ρ,m

{∫ 1

0

∫ (
mt(x)2

ρt(x)
+

π2

3
ρt(x)3

)
dxdt

}

where the infimum is taken over m, ρ so that the measure-valued process
µt(dx) = ρt(x)dx is a continuous process, µ0 = µA, µ1 = µB and

∂tρt(x) + ∂xmt(x) = 0.

The inf over (ρt, mt) is taken (see [14]) at the solution of an Euler equation
for isentropic flow with negative pressure −π2

3
ρ3.

Theorem 0.1 shows that for some β0 > 0, I(µ√
βA

, µ√
βB

) is real analytic for

0 6 β < β0, a result which is not obvious from formula (3). Moreover, the
coefficients of this expansion count certain planar graphs (see section 5), as
summarized in the following theorem.

Theorem 0.2 Denote
√

β]µ the probability measure

√
β]µ(f) =

∫
f(
√

βx)dµ(x).

Assume that µA and µB are two compactly supported probability measures.
Then, there exists β0 > 0 such that for all β ∈ [0, β0],

I(
√

β]µA,
√

β]µB) =
∑

n≥0

βn
Mn(µA, µB)

converges absolutely. Moreover, we have

Mn(µA, µB) =
∑

m admissible maps of Σn

Mm(µA, µB).

Σn is the set of planar maps drawn above n vertices defined as stars of type
U∗AUB by gluing pairwise oriented arrows and possibly rings and Mm(µA, µB)
is the weight of the map.
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We refer the reader to section 5 for the definitions of stars, admissible maps
and weights. Our definition of planar maps is more complicated than those
arising in the topological expansion of Gaussian matrix models (and which
are directly related with Wick Gaussian calculus and Feynman diagrams):
indeed, the sums are signed and we have a notion of admissibility. However
it was an open question in mathematical physics to have a graphical model
for unitary integrals (see [36]). Moreover, this graphical interpretation gives a
new understanding of cumulants formulae (see section 6.2).

The convergence of other integrals was still unknown and it is one of the
points of this paper to show their convergence. We use it to study Voiculescu’s
microstates entropy evaluated at a set of laws which are small perturbations
of the law of free variables, and prove regularity of microstates

Theorem 0.3 For tracial states µ satisfying suitable assumptions described
in Theorem 8.1,

χ(µ) := lim inf
ε↓0

k↑∞

lim inf
N→∞

1

N2
log µ⊗m

N (ΓR(µ, ε, k))

= lim sup
ε↓0

k↑∞

lim sup
N→∞

1

N2
log µ⊗m

N (ΓR(µ, ε, k))

and a formula for χ(µ) can be given.

This result generalizes section 4 in [16].

The paper is organized as follows: after setting our working framework (sec-
tion 1), we study the action of perturbations upon the integral IN(V, AN

i )
and deduce some properties of the related Gibbs measure; namely that the so-
called empirical distribution of the matrices under this Gibbs measure satisfies
asymptotically an equation called the Schwinger-Dyson equation (section 2).
Then, we study this equation and obtain uniqueness for parameters of the po-
tential V small enough (section 3) and analyticity (section 4). We also describe
a (new) combinatorial solution of Schwinger-Dyson equation (section 5) and
therefore of the first order of unitary matrix integrals. We deduce applications
of these results to free probability (section 6) and to the convergence of matrix
integrals IN(V, AN

i ) (section 7). Finally, we point out some consequence of our
result for free entropy (section 8). we finish the paper (section 9) by consider-
ing the case where the integration is over the orthogonal group instead of the
unitary group, and we show that the first order of such integrals is the same.
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1 Notations

Let UN be the set of N ×N unitary matrices, MN the set of N ×N matrices
with complex entries, HN the subset of Hermitian matrices of MN and AN

the subset of antihermitian matrices of MN . Throughout this article, m will
be a fixed integer. We denote by (AN

i )1≤i≤m an m-tuple of N × N Hermitian
matrices. We shall assume that the sequence (AN

i )1≤i≤m is uniformly bounded
for the operator norm, and without loss of generality that they are bounded
by one,

sup
N,i

‖AN
i ‖∞ = sup

N,i

lim
p→∞

(
Tr((AN

i )2p)
) 1

2p ≤ 1.

1.1 Free ∗-algebra

Let C〈(Ui, U
∗
i , Ai)1≤i≤m〉 be the set of polynomial functions in the non-commutative

indeterminates (Ui, U
∗
i , Ai)1≤i≤m with the relation

UiU
∗
i = U∗

i Ui = 1.

Note that in general we may want to consider models with a number of “deter-
ministic” indeterminates Ai different from the number of “random unitary” in-
determinates Ui, but this general case can be obtained from the previous one by
looking only at a sub-algebra and our convention simplifies a bit the notations.
The algebra C〈(Ui, U

∗
i , Ai)1≤i≤m〉 is equipped with the involution ∗ so that

A∗
i = Ai, (Ui)

∗ = U∗
i ; (U∗

i )∗ = Ui and for any X1, · · · , Xn ∈ (Ui, U
∗
i , Ai)1≤i≤m,

any z ∈ C,

(zX1X2 · · ·Xn−1Xn)∗ = z̄X∗
nX∗

n−1 · · ·X∗
2X

∗
1 .

Note that for any Ui ∈ UN , Ai ∈ HN , and P ∈ C〈(Ui, U
∗
i , Ai)1≤i≤m〉,

(P (Ui, U
∗
i , Ai, 1 ≤ i ≤ m))∗ = P ∗(Ui, U

∗
i , Ai, 1 ≤ i ≤ m)

where in the left hand side ∗ denotes the standard involution on MN . We
denote C〈(Ui, U

∗
i , Ai)1≤i≤m〉sa the set of self-adjoint polynomials; P = P ∗, and

C〈(Ui, U
∗
i , Ai)1≤i≤m〉a the set of anti-self-adjoint polynomials ; P ∗ = −P . In

the sequel, except when something different is explicitly assumed, we shall
make the hypothesis that the potential V belongs to C〈(Ui, U

∗
i , Ai)1≤i≤m〉sa,

which insures that Tr
(
V ((Ui, U

∗
i , AN

i )1≤i≤m)
)

is real-valued for all Ui ∈ UN and

AN
i ∈ HN . Conversely, any potential V such that Tr

(
V ((Ui, U

∗
i , AN

i )1≤i≤m)
)

is real-valued for all Ui ∈ UN and AN
i ∈ HN is self-adjoint up to the addition

of some commutators (which does not change the trace). Indeed, this implies

that Tr
(
(V − V ∗)((Ui, U

∗
i , AN

i )1≤i≤m)
)

vanishes, which insures that V −V ∗ =
∑

l PlQl−QlPl for some polynomials Pl, Ql, cf [9] Lemma 2.9 for a probabilistic
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proof or [22], Proposition 2.3 for a direct proof (in the real symmetric case, but
directly adaptable to the Hermitian case). Then, W := V +

∑
l(QlPl−PlQl)/2

is self-adjoint.

1.2 Non-commutative derivatives

On C〈(Ui, U
∗
i , Ai)1≤i≤m〉, we define the non-commutative derivatives ∂i, 1 ≤

i ≤ m, given by the linear form such that

∂iAj = 0, ∂iUj = 1i=jUj ⊗ 1 ∂iU
∗
j = −1i=j1 ⊗ U∗

j , ∀j,

and satisfying the Leibnitz rule, namely, for P, Q ∈ C〈(Ui, U
∗
i , Ai)1≤i≤m〉,

∂i(PQ) = ∂iP × (1 ⊗ Q) + (P ⊗ 1) × ∂iQ. (4)

Here, × denotes the product P1 ⊗ Q1 × P2 ⊗ Q2 = P1P2 ⊗ Q1Q2. We also let
Di be the corresponding cyclic derivatives such that if m(A⊗B) = BA, then
Di = m ◦ ∂i.

If q is a monomial in C〈(Ui, U
∗
i , Ai)1≤i≤m〉, we more specifically have

∂iq =
∑

q=q1Uiq2

q1Ui ⊗ q2 −
∑

q=q1U∗
i q2

q1 ⊗ U∗
i q2 (5)

Diq =
∑

q=q1Uiq2

q2q1Ui −
∑

q=q1U∗
i
q2

U∗
i q2q1. (6)

1.3 Bounded tracial states

Let T be the set of tracial states on the algebra generated by the variables
(Ui, U

∗
i , Ai)1≤i≤m, i.e. the set of linear forms on C〈(Ui, U

∗
i , Ai)1≤i≤m〉 such that

for all P, Q ∈ C〈(Ui, U
∗
i , Ai)1≤i≤m〉,

µ(PP ∗) ≥ 0, µ(PQ) = µ(QP ), µ(1) = 1.

Throughout this article, we restrict ourselves to tracial states µ ∈ T such that

µ((A∗
i Ai)

n) ≤ 1 ∀n ∈ N, ∀i ∈ {1, · · · , m}.

We denote M this subset of T .

Note that for any monomial q ∈ C〈(Ui, U
∗
i , Ai)1≤i≤m〉, Hölder’s inequality

implies that for any µ ∈ M,
µ(qq∗) ≤ 1. (7)
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We endow M with its weak topology: µn converges to µ if and only if for all
P ∈ C〈(Ui, U

∗
i , Ai)1≤i≤m〉,

lim
n→∞

µn(P ) = µ(P ).

If we give to the set of polynomials the norm l1 (i.e. the norm of polynomial is
the sum of the modulus of its coefficients) then equation (7) proves that M is
the unit ball of T for the weak* topology. Thus by Banach Alaoglu’s theorem,
M is a compact metric space.

We denote µ̂N the empirical distribution of matrices AN
i ∈ HN and Ui ∈ UN

which is given for all P ∈ C〈(Ui, U
∗
i , Ai)1≤i≤m〉 by

µ̂N(P ) =
1

N
Tr
(
P (Ui, U

∗
i , AN

i , 1 ≤ i ≤ m)
)
.

This object will be of crucial interest for us.

The notation M|(Ai)1≤i≤m
stands for the set of tracial states of M restricted to

the algebra generated by the (Ai)1≤i≤m. In particular, the limiting distribution
τ given by (2) belongs to M|(Ai)1≤i≤m

.

1.4 Tracial power states

Let V ∈ C〈(Ui, U
∗
i , Ai)1≤i≤m〉sa and µN

V be the probability distribution on Um
N

given by

µN
V (dU1, · · · , dUm) = IN(V, AN

i )−1 exp(NTr(V ))dU1 · · ·dUm.

We define, for all P ∈ C〈(Ui, U
∗
i , Ai)1≤i≤m〉,

µ̄N
V (P ) := EµN

V
[µ̂N(P )] :=

∫ 1
N

TrPeNTrV dU1 . . . dUn
∫

eNTrV dU1 . . . dUn

.

In the following, an n-tuple of monomials (qi)1≤i≤n in C〈(Ui, U
∗
i , Ai)1≤i≤m〉 will

be fixed and we shall take V = Vt =
∑n

i=1 tiqi. Then, µ̄N
Vt

(P ) can be expanded
as a power series in the ti’s;

µ̄N
Vt

(P ) :=
∑

k∈Nn

tk

k!

∂|k|

∏
i ∂tki

i

∣∣∣∣∣
ti=0

E[µ̂N(P )eN2µ̂N (Vt)]

E[eN2µ̂N (Vt)]
. (8)

We will call µ a ‘tracial power state’ of M if and only if it is a linear map

µ : C〈(Ui, U
∗
i , Ai)1≤i≤m〉 → C[[t]]
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with for all a, b, µ(ab) = µ(ba). Here C[[t]] is the algebra of power series in
the variables t1, · · · , tn. In particular, we may view µN

Vt
as a tracial power

state of M. The space of tracial power states is equipped with the topology
of convergence coefficient by coefficient.

1.5 Cumulants.

The classical cumulants {Ck}k≥0 are defined via their formal generating func-
tion:

log E(etX) =
∑

k≥0

tkCk(X, . . . , X)/k!

This equality holds also for t in a complex neighborhood of 0 if X is bounded.
We also define the cumulants Ck for k in Nn:

log E(et1X1+···+tnXn) =
∑

k∈Nn

tkCk(X1, . . . , Xn)/k!

where k = (k1, · · · , kn), k! =
∏

i ki!, |k| =
∑

i ki and tk =
∏

i t
ki
i . Note that:

Ck(X1, . . . , Xk) = C|k|(X1, · · · , X1, · · · , Xn, · · · , Xn)

where in the previous list the variable Xi appears ki times.

Let us recall some properties of these cumulants.

Proposition 1.1 The following two statements hold true:

(1)
E(Y et1X1+...+tnXn)

E(et1X1+...+tnXn)
=

∑

k∈Nn

tkC1,k(Y, X1, . . . , Xn)/k!

(2)

E(Y Zet1X1+...+tnXn)

E(et1X1+...+tnXn)
− E(Y et1X1+...+tnXn)

E(et1X1+...+tnXn)

E(Zet1X1+...+tnXn)

E(et1X1+...+tnXn)

=
∑

k≥0

tkC1,1,k(Y, Z, X1, . . . , Xn)/k!

Proof.

Item (1) is obtained by replacing t1X1 + . . .+ tnXn by yY + t1X1 + . . .+ tnXn

and differentiating the generating function of the cumulants in y at y = 0.

Item (2) is obtained by replacing tX by yY + zZ + tX and differentiating the
equality defining the cumulants in y and z at y, z = 0.

2
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2 Matrix models

We first investigate the asymptotic behavior of the random state µ̂N under
µN

V as a random tracial state. We then consider µ̄N
V = µN

V (µ̂N) evaluated at a
polynomial and study its convergence when N goes to infinity as a power series
in the parameters of the potential V . We show that they satisfy asymptotically
the same type of equations called Schwinger-Dyson (or Master loop) equations.

2.1 Behavior of µ̂N

The main result of this section is the following

Theorem 2.1 Assume that V is self-adjoint. For all polynomial
P ∈ C〈(Ui, U

∗
i , Ai)1≤i≤m〉,

lim
N→∞

{
µ̂N ⊗ µ̂N(∂iP ) + µ̂N(DiV P )

}
= 0 µN

V a.s.

In particular, any limit point µ ∈ M of µ̂N under µN
V satisfies the Schwinger-

Dyson equation

µ ⊗ µ(∂iP ) + µ(DiV P ) = 0 (9)

for all P ∈ C〈(Ui, U
∗
i , Ai)1≤i≤m〉 and µ|(Ai)1≤i≤m

= τ.

The idea of the proof, rather common in quantum field theory and successfully
used in [16,17,23], is to obtain equations on µ̂N by performing an infinitesi-
mal change of variables in IN (V, AN

i ). More precisely we make the change of
variables U = (U1, · · · , Um) ∈ Um

N → Ψ(U) = (Ψ1(U), · · · , Ψm(U)) ∈ Um
N

with

Ψj(U) = Uje
λ
N

Pj(U)

where the Pj are antihermitian polynomials (i.e. P ∗
j = −Pj). This change

of variables becomes very close to the identity as N goes to infinity, thus
justifying the terminology “infinitesimal”.

Lemma 2.1 The function Ψ is a local diffeomorphism and its Jacobian JΨ

has the following expansion when N goes to infinity

| detJΨ(U)| = e
λ
N

∑
i
Tr⊗Tr(∂iPi(Ui,U

∗
i ,Ai,1≤i≤m))+O(1)

where O(1) is uniform on the unitary group (but may depend on P ).

Proof.

Let us first recall the following two elementary results of differential geometry:

10



(1) The map exp : MN −→ MN is differentiable and:

DiffM exp .H := lim
ε→0

ε−1(eM+εH − eM) =

(
+∞∑

k=0

(AdM)k

(k + 1)!
H

)
eM

where AdM is the operator defined by AdMH = MH − HM .
(2) If P ∈ C〈(Ui, U

∗
i , Ai)1≤i≤m〉 is considered as a function of the Ui’s, then

it is differentiable and its differential with respect to the i-th variable in
the direction A, for A in AN , is

DiffiP.A := lim
ε→0

ε−1(P (U1, · · · , Ui−1, Uie
εA, Ui+1, · · · ) − P (U)) = ∂iP]A.

As a consequence, if we fix A in AN and i ∈ {1, · · · , m}, we have

DiffiΨj(U).A = 1i=jUjA + UjDiff λ
N

Pj(U) exp .(
λ

N
∂iPj]A)

= 1i=jUjA +
λ

N

+∞∑

k=0

Uj

(Ad λ
N

Pj(U))
k

(k + 1)!
(∂iPj]A)e

λ
N

Pj(U)

= 1i=jUjA + Uj

λ

N
Φij(U)A.

with Φij(U) the linear map from AN into MN given by

Φij(U)A :=
+∞∑

k=0

(Ad λ
N

Pj(U))
k

(k + 1)!
(∂iPj]A)e

λ
N

Pj(U).

We can factorize the term Uj to obtain

DiffΨ(U) = U ◦ (IdAm
N

+
λ

N
Φ(U)) (10)

with U ◦ (M1, · · · , Mm) = (U1M1, · · · , UmMm) and Φ the linear operator from
Am

N to Mm
N whose blocks are the Φij(U).

Since the operator norms of the Ai’s and the Ui’s are uniformly bounded
in N , the operator norm of Ad λ

N
Pj(U) as an operator on (MN , ‖.‖∞) is also

bounded. Thus, Φij(U) is a uniformly bounded operator from AN to MN ,
and the norm of λ

N
Φ(U) is less than 1/2 for N large enough. For those N , Ψ

is a local diffeomorphism.

We can now compute the Jacobian of Ψ

| detJΨ(U)| := | det DiffΨ(U)| = | detU || det(I +
λ

N
Φ(U))|.
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Clearly, | det U | = 1. Besides, the positivity of the eigenvalues of I +λΦ(U)/N
allows us to replace the determinant by the exponential of a trace:

| detJΨ(U)| = exp(Tr log(I +
λ

N
Φ(U))) = exp


−

∑

p≥1

(−λ)p

pNp
Tr(Φ(U)p)


 .

Note that since Φ is a bounded operator on AN , which is a space of dimension
N2, the p-th term in the previous sum is at most of order N 2−p. We only look
at the terms up to the order O(N). A quick computation shows that if

ϕ :
AN → AN

X → ∑
l AlXBl

is considered as a real endomorphism, Trϕ =
∑

l TrAlTrBl. Indeed, if we con-
sider E(kl), 1 ≤ k, l ≤ N the canonical basis of AN , then

E(kl)rj :=
√
−1

1r=k,j=l + 1r=l,j=k√
2(1 + 1k=l)

for k ≤ l and

E(kl)rj :=
1r=k,j=l − 1r=l,j=k√

2

for k ≥ l, Trϕ =
∑

k,l Tr(E(kl)∗ϕ(E(kl))) =
∑

l TrAlTrBl. This is sufficient to
obtain the first term of the Jacobian:

λ

N
Tr(Φ(U)) =

λ

N

∑

i

Tr(Φii(U)) =
λ

N

∑

i

Tr ⊗ Tr(∂iPi(Uj, U
∗
j , Aj)) + O(1)

with O(1) is uniformly bounded on Um
N . Here we used that the operator norm

of Ad λ
N

Pj(U) is uniformly small.

2

Before making the change of variables we show that Ψ is a bijection.

Lemma 2.2 For N large enough, Ψ is a diffeomorphism of Um
N .

Proof.

First observe that since Ψ is a local diffeomorphism, its image is open in Um
N .

Besides, since Um
N is compact and Ψ is continuous, the image is compact and

therefore closed. Thus by connectedness of Um
N , and since Ψ(Um

N ) is closed,
open and non-empty, Ψ is surjective.
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The only property we still need to prove is the injectivity of Ψ. If Ψ(U) = Ψ(V )
then for all j ∈ {1, · · · , m}, then

U∗
j Vj − I = e

λ
N

Pj(U)e−
λ
N

Pj(V ) − I.

Thus, if N is sufficiently large so that λ
N

Pj(U) is in a domain where the
function exp is 2-Lipschitz, we obtain

‖Uj − Vj‖∞ = ‖UjV
∗
j − 1‖∞ = ‖e λ

N
Pj(U)e

−λ
N

Pj(V ) − 1‖∞

= ‖e λ
N

Pj(U) − e
λ
N

Pj(V )‖∞ ≤ 2|λ|
N

‖Pj(U) − Pj(V )‖∞

with ‖.‖∞ the operator norm. Since (Pj, 1 ≤ j ≤ m) are uniformly Lipschitz
on Um

N , we conclude that
∑m

j=1 ‖Uj − Vj‖∞ vanishes for sufficiently large N .

2

We can now prove Theorem 2.1.

Proof.

Let us define

Y N(P ) =
∑

i

(
1

N
Tr(DiV Pi) +

1

N
Tr ⊗ 1

N
Tr(∂iPi)

)
.

We expand TrV (Ψ(U)i, Ψ(U)∗i , Ai, 1 ≤ i ≤ m) as

Tr(V (Ψ(U)i, Ψ(U)∗i , Ai, 1 ≤ i ≤ m)) − Tr(V (Ui, U
∗
i , Ai, 1 ≤ i ≤ m))

=
λ

N

∑

j

Tr(DjV Pj(Ui, U
∗
i , Ai, 1 ≤ i ≤ m)) + O(N−1) (11)

and perform the change of variables U → Ψ(U) in IN (V, AN
i );

IN (V, AN
i ) :=

∫
eNTr(V (Ui,U

∗
i ,Ai,1≤i≤m))dU1 · · ·dUm

=
∫

eNTr(V (Ψ(U)i ,Ψ(U)∗i ,Ai,1≤i≤m))| detJΨ(U)|dU1 · · ·dUm

=
∫

eNY N (P )+0(1)eNTr(V (Ui,U
∗
i ,Ai,1≤i≤m))dU1 · · ·dUm

where we used (11) and Lemma 2.1. O(1) is of order one independently of
N and uniformly on the unitary matrices (U1, · · · , Um). Thus we have proved
that ∫

eNY N (P )dµN
V (U) = O(1).

13



Borel-Cantelli’s lemma thus insures that

lim sup
N→∞

Y N(P ) ≤ 0 a.s.

and the converse inequality holds by changing P into −P since Y N is linear
in P . This proves the first statement of Theorem 2.1. The last result is simply
based on the compactness of M and the fact that any limit point must then
satisfy the same asymptotic equations as µ̂N .

2

Another consequence of this convergence is the existence of solutions to (9)
for any self-adjoint potential V (since any limit point of µ̂N in the compact
metric space M will satisfy it) a fact already proved in [6]. Moreover, since
these solutions are limit points of µ̂N , they belong to M and in particular
|µ(q)| ≤ 1 for any monomial q.

2.2 Moments of µ̂N

In this section, we denote by E the expectation with respect to the Haar mea-
sure on the unitary group. The goal of this section is to show (see Proposition
2.1) that cumulants also satisfy a formal version of Schwinger-Dyson equation.
We start with the following lemma:

Lemma 2.3 If, for all i all N , all monomials q1, · · · , qn and all k = (k1, · · · , kn)
in Nn, then

N2E
(
µ̂N ⊗ µ̂N (∂iP ) ·

(
µ̂N(q1)

)k1 · · ·
(
µ̂N(qn)

)kn
)

+
∑

j

kjE
((

µ̂N(q1)
)k1 · · ·

(
µ̂N(qj)

)kj−1 · · ·
(
µ̂N(qn)

)kn

µ̂N(Diqj · P )
)

= 0

Proof.

Following Lemma 2.1, we write down the change of variable

Ψi : U → (U1, · · · , Ui−1, Uie
λPi(U), Ui+1, · · · , Um)

in the integral
∫
((µ̂Nq1)

k1 · · · (µ̂Nqn)kn)dU1 · · ·dUm, where the integration is
performed with respect to the Haar measure. The Jacobian Ji of Ψi satisfies

| detJi(U)| = 1 +
λ

N
Tr ⊗ Tr(∂iP ) + o(λ).
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and we have the expansion

Tr(qj(Ψ(U)i, Ψ(U)∗i , Ai, 1 ≤ i ≤ m)) = Tr(qj(Ui, U
∗
i , Ai, 1 ≤ i ≤ m))

+ λTr(Diqj · P (Ui, U
∗
i , Ai, 1 ≤ i ≤ m)) + λ2o(λ)

where the o(λ)’s are for a given P uniform bounds in N . The first order of the
Taylor expansion of this change of variables around λ = 0 proves the claim.

2

Proposition 2.1 For all i, we have the following identity of power series:

E[µ̂N ⊗ µ̂N(∂iP )eN2µ̂N (Vt)] + E[µ̂N(DiVt · P )eN2µ̂N (Vt)] = 0.

Proof.

For all k, the left hand side of the equality of Lemma 2.3 multiplied by
N2|k|−2/k! is the coefficient of tk in the series

E[µ̂N ⊗ µ̂N(∂iP )eN2µ̂N (Vt)] + E[µ̂N(DiVt · P )eN2µ̂N (Vt)].

Lemma 2.3 shows that it vanishes. Thus this series is zero.

2

Finally we study the large N limit µf of these tracial power states (the expo-
nent f stands for “formal”).

Theorem 2.2 Let Vt be the polynomial
∑n

j=1 tjqj. The sequence of tracial
power state µ̄N

Vt
converges when N goes to infinity to some limit µf in the sense

that, for all P each coefficient of the power series µ̄N
Vt

(P ) converges towards
µf(P ) in C[[N−1]]. Besides, µf satisfies the following family of equations in
C[[N−1]]:

µf ⊗ µf(∂iP ) + µf(DiVt · P ) = 0,

for all i and for all P .

Proof.

First, we prove the existence of a limit. By the first item of Proposition 1.1,
we can express µ̄N

Vt
(P ) as a sum over cumulants,

µ̄N
Vt

(P ) =
∑

k∈Nn

tkC1,k(
1

N
TrP, NTrq1, · · · , NTrqn)/k!.

The limit in N , of the C1,k(
1
N

TrP, NTrq1, · · · , NTrqn) was proved to exist in
[8] so that µf is well defined.
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Item (2) from Proposition 1.1 implies that:

E( 1
N

TrP1
1
N

TrP2e
NTrV )

E(eNTrV )
− E( 1

N
TrP1e

NTrV )

E(eNTrV )

E( 1
N

TrP2e
NTrV )

E(eNTrV )

=
∑

k≥0

tk

k!
C1,1,k(

1

N
TrP1,

1

N
TrP2, NTrq1, · · · , NTrqn).

Now, it follows from [8] that each coefficients of the series on the right hand
side decays like N−2 so that the coefficientwise limit is zero.

The proof of the Theorem follows from this observation and from Proposition
2.1.

2

3 Study of the Schwinger-Dyson equation

We have shown that the limit points of the matrix model satisfy the Schwinger-
Dyson equation (9). The aim of this section is to study this equation and show
that it has a unique solution under appropriate boundedness assumptions.

Definition 3.1 Let τ be an element of M|(Ai)1≤i≤m
. A tracial state µ ∈ M

is said to satisfy Schwinger-Dyson equation SD[V,τ ] if and only if for all
P ∈ C〈(Ai)1≤i≤m〉,

µ(P ) = τ(P )

and for all P ∈ C〈(Ui, U
∗
i , Ai)1≤i≤m〉, all i ∈ {1, · · · , m},

µ ⊗ µ(∂iP ) + µ(DiV P ) = 0.

Let V be in C〈(Ui, U
∗
i , Ai)1≤i≤m〉. The polynomial V can be written as a sum

V =
n∑

i=1

tiqi(Uj, U
∗
j , Aj, 1 ≤ j ≤ m)

with monomial functions qi and complex numbers ti. We let D be the maximal
degree of the monomials qi.

Here we prove that if the parameters (ti, 1 ≤ i ≤ m) are small enough this
equation has a unique solution µ.

Theorem 3.1 Let D be an integer and τ a tracial state in M|(Ai)1≤i≤m
. There

exists ε = ε(D, m) > 0 such that if |ti| ≤ ε, there exists at most one solution
µ to SD[V,τ ].
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From this and Theorem 2.1 we deduce the following

Corollary 3.1 Assume that V is self-adjoint. Let D be an integer and τ a
tracial state in M|(Ai)1≤i≤m

. There exists ε = ε(D, m) > 0 such that if |ti| ≤ ε,
µ̂N converges almost surely to the unique solution µ of the Schwinger-Dyson
equation. Moreover, µ̄N

V = µN
V (µ̂N) converges as well to this solution as N goes

to infinity.

This result is obvious since Theorems 2.1 and 3.1 show that µ̂N has a unique
limit point, and thus converges almost surely. The convergence of µ̄N

V is then
a direct consequence of bounded convergence theorem since µ̂N ∈ M.

We would like to draw the attention of the reader on the fact that Theorem 2.1
and Corollary 3.1 do not use the assumption that the matrices (AN

i , 1 ≤ i ≤ m)
are deterministic, but only that they are bounded and have a converging
joint distribution. Therefore these two results extend to the case where these
matrices are random, independent of the (Ui, 1 ≤ i ≤ m), and satisfy the
above two conditions almost surely. This observation implies that our result
can also encompass the case of the truncated GUE or other classical bounded
matrix models.

We are now ready to prove Theorem 3.1:

Proof.

Let µ be a solution to SD[V,τ ]. Note that if q is a monomial in C〈(Ui, U
∗
i , Ai)1≤i≤m〉,

then either q does not depend on (Uj, U
∗
j , 1 ≤ j ≤ m) and µ(q) = τ(q)

defines µ on this polynomial or q can be written as q = q1U
a
i q2 for some

i ∈ {1, · · · , m}, a ∈ {−1, +1} and monomials q1, q2. Then, by the traciality
assumption, µ(q) = µ(q2q1U

a
i ) = µ(Ua

i q′) with q′ = q2q1. Without loss of gen-
erality we assume that the last letter of q′ is not U−a

i . We next use SD[V,τ ]
to compute µ(Ua

i q) for some monomial q. We assume first that a = −1. Then,
by (4),

∂i (U
∗
i q) = −1 ⊗ (U ∗

i q) + U∗
i ⊗ 1 × ∂iq.

Taking the expectation, we thus find by (5), since µ(1) = 1, that

µ(U∗
i q)= µ ⊗ µ(U∗

i ⊗ 1 × ∂iq) + µ(DiV q)

=
∑

q=q1Uiq2

µ(q1)µ(q2) −
∑

q=q1U∗
i
q2

µ(U∗
i q1)µ(U∗

i q2)

+
∑

j

tijµ(qijq) (12)

where DiV =
∑

j tijqij is a decomposition of DiV in monomials qij. Note that
the sum runs at most on Dn terms and that all the tij are bounded by max |ti|.
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A similar formula is found when a = +1 by differentiating qUi (or by using
µ(qUi)) = µ((qUi)

∗) = µ(U∗
i q∗)).

We next show that (12) and its equivalent for a = +1 characterize uniquely
µ ∈ M when the tij are small enough. It will be crucial here that µ(q) is
bounded independently of the ti’s (here by the constant 1).

Now, let µ, µ′ ∈ M be two solutions to SD[V,τ ] and set

∆(`) = sup
deg(q)≤`

|µ(q) − µ′(q)|

where the supremum holds over monomials of C〈(Ui, U
∗
i , Ai)1≤i≤m〉 with total

degree in the Uj and U∗
j less than `. Namely, if the monomial (or word) q

contains a+
j times Uj and a−

j times U∗
j , we assume

∑m
j=1(a

+
j + a−

j ) ≤ `. Note
that by traciality of µ,

∆(`) = max
1≤i≤m

a∈{+1,−1}

sup
degq≤`−1

|µ(Ua
i q) − µ′(Ua

i q)| (13)

and that by (12), we find that, for q with degree less than ` − 1,

|µ(U∗
i q) − µ′(U∗

i q)| ≤
∑

q=q1Uiq2

|(µ − µ′)(q1)| +
∑

q=q1Uiq2

|(µ − µ′)(q2)|

+
∑

q=q1U∗
i q2

|(µ − µ′)(U∗
i q1)| +

∑

q=q1U∗
i q2

|(µ − µ′)(U∗
i q2)|

+
∑

j

tij|(µ − µ′)(qijq)|.

A similar formula holds for |µ(Uiq) − µ′(Uiq)| by conjugation, therefore

∆(`) ≤ 2
`−2∑

p=1

∆(p) + 2
`−1∑

p=1

∆(p) + nDε∆(` + D − 1)

where we used that deg(q1) ∈ {0, · · · , ` − 2}, deg(q2) ∈ {0, · · · , ` − 2} (but
∆(0) = 0) and deg(qij) ≤ D and assumed |ti| ≤ ε. Hence, we have proved that

∆(`) ≤ 4
`−1∑

p=1

∆(p) + nDε∆(` + D).

Multiplying these inequalities by γ` we get, since H(γ) :=
∑

`≥1 γ`∆(`) is finite
for γ < 1,

H(γ) ≤ γ

1 − γ
H(γ) +

nDε

γD
H(γ)
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resulting with H(γ) = 0 for γ so that 1 > γ
1−γ

+ nDε
γD . Such a γ > 0 exists when

ε is small enough. This proves the uniqueness.

2

As a corollary, we characterize asymptotic freeness by a Schwinger-Dyson
equation, a result which was already obtained in [32], Proposition 5.17.

Corollary 3.2 A tracial state µ satisfies SD[0,τ ] if and only if, under µ, the
algebras generated by (Ai, 1 ≤ i ≤ m) and (Ui, U

∗
i , 1 ≤ i ≤ m) are free and the

Ui’s is a family of free variables

µ(Ua
i ) = 0 ∀a ∈ Z\{0}.

Proof.

By the previous theorem, it is enough to verify that the law µ of free variables
(Ai, Ui, U

∗
i )1≤i≤m satisfies SD[0,τ ]. So take P = Ua1

i1
B1 · · ·Uap

ip
Bp with some

Bk’s in the algebra generated by (Ai, 1 ≤ i ≤ m). We wish to show that for
all i ∈ {1, · · · , m},

µ ⊗ µ(∂iP ) = 0.

Note that by linearity, it is enough to prove this equality when µ(Bj) = 0 for
all j. Now, by definition, we have

∂iP =
∑

k:ik=i,ak>0

ak∑

l=1

Ua1
i1

B1 · · ·Bk−1U
l
i ⊗ Uak−l

i Bk · · ·Uap

ip
Bp

−
∑

k:ik=i,ak<0

ak−1∑

l=0

Ua1
i1

B1 · · ·Bk−1U
−l
i ⊗ Uak+l

i Bk · · ·Uap

ip
Bp.

Taking the expectation on both sides, since µ(U i
j) = 0 and µ(Bj) = 0 for all

i 6= 0 and j, we see that freeness implies that the right hand side is null (recall
here that in the definition of freeness, two consecutive elements have to be in
free algebras but the first and the last element can be in the same algebra).
Thus, µ ⊗ µ(∂iP ) = 0 which proves the claim.

2

4 Formal solution and analyticity

We have shown in Theorem 2.2 that the limit points of the formal model also
satisfy an equation similar to Schwinger-Dyson’s equation. The only difference
with the definition at 3.1 is that Schwinger-Dyson equation is on the space
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of tracial states while for the formal model, the equation holds on the space
of tracial power states. In order to prove that the formal model matches the
matrix model we need to study this formal equation and show that the series
have a positive radius of convergence, hence providing a solution to SD[V,τ ]
as defined in Definition 3.1.

Definition 4.1 Let Vt =
∑

i tiqi be a polynomial. Let τ be a tracial power state
in M|(Ai)1≤i≤m

. A tracial power state µ ∈ M is said to satisfy Schwinger-Dyson
equation SDf [Vt,τ ] if and only if for all P ∈ C〈(Ai)1≤i≤m〉,

µ(P ) = τ(P )

and for all P ∈ C〈(Ui, U
∗
i , Ai)1≤i≤m〉, all i ∈ {1, · · · , m}, the equation

µ ⊗ µ(∂iP ) + µ(DiVt P ) = 0

holds in C[[t]].

We already know, due to Theorem 2.2, that there exists a solution to this
equation. We now prove that this solution is unique.

Theorem 4.1 There exists a unique tracial power state t → µt which satisfies
Schwinger-Dyson equation SDf [Vt,τ ].

Proof.

Let µt be a tracial power state solution of SDf [Vt,τ ]. There exists a family
µk,k = (k1, · · · , kn) ∈ Nn in the algebraic dual of C〈(Ui, U

∗
i , Ai)1≤i≤m〉 such

that for all P ,

µt(P ) =
∑

k∈Nn

n∏

i=1

tki
i

ki!
µk(P ).

We will now show that the µk are uniquely inductively defined by the relation
given by SDf [Vt,τ ]. Let us define ej the canonical basis of Rn. We get the
following equalities, for all k,

(1) If P is in C〈(Ai)1≤i≤m〉, µk(P ) = τ(P )1k=0,
(2) If P = RUiS with S in C〈(Ai)1≤i≤m〉, µk(P ) = µk(SRUi),
(3) If P = RU∗

i S with R in C〈(Ai)1≤i≤m〉 and S does not contain any Uj

(but may contain the U ∗
j ), µk(P ) = µk(U∗

i SR),
(4) If q does not contain any Uj,

µk(U∗
i q) = −

∑

q=q1U∗
i
q2

(
k

k′

)
∑

k′+k′′=k

µk
′

(U∗
i q1)µ

k
′′

(U∗
i q2)

+
∑

j

kjµ
k−ej(U∗

i qDiqj).
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(5) And for all q,

µk(qUi) = −
∑

q=q1Uiq2

∑

k′+k′′=k

(
k

k′

)
µk′

(q1Ui)µ
k′′

(q2Ui)

+
∑

q=q1U∗
i
q2

∑

k′+k′′=k

(
k

k′

)
µk

′

(q1)µ
k
′′

(q2) −
∑

j

kjµ
k−ej(DiqjqUi).

This allows to compute uniquely any µk(P ). The first relation takes care of the
non random case, the relations 2 and 3 use the traciality to place a variable
U in a convenient place. Finally relations 4 and 5 allow to compute µk(P )
as a function which depends on the µk′

(Q) with deg Q < deg P and k′ 6 k
(first terms) or on the µk

′
(Q) with k′ < k (last term). This is a well founded

induction. Thus the µk are uniquely defined.

2

We next show that this solution is not only a tracial power state but that if
we evaluate it with some ti’s in C we obtain a family of solutions µt of the
non-formal equation SD[Vt, τ ], which depends analytically on the parameters
(ti)1≤i≤n.

Theorem 4.2 There exists ε > 0 such that for t ∈ Cn, max1≤i≤n |ti| ≤ ε,
the tracial power state µt solution of SDf [Vt, τ ] is a convergent series. For
all polynomials P , t ∈ B(0, ε) = {t ∈ Cn : max1≤i≤n |ti| ≤ ε} −→ µt(P ) is
analytic, and there exists a family (µk,k = (k1, · · · , kn) ∈ Nn) in the algebraic
dual of C〈(Ui, U

∗
i , Ai)1≤i≤m〉 such that for all P ,

µt(P ) =
∑

k∈Nn

n∏

i=1

tki

i

ki!
µk(P )

converges absolutely for max1≤i≤n |ti| ≤ ε.

An immediate consequence of this result is that the tracial power state solution
is also after taking the ti’s in a small parameters region an actual solution of
SD[Vt, τ ], and therefore by Theorem 3.1, equals the real solution. This will
be a key to prove Theorem 0.1 (see section 7).

Corollary 4.1 The tracial power state solution of Schwinger-Dyson equation
SDf [Vt, τ ] is a convergent series for small t. In addition it matches the real
solution of SD[Vt, τ ] which thus depends analytically in the parameters t of
the potential in a neighborhood of the origin.

Let us now prove Theorem 4.2.

Proof.
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According to the proof of Theorem 4.1 the µk are uniquely defined by the fam-
ily of relations (1)-(5). We only need to control the growth of the coefficients
µk(P ) to show that µt(P ) is indeed convergent for small enough parameters.

To bound these quantities, we use the Catalan numbers

C0 = 1, Ck+1 =
∑

06p6k

CpCk−p

and the fact that they satisfy the exponential growth inequality Ck+1 6 4Ck.
We denote Ck :=

∏
i Cki

and for A > 0, DA
k := Ak−1Ck−1 for k ≥ 1, DA

0 :=
0. The two key properties of this sequence is first that it is sub-geometric
(DA

k+1 6 4ADA
k ) and secondly it satisfies DA

k = A
∑

0<p<k DA
p DA

k−p. Now our
induction hypothesis is that there exists A, B > 0 such that for all k, for all
monomial P of degree p,

|µk(P )|
k!

6 CkB
kDA

p . (14)

We prove this bound by induction, and the relations (1)-(5) which define the
µk. For k = (0, · · · , 0) this bound is satisfied since DA

p ≥ 1. We will check the
induction for a polynomial of the form qUi since it is the most complicated
case.

|µk(qUi)|
k!

6
∑

q=q1Uiq2
k′+k′′=k

|µk
′
(q1Ui)|
k′!

|µk
′′
(q2Ui)|
k′′!

+
∑

q=q1U∗
i

q2

k′+k′′=k

|µk′
(q1)|

k′!

|µk′′
(q2)|

k′′!
+
∑

kj 6=0

|µk−1j(DA
i qjq)|

(k − 1j)!

Now we use the induction hypothesis. If q is of degree p − 1,

|µk(qUi)|
k!CkBkDA

p

6 2
∑

0<r<p

k′+k′′=k

Ck′Bk′
DA

r Ck′′Bk′′
DA

p−r

CkBkDA
p

+ D
∑

j

Ck−1j
Bk−1DA

p+D

CkBkDA
p

6 2
∏

i

Cki+1

Cki

1

A
+ nD

(4A)D

B
.

The point is that we can choose A, B > 0 such that this last quantity is less
than 1. For example take A > 4n+1 and then B > 2nD(4A)D.

Thus, for ‖t‖ := maxi |ti| < 1/4B, for all P in C〈(Ui, U
∗
i , Ai)1≤i≤m〉, the series

∑
k

∏
i

t
ki
i

ki!
µk(P ) is absolutely convergent.

2
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5 Combinatorics.

The purpose of this section is to provide a graphical approach to the solution
of the Schwinger-Dyson equation, and therefore to the computation of unitary
matrix integrals and free entropy (see sections 6, 7 and 8). Actually, the proof
of Theorem 4.1 gives a recursive way of computing a tracial power state solu-
tion to the formal Schwinger-Dyson equation, and in turn, numerical solutions
with arbitrary precision.

Before giving a detailed description of our combinatorial model, we start with
an overview. We need the notions of a star, which is a pictorial encoding of a
monomial of C〈(Ui, U

∗
i , Ai)1≤i≤m〉, of root star, which is a distinguished star,

and of a map, which is a specific planar decoration over a set of stars and one
root star.

The goal of this section is to show that the limits of integrals on the space
of unitary matrices are generating function of the number of some maps as
described above. However we are not interested in all maps, but rather in some
that arise from an admissible construction, which leads us to the concept of
admissible maps. Last, we need the notion of weight of a map, and our
result will be in terms of sum over admissible maps of weights.

For the sake of clarity, although our usual playground is the algebra
C〈(Ui, U

∗
i , Ai)1≤i≤m〉 and our definitions work in full generality, we restrict

ourselves in the examples to the case of one single unitary matrix U and two
variables A1 =: A and A2 =: B. We first start with the definition of stars and
root stars, in the spirit of [16,17].

Definition 5.1 (1) A star is a circle endowed with the clockwise orienta-
tion, decorated with elements such as colored incoming or outgoing ar-
rows, and colored diamonds. One of the element is marked.

(2) To each letter X in the alphabet (Ai, Ui, U
∗
i )1≤i≤m, we associate bijectively

an element as follows: a diamond of color i if X = Ai and a ring of
color i if X = Ui or U∗

i . In the case of Ui (resp. U∗
i ) we attach before

the ring an outgoing arrow of color i (resp. we attach after the ring an
incoming arrow of color i) outside of the circle.

(3) To a monomial q ∈ C〈(Ui, U
∗
i , Ai)1≤i≤m〉, we associate in a canonical way

a star of type q by drawing on the clockwise oriented circle the elements
associated to the successive letters of q, while the element corresponding
to the first letter of q is marked (or distinguished).

(4) A root star of type q is a star with a distinguished first element. Al-
though the maps are on the sphere, in the graphical representation of this
section we will draw them on the plane and, to highlight the role of the
root star we will draw it in this section such that it contains all the other
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stars. Thus on drawings, the root star will be the border of the outer face.
It contains the point of the sphere which was send to infinity in order to
make a planar representation is inside the circle of the root star. Besides,
on a root star we will distinguish a root element. If q contains no Ui nor
U∗

i , there are no root element. If q contains a Ui, the ring associated to
the last (Ui, 1 ≤ i ≤ m) is the root element. If q contains no Ui but some
U∗

i , the ring associated to the first (U ∗
i , 1 ≤ i ≤ m) is called the root

element.
(5) A multistar is a set of k stars inside a root star drawn on the same

plane with a coherent orientation.

The figure 1 shows a concrete example of a multistar. In the middle of the
picture there is a star of type U ∗AUB and, surrounding it, a root star of type
U∗A5UB2U∗A3UB.
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oriented edge
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ring

Fig. 1. Star of type U ∗AUB and root star of type U ∗A5UB2U∗A3UB.

We are now ready to introduce the main objects in our combinatorial model,
namely, maps:

Definition 5.2 A map is a decoration of a multistar into a connected graph
embedded in the plane by drawing two species of edges between rings:

(1) A first category of edges, called “dotted edges”, can be drawn between two
different rings either attached to two outgoing arrows of the same color
or to two incoming arrows of the same color. These edges can only have
rings as endpoints, not diamonds nor arrows. Rings can have any number
of dotted edges going out of them, possibly none.

(2) A second category of edges, called “colored oriented edge” arises from the
connection of an outgoing arrow (associated with a variable Ui) with an
incoming arrow (associated to a variable U ∗

i ) of the same color. These
colored oriented edges form a pairing between the set of Ui’s and the set
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of U∗
i ’s: exactly one incoming arrow is glued to each outgoing arrow.

In addition, all the above edges do not cross, all arrows are paired but rings
can be attached to any number of dotted edges (including to none).

In the remainder of this section we keep considering pictures drawn on the
sphere (and in fact on the plane). They therefore give rise to graphs with
vertices, edges and faces - together with additional decoration. For our forth-
coming definitions, we need to clarify the notion of ‘face’: we consider that
faces of a graph are the connected components of the complement of the
graph on the sphere. However, we take the convention that the original stars
are ‘fattened vertices’. Therefore the interior of stars will not be considered as
faces (neither is the exterior of the root star).

Each ‘face’ component of a map is isomorphic to a disc. This is due to the
fact that our map is embedded into a sphere. This condition would not be
granted in the case of an embedding into a higher genus oriented 2D compact
manifold. In this case it would have to stand in the definition of a map of
‘higher genus’: this will be of use for future work but for the sake of simplicity
we do not emphasize this notion in this paper.

Next, we define the weight of a map. The boundary of a face is homeomorphic
to a circle, it is given an orientation (the orientation of the sphere) and is
decorated with diamonds (note that all arrows have been paired); it thus has
the structure of a star except for the distinguished element.

Definition 5.3 Assume we are given the tracial state τ of Equation (2).

• First we define the weight of a face of a map. The boundary of a face has the
structure of a star, i.e. it has the topology of a circle with some diamonds
on it. We can therefore associate each of these boundaries with a monomial
in the Ai’s, given up to cyclic permutation (or equivalently up to knowing
its first letter). The weight of a face is the trace τ(q) (which does not depend
on cyclic permutations) of the monomial q associated with its boundary.

• The weight of the map m, denoted by Mm(τ), is the product of the weights
of its faces multiplied by (−1)number of dotted edges.

As we said before, not all maps will contribute and we need to define now
the notion of admissible maps. Admissibility can be checked by an inductive
procedure IP, which ressembles Tutte’s surgery [29]. The idea is to define a
procedure which examine one by one each edge of the map. Once an edge has
been checked to be correct we will declare it ”frozen” and proceed. Thus at
each step of this inductive procedure our map contains a certain number of
frozen edges which are exactly the part of the map which has been checked.
Each step of the procedure amounts to froze some new edges. A map will be
declared admissible if we can continue this procedure until all edges are frozen.
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Inductive Procedure IP :

Case a- The root star has no root element. Then it can not be connected to
any other star. Hence, the graph can not be a map unless there is no other
star in which case the map is just the trivial graph with no edges. The trivial
graph is declared admissible.

Case b- The root star has a root element which is associated to a Ui (resp. a
U∗

i ), for some i ∈ {1, · · · , m}.

1-Then, we first check the admissibility of the dotted edges starting from this
root element. These dotted edges are naturally ordered from then nearest of
the arrow to the farthest. We first consider the non-frozen dotted edge which is
the farthest and declare it admissible if its other vertex is a ring of an outgoing
arrow (resp. ingoing arrow if the root element is attached to an ingoing arrow)
and if there is no other dotted edge attached to this ring which is farther from
its arrow and not frozen. Once this condition is verified, we freeze this dotted
edge and the root element remains the root element. We check all dotted edges
of the root element inductively. Once a dotted edge has been checked to be
admissible, it is frozen and we go on checking the others (starting with the
non-frozen one farthest from the root). Once all the dotted edges of the root
element have been checked we look at the second step which examine the
arrow.

2- When all dotted edges are frozen (or when there was no dotted edges on
the root element), we check that the arrow of the root element is paired with
an arrow of the opposite direction with no unfrozen dotted edges attached on
the ring next to it (note that if the root element comes from a U ∗

i , it can only
be paired with an element of another star since by definition there is no more
outgoing arrow on the root star).

Now that we have frozen all the edges touching our root element, the the
map may have been cut by those frozen eges into disjoint subgraphs whose
boundary (which may contain frozen dotted edges) is homeomorphic to a disc
(In the case where it has edges glued with an internal star, we see these other
stars as part of the external star by following all the graph connected to the
external boundary). In each of these subgraphs, we declare the first (following
the orientation of the plane) element (corresponding to a Ui or a U∗

i ) after
the last frozen dotted edge of its boundary as distinguished. We then define
the root element of the boundaries of these subgraphs by the same procedure
as for the root star. The boundary of each subgraph is then a star and these
subgraphs have now the structure of a map; we will call them submaps.

For instance, in figure 2, once the two dotted edges and the arrow of the root
element have been frozen, the map is cut into three disjoint submaps, one
which is right of the arrow and which is trivial, one between the arrow and the
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righmost dotted edge which is also a trivial map and the third one which is left
of the rightmost arrow and whose boundary contains the remaining boundary,
the righmost dotted edge, the internal star and twice the ither dotted edges
(since it links the two star we have to visit it twice when we explore the new
border). The boundary of this left subgraph is now seen as a star of type
q = UB5U∗AUBU∗A. This left subgraph has the same distinguished element
as before but a new root element (here the outgoing arrow on its boundary
corresponding to the first U in q).

Case c- We continue the inductive procedure on the submaps until all edges
have been checked to be admissible and have been frozen.

Now we can define weighted sum of admissible maps.

Definition 5.4 Assume we are given the tracial state τ of (2).

Let P and r1, · · · , rn be monomials, we define the weight of the multistar
containing a root star of type P and for each i a star of type i by: P :

Mr1,··· ,rn(P ) =
∑

Mm(τ)

where the sum runs over all admissible maps m constructed above this multi-
star. Assuming that Vt = t1q1 + . . . + tnqn where qi are monomials, we define
the power series in the formal parameter t::

Mt(P ) =
∑

k∈Nn

tk

k!
Mk(P )

with Mk1,··· ,kn(P ) = Mq1,··· ,q1,··· ,qn,··· ,qn(P ) where the monomial qj appears in kj

successive position and tk =
∏

tki
i , k! =

∏
ki!.

Remark that we do not count all the maps which contain the stars r1,. . . ,rn

but only those that are constructed using our inductive rules; they for instance
forbid to glue the two same rings more than twice.

However, a given map is counted at most once since there is only one way to
decompose it using the procedure IP. Indeed, it is easy to check that at each
step we have only one possibility for the next step since the dotted edges have
to be drawn one after the other following the orientation and no new dotted
edge can be drawn after the arrow of the root has been glued.

Example

Let us show some examples. We start from one root star and a star on the
sphere (see figure 1). We want to construct maps above these stars with our
rules, starting with the root element shown by the arrow outside the root star.
Figures 2, 3 and 5 are examples of such maps. Note that the weights of the
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maps of figures 2 and 3 are the same, the only difference is the way the three
rings are glued. There is a third way to glue those three rings shown in figure
4 which is a map but can not be obtained by our construction rule (and thus
is not admissible).
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Fig. 2. A possible map. Its weight is τ⊗5(A6 ⊗ B ⊗ B2 ⊗ A3 ⊗ B)
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Fig. 3. Another one. Its weight is τ⊗5(A6 ⊗ B ⊗ B2 ⊗ A3 ⊗ B)
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Fig. 4. A counterexample: IP is violated because the leftmost is linked to the other
star by a dotter edge which is not the farthest from the arrow
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Fig. 5. An admissible map. Its weight is τ⊗6(A5 ⊗ A ⊗ B ⊗ B2 ⊗ A3 ⊗ B)
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We now come to the main theorem of this section, namely the graphical ex-
pansion result for Mt:

Theorem 5.1 Let V =
∑

16i6n tiqi be a polynomial. Let µt be a solution of
SD[Vt, τ ] and Mt be the power series defined for monomials P by

Mt(P ) =
∑

k∈Nn

n∏

i=1

tki
i

ki!
Mk(P )

where Mk(P ) is the weighted sum of planar maps with one root star of type
P and ki stars of type qi. If we extend the definition of Mt by linearity to any
polynomial P then the series Mt(P ) is absolutely convergent in a neighborhood
of the origin and,

Mt(P ) = µt(P ).

Proof.

For the sake of clarity we first prove the case V = 0 and show that M(P ) :=
M0(P ) = µt(P ) for a monomial P .

We proceed by induction on the total degree in Ui, 1 ≤ i ≤ m, in q.

Suppose that there is no variable Ui in P . Then either there is no variable U ∗
i

and both sides of the equality are equal to τ(P ), or there is a U ∗
i and both

sides vanish: the left hand side by freeness between Ui and the Ai’s and the
fact that all non-trivial moments of Ui are 0 and the right hand side because
one can not glue the arrow coming out from this U ∗

i anywhere.

We assume our identification proved when the degree of P in the Ui’s is less
than k. We next take q with degree in the Ui’s equal to k + 1. Thus we can
assume that there is a Ui in P , and we consider the last one in P so that
P = pUib with b a polynomial in the U ∗

j and the Aj’s, 1 ≤ j ≤ m. By
definition, M(pUib) = M(bpUi) since it depends only on the position of the
last Ui. Thus, we may assume that P is of the form QUi with Q of degree k.
We apply Schwinger-Dyson equation to this quantity:

µ(QUi) = −
∑

Q=RUiS

µ(RUi) ⊗ µ(SUi) +
∑

Q=RU∗
i
S

µ(R) ⊗ µ(S) (15)

Now, we can apply our induction hypothesis since all polynomials appearing
in the right hand side have degree strictly smaller than k + 1.

We need to show that this is exactly the induction relation for maps. To
construct a map above a star of type QUi, we first look at the root element Ui
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and we have to decide what to do first with the dotted edges. There are two
possibilities:

(1) The first possibility is that there is no dotted edge going outside of the
ring of the root. In such a case, we can glue the arrow to any other arrow
of opposite direction and of the same color (corresponding to a variable
U∗

i ). This implies that Q decomposes into RU ∗
i S and we construct an

oriented edge between Ui and U∗
i . Thus we separate the map into two

parts and we have to construct a map above the R part and another one
above the S part (this is the case 2 of IP). This gives

M(R)M(S)

possibilities which is exactly the possibilities counted by the second term
in the right hand side of (15).

(2) The second possibility is that we glue the root ring to another ring with
a dotted edge. Thus Q must decompose into RUiS and the creation of
the dotted edge amounts to decompose the map into RUi and SUi and
again to continue the construction of the map we will have to construct a
map above the RUi part and another one above the SUi part (note here
that when a dotted edge is attached to a circle of an Ui, the arrow and
the circle keep their structure and live on the right of the dotted edge).
In this procedure, we have fixed one dotted edge and thus multiplied the
contribution of the resulting map by −1 (this is the case 1 of IP). The
resulting contribution to M is therefore −M(RUi)M(SUi). Thus, the first
term in (15) computes the operation of gluing rings by dotted edges.

Putting these two possibilities together we see that the state µ and the enumer-
ation of maps M satisfy the same induction so that they are equal; M(pUib) =
µ(pUib) for any b monomial which do no contain any of the (Ui, 1 ≤ i ≤ m).
Note here that no dotted edges between rings of incoming arrows can be
drawn since if there are no outgoing arrows in a map, but some U ∗

i , there
is no contribution. By traciality of µ, we deduce as well that M0 is tra-
cial. Indeed, if we decompose p, q into p = p1Ui1p2Ui2 · · · pn−1Uin−1pn and
q = q1Uj1q2Uj2 · · · qr−1Ujr−1qr with monomials pi, qi which does no contain
any of the (Ui, 1 ≤ i ≤ m), then

M(pq) = M((pq1Uj1q2Uj2 · · · qr−1Ujr−2qr−1Ujr−1qr)

= µ(pq1Uj1q2Uj2 · · · qr−1Ujr−2qr−1Ujr−1qr) = µ(pq)

= µ(qp) = µ((qp1Ui1p2Ui2 · · · pn−1)Uin−1pn) = M(qp).

Now we turn to the general V case.

We first check the induction relation when the root star P contains a Ui for
some i ∈ {1, · · · , m} so that we can write P = QUi. Let us denote for n-
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tuples k = (k1, · · · , kn) and ` = (l1, · · · , ln),
(
k

`

)
=
∏

i

(
ki

li

)
. We check the

formal equality by considering the induction relation, now given by:

µk+ej(QUi) = −
∑

`≤k+ej

∑

Q=RUiS

(
k + ej

`

)
µ`(RUi) ⊗ µk+ej−`(SUi)

+
∑

`≤k+ej

∑

Q=RU∗
i S

(
k + ej

`

)
µ`(R) ⊗ µk+ej−`(S) (16)

−
∑

qj=RUiS

kjµ
k(QUiSRUi) −

∑

qj=RU∗
i
S

kjµ
k(QSR)

We need to show that the enumeration of maps satisfies the same relation.
We start by putting stars of type (qj, 1 ≤ j ≤ n) inside a root star of type
QUi and we wonder what happens to the root element Ui. We apply one step
of IP. Two things can happen. Either we link Ui to another part of Q and in
that case we have already shown that the possibilities are enumerated by the
first two terms of the induction relation. Here, note that the product of

(
ki

`i

)

corresponds to the possible distribution of stars in each part (or submap) of
the map, since all the stars are labeled.

Thus we need to show that the two other terms take into account the case
where Ui is linked to another star of type qj. According to our construction
rules we have two possibilities:

(1) Starting from Ui we glue the arrow to an arrow of the same color entering
a star of type q. This rule forbids any other gluing from Ui, this is counted
by ∑

qj=RU∗
i S

kjµ(QSR).

The coefficient kj counts the number of choices for the star of type qj

since they are all labelled.
(2) The other possibility is to glue the ring to a ring of the same color. This

leads to

−
∑

qj=RUiS

kjµ(QUiSRUi)

possibilities.

In the case where P does not contain any Ui, 1 ≤ i ≤ m but still some U ∗
i ,

the root of the root star can only be glued by a dotted edge to any other
U∗

i , or by a directed edge to a Ui of a star. The resulting induction relation
is exactly given by the formula obtained by conjugation of (16), hence again
Mk(P ) = µk(P ). This completes the proof.

2
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This theorem gives a combinatorial interpretation in term of maps to the
unitary integrals. The fact that we do not take the sum on all maps but only
on admissible ones makes this interpretation less transparent than the one for
the gaussian case found in [7]. However, now that we know that the series can
be identified to the matrix integral, we obtain some combinatorial identities
which show that IP is less rigid than it looks like.

Corollary 5.1 Let V =
∑

tiqi be a polynomial.

(1) For all P, Q,
Mt(PQ) = Mt(QP ).

(2) For all monomials r1, . . . , rn, rn+1, and all permutation σ of n + 1 ele-
ments,

Mr1,··· ,rn(rn+1) = Mrσ(1),··· ,rσ(n)
(rσ(n+1)).

(3) Assume that we define another procedure to define the root element of
the root star (for example we pick the root element to be the second ring
avaible if possible, or we pick a ring at random, or any other choice
which may change during IP for the root stars that are created during
the procedure when new faces are added). This will change the notion of
admissible maps and we can define a new weighted sum M

′
r1,··· ,rn

(P ) and
a new series M′

t
(P ) where the sum occurs on these new maps. For all

r1, . . . , rn, P ,
Mr1,··· ,rn(P ) = M

′
r1,··· ,rn

(P )

Mt(P ) = M
′
t
(P ).

Note that due to the definition of admissible maps via the procedure IP,
those properties are far from being obvious from a purely combinatorial point
of view. Still they will appear as an easy consequence of the identification with
the matrix model.

Obviously different roots lead to a different procedure IP, and thus potentially
to different maps. It is actually possible to see through examples that this
phenomenon actually happens.

However, it follows from the second point of the corollary that the choice of
the root does not affect the weighted sum. The first and third points show
that the choice of the root element and of the root star does not affect the
final series. We were not able to give a more direct combinatorial proof of that
result.

To be more specific on the impact of the choice of the roots on the maps,
let us call clusters the equivalence class of rings for the equivalence relation
generated by a ∼ b if the ring a is glued to the ring b by a dotted edge.
Changing the choices of the roots will lead to different admissible maps since
it will allow different positions for the dotted edges. For example, they were
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three choices for the starting root in figure 1. For each of these choices, two
of the three maps represented in figures 2, 3 and 4 would have been reachable
by the inductive construction IP but not the third one. The one who is not
constructible depends on the choice of the first root. It seems that if the maps
are different, nevertheless the clusters are the same and in that simple case,
knowing this cluster is sufficient to define the faces created by the dotted edges
and thus the weight of the maps.

Proof.

Changing the root element of a star is the same thing as making a circular per-
mutation of the variable of the associated monomial. The theorem shows that
weighted sums are equal to the limit of the empirical measure of the matrix
model which are tracial. The first and third items are a direct consequence of
this identification.

For the second item, observe that permuting the first n monomials doesn’t
change the sum by its definition. Thus we only need to show that

Mr1,··· ,rn(P ) = MP,r2,··· ,rn(r1).

Let us define V =
∑

i uiri + tP . We will again use the identification with
the matrix model but now we will use the formal version. The coefficient
Mr1,··· ,rn(P ) appears as the coefficient of the limit tracial power state µf by
Corollary 3.1 and Theorem 5.1. More precisely,

Mr1,··· ,rn(P ) = lim
N

∂n

∂u1 · · ·∂un

µf(P )

∣∣∣∣∣
ui=0

.

We now use the fact that µf is the limit coefficientwise of the formal model
defined in (8). Thus,

Mr1,··· ,rn(P ) = lim
N

∂n

∏
i ∂ui

E[µ̂N(P )eN2µ̂N (V )]

E[eN2µ̂N (V )]

∣∣∣∣∣
ui=0t=0

= lim
N

∂n+1

∂t
∏

i ∂ui

1

N2
ln E[eN2µ̂N (V )]

∣∣∣∣∣
ui=0,t=0

.

We conclude by noticing that this last expression is symmetric in the mono-
mials r1,. . . ,rn,P .

2

33



6 Application to free probability

In this section we look at applications of the combinatorial results of section
5 to free probability.

Let us assume that the Ui’s are chosen independently according to the Haar
measure. If we define Xi = U∗

i AiUi then the Xi’s are asymptotically free (ac-
cording to a theorem of Voiculescu [31]) and with fixed distribution µ uniquely
defined by the distribution of the Ai’s. We are interested in using our setup
to compute limits of moments of these variables or in other word to compute
the moments of free variables:

µ(Xi1...Xik).

According to our interpretation this can be computed by looking at the maps
above the star of type Xi1 ...Xik without any other stars, in other words we
have to focus on computations of M(q) = M0(q) which turns out to be equal
to µ(q) where µ is the free state product (see Corollary 3.2)

We are interested in using this method to compute some non-commutative
moments of free variables, in relation with Speicher’s non-crossing cumulants
theory, cf [27].

6.1 One star maps

For these purposes we need to find a simplified interpretation of M(q) in the
single star map.

For this case with only one star, the combinatorial interpretation can be
slightly modified. First, we do not need to consider dotted edges between
incoming arrows since if there is a U ∗

i there must be a Ui which can be chosen
as the root element or we can not build any map. But the main difference is
that now each time we glue two rings, the edge newly created separate these
two rings into two different faces so that they can no longer be glued together.
Thus, we can forget about the restriction of the construction rules and present
a simpler description in that case. Instead of gluing the ring two by two we
will now glue them together. We define a new structure which we will call a
node and now rings can only be glued to node and a node can be glued to any
number of rings. A one star map is a map with one star where the arrows has
been glued two by two while respecting the orientation and rings may be glued
to exactly one node, each node is glued to an arbitrary number of rings but at
least one. Figure 6 shows the new representation of a one star map. The trick
to go from the previous interpretation to this one is to glue together to a node
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all the rings that are in the same class of the equivalence relation generated
by being glued. In order to compute the weight of such a map, observe that
several maps give the same one-star map, but the weight is easy to compute
since as we will see we only need to add a factor Cd−1 for each node of degree
d.

Fig. 6. Reduction of a map on one star to a one-star map.

Definition 6.1 A one-star map is a connected graph embedded on a sphere
above one star and with some edges such that

(1) Edges are drawn only between rings and must not intersect.
(2) Arrows must be glued two by two while respecting the orientation and

the color: an arrow going out of a star (associated with a variable Ui) is
always glued to exactly one other arrow going into a star (associated to
a variable U ∗

i ) of the same color. This pair of arrows creates an oriented
edge.

(3) Any number of rings may be glued together on a node.

The weight of a one-star map is the product of the weight of its faces which is
defined as before as trace of products of Ai’s times the product of the weight of
the nodes. The weight of a node of degree d is (−1)d−1Cd−1. We define M̃0(q)
the weighted sum of one-star map above a star of type q. Note that we no
longer need to take care of roots and of maps that can be built with some set
of rules.

Proposition 6.1 For all monomial q,

µ(q) = M̃0(q).

Proof.

We only need to show that M(q) = M̃0(q). For this we need to compute the
number of maps above one star that are reduced to a given one-star map. The
reduction goes as follows: two rings are glued to the same node if they are
linked by a sequence of dotted-edges. We have to count how many configura-
tions of dotted edges lead to a node of degree d. When one of the ring glued to
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this node becomes the root in the recursive construction, it has to be glued to
one of the other ring glued to the node. Thus it separates the set of ring into
two subsets, so according to our inductive procedure of section 5, we have to
continue to glue this ring to other ones while we continue the construction in
the face newly created. This yields a structure of tree on this set of rings. We
have as many choices as they are trees with d− 1 edges (to glue the d ring we
need exactly d − 1 edges). This explains the factor Cd−1. The factor (−1)d−1

simply comes from the factor −1 which comes with each edge.

2

6.2 Maps and cumulants

Let A1, . . . , An be self-adjoint variables and U a unitary matrix, free from the
Ai’s. Then choosing k indices i1, . . . , ik in {1, n} one has

µ(Ai1 . . . Aik) = µ(U∗UAi1 . . . U∗UAik)

Let us apply Schwinger-Dyson equation with respect to U to the above equal-
ity, and let us rearrange the sum according to the non-crossing partition of
Ai’s generated by the oriented edges. Obviously one obtains a formula of type

µ(Ai1 . . . Aik) =
∑

π∈NC(k)

K̃π(Ai1 , . . . , Aik) (17)

where NC(k) is the non-crossing partitions and K̃π is a k-linear form multi-
plicative along the blocks of π in the sense of Speicher: if π = {V1, . . . , Vn}
with the block Vi = {ai

1, . . . , a
i
ri
}

K̃π(X1 . . .Xk) =
∏

i

K̃(ri)(Xai
1
, . . . , Xai

ri
)

where (ri) represents the partition on ri elements with only one block.

The fact that such a formula holds true for any choice of non-commutative
laws for Ai’s proves via the moment-cumulant formula that K̃π has to be
Speicher’s non-crossing cumulants Kπ. But it is also given as a sum on maps
by our graphical model.

Let us recap this in the following proposition:

Proposition 6.2 The n-th non-crossing cumulant of the variables A1, . . . ,
Ap is the weight of all one-star maps over the star build by putting in the
clockwise order a ring, a diamond of color i1, a ring, a diamond of color
i2,. . . , a ring, a diamond of color ip.
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Note that we have defined this map above a star which is not of type q for any
monomial q. This would be a problem for admissible maps since IP requires
the presence of oriented edges. But the definition of one-star map is fine in
this context.

Actually, Proposition 6.1 gives us a new proof of the following Corollary, due
to Speicher and known as non-crossing Moebius formula

Corollary 6.1 The following inversion formula holds true:

Kn(A1, . . . , An) =
∑

π∈NC(n)

µπ(A1, . . . , An)(−1)n−|blocks(πc)|
∏

B block ofπc

C|B|−1,

where πc is the Kreweras complement (see [26]) and Cq the catalan number.

Proof.

This is a direct consequence of the previous proposition. Remember that
Kn(A1, . . . , An) is a weighted sum over maps with dotted edges since the star
contains some rings and no arrows. These dotted edges form a non-crossing
partition of [|1, . . . , n|] by saying that two rings are in the same component if
their are linked to a same node. The weight associated to this map is a product
whose factors are: (−1)d−1Cd−1 for each node of degree d and the weight of each
face. The faces are by definition the component of the Kreweras complement
of π′. Thus we obtain:

Kn(A1, . . . , An) =
∑

π′∈NC(n)

µ(π′)c(A1, . . . , An)
∏

B block ofπ′

(−1)|B|−1C|B|−1.

The formula follows after taking π′ = πc.

2

As a further remark, one can also read graphically the main properties of
cumulants, for example, Kn(X1, . . . , Xn) = 0 as soon as there are occurence of
free elements. More precisely, assume that we can partition the Xi’s into two
families the Aj’s and the Bk’s with the algebra generated by the Aj’s free from
the algebra generated by the Bk’s. Then if all the Xi’s do not take value in
the same algebra, Kn(X1, . . . , Xn) = 0. Indeed, one can replace all the family
of Aj’s by the one of V ∗AjV with V unitary and free from the other variables.
Now when looking at the combinatorial interpretation of µ(X1, . . . , Xn) we can
see that the oriented edges coming from V separate the components containing
the Aj’s from the others. By following those edges we see that the faces they
are defining contain only variable from one of the two algebras (The edges
are going in the clockwise order around the faces which contain the Bk’s and
in the counter-clocwise order around the faces containing the Aj’s). Thus,
in the decomposition (17), the terms corresponding to partitions with one
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component containing both some Ai’s and some Bj’s vanish. By uniqueness of
the decomposition into cumulants we deduce that those elements vanish i.e.
Kn(X1, . . . , Xn) = 0.

These remarks are not new but this shows that our graphical model fully
encompasses the theory of non-crossing cumulants and that the Schwinger-
Dyson equation can also be read in terms of cumulants.

It is interesting to mention here that papers [24] and [25] have developed a
calculus on annuli which seems to be related to our graphical model. However
these approaches only deal with the asymptotics of second order cumulants
whereas our approach via formal calculus, see section 4, allows us to deal with
arbitrary order cumulants.

The actual relation can be found in [10], where convolution on partitioned
permutations is introduced and showed to be the relevant algebraic tool to
handle higher order freeness, namely, the asymptotic behaviour of cumulants
of unitarily invariant random matrices.

But the results in our paper give an explicit algorithmic description of the
Moebius inversion formula and therefore of higher order cumulants. As in the
one star case, cumulants are also obtained by inserting an outer U ∗U between
each variable of each star and by looking at generating function where U is
linked to its neighboring U ∗.

It is interesting to see that a direct (yet difficult to describe) graphical reading
of the Schwinger-Dyson equation, which is our main tool of investigation of
unitarily invariant matrix models, yields non-crossing and could yield higher
order moments related series and operations similar to convolution, although
these latter results rely on more representation theoretic grounds (Weingarten
function theory as developed in [11]).

It is not obvious to us how the Schwinger-Dyson equation can be read off from
the results of [10] (without writing a change of variable invariance formula),
and it would be interesting to attempt to figure out the meaning of Schwinger-
Dyson equation at the representation theoretic level.

7 Application to the asymptotics of IN(V, AN
i )

In this section, we investigate the free energy by using the combinatorial in-
terpretation of the previous section.

Let (q1, · · · , qn) be fixed monomials in C〈(Ui, U
∗
i , Ai)1≤i≤m〉, let V =

∑
tiqi be

a self-adjoint polynomial and IN(V, Ai) be given by (1).
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Theorem 7.1 There exists ε = ε(q1, · · · , qn) so that for any t ∈ Cn ∩B(0, ε)
such that V = V ∗ for any α ∈ [−1, 1],

FV,τ (α) := lim
N→∞

1

N2
log IN(αVt, A

N
i ) =

∑

k∈Nn\(0,..,0)

n∏

i=1

(αti)
ki

ki!
Mk(q1, · · · , qn, τ).

Moreover,

Mk(q1, · · · , qn, τ) =
∑

madmissible maps with ki stars qi

Mm(τ)

is the weighted sum of maps constructed above ki stars of type qi for all i, after
choosing one of them as a root star (this is well defined according to Corollary
5.1).

Proof.

Let us define

F N
t

=
1

N2
log IN(Vt, A

N
i ).

Then, if α ∈ R,

∂αF N
αt

=
∫

µ̂N(Vt)dµN
Vαt

.

Assume that t is small enough so that Corollary 3.1 holds and remark that
Vαt is self-adjoint and such that |αti| ≤ ε for all i and all 0 ≤ α ≤ 1. Thus,
for α ∈ [0, 1],

lim
N→∞

∂αF N
αt

= µαt(Vt)

with µαt the solution to SD[αVt, τ ]. By dominated convergence theorem (since
∂αF N

αt
is uniformly bounded in N and α ∈ [0, 1]), we deduce that

lim
N→∞

F N
αt

=
∫ 1

0
µαt(Vt)dα

where we used that F N
0 = 0.

2

Here also, we obtain the following important corollary, as a consequence of
Corollary 4.1.

Corollary 7.1 The following holds true:

lim
N→∞

∂k

∂zk
N−2 log

∫

Um
N

ezNTr(V (Ui,U
∗
i ,AN

i ,1≤i≤m))dU1 · · ·dUm|z=0 =
∂k

∂zk
FV,τ (z)|z=0

In particular, this result allows us to give an expansion of the Harish-Chandra-
Itzykson-Zuber integral as a generating function of the number of some maps.
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Let us recall the exact expression of this integral:

F A,B
N (z) :=

1

N2
log HCIZ(zA, B) =

1

N2
log

∫

UN

ezNTr(U∗AUB)dU.

The maps appearing in the expansion contain only stars of type U ∗AUB (see
the star in the middle of figure 1). Besides we can build these maps without
considering the rings attached to variable U ∗ since we will always be able
to choose the root element to be a U (a U ∗ always comes with a U for this
potential).

Since the number of diagrams is growing quickly we compute only the first
term of the expansion. Note that when gluing the arrow of the root of the
root star, we must always glue it to another incoming arrow of another star
and hence we shall never see the case of a root star with no Ui’s. Again, we
therefore do not see dotted edges between incoming arrows.

Besides, we consider only the case where the distribution is centered, that is
when τ(A) = τ(B) = 0. The other cases can be deduced easily from this one
since we have the relation

F a+A,b+B
N (z) = F A,B

N (z) +
z

N
(bTrA + aTrB) + zab.

In terms of diagrams, this means that we only need to consider diagrams such
that no face contains only one diamond.

According to the previous theorem, limN→∞ F A,B
N (z) has, for small z, an ex-

pansion
∑

n Fnzn. We now use this graphical representation to compute the
first terms of this integral.

Since the distributions are centered, the first term F1 is zero.

The second term F2 consists of maps constructed with two stars of type
U∗AUB. There is only one way to add edges between these two stars to
construct a connected map without faces which contains only one diamond,
this is represented by figure 7. We obtain a map with two faces. One has two
diamonds associated to A and the other one two diamonds associated to B.
Thus the weight of this map is τ(A2)τ(B2). Since there is no gluing between
the rings they are no other signs. They are only one way to distribute the
labels on this picture (that is the second distribution leads to the same map)
thus to obtain F2 we only need to divide by 2!,

F2 =
1

2
τ(A2)τ(B2).

We can continue this for the next terms in the expansion, the third term (see
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Fig. 7. Second term in the expansion of the HCIZ integral.

figure 8) is in the same spirit and leads to

F 3 =
1

3
τ(A3)τ(B3).

Fig. 8. Third term in the expansion of the HCIZ integral.

The fourth term is the first one where gluings between the rings appear. Thus
weigths with negative coefficients can occur. The sign of a map is easy to com-
pute, it is −1 to the power the number of dotted lines in the map. Equivalently
since in the case of HCIZ integral the number of oriented edges is equal to the
number of stars, this number is also equal to the number of faces of the map
and thus to the number of factor in the product of moments of the weight. In
figure 9, we have drawn all unlabelled planar maps one can construct with 4
stars. To compute the exact coefficient of each map one has to multiply it by
the number of way to distribute the labels and divide by 4!.

This leads to,

F 4 =
1

4
τ(A4)τ(B4) − 1

2
τ(A2)2τ(B4) − 1

2
τ(A4)τ(B2)2

+
1

2
τ(A2)2τ(B2)2 +

1

4
τ(A2)2τ(B2)2.

Here the weight are given in the same order as the maps in the figure. Note
a new and interesting feature that appears in the third map: two rings are
linked by more than one dotted edge.
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Fig. 9. Fourth term in the expansion of the IZ integral.

The other terms can be computed in the same way, for example figure 10
represents the fifth term and gives

F5 =
1

5
τ(A5)τ(B5) − τ(A2)τ(A3)τ(B5) − τ(A5)τ(B2)τ(B3)

+4τ(A2)τ(A3)τ(B2)τ(B3).

Thus the first terms agree with the expansion given in [36] on page 23, besides
this allows us to answer a question raised in this paper. Indeed, the authors ask
if there is an explanation to the fact that the coefficient of Fn all seem to be
integer multiple of 1

n
. This is easy to prove with this graphical interpretation.

To compute the contribution of a given unlabelled map we must distribute
the labels {1, .., n} on its stars, count the number of different map that we
obtain and divide by n!. But after choosing the star which received the label
1 we have (n − 1)! ways to distribute the remaining labels and they all lead
to different maps (note that on the other hand, due to possible symmetry in
the unlabelled map, different choices for the star with the label 1 may lead
to the same maps). Thus the coefficient in front of this map is a multiple of
(n−1)!

n!
= 1/n. More precisely it is 1/n times the number of choices of the star

which carry the label 1 that will lead to different maps, in particular it is
always less than 1.

To finish, we wish to point out that we can recover results in [8] and [15] about
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Fig. 10. Fifth term in the expansion of the IZ integral.

scalings of HCIZ integral. In these two papers, the scaling where A has small
rank is studied, which amounts to considering only terms τ(Ak) · P (B). Here
the transformation depicted in section 6 applies and we see that P (B) has to
be k−1Kk(B). In particular this means in the case that A is a rank 1 projection,
that N−1 log HCIZ tends to the primitive of Voiculescu’s R-transform.

8 Application to Voiculescu free entropy

Voiculescu’s microstates free entropy is given as the asymptotic the volume of
matrices whose empirical distribution approximates sufficiently well a given
tracial state. Up to a Gaussian factor, it is given by

χ(µ) = lim sup
ε↓0

k↑∞,R↑∞

lim sup
N→∞

1

N2
log µ⊗m

N (ΓR(µ, ε, k))

with µN the Gaussian measure on HN and ΓR(µ, ε, k) the microstates

ΓR(µ, ε, k) = {X1, · · · , Xm ∈ HN : | 1

N
Tr(Xi1 · · ·Xip) − µ(Xi1 · · ·Xip)| < ε

p ≤ k, i` ∈ {1, · · · , m}, ‖Xi‖∞ ≤ R}.
When m = 1, it is well known [30] that µ ∈ P(R) and
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χ(µ) = I(µ) =
∫ ∫

log |x − y|dµ(x)dµ(y)− 1

2

∫
x2dµ(x) + const.

Moreover, we can replace the lim sup by a lim inf in the definition of χ. Such
answers (convergence and formula for χ) are still open in general when m ≥ 2
(see [5] for bounds). However, if µ is the law of m free variables with respective
laws µi, then these questions are settled and

χ(µ) =
m∑

i=1

I(µi).

We here want to emphasize that our result provides a small step towards
dependent variables by showing convergence and giving a formula for the type
of laws µ solutions of Schwinger-Dyson’s equations SD[V, τ ]. Indeed, we shall
prove that

Theorem 8.1 Let µ be the law of m self-adjoint variables Xi with marginal
distribution (µ1, · · · , µm). Assume that Xi can be decomposed as Xi = UiDiU

∗
i

with Ui unitary matrices such that the joint law ν of (Di, Ui, U
∗
i )1≤i≤m sat-

isfy SD[V, τ ] with τ the law of m free variables with marginal distribution
µ1, · · · , µm and some potential V =

∑n
i=1 tiqi. Assume that the ti’s are small

enough so that Corollary 3.1 holds. Assume also that the hypotheses of Theo-
rem 7.1 hold. Then,

χ(µ) = lim inf
ε↓0

k↑∞

lim inf
N→∞

1

N2
log µ⊗m

N (ΓR(µ, ε, k))

and a formula of χ(µ) can be given in terms of the µk’s of Theorem 4.2.

Proof.

Indeed, let us consider V = V (UiAiU
∗
i , 1 ≤ i ≤ m) with V a self-adjoint

polynomial and µ the unique solution of SD[V, τ ] with τ the law of the Ai, 1 ≤
i ≤ m which is now chosen to be the law of m free variables with marginals
distribution µi, 1 ≤ i ≤ m. Under the law µ⊗m

N , we can diagonalize the matrices
Xi = UiDiU

∗
i with Ui following the Haar measure on UN , and id d is the Dudley

metric, we find that for N sufficiently large

LN := µ⊗m
N (ΓR(µ, ε, k))

= µ⊗m
N

(
d(µ̂N

Di
, µi) < ε; µ̂N

UiDiU
∗
i ,1≤i≤m ∈ ΓR(µ, ε, k)

)

=
∫

d(µ̂N
Di

,µi)<ε

‖Di‖∞≤R



∫

µ̂N
(UiDiU∗

i
)1≤i≤m

∈ΓR(µ,ε,k)
dU1 · · ·dUm


 ∏

1≤i≤m

dσN (λi)
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where we denoted ∆(λj) =
∏

k 6=j |λk − λj| and dσN the probability measure

dσN(λ) := Z−1
N

∏

k 6=j

|λk − λj|2e−
N
2

∑
(λj)2

∏

1≤j≤N

dλj.

In these notations, Di = diag(λi
1, · · · , λi

N) and λ = (λ1, · · · , λN). Hereafter,
µ̂N
{Ei}1≤i≤n

denotes the empirical ditribution of {Ei}1≤i≤n; µ̂N
{Ei}1≤i≤n

(P ) =

N−1Tr(P (Ei, 1 ≤ i ≤ n)). As a consequence, applying the large deviations re-
sult of [3] to the diagonal matrices Di, we find that there exists o(1) going to
zero with ε such that

LN ≤ eN2
∑m

i=1
I(µi)+N2o(1) sup

d(µ̂N
Di

,µi)<ε

‖Di‖∞≤R

∫

µ̂N
{UiDiU∗

i
}1≤i≤m

∈ΓR(µ,ε,k)
dU1 · · ·dUm

:= eN2
∑m

i=1
I(µi)+N2o(1)

L
1
N

with for k greater than the degree of V ,

L
1
N = sup

d(µ̂N
Di

,µi)<ε

‖Di‖∞≤R

∫

µ̂N
{UiDiU∗

i
}1≤i≤m

∈ΓR(µ,ε,k)
eNTr(V )−NTr(V )dU1 · · ·dUm

= e−N2µ(V )+N2ε sup
d(µ̂N

Di
,µi)<ε

‖Di‖∞≤R

∫

µ̂N
{UiDiU∗

i
}1≤i≤m

∈ΓR(µ,ε,k)
eNTr(V )dU1 · · ·dUm

≤ e−N2µ(V )+N2ε sup
d(µ̂N

Di
,µi)<ε

‖Di‖∞≤R

∫
eNTr(V )dU1 · · ·dUm

= e−N2µ(V )+N2ε sup
d(µ̂N

Di
,µi)<ε,‖Di‖∞≤R

IN(V, Di)

Now, for fixed R, any Di, D
′
i in d(µ̂N

Di
, µi) < ε, ‖Di‖∞ ≤ R

∣∣∣∣
1

N2
log IN(V, Di) −

1

N2
log IN(V, D′

i)
∣∣∣∣ ≤ η(ε, R),

with η(ε, R) going to zero as ε goes to zero for any fixed R. Hence,

lim sup
N→∞

1

N2
log IN (V, Di) ≤ F (V, µi) + η(ε, R)

with F (V, µi) the limit of N−2 log IN(V, Ai) given in Theorem 7.1 when the
distribution of the Ai converges to free variables with marginal distribution
µi. We thus have proved, letting ε going to zero and then R, k to infinity, that
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χ(µ) ≤
m∑

i=1

I(µAi
) − µ(V ) + F (V, µi).

Conversely, we have

LN ≥ eN2
∑m

i=1
I(µi)+N2o(ε)

L
2
N

with

L
2
N := inf

d(µ̂N
Di

,µi)<ε,‖Di‖∞≤R

∫

µ̂N
(UiDiU∗

i
)1≤i≤m

∈ΓR(µ,ε,k)
dU1 · · ·dUm

= e−N2µ(V )+N2o(ε) inf
d(µ̂N

Di
,µi)<ε

‖Di‖∞≤R

∫

µ̂N
{UiDiU∗

i
}1≤i≤m

∈ΓR(µ,ε,k)
eNTr(V )dU1 · · ·dUm

≥ e−N2µ(V )+N2o(ε) inf
d(µ̂N

Di
,µi)<δ

‖Di‖∞≤R

∫

µ̂N
{UiDiU∗

i
}1≤i≤m

∈ΓR(µ,ε,k)
eNTr(V )dU1 · · ·dUm

for any δ < ε. Now, choosing δ and using the continuity of µ̂N
{UiDiU

∗
i
}1≤i≤m

in
the distribution of the uniformly bounded variables Di, we find by Corollary
3.1 and our hypothesis that

lim inf
N→∞

∫
µ̂N

UiDiU∗
i

,1≤i≤m
∈ΓR(µ,ε,k) eNTr(V )dU1 · · ·dUm

∫
eNTr(V )dU1 · · ·dUm

= 1

which insures that

χ(µ) ≥
m∑

i=1

I(µi) − µ(V ) + F (V, µi).

Thus we have proved that

χ(µ) =
m∑

i=1

I(µi) − µ(V ) + F (V, µi).

Note that µ(V ) and F (V, µi) can be written in terms of the µk of Theorem
4.2 by Theorem 7.1.

2
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9 Generalization to integrals over the orthogonal group

In a recent article [35], Zuber shows that the large N asymptotics of two matrix
integrals (the integral with external magnetic field and the Harish-Chandra-
Itzykson-Zuber integral) enjoy a universality property in the sense that they
are the same (up to a proper rescaling) if we integrate over the unitary or the
orthogonal group. This property was also obtained (but not explicitly stated)
in the case of Harish-Chandra-Itzykson-Zuber integral in [18] where the rate
functions for the large deviation principle for the law of the spectral measure
process of the Hermitian and the symmetric Brownian motion were shown
to differ only by a factor two. The Harish-Chandra-Itzykson-Zuber integral is
rather special in the family of angular integrals and we can compute many
interesting related quantities, regardless of the group on which integration is
taken (see [4,13]).

In this section, we generalize this universality property by relating the large
N limit of any small parameter integrals over the orthogonal group with its
complex analogue.

Let us define

I1
N(V, AN

i ) :=
∫

Om
N

eNTr(V (Oi,O
∗
i ,AN

i ,1≤i≤m))dO1 · · ·dOm (18)

where (AN
i , 1 ≤ i ≤ m) are N×N deterministic symmetric uniformly bounded

matrices, dO denotes the Haar measure on the orthogonal group ON (nor-
malized so that

∫
ON

dO = 1). In this section we will assume that V is a
non-commutative polynomial in the Oi, O

∗
i , A

N
i with real coefficients. Here,

O∗ = Ot is the standard involution O∗
ij = Oji. Observe that if P is a polyno-

mial, P (Oi, O
∗
i , A

N
i , 1 ≤ i ≤ m)t = P ∗(Oi, O

∗
i , A

N
i , 1 ≤ i ≤ m) so that we keep

also the notation P ∗.

We then claim that we have the following analogue of Theorem 7.1, which
shows that the first order of integrals over the orthogonal group is the same
as on the unitary group (up to proper renormalizations);

Theorem 9.1 There exists ε = ε(q1, · · · , qn) so that for any t ∈ Rn ∩B(0, ε)
such that V = V ∗ =

∑
tiqi, if we define

F 1
V,τ := lim

N→∞

1

N2
log I1

N(Vt, A
N
i )

then F 1
V,τ exists and

F 1
1
2
V,τ

=
1

2

∑

k∈Nn\(0,..,0)

∏

1≤i≤n

tki
i

ki!
Mk(q1, · · · , qn, τ).

47



Moreover,

Mk(q1, · · · , qn, τ) =
∑

madmissible maps with ki stars qi

Mm(τ)

is the weighted sum of maps constructed above ki stars of type qi for all i, after
choosing one of them as a root star .

The proof is based on the fact that if µN,1
V denotes the law on Om

N given by

µN,1
1
2
V

(dO1, · · · , dOm) :=
1

I1
N (1

2
V, AN

i )
e

N
2
Tr(V (Oi,O

∗
i ,AN

i ,1≤i≤m))dO1 · · ·dOm

and µ̂N is the empirical distribution of (Oi, O
∗
i , Ai, 1 ≤ i ≤ m), then we have

the analogue of Corollary 3.1.

Theorem 9.2 Assume that V =
∑

tiqi is self-adjoint. Let D be an integer
and τ a tracial state in M|(Ai)1≤i≤m

. There exists ε = ε(D, m) > 0 such that if

|ti| ≤ ε, µ̂N converges almost surely under µN,1
1
2
V

to the unique solution µt of the

Schwinger-Dyson equation SD[V,τ ]. Moreover, µ̄N,1
1
2
V

= µN,1
1
2
V

(µ̂N) converges as

well to this solution as N goes to infinity.

In fact, since then we know that µt(P ) expands as a generating function of
the Mk(q1, · · · , qn, τ)’s, Theorem 9.1 follows readily since for any α ∈ [0, 1],

∂α

1

N2
log I1

N(
α

2
Vt, A

N
i ) =

1

2
µ̄N,1

1
2
V

(V )

converges towards 1
2
µt(V ).

Proof of Theorem 9.2 The proof follows the same lines as the proof of
Theorem 2.1; we make the change of variables O = (O1, · · · , Om) ∈ Om

N →
Ψ(O) = (Ψ1(O), · · · , Ψm(O)) ∈ Om

N with

Ψj(O) = Oje
λ
N

Pj(O)

where the Pj are antisymmetric polynomials (i.e. P ∗
j = −Pj). The only change

is that now Pj(O) are matrices with real coefficients and the differentials
hold in the direction of A1

N which are the antisymmetric matrices with real
coefficients. For N large enough, Ψ is a diffeomorphism; it is as in the complex
case a local diffeomorphism which is injective. As such, its image is open and
compact. Om

N is not connected but the union of copies of SOε(N) = {O ∈
ON ; det(O) = +ε}, ε = +1 or −1. Since det(Ψj(O)) = det(Oj) det(e

λ
N

Pj(O)) =
det(Oj), Ψ maps SOε1(N)×SOε2(N)×· · ·SOεm(N) into itself for each choice
of εi ∈ {1,−1}. Therefore, by connectedness of this set, Ψ(SOε1(N) × · · · ×
SOεm(N)) is open and closed and therefore equals SOε1(N) × SOε2(N) ×
· · ·SOεm(N). Thus, Ψ is a diffeomorphism of Om

N . Like in the proof of Lemma
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2.1, we need to compute the Jacobian of this change of variable. The same
arguments apply to show that

| detJΨ(O)| = exp(
λ

N
TrΦ̃ + O(1))

with Φ̃ the linear operator defined on antisymmetric matrices by

Φ̃.A =
∑

i

∂iPi]A.

A basis of A1
N is given, for k < l, by

E1(kl)rj =
1r=k,j=l − 1r=l,j=k√

2
.

Therefore, the trace of any linear endomorphism ϕ on A1
N defined by ϕ(X) =∑

` A`XB`, for uniformly bounded matrices A`, B`, is now given by

Tr(ϕ) =
∑

k<l

Tr(E1(kl)∗ϕ(E1(kl))) =
1

2

∑

`

(
∑

k 6=l

A`
llB

`
kk −

∑

k 6=l

A`
lkB

`
lk)

=
1

2

∑

`

Tr(A`)Tr(B`) + Tr(A`B
t
`)

=
1

2

∑

`

Tr(A`)Tr(B`) + NO(1)

since the operator norm of A` and B` is uniformly bounded, O(1) is uniformly
bounded in N .

We can apply this bound to our case where A` and B` are given by ∂iPi =:∑
` A` ⊗ B`. The A` and B`’s are uniformly bounded since the Oj’s and the

Aj’s are and non zero for a finite number of `’s, thus we deduce that

| detJΨ(O)| = exp(
λ

2N

m∑

i=1

Tr ⊗ Tr(∂iPi) + O(1))

with O(1) bounded uniformly in N . Since O(1) is uniformly bounded, we can
now proceed exactly as in the proof of Theorem 2.1 to show that for any
r ∈ {1, · · · , m},

lim
N→∞

{
1

2
µ̂N ⊗ µ̂N(∂rP ) +

1

2N
µ̂N(DrV P )

}
= 0 µN,1

1
2
V

a.s.

As a consequence, for any limit point τ of µ̂N , any antisymmetric polynomial
P ,

τ ⊗ τ(∂rP ) + τ(DrV P ) = 0. (19)
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If P is symmetric, we claim that for any r ∈ {1, · · · , m},

τ ⊗ τ(∂rP ) = τ(DrV P ) = 0 (20)

so that (19) still holds. Indeed, if Q is a word in the (Oi, O
∗
i , Ai, 1 ≤ i ≤ m),

∂rQ =
∑

Q=Q1OrQ2

Q1Or ⊗ Q2 −
∑

Q=Q1O∗
rQ2

Q1 ⊗ O∗
rQ2

∂rQ
∗ =

∑

Q∗=Q1OrQ2

Q1Or ⊗ Q2 −
∑

Q∗=Q1O∗
rQ2

Q1 ⊗ O∗
rQ2

=
∑

Q=Q∗
2O∗

rQ∗
1

Q1Or ⊗ Q2 −
∑

Q=Q∗
2OrQ∗

1

Q1 ⊗ O∗
rQ2

=
∑

Q=Q1O∗
rQ2

(O∗
rQ2)

∗ ⊗ Q∗
1 −

∑

Q=Q1OrQ2

Q∗
2 ⊗ (Q1Or)

∗.

Since the trace is invariant under transposition, we deduce that for all P ,
µ̂N(P ∗) = µ̂N(P ) and thus,

µ̂N ⊗ µ̂N(∂rQ + ∂rQ
∗) = 0.

With the same method, we can deal with the cyclic derivative term. Indeed,
since Dr(Q

∗) = −(DrQ)∗, if we write V = Q + Q∗, we obtain:

µ̂N(DrV (P + P ∗)) = µ̂N(Dr(Q + Q∗)(P + P ∗))

= µ̂N(DrQ(P + P ∗)) − µ̂N((DrQ)∗(P + P ∗))

= µ̂N(DrQ(P + P ∗)) − µ̂N((P + P ∗)DrQ) = 0.

To sum up,
µ̂N ⊗ µ̂N(∂rP ) = µ̂N(DrV P ) = 0

from which we get (20) by going to the limit. Since any polynomial P can
be decomposed as the sum of a symmetric polynomial (P + P ∗/2) and an
antisymmetric polynomial (P − P ∗/2), we conclude by linearity that (19)
holds for any polynomial P . By uniqueness of the solutions to this equation for
sufficiently small parameters ti proved in Theorem 3.1, the proof is complete.
2
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