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Abstract

We discuss regularization by noise of the spectrum of laagelom non-
normal matrices. Under suitable conditions, we show thatdgularization
of a sequence of matrices that converges-moments to a regular element
a, by the addition of a polynomially vanishing Gaussian Giailnatrix,
forces the empirical measure of eigenvalues to convergest®town mea-
sure ofa.

1 Introduction

We discuss in this paper the changes in the spectrum of ragtwiben they
are perturbed by noise. The behavior of the spectrum of cestrunder
(small) perturbation is not well understood when the magimvolved are
non-normal, se€ [7] for background. A standard example efissues in-
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volved (described e.g. inl[6]), is the following. Considee hilpotent matrix

01 0 -0
00 1 0

Tw=| & oo ] (1)
0. .0 1
0 . . .0

The eigenvalues ofy all vanish. However, adding tdy the matrix Py
whose entries are all 0 except for the bottom left, which keteasey — O,
changes the eigenvalues drastically - as we will see belsW iacreases,

if ey decays polynomially, the empirical measure of eigenvatewerges
to the uniform measure on the unit circle in the complex pladenatural
guestion is, then, what happens when a small random mataicded toTly.
One of the consequences of our results, see Coroll@ries B,asdhat the
spectrum offy + Gy, whereGy is an additive Gaussian random perturbation
that vanishes polynomially, behaves like the spectrunfyof- Py, while
this is false for matricedy that are themselves a low-rank perturbation of
Tn. The distinction involves the study ofgular elementi W* probability
spaces.

To state our results we need to introduce some terminologysider a
sequencéAn )n>1, WhereAy is aN x N matrice of uniformly bounded op-
erator norm, and assume tl#g{ converges ir-moments toward an element
ain aW* probability spacé 4, || - ||,*,¢), that is, for any non-commutative

polynomialP,
1 N~>CO

SUP(ANAY) == 0(P(a,a)).
We assume throughout that the tracial sthts faithful; this does not rep-
resent a loss of generality. Ky is a sequence of Hermitian matrices, this
is enough in order to conclude that the empirical measurégeihgalues of
Ay, that is the measure

a_lg
Ly = NZ%(AN),
i—1

whereAi(An),i = 1...N are the eigenvalues @y, converges weakly to

a limiting measureqy,, the spectral measure af supported on a compact
subset ofR. (Seel[l, Corollary 5.2.16, Lemma 5.2.19] for this standard
result and further background.) Significantly, in the Heram case, this



convergence is stable under small bounded perturbatioith: By = Ay +

En and Ey Hermitian with ||[En|| < €, any subsequential limit of will
e—0

belong toB| (g, 8(€)), with 8(¢) — 0 andBy_(v,,r) is the ball (in say, the
Lévy metric) centered at, and of radiug.

Both these statements fail whag is not normal. Recall the matriky,
see[[l). ObviouslylL], = &y, while a simple computation reveals tHE
converges in-moments to a unitary Haar element@f that is

1y rnpr e Now [ L K = B,
Ntr(TN (TN) TN (TN) )% O, Otherwise (2)

Further, adding t@y the matrix whose entries are all 0 except for the bottom
left, which is taken as, changes the empirical measure of eigenvalues dras-
tically — as already mentioned, whehincreases, the empirical measure
converges to the uniform measure on the unit circle in thepterplane.

We explore this phenomenon in the context of small randontugsa-
tions of matrices. We recall some notions. Bar 4, theBrown measure,
onC is the measure satisfying

Iogde(z—a):/Iog|z—z’|dva(z’), zeC,

where det is the Fuglede-Kadison determinant; we referl.td][for defini-
tions. We have in particular that

Iogde(z—a):/logxdvg(x) zeC,

wherev; denotes the spectral measure of the operateral. In the sense
of distributions, we have

1
Va= ETAIOQ de{z—a).

That is, for smooth compactly supported functipron C,

Ju@wva@ = 5 [sw@ ( [loglz-zlavaz) ) oz
— %{ AY(2) (/Iogxdvé(x)) dz

A crucial assumption in our analysis is the following.



Definition 1 (Regular elements)An elementa € 4 is regular if

Lm/(cAw(z) </0 Iogxdva(x)> dz=0, (3)

for all smooth functionsp on C with compact support.

Note that regularity is a property @ not merely of its Brown measure
V,. It is easy to check that the unitary Haar elementdins regular, see
Sectior#, while elements with dense, purely atomic spettte not.

We next introduce the class of Gaussian perturbations wsidemn

Definition 2 (Polynomially vanishing Gaussian matrices) sequence
(Gn)n>1 With Gy an N-by-N random Gaussian matrix is callgalynomi-
ally vanishingif the entries(Gn(i, j)) are independent centered complex
Gaussian variables, and there exist 0, k’ > 1+ K so that

N~ < E|G;|? < N7,

Remark 3. As will be clear below, see the beginning of the proof of Lemma
[IJd, the Gaussian assumption only intervenes in obtainingifarm lower
bound on singular values of certain random matrices. Astpdiaut to us by

R. Vershynin, this uniform estimate extends to other situest, most notably

to the polynomial scaling of matrices whose entries aré.iand possess a
bounded density. We do not discuss such extensions here.

Our first result is a stability, with respect to polynomiaNsanishing
Gaussian perturbations, of the convergence of spectratumes for non-
normal matrices. Throughout, we denote | ||op the operator norm of a
matrix M.

Theorem 4. Assume that the uniformly bounded (in the operator norm) se-
guence of N-by-N matrices/&onverges ir-moments to a regular element
a. Assume further thatf.converges weakly to the Brown measuse Let

Gn be a sequence of polynomially vanishing Gaussian matriaed, set

Bn = An+ Gn. Then, lﬁ — V4 weakly, in probability.

Theorem¥ puts rather stringent assumptions on the sequapcén
particular, its assumptions are not satisfied by the sequehigilpotent ma-
tricesTy in @). Our second result corrects this defficiency, by simgathat
small Gaussian perturbations “regularize” matrices thatckse to matrices
satisfying the assumptions of TheorEm 4.



(a) N =50 (b) N =100 (c) N =500 (d) N =5000
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1

Figure 1: The eigenvalues & + N—3-1/2Gy;, whereGy is iid complex Gaussian
with mean 0, variance 1 entries.

Theorem 5. Let Ay, Ex be a sequence of bounded (for the operator norm)
N-by-N matrices, so thatpiconverges ink-moments to a regular element
a. Assume thaffEn||op converges to zero polynomially fast in N, and that
Lﬁ*E — vy weakly. Let g be a sequence of polynomially vanishing Gaus-
sian matrices, and set\B= Ay + Gy. Then, lﬁ — Vg Weakly, in probability.

Theorem[b should be compared to earlier results of SniadywWp
used stochastic calculus to show that a perturbation by mg@tstically
vanishing Ginibre Gaussian matrix regularizes arbitraatnoes. Compared
with his results, we allow for more general Gaussian pedtions (both
structurally and in terms of the variance) and also show tthatGaussian
regularization can decay as fast as wished in the polynosaalke. On the
other hand, we do impose a regularity property on the laras well as on
the sequence of matrices for which we assume that addingyaquuially
small matrix is enough to obtain convergence to the Brownsuea

A corollary of our general results is the following.

Corollary 6. Let Gy be a sequence of polynomially vanishing Gaussian
matrices and letJ be as in[@). Then LL*G converges weakly, in probability,
toward the uniform measure on the unit circleGn

In Figure[1, we give a simulation of the setup in Corollgry 6JariousN.
We will now define a class of matricdgy for which, if b is chosen cor-
rectly, adding a polynomially vanishing Gaussian ma@jxis not sufficient
to regularizeT, n + Gn. Letb be a positive integer, and defifigy to be an
N by N block diagonal matrix which eadn+ 1 by b+ 1 block on the diag-
onal equally, 1 (as defined in[{2). Ib+ 1 does not dividdN evenly, a block
of zeros is inserted at bottom of the diagonal. Thus, evetyyef T, is
zero except for entries on the superdiagonal (the supesdids the list of
entries with coordinate§,i + 1) for 1 <i < N — 1), and the superdiagonal




of Ty is equal to

1,1,...,1,0,1,1,...,1,0,...,1,1,...,1,0,0,...,0).
—_— Y
b b b <b

Recall that the spectral radius of a matrix is the maximunohibs value of
the eigenvalues. Also, we will ugg|| = tr(A*A)Y/? to denote the Hilbert-
Schmidt norm.

Proposition 7. Let b= b(N) be a sequence of positive integers such that
b(N) > logN for all N, and let Fn be as defined above. LefRe an
N by N matrix satisfyind|Rn|| < g(N), where for all N we assume that
g(N) < ﬁ Then

P(Thn+Ruy) < (Ng(N)YP+o(1),

wherep(M) denotes the spectral radius of a matrix M, and pdenotes a
small quantity tending to zero as-N .

Note thatT, y converges ink-moments to a Unitary Haar element af
(by a computation similar td{2)) i5(N)/N goes to zero, which is a regular
element. The Brown measure of the Unitary Haar element iumimea-
sure on the unit circle; thus, in the case whdg(N))Y/? < 1, Propositiofil7
shows thaflpy + Ry does not converge to the Brown measureTioy.

Corollary 8. Let Ry be an iid Gaussian matrix where each entry has mean
zero and variance one. Setbb(N) > logN be a sequence of integers, and
lety > 5/2 be a constant. Then, with probability tending to 1 as-\», we

have 2loaN
p(Tb.N+exp(—vb)RN)§exp<—v+ %g >+0(1),

wherep denotes the spectral radius and whefé)odenotes a small quantity
tending to zero as N~ co. Note in particular that the bound on the spectral
radius is strictly less thaexp(—1/2) < 1 in the limit as N— o, due to the
assumptions ogand b.

Corollary[8 follows from Propositiofl7 by noting that, witlgbability
tending to 1, all entries iRy are at mos€logN in absolute value for some
constaniC, and then checking that the hypotheses of Propodiion 7adte s
isfied forg(N) = exp(—yb)CN(logN)¥/4. There are two instances of Corol-
lary[8 that are particularly interesting: whén= N — 1, we see that a expo-
nentially decaying Gaussian perturbation does not regeldf, = Ty_1N,
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(a) N =50 (b) N =100 (c) N =500 (d) N =5000
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Figure 2: The eigenvaules Giognn + N~37Y/2Gy, whereGy is iid complex
Gaussian with mean 0, variance 1 entries. The spectralgagiioughly 007, and
the bound from Corollar{/8 is exp-1) ~ 0.37.

and wherb = log(N), we see that polynomially decaying Gaussian pertur-
bation does not regulariZBygn N (See Figurél?).

We will prove Propositiofi]7 in Sectidd 5. The proof of our meésults
(Theorem$¥ andl 5) borrows from the method< of [3].

We finally introduce some notation that will be used through&or any

N-by-N matrix Cy, let
~ (0 GCy
“-(q 7)

We denote byGc the Cauchy-Stieltjes transform of the spectral measure of
the matrixCy, that is

1 ~ -1
Gc(z) = mtr(z—CN) , zeCy.
The following useful estimate is immediate from the defaritand the re-
solvent identity:

Ge(2) — Gp(2)| < IE=Pllop.

< S @

2 Proof of Theorem[4

We keep throughout the notation and assumptions of theeheor he fol-
lowing is a crucial simple observation.

Proposition 9. For all complex numbeég, and all z so that1z > N2 with
O < K/4,
E|0Gg, 1¢(2)| < E|0Ga,+¢(2)] +1.




Proof. Noting that
E||Bn — A5, = E[Gn|l§, < GNT/2, (5)

the conclusion follows froni{4) and Holder's inequality. O
We continue with the proof of Theorelmh 4. L‘eﬁN denote the empirical

measure of the eigenvalues of the matk/'tx\—/z. We have that, for smooth
test functiong,

Jow ( [1ogia, ) dz- 5. [w@atdio),

In particular, the convergence bf} towardv, implies that

E/AqJ(z) </Iog|x|dviN(x)> dz
— / W(2)dva(2) = / AY(2) ( / |ogxdvg(x)> dz.

Onthe other hand, sinee— logxis bounded continuous on compact subsets
of (0,), it also holds that for any continuous bounded funcfiolR ; — R
compactly supported if0, «),

E/AlIJ(Z) (/Z(x)logxdv,iN (x)> dZ—>/Al|J(Z) (/Z(x)logxdvé(x)) dz.

Together with the fact thad is regular and thaf\ is uniformly bounded,
one concludes therefore that

€
I 2 B
2?8 ,\IlanmE/ </0 Iog]x\dvAN(x)> dz=0.

Our next goal is to show that the same applie8io In the following, we
let véN denote the empirical measure of the eigenvalueB\of z

Lemma 10.

€
; ; —-14,,2 _
Ié?c} ,\Ilanm/E Uo log || deN(x)] dz=0

BecauséE ||By — An ng — 0 for anyk > 0, we have for any fixed smooth
w compactly supported if0, «) that

E ‘/Aw(z (/w(x) logxav,, (x)) dz— /Atp(z) (/w(x) logxdvg, (x)) dz

)
N—oo 0

9



TheorentH follows at once from Lemrhal 10.

Proof of Lemmal[IQ: Note first that by[[5, Theorem 3.3] (or its generaliza-
tion in [3, Proposition 16] to the complex case), there exégstonstant so
that for anyz, the smallest singular valug, of By + zI satisfies

P(of, <x) <C (N%“('x)B

with B =1 or 2 according whether we are in the real or the complex case.
Therefore, for any, > 0, uniformly inz

N—¢
E[ /o |og\xy—1deBN(x)] < E[log(of) ez on-2]

—C (N%“‘/*Z) ®log(N?) + /NZ %C (N%+K’x> P dx
0

goes to zero abdl goes to infinity as soon as> %-i- k'. We fix hereafter

such af and we may and shall restrict the integration frdin¢ to €. To
compare the integral for the spectral measur@&@andBy, observe that for
any probability measur, with B, the Cauchy law with parametgr

P([a,b]) < (PxR) ([a—n,b+n])+R,([—n.n]°) < (PxR) ([a—n,b+n])+%

(6)

whereas fob—a > n

P(ja,b)) > (P*R) ([a+ n,b—n])—%- )

Recall that b
(P+Ry)(lab) = | |IG(x-+iv)ldx @

Sety = N—*/5 k" = k/2 andn = N~"/>. We have, whenevés—a > 4n,

b+r| "
Evg, ([ab]) < / E|OGs,  2(X+iy)|dx-+ N~ (<-K")/5
a—-n

< (b—a+2N" /%) + VA «Py s(la— N0 b NTK/10) 4 N~4/10
< (b—a+2N"M10) 1 v} ([(a— 2N, (b+2N"*/1%)]) 4- 2N /10,

where the first inequality is due tbl(6) arid (8), the secondiestd Proposi-
tion[d, and the last usel (7) ardl (8). Thereforé,-ifa = CN—*/10 for some

9



fixed C larger than 4, we deduce that there exists a finite con§fawhich
only depends of so that

EVg ([a,b]) <C'(b—a)+Vj ([(a— 2N/ (b+2N"*/10))).
As a consequence, as we may assume without loss of genehelity’ >
K/10,
‘ 1
e[| log v, ()
[NK/los]
< ) log(N~¢+2CkN /10~
k=0

-E[VE J([N~¢+2CKN /10, N~¢ 4 2C(k+ 1)N /1))
We need to pay special attention to the first term that we bdwyrabticing
that

log(N~¢) *E[Vg, (IN"%,N~¢+2CN*/19))]

< L'ng( N/10)3E[uZ ([0,2(C+ IN/19))
< EIog(N‘K/lo)‘l(ZC’N‘K/loJrv,iN([0 C+2N*/1))
2oc’z

2(C+2)NK/10
< lo g( K/lO)lNK/10+C///O |Og|X|7ldV)ZAN(X).

For the other terms, we have

[NK/los]
> log(N~%+2CKkN*/10)
k=1
"E[VA, (N8 +2CKN™/10 N ¢ 4 2C(k+ )N/
[NK/los]
< 2C )" log(CkN/10)~1oN+/20
k=1
[NK/IOE]
+ Z Iog(CkaK/lo)fl\,/ZAN([ZC(k_1)N7K/1072C(k+2)N7K/1o]).
k=1

Finally, we can sum up all these inequalities to find thatdhexists a finite
constanC"” so that

€ € €
E [/ Iog|x|1dv§N(x)] gC”’/O Iog|x|1dv,§N(X)+C’“/O log|x| ~tdx

10



and therefore goes to zero wherand there goes to zero. This proves the
claim. O

3 Proof of Theorem[®

From the assumptions, it is clear th@y + En) converges in-moments
to the regular elemerd. By Theoren H, it follows thaty"E*© converges
(weakly, in probability) towards,. We can now removey. Indeed, by[(4)
and [®), we have for any < k’/2 and all§ € C

N—X
‘G§+G+E(Z) N G§+G+E+E(Z)‘ < 02
and therefore foflz > N—X/2,

’DG§+G+E(Z)’ < ‘DG§+G+E+E(Z)‘ +1

Again by [8, Theorem 3.3] (or its generalization [ [3, Prejiion 16]) to
the complex case), for arg the smallest singular valugf, of Ay + Gy +z
satisfies

/ \B
P(of, <X) SC(N%“‘ x)

with B = 1 or 2 according whether we are in the real or the complex dafke.
can now rerun the proof of Theordrh 4, replaciagby Ay = An+ En + Gn
andBy by A\ — En. O

4  Proof of Corollary

We apply Theorerfil5 witlhy = Ty, En the N-by-N matrix with

o [ dn=N"W2) =1 =N,
Bn(i.J) = { 0, otherwise

wherek’ > k. We check the assumptions of TheorEm 5. We take be
a unitary Haar element ird, and recall that its Brown measurg is the
uniform measure o{z e C : |zl = 1}. We now check thaa is regular.
Indeed, [ x€dvZ(x) = 0 if k is odd by symmetry while fok even,

k/2

/ Xdv2(x) = 0 ([(z—a)(z—a) %) = Y (|22 + 1)< ( 51 > ( J?j > ’

=1

11



and one therefore verifies that feeven,
/xkdvg(x) = %T/(|z|2 +1+2|7|cosB)¥/%de.

It follows that

€ 1 2m 0
/0 |OngVé(X) = ET/O Iog(]z]2+1+2\z\ Cose)l{\z\2+l+2|z|cose<e}de = 0,

proving the required regularity.
Further, we claim thaLﬁJrE converges tw,. Indeed the eigenvalues
of Ay + Ey are such that there exists a non-vanishing vegto that

UNON = AU, Ui—1 = AU,

that is
AN = on.

In particular, all theN-roots ofdy are (distinct) eigenvalues, that is the eigen-
values)\'j\' of Ay are

A = [y YNPTIN D 1< <N

Therefore, for any bounded continuogifunction onC,

as claimed. O

5 Proof of Proposition[{

In this section we will prove the following proposition:

Proposition 11. Let b= b(N) be a sequence of positive integers, and jgf T
be as in Propositiofil]7. LetiRbe an N by N matrix satisfyingRy|| < g(N),

1
where for all N we assume thathg) < BN Then

b\ \ ¥+ 1/(b+1)
P(Ton +Rn) < <o <¢Nb(2N1/4gl/2) >> + (1’Ng) :

12



Propositior follows from PropositidnIl1 by adding the asption that
b(N) > log(N) and then simplifying the upper bound on the spectral radius.

Proof of Proposition[I1: To bound the spectral radius, we will use the fact
that p(Ton +Rn) < ||(Ton+ RN)k||1/k for all integersk > 1. Our general
plan will be to bound| (T + Ry)¥|| and then take k-th root of the bound.
We will take k = b+ 1, which allows us to take advantage of the fact that
ToN is (b+ 1)-step nilpotent. In particular, we make use of the fact tbat f
any positive integea,

(9)

1/2 .
Tl = (b—a+1)V2 |7 if1<a<b
| 0 ifb+1<a

We may write

b+1

[[TonR™

i=1

[(Ton+Ry)PH < D
Ae{0,1}b+1
b+1
£=0 Ac{0,1}b+1

A has/ ones

b+1

e

i=1

When/ is large, we will make use of the following lemma.
Lemma 12. If A € {0,1}¥ has/ ones and > (k+1)/2, then

k
Ai pl—A
[ITx
i=1

We will prove Lemmd&7R in Sectidn3.1. Using Lemma 12 vkita b+ 1

e k—¢+1 ,
TLk—HlJ HRNkaI('

< (| Ton

13



along with the fact thaAB|| < ||A|| ||B||, we have

d
b1
[(Ton+Ra)> < > ( H >|!Tb7NH£HRng_“1

/=0 ¢
b+1 : b—(+2
b+1 _ _
> Con e R
i
2
o)
2
< < _g >||-|— [ b (+1 (10)
=
b+1 b—(+2
+ <b—£1> TLmJ " gb—f-i-l’ (11)
b+2

(=rbg2)

where the second inequality comes from the assumgifRyi| < g=g(N).
We will bound [I0) and{11) separately. To bouhdl (10) not¢ tha

| %52 b1 L | %52 bl N OV2
,[+l< —(+1
> (%) ) mie < 32 (%)) (00 ) o

bi4< b+1 >N(b+2)/4gb/2
- 2 \|(b+1)/2]

-0 (\/N b(2N1/4gl/2)b> . (12)
Next, we turn to bounding_(11). We will use the following lerarto

show that the largest term in the suml(11) comes fron?the term. Note
that wher? = b+ 1, the summand ii{11) is equal to zero Bl (9).

(+1
Lemma 13. If TbLb 1] >0and/<b-—1and
< 2
9= SNty
then
. b—t+2 b—t+1
b+1 TL@J * Pl < b+1 T\ béﬁd * o
¢ )| N (+1 '

We will prove LemmdB in Sectidn5.1.

14



Using LemmdII8 we have

b+1 b—¢+2 2
b+1 _ b ]
< > |J3 i+2J gb (+1 < é(b‘i‘ 1) Tb|:l\21J gl
=]
b
< Z
< S0+ 10— [b/2] + 15

<b’Ng (13)

Combining [I2) and{A3) witH{10) anf{11), we may use the tlaat
(x+y) V(1) < x1/(b+1) 4 1/ (b+1) for positivex,y to complete the proof of
PropositiorTIL. It remains to prove Lemind 12 and Lerima 13chwvie do
in Sectio &L below. O

5.1 Proofs of LemmdIR and Lemmal3

Proof of Lemmal[l2.Using [9), it is easy to show that
i Tall < [T

It is also clear from[{9) that
[T <

LetA € {0,1}% havel ones. Then, using the assumption thatk — ¢+
1, we may write

k
HTtii\] R']\.I—)\i _ b1-|- Rt\)] bk éTak £+1
i=1

whereg; > 1 for alli andb; > 0 for all i. Thus

k k—¢+1
A pl—A k—¢ i
TITonR™ | < IRl " TT [l
i=1 i=1

Applying (I4) repeatedly, we may assume that two ofahdiffer by more
than 1, all without changing the fact th@k‘é+1 = /. Thus, some of the

a are equal to| ;—— /+1J and some are equal ﬁqﬁl. Finally, applying
(@3), we have that

k—(+1

[T s <

T°+1H forintegers 3<c+2<a<h. (14)

T""ng for all positive integers. (15)

o k=1
WlJ

15



O

Proof of Lemmall3. Using [3) and rearranging, it is sufficient to show that

b—(+1
r+1 (b_{ ¢ JH)”T N J1/29<<b—Lb@i1J+1> g
— l
b 11 b_t12 br1 b [y 11

Using a variety of manipulations, it is possible to show that

€+1 b7121+1
( b— |57l + 1)

b— [ 575 +1

(b—t+2)(b—t+1) b+2
= & <_(b+2)(b—€+2)—€_(b+2)(b—€+2)—€>
> exp(—3/2).

Thus, it is sufficient to have
gNl/zg < exp(—3/2),

which is true by assumption. O
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