
Context and motivations
“Double buffering” execution style

Communication coalescing

Cours M2: Compilation avancée et
optimisation de programmes

Alain Darte

CNRS, Compsys
Laboratoire de l’Informatique du Parallélisme

École normale supérieure de Lyon

Kernel offloading optimizations and double buffering

1 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Outline

1 Context and motivations
Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

2 “Double buffering” execution style
Loop tiling and the polyhedral model
Overview of the compilation scheme
Implementation details: synchronization and memory
mapping

3 Communication coalescing
Communication coalescing: related work
Exact inter-tile data reuse in a tile strip
Extensions to more general situations

2 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Kernel acceleration: portability problem

Hardware accelerators fpga, gpu, dedicated board, multicore

Better energetic profitability.
Huge portability issue.
Costly compiler development.

How to automate application porting?

High-productivity and high-performance languages.
Library/directives-type support, e.g., OpenAcc.
Application-aware, compilation-aware, OS-aware, and
architecture-aware languages.
Source-to-source compilation, adaptable to back-ends.

3 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Targeting C dialects. Example of high-level synthesis

Often a C dialect with good back-end optimizations.
Ex: C-to-VHDL high-level synthesis (HLS).

Many academic and industrial tools
Spark, Gaut, Ugh, Paro, Compaan, Catapult-C, Pico-Express,
Impulse-C, C2H, . . .

HLS tools quite good at optimizing computation kernel

Optimizes finite state machine (FSM).
Exploits instruction-level parallelism (ILP).
Performs operator selection, resource sharing, scheduling, etc.

But still a huge problem for feeding the accelerators with data

Sometimes, no synchronization support with memory * unusable.
In general, lack of interface support * write (expert) VHDL glue.
Lack of communication opt. * redesign the algorithm.
Lack of powerful code analyzers * find tricks.

* How to do this automatically at C-level?

4 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Targeting C dialects. Example of high-level synthesis

Often a C dialect with good back-end optimizations.
Ex: C-to-VHDL high-level synthesis (HLS).

Many academic and industrial tools
Spark, Gaut, Ugh, Paro, Compaan, Catapult-C, Pico-Express,
Impulse-C, C2H, . . .

HLS tools quite good at optimizing computation kernel

Optimizes finite state machine (FSM).
Exploits instruction-level parallelism (ILP).
Performs operator selection, resource sharing, scheduling, etc.

But still a huge problem for feeding the accelerators with data

Sometimes, no synchronization support with memory * unusable.
In general, lack of interface support * write (expert) VHDL glue.
Lack of communication opt. * redesign the algorithm.
Lack of powerful code analyzers * find tricks.

* How to do this automatically at C-level?

4 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Current trend: kernel offloading at C level

C-to-C layer for application outlining or offloading consisting in

Function isolation: analyze function footprint and rewrite.
Optimization: reduce communications, express parallelism.
Specialization: adapt the code to the specific C compiler.

* Ex: work of D. Quinlan (Livermore), S. Guelton, M. Amini (Mines Paris)

Elementary approach

Analyze the data read and written by the function to offload.
Perform the transfer from distant memory.
Do accelerated computation on local memory.
Transfer back for updating the distant memory.

* No pipeline, no double-buffering, no data reuse, no local
memory size optimization, etc.

5 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Optimized offloading: pipelining, reuse, local memories

Optimized approach:

Defines a notion of block (tile).

Impacts the size of the local memory and the spatial locality.

Ex: compute (,) → (block 1) then (,) → (block 2).

Load data for block 1 in local memory.

External DDR Local Memory

Host Computer Accelerator

6 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Optimized offloading: pipelining, reuse, local memories

Optimized approach:

Defines a notion of block (tile).

Impacts the size of the local memory and the spatial locality.

Computation of blocks in sequence, with no overlap.

Ex: compute (,) → (block 1) then (,) → (block 2).

Load data for block 1 in local memory.

External DDR Local Memory

Host Computer Accelerator

6 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Optimized offloading: pipelining, reuse, local memories

Optimized approach:

Defines a notion of block (tile).

Impacts the size of the local memory and the spatial locality.

Computation of blocks in sequence, with no overlap.

Ex: compute (,) → (block 1) then (,) → (block 2).

Load data for block 1 in local memory.

External DDR Local Memory

Host Computer Accelerator

6 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Optimized offloading: pipelining, reuse, local memories

Optimized approach:

Defines a notion of block (tile).

Impacts the size of the local memory and the spatial locality.

Computation of blocks in sequence, with no overlap.

Ex: compute (,) → (block 1) then (,) → (block 2).

Load data for block 1 in local memory.

External DDR Local Memory

Host Computer Accelerator

6 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Optimized offloading: pipelining, reuse, local memories

Optimized approach:

Defines a notion of block (tile).

Impacts the size of the local memory and the spatial locality.

Computation of blocks in sequence, with no overlap.

Ex: compute (,) → (block 1) then (,) → (block 2).

Load data for block 1 in local memory.

External DDR Local Memory

Host Computer Accelerator

6 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Optimized offloading: pipelining, reuse, local memories

Optimized approach:

Defines a notion of block (tile).

Impacts the size of the local memory and the spatial locality.

Computation of blocks in sequence, with no overlap.

Ex: compute (,) → (block 1) then (,) → (block 2).

Load data for block 1 in local memory.

External DDR Local Memory

Host Computer Accelerator

6 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Optimized offloading: pipelining, reuse, local memories

Optimized approach:

Defines a notion of block (tile).

Impacts the size of the local memory and the spatial locality.

Computation of blocks in sequence, with no overlap.

Ex: compute (,) → (block 1) then (,) → (block 2).

Compute block 1 locally.

External DDR Local Memory

Host Computer Accelerator

6 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Optimized offloading: pipelining, reuse, local memories

Optimized approach:

Defines a notion of block (tile).

Impacts the size of the local memory and the spatial locality.

Computation of blocks in sequence, with no overlap.

Ex: compute (,) → (block 1) then (,) → (block 2).

Compute block 1 locally.

External DDR Local Memory

Host Computer Accelerator

6 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Optimized offloading: pipelining, reuse, local memories

Optimized approach:

Defines a notion of block (tile).

Impacts the size of the local memory and the spatial locality.

Computation of blocks in sequence, with no overlap.

Ex: compute (,) → (block 1) then (,) → (block 2).

Store results of block 1 to distant DDR memory.

External DDR Local Memory

Host Computer Accelerator

6 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Optimized offloading: pipelining, reuse, local memories

Optimized approach:

Defines a notion of block (tile).

Impacts the size of the local memory and the spatial locality.

Computation of blocks in sequence, with no overlap.

Ex: compute (,) → (block 1) then (,) → (block 2).

Store results of block 1 to distant DDR memory.

External DDR Local Memory

Host Computer Accelerator

6 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Optimized offloading: pipelining, reuse, local memories

Optimized approach:

Defines a notion of block (tile).

Impacts the size of the local memory and the spatial locality.

Computation of blocks in sequence, with no overlap.

Ex: compute (,) → (block 1) then (,) → (block 2).

Load data for block 2 in local memory.

External DDR Local Memory

Host Computer Accelerator

6 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Optimized offloading: pipelining, reuse, local memories

Optimized approach:

Defines a notion of block (tile).

Impacts the size of the local memory and the spatial locality.

Computation of blocks in sequence, with no overlap.

Ex: compute (,) → (block 1) then (,) → (block 2).

Load data for block 2 in local memory.

External DDR Local Memory

Host Computer Accelerator

6 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Optimized offloading: pipelining, reuse, local memories

Optimized approach:

Defines a notion of block (tile).

Impacts the size of the local memory and the spatial locality.

Computation of blocks in sequence, with no overlap.

Ex: compute (,) → (block 1) then (,) → (block 2).

Load data for block 2 in local memory.

External DDR Local Memory

Host Computer Accelerator

6 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Optimized offloading: pipelining, reuse, local memories

Optimized approach:

Defines a notion of block (tile).

Impacts the size of the local memory and the spatial locality.

Computation of blocks in sequence, with no overlap.

Ex: compute (,) → (block 1) then (,) → (block 2).

Load data for block 2 in local memory.

External DDR Local Memory

Host Computer Accelerator

6 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Optimized offloading: pipelining, reuse, local memories

Optimized approach:

Defines a notion of block (tile).

Impacts the size of the local memory and the spatial locality.

Computation of blocks in sequence, with no overlap.

Ex: compute (,) → (block 1) then (,) → (block 2).

Compute block 2 locally.

External DDR Local Memory

Host Computer Accelerator

6 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Optimized offloading: pipelining, reuse, local memories

Optimized approach:

Defines a notion of block (tile).

Impacts the size of the local memory and the spatial locality.

Computation of blocks in sequence, with no overlap.

Ex: compute (,) → (block 1) then (,) → (block 2).

Compute block 2 locally.

External DDR Local Memory

Host Computer Accelerator

6 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Optimized offloading: pipelining, reuse, local memories

Optimized approach:

Defines a notion of block (tile).

Impacts the size of the local memory and the spatial locality.

Computation of blocks in sequence, with no overlap.

Ex: compute (,) → (block 1) then (,) → (block 2).

Store results of block 2 to distant DDR memory.

External DDR Local Memory

Host Computer Accelerator

6 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Optimized offloading: pipelining, reuse, local memories

Optimized approach:

Defines a notion of block (tile).

Impacts the size of the local memory and the spatial locality.

Computation of blocks in sequence, with no overlap.

Ex: compute (,) → (block 1) then (,) → (block 2).

Store results of block 2 to distant DDR memory.

External DDR Local Memory

Host Computer Accelerator

6 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Optimized offloading: pipelining, reuse, local memories

Optimized approach:

Defines a notion of block (tile).

Impacts the size of the local memory and the spatial locality.

Overlapping of communications and computations (pipeline).

Ex: compute (,) → (block 1) then (,) → (block 2).

Load data for block 1 in local memory.

External DDR Local Memory

Host Computer Accelerator

6 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Optimized offloading: pipelining, reuse, local memories

Optimized approach:

Defines a notion of block (tile).

Impacts the size of the local memory and the spatial locality.

Overlapping of communications and computations (pipeline).

Ex: compute (,) → (block 1) then (,) → (block 2).

Load data for block 1 in local memory.

External DDR Local Memory

Host Computer Accelerator

6 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Optimized offloading: pipelining, reuse, local memories

Optimized approach:

Defines a notion of block (tile).

Impacts the size of the local memory and the spatial locality.

Overlapping of communications and computations (pipeline).

Ex: compute (,) → (block 1) then (,) → (block 2).

Load data for block 1 in local memory.

External DDR Local Memory

Host Computer Accelerator

6 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Optimized offloading: pipelining, reuse, local memories

Optimized approach:

Defines a notion of block (tile).

Impacts the size of the local memory and the spatial locality.

Overlapping of communications and computations (pipeline).

Ex: compute (,) → (block 1) then (,) → (block 2).

Load data for block 1 in local memory.

External DDR Local Memory

Host Computer Accelerator

6 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Optimized offloading: pipelining, reuse, local memories

Optimized approach:

Defines a notion of block (tile).

Impacts the size of the local memory and the spatial locality.

Overlapping of communications and computations (pipeline).

Ex: compute (,) → (block 1) then (,) → (block 2).

Load data for block 1 in local memory.

External DDR Local Memory

Host Computer Accelerator

6 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Optimized offloading: pipelining, reuse, local memories

Optimized approach:

Defines a notion of block (tile).

Impacts the size of the local memory and the spatial locality.

Overlapping of communications and computations (pipeline).

Ex: compute (,) → (block 1) then (,) → (block 2).

Compute block 1 locally and start loading for block 2.

External DDR Local Memory

Host Computer Accelerator

6 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Optimized offloading: pipelining, reuse, local memories

Optimized approach:

Defines a notion of block (tile).

Impacts the size of the local memory and the spatial locality.

Overlapping of communications and computations (pipeline).

Ex: compute (,) → (block 1) then (,) → (block 2).

Compute block 1 locally and start loading for block 2.

External DDR Local Memory

Host Computer Accelerator

6 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Optimized offloading: pipelining, reuse, local memories

Optimized approach:

Defines a notion of block (tile).

Impacts the size of the local memory and the spatial locality.

Overlapping of communications and computations (pipeline).

Ex: compute (,) → (block 1) then (,) → (block 2).

Store results of block 1 and finish loading for block 2.

External DDR Local Memory

Host Computer Accelerator

6 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Optimized offloading: pipelining, reuse, local memories

Optimized approach:

Defines a notion of block (tile).

Impacts the size of the local memory and the spatial locality.

Overlapping of communications and computations (pipeline).

Ex: compute (,) → (block 1) then (,) → (block 2).

Wrong! Analysis for inter-block reuse is necessary.

External DDR Local Memory

Host Computer Accelerator

6 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Optimized offloading: pipelining, reuse, local memories

Optimized approach:

Defines a notion of block (tile).

Impacts the size of the local memory and the spatial locality.

Pipeline with local data reuse.

Ex: compute (,) → (block 1) then (,) → (block 2).

Loading for block 1,

start loading for block 2.

External DDR Local Memory

Host Computer Accelerator

6 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Optimized offloading: pipelining, reuse, local memories

Optimized approach:

Defines a notion of block (tile).

Impacts the size of the local memory and the spatial locality.

Pipeline with local data reuse.

Ex: compute (,) → (block 1) then (,) → (block 2).

Loading for block 1.

start loading for block 2.

External DDR Local Memory

Host Computer Accelerator

6 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Optimized offloading: pipelining, reuse, local memories

Optimized approach:

Defines a notion of block (tile).

Impacts the size of the local memory and the spatial locality.

Pipeline with local data reuse.

Ex: compute (,) → (block 1) then (,) → (block 2).

Loading for block 1.

start loading for block 2.

External DDR Local Memory

Host Computer Accelerator

6 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Optimized offloading: pipelining, reuse, local memories

Optimized approach:

Defines a notion of block (tile).

Impacts the size of the local memory and the spatial locality.

Pipeline with local data reuse.

Ex: compute (,) → (block 1) then (,) → (block 2).

Loading for block 1, start loading for block 2.

External DDR Local Memory

Host Computer Accelerator

6 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Optimized offloading: pipelining, reuse, local memories

Optimized approach:

Defines a notion of block (tile).

Impacts the size of the local memory and the spatial locality.

Pipeline with local data reuse.

Ex: compute (,) → (block 1) then (,) → (block 2).

Loading for block 1, start loading for block 2.

External DDR Local Memory

Host Computer Accelerator

6 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Optimized offloading: pipelining, reuse, local memories

Optimized approach:

Defines a notion of block (tile).

Impacts the size of the local memory and the spatial locality.

Pipeline with local data reuse.

Ex: compute (,) → (block 1) then (,) → (block 2).

Compute block 1 locally and finish loading for block 2.

External DDR Local Memory

Host Computer Accelerator

6 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Optimized offloading: pipelining, reuse, local memories

Optimized approach:

Defines a notion of block (tile).

Impacts the size of the local memory and the spatial locality.

Pipeline with local data reuse.

Ex: compute (,) → (block 1) then (,) → (block 2).

Finish computing for block 1.

External DDR Local Memory

Host Computer Accelerator

6 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Optimized offloading: pipelining, reuse, local memories

Optimized approach:

Defines a notion of block (tile).

Impacts the size of the local memory and the spatial locality.

Pipeline with local data reuse.

Ex: compute (,) → (block 1) then (,) → (block 2).

Store results of block 1, keep some data and compute block 2.

External DDR Local Memory

Host Computer Accelerator

6 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Optimized offloading: pipelining, reuse, local memories

Optimized approach:

Defines a notion of block (tile).

Impacts the size of the local memory and the spatial locality.

Pipeline with local data reuse.

Ex: compute (,) → (block 1) then (,) → (block 2).

Store results of block 1, keep some data and compute block 2.

External DDR Local Memory

Host Computer Accelerator

6 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Optimized offloading: pipelining, reuse, local memories

Optimized approach:

Defines a notion of block (tile).

Impacts the size of the local memory and the spatial locality.

Pipeline with local data reuse.

Ex: compute (,) → (block 1) then (,) → (block 2).

Store results of block 2 in distant DDR memory.

External DDR Local Memory

Host Computer Accelerator

6 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Optimized offloading: pipelining, reuse, local memories

Optimized approach:

Defines a notion of block (tile).

Impacts the size of the local memory and the spatial locality.

Pipeline with local data reuse.

Ex: compute (,) → (block 1) then (,) → (block 2).

Store results of block 2 in distant DDR memory.

External DDR Local Memory

Host Computer Accelerator

6 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

C-to-C-to-VHDL optimizations using Altera C2H

Focus on accelerators limited by bandwidth

Use the adequate FPGA resources for computation throughput.
Optimize bandwidth throughput.

Apply source-to-source transformations

Push all the dirty work in the back-end compiler.
Optimize transfers at C level.
Compile any new functions with the same HLS tool.

Use Altera C2H as a back-end compiler. Main features:
Syntax-directed translation to hardware:

Local array = local memory, other arrays/pointers = external memory.
Hierarchical FSMs: outer FSM stalls to wait for the latest inner FSM.

Software pipelined loops:
Basic software pipelining with rough data dependence analysis.
Latency-aware pipelined DDR accesses (with internal FIFOs).

Full interface within the complete system:
Accelerator(s) initiated as (blocking or not) function call(s).
Possibility to define FIFOs between accelerators.

7 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

C-to-C-to-VHDL optimizations using Altera C2H

Focus on accelerators limited by bandwidth

Use the adequate FPGA resources for computation throughput.
Optimize bandwidth throughput.

Apply source-to-source transformations

Push all the dirty work in the back-end compiler.
Optimize transfers at C level.
Compile any new functions with the same HLS tool.

Use Altera C2H as a back-end compiler. Main features:
Syntax-directed translation to hardware:

Local array = local memory, other arrays/pointers = external memory.
Hierarchical FSMs: outer FSM stalls to wait for the latest inner FSM.

Software pipelined loops:
Basic software pipelining with rough data dependence analysis.
Latency-aware pipelined DDR accesses (with internal FIFOs).

Full interface within the complete system:
Accelerator(s) initiated as (blocking or not) function call(s).
Possibility to define FIFOs between accelerators.

7 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

C-to-C-to-VHDL optimizations using Altera C2H

Focus on accelerators limited by bandwidth

Use the adequate FPGA resources for computation throughput.
Optimize bandwidth throughput.

Apply source-to-source transformations

Push all the dirty work in the back-end compiler.
Optimize transfers at C level.
Compile any new functions with the same HLS tool.

Use Altera C2H as a back-end compiler. Main features:
Syntax-directed translation to hardware:

Local array = local memory, other arrays/pointers = external memory.
Hierarchical FSMs: outer FSM stalls to wait for the latest inner FSM.

Software pipelined loops:
Basic software pipelining with rough data dependence analysis.
Latency-aware pipelined DDR accesses (with internal FIFOs).

Full interface within the complete system:
Accelerator(s) initiated as (blocking or not) function call(s).
Possibility to define FIFOs between accelerators.

7 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Nested finite state machines and pipelined accesses

accelerator function FSM

for (i = 0; i < n; i++)

for (j = 0...

a_sum....

for (j = 0;...

b_sum...

Pipeline

Access

FIFO

Pipeline

Access

FIFO

c[i] = ...

Port cPort bPort a

C
o
n
tr

o
l

D
at

ap
at

h

void acc(int *a, int *b, int *c) {
int i, j, k, a_sum, b_sum;

for(i=0; i<n; i++) {
for(j=0; j<m; j++)

a_sum += a[j];

for(j=0; j<p; j++)

b_sum += b[j];

c[i] = a_sum + b_sum;

}
}

8 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

DDR SDRAM asymmetric accesses

DDR specifications:

DDR-400 128Mbx8, size
16MB, CAS 3, 200MHz.

Successive reads to the
same row: 10ns .

Successive reads with a
row change: 80ns .

PRE−

PRE
PRE

RDWR

CHARGE

WRITE READ

BANK

ACTIVE

RDWR

RD

WR

P
R
E

tR
A
S

IDLE

tRP

tRCD

ACTIV

ý For accelerators exploiting full bandwidth, frequent changes of
rows kill performances. Need to use “burst” communications.

9 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Throughput when accessing (asymmetric) DDR memory

Here, with DDR-400 128Mbx8, size 16MB, CAS 3, 200MHz, successive
reads to the same row every 10 ns , to different rows every 80 ns .

* A bad spatial DDR locality can kill performances by a factor 8!

void vector_sum (int* __restrict__ a, b, c, int n) {
for (int i = 0; i < n; i++) c[i] = a[i] + b[i];

}

/RAS

/CAS

/WE

DQ

PRECHARGE READ

ACTIVATE

load a(i)

a(i)

PRECHARGE READ

ACTIVATE

load b(i)

b(i)

store c(i)

PRECHARGE

ACTIVATE

WRITE

c(i)

C2H-compiled code: pipelined but time gaps & data thrown away.

10 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Throughput when accessing (asymmetric) DDR memory

Here, with DDR-400 128Mbx8, size 16MB, CAS 3, 200MHz, successive
reads to the same row every 10 ns , to different rows every 80 ns .

* A bad spatial DDR locality can kill performances by a factor 8!

void vector_sum (int* __restrict__ a, b, c, int n) {
for (int i = 0; i < n; i++) c[i] = a[i] + b[i];

}

/RAS

/CAS

/WE

DQ

ACTIVATE

a(i) a(i+k)

PRECHARGE READ PRECHARGE READ

ACTIVATE

b(i) b(i+k)

store c(i) ... c(i+k)

PRECHARGE

ACTIVATE

WRITE

c(i) c(i+k)

load a(i) ... a(i+k) load b(i) ... b(i+k)

block size

Block version: reduces gaps, exploits bursts and temporal reuse.

10 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Experimental results: typical examples

Typical speed-up
vs block size figure
(here vector sum).

 0

 1

 2

 3

 4

 5

 6

 7

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

S
p
e
e
d
-u

p
Block size

Kernel Speed-up ALUT Dedicated Total Total block DSP block Max Frequency
registers registers memory bits 9-bit elements (MHz > 100)

SA 1 5105 3606 3738 66908 8 205.85
VS0 1 5333 4607 4739 68956 8 189.04
VS1 6.54 10345 10346 11478 269148 8 175.93

MM0 1 6452 4557 4709 68956 40 191.09
MM1 7.37 15255 15630 15762 335196 188 162.02

SA: system alone.

VS0 & VS1: vector sum direct & optimized version.

MM0 & MM1: matrix-matrix multiply direct & optimized (∼ 500 lines!)

11 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Strip-mining and loop distribution

Loop distribution: too large local memory.
Unrolling: too many registers.

}
ý

strip-mining +
loop distribution.

for (i=0; i<MAX; i=i+BLOCK) {
for(j=0; j<BLOCK; j++) a_tmp[j] = a[i+j]; //prefetch

for(j=0; j<BLOCK; j++) b_tmp[j] = b[i+j]; //prefetch

for(j=0; j<BLOCK; j++) c_tmp[i+j] = a_tmp[j] + b_tmp[j];

for(j=0; j<BLOCK; j++) c[i+j] = c_tmp[i+j]; //store

}

ý Does not work!

first data
received

latency

first request

DDR

i loop

time

pipeline

computation

j loop

fetch a,b

j loops

store

j loop

Accesses to arrays a and b
still interleaved!

Loop latency penalty.

Outer loop not pipelined.

12 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Strip-mining and loop distribution

Loop distribution: too large local memory.
Unrolling: too many registers.

}
ý

strip-mining +
loop distribution.

for (i=0; i<MAX; i=i+BLOCK) {
for(j=0; j<BLOCK; j++) a_tmp[j] = a[i+j]; //prefetch

for(j=0; j<BLOCK; j++) b_tmp[j] = b[i+j]; //prefetch

for(j=0; j<BLOCK; j++) c_tmp[i+j] = a_tmp[j] + b_tmp[j];

for(j=0; j<BLOCK; j++) c[i+j] = c_tmp[i+j]; //store

}

ý Does not work!

first data
received

latency

first request

DDR

i loop

time

pipeline

computation

j loop

fetch a,b

j loops

store

j loop

Accesses to arrays a and b
still interleaved!

Loop latency penalty.

Outer loop not pipelined.

12 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Introduce false dependences

for (i=0; i<MAX; i=i+BLOCK) {
for(j=0; j<BLOCK; j++) tmp = BLOCK; a_tmp[j] = a[i+j];

for(j=0; j<tmp; j++) b_tmp[j] = b[i+j];

for(j=0; j<BLOCK; j++) c_tmp[i+j] = a_tmp[j] + b_tmp[j];

for(j=0; j<BLOCK; j++) c[i+j] = c_tmp[i+j];

}

latency

first request

pipeline

j loop

fetch a

DDR

store

time

computation

j loop j loop

fetch b

first data
received i loop

j loop

ý Still pay loop latency penalty and poor outermost loop pipeline.

13 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Emulating nested loops: similar to juggling

i=0; j=0; bi=0;

for (k=0; k<4*MAX; k++) {
if (j==0) a_tmp[i] = a[bi+i];

else if (j==1)

b_tmp[i] = b[bi+i];

else if (j==2)

c_tmp[i] = a_tmp[i] + b_tmp[i];

else c[bi+i] = c_tmp[i];

if (i<BLOCK-1) i++;

else {
i=0;

if (j<3) j++;

else {j=0; bi = bi + BLOCK;}
}

}

Need to use restrict pragma
for all arrays.

CPLI (II) = 21! Problem
with dependence analyzer
and software pipeliner.

Better behavior (CLPI=3)
with case statement: by luck.

Further loop unrolling to get
CPLI 1: too complex.

But still a problem with
interleaved DDR accesses!

14 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Emulating nested loops, regrouping transfers

i=0; j=0; bi=0;

for (k=0; k<3*MAX; k++) {
if (j==0) { ptr_1 = &a[bi+i]; ptr_2 = &a_tmp[i]; }
else if (j==1) { ptr_1 = &b[bi+i]; ptr_2 = &b_tmp[i]; }
else if (j==2) { ptr_1 = &c_tmp[i]; ptr_2 = &c[bi+i];

c_tmp[i] = a_tmp[i] + b_tmp[i]; }
*ptr_2 = *ptr_1;

if (i<BLOCK-1) i++;

else { i=0; if (j<2) j++; else {j=0; bi = bi + BLOCK;}}
}

No more interleaving between arrays a and b;

CPLI not equal to 1, unless restrict pragma added: but leads
to potentially wrong codes.

How to decrease CPLI and generalize to more complex codes?

15 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Loop tiling and the polyhedral model
Overview of the compilation scheme
Implementation details: synchronization and memory mapping

Outline

1 Context and motivations

2 “Double buffering” execution style
Loop tiling and the polyhedral model
Overview of the compilation scheme
Implementation details: synchronization and memory
mapping

3 Communication coalescing

16 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Loop tiling and the polyhedral model
Overview of the compilation scheme
Implementation details: synchronization and memory mapping

Reminder: all-affine fully-analyzable polyhedral model �

Fortran-like C for loops:

for (i=0, i<=2N; i++)

c[i] = 0;

for (i=0; i<=N; i++)

for (j=0; j<=N; j++)

c[i+j] = c[i+j] + p[i]*q[j];

Affine nested loops: polytopes.

Multi-dimensional arrays with
affine access functions.

Orders: affine transformations.

Static control, exact analysis.

! Typical criticism: such codes do not exist.

But:

Applicable to specific domains: e.g., signal/video processing.

Required for static automation, very suitable for HLS.

Can be limited to the part to analyze: here non-local accesses.

Central model & source of inspiration for more general cases.

Recent revival: isl, pips4all, pluto, graphite,
r-stream, compaan, chuba, gecos, . . .

17 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Loop tiling and the polyhedral model
Overview of the compilation scheme
Implementation details: synchronization and memory mapping

Reminder: all-affine fully-analyzable polyhedral model �

Fortran-like C for loops:

for (i=0, i<=2N; i++)

c[i] = 0;

for (i=0; i<=N; i++)

for (j=0; j<=N; j++)

c[i+j] = c[i+j] + p[i]*q[j];

Affine nested loops: polytopes.

Multi-dimensional arrays with
affine access functions.

Orders: affine transformations.

Static control, exact analysis.

! Typical criticism: such codes do not exist.

But:

Applicable to specific domains: e.g., signal/video processing.

Required for static automation, very suitable for HLS.

Can be limited to the part to analyze: here non-local accesses.

Central model & source of inspiration for more general cases.

Recent revival: isl, pips4all, pluto, graphite,
r-stream, compaan, chuba, gecos, . . .

17 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Loop tiling and the polyhedral model
Overview of the compilation scheme
Implementation details: synchronization and memory mapping

Reminder: all-affine fully-analyzable polyhedral model �

Fortran-like C for loops:

for (i=0, i<=2N; i++)

c[i] = 0;

for (i=0; i<=N; i++)

for (j=0; j<=N; j++)

c[i+j] = c[i+j] + p[i]*q[j];

Affine nested loops: polytopes.

Multi-dimensional arrays with
affine access functions.

Orders: affine transformations.

Static control, exact analysis.

! Typical criticism: such codes do not exist. But:

Applicable to specific domains: e.g., signal/video processing.

Required for static automation, very suitable for HLS.

Can be limited to the part to analyze: here non-local accesses.

Central model & source of inspiration for more general cases.

Recent revival: isl, pips4all, pluto, graphite,
r-stream, compaan, chuba, gecos, . . .

17 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Loop tiling and the polyhedral model
Overview of the compilation scheme
Implementation details: synchronization and memory mapping

Polyhedral model: tiling

Tiled product of polynomials
θ(i , j) = (i + j , i)

i

j

n loops transformed into n
tile loops + n intra-tile loops.

Expressed from permutable
loops: affine function θ, here
θ : (i , j) 7→ (i + j , i).

Tile: atomic block operation.

Increases granularity of
computations.

Enables communication
coalescing (hoisting).

* We focus on a tile strip: double
buffering ' loop unrolling by 2.

18 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Loop tiling and the polyhedral model
Overview of the compilation scheme
Implementation details: synchronization and memory mapping

Polyhedral model: tiling

Tiled product of polynomials
θ(i , j) = (i + j , i)

i

j

n loops transformed into n
tile loops + n intra-tile loops.

Expressed from permutable
loops: affine function θ, here
θ : (i , j) 7→ (i + j , i).

Tile: atomic block operation.

Increases granularity of
computations.

Enables communication
coalescing (hoisting).

* We focus on a tile strip: double
buffering ' loop unrolling by 2.

18 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Loop tiling and the polyhedral model
Overview of the compilation scheme
Implementation details: synchronization and memory mapping

Polyhedral model: tiling

Tiled product of polynomials
θ(i , j) = (i + j , i)

i

j

n loops transformed into n
tile loops + n intra-tile loops.

Expressed from permutable
loops: affine function θ, here
θ : (i , j) 7→ (i + j , i).

Tile: atomic block operation.

Increases granularity of
computations.

Enables communication
coalescing (hoisting).

* We focus on a tile strip: double
buffering ' loop unrolling by 2.

18 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Loop tiling and the polyhedral model
Overview of the compilation scheme
Implementation details: synchronization and memory mapping

Optimized transfers with maximal intra- & inter-tile reuse

Double buffering style for optimized communications.
Communication coalescing: each tile T has a Load(T) and a Store(T).
Five pipelined communicating processes for loading, computing, storing.
Tiling + coarse-grain software pipelining = affine function θ′.
Transfers are done according to rows: spatial locality for DDR accesses.
Exploits data reuse: temporal locality + fewer communications.

Local memory management defines local buffers with reuse.
Requires lifetime analysis with respect to θ′.
Lattice-based memory reduction: mix bounding box & sliding window.
Reduces memory size and provides access functions: A~i mod ~b.

Code generation generates final C code in a linearized form
Placement of FIFO synchronizations.
Boulet-Feautrier’s method for polytope scanning.

19 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Loop tiling and the polyhedral model
Overview of the compilation scheme
Implementation details: synchronization and memory mapping

Optimized transfers with maximal intra- & inter-tile reuse

Double buffering style for optimized communications.
Communication coalescing: each tile T has a Load(T) and a Store(T).
Five pipelined communicating processes for loading, computing, storing.
Tiling + coarse-grain software pipelining = affine function θ′.
Transfers are done according to rows: spatial locality for DDR accesses.
Exploits data reuse: temporal locality + fewer communications.

Local memory management defines local buffers with reuse.
Requires lifetime analysis with respect to θ′.
Lattice-based memory reduction: mix bounding box & sliding window.
Reduces memory size and provides access functions: A~i mod ~b.

Code generation generates final C code in a linearized form
Placement of FIFO synchronizations.
Boulet-Feautrier’s method for polytope scanning.

19 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Loop tiling and the polyhedral model
Overview of the compilation scheme
Implementation details: synchronization and memory mapping

Optimized transfers with maximal intra- & inter-tile reuse

Double buffering style for optimized communications.
Communication coalescing: each tile T has a Load(T) and a Store(T).
Five pipelined communicating processes for loading, computing, storing.
Tiling + coarse-grain software pipelining = affine function θ′.
Transfers are done according to rows: spatial locality for DDR accesses.
Exploits data reuse: temporal locality + fewer communications.

Local memory management defines local buffers with reuse.
Requires lifetime analysis with respect to θ′.
Lattice-based memory reduction: mix bounding box & sliding window.
Reduces memory size and provides access functions: A~i mod ~b.

Code generation generates final C code in a linearized form
Placement of FIFO synchronizations.
Boulet-Feautrier’s method for polytope scanning.

19 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Loop tiling and the polyhedral model
Overview of the compilation scheme
Implementation details: synchronization and memory mapping

Possible organization of load/store and compute processes

LOCAL MEM

LOCAL MEM

LOCAL MEM

LOCAL MEM
STORE0

COMP0/1

STORE1LOAD0

LOAD1

One function for each communicating process, one memory for each array.
Dedicated FIFOs of size 1 for synchronizations.
Transfers through explicit memory accesses.

iterations

time

=STORE0

STORE1

STORE0

STORE1

Note:

dependence synchro.

DDR access synchro.

COMP1

COMP0

COMP1

COMP0

Load(T) at time 2T

Comp(T) at time 2T+2

Store(T) at time 2T+5

LOAD0

LOAD1

LOAD0

LOAD1

20 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Loop tiling and the polyhedral model
Overview of the compilation scheme
Implementation details: synchronization and memory mapping

Possible organization of load/store and compute processes

LOCAL MEM

LOCAL MEM

LOCAL MEM

LOCAL MEM
STORE0

COMP0/1

STORE1LOAD0

LOAD1

One function for each communicating process, one memory for each array.
Dedicated FIFOs of size 1 for synchronizations.
Transfers through explicit memory accesses.

iterations

time

=STORE0

STORE1

STORE0

STORE1

Note:

dependence synchro.

DDR access synchro.

COMP1

COMP0

COMP1

COMP0

Load(T) at time 2T

Comp(T) at time 2T+2

Store(T) at time 2T+5

LOAD0

LOAD1

LOAD0

LOAD1

20 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Loop tiling and the polyhedral model
Overview of the compilation scheme
Implementation details: synchronization and memory mapping

How to synchronize at C-level?

Need two kinds of synchronizations

Sequential access to shared resource (computation or DDR).

Data-flow: wait for data to arrive.

D
A

T
A

 R
E

C
E

IV
E

D
D

R
R

E
Q

U
E

S
T

pipeline depth

}

}

*ld0_comp_write
external linearized loop control;

time

 = tmp;

for (t=0; t<max_tile_domain; t+=tile_size) {

dummy_read += *st1_ld0_read;

for(r=true,

if (last iteration) {

r=false; tmp = 0;
}

tmp=dummy_read; r==true;) {

*ld0_st0_write = 0;

transfer data from DDR to local memory: *p1=*p2

Quastcompute next external and local addresses:

21 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Loop tiling and the polyhedral model
Overview of the compilation scheme
Implementation details: synchronization and memory mapping

Generate local memory accesses

Tiling and inter-tile reuse requires local storage: need to define
access function to local memory, avoiding “fragmentation”.

Define software pipelining: new schedule dim., function of T .

Compute liveness and conflicting differences (see hereafter),
given transfer sets Load(T) & Store(T).

Fold memory thanks to lattice-based memory allocation
(affine function + modulo): existing software Bee+Cl@k.

Replace in computation function all external accesses by local
accesses and generate code for scanning transfer sets.

22 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Loop tiling and the polyhedral model
Overview of the compilation scheme
Implementation details: synchronization and memory mapping

Memory reuse for scheduled programs

Given an array A with multiple reads/writes and a scheduled
program (communicating processes + schedule θ′), target:

Reduction of the allocation size (size of buffer).

Simplicity of the addressing functions.

Alternative solutions

Optimal size with Ehrhart counting * approximations?

Approximation of maximal number of live values * mapping?

Bounding box * too inefficient for general live-ranges.

Modular mapping ~i 7→ A~i mod b * simple and quite efficient.

* Not a perfect scheme, does not reach minimal size, but:
robust, expressed in terms of θ′, usable with approximations.

23 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Loop tiling and the polyhedral model
Overview of the compilation scheme
Implementation details: synchronization and memory mapping

Memory reuse for scheduled programs

Given an array A with multiple reads/writes and a scheduled
program (communicating processes + schedule θ′), target:

Reduction of the allocation size (size of buffer).

Simplicity of the addressing functions.

Alternative solutions

Optimal size with Ehrhart counting * approximations?

Approximation of maximal number of live values * mapping?

Bounding box * too inefficient for general live-ranges.

Modular mapping ~i 7→ A~i mod b * simple and quite efficient.

* Not a perfect scheme, does not reach minimal size, but:
robust, expressed in terms of θ′, usable with approximations.

23 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Loop tiling and the polyhedral model
Overview of the compilation scheme
Implementation details: synchronization and memory mapping

Example of intermediate buffer: DCT-like example

Two synchronized, pipelined (ASAP) processes, communicating
through a shared buffer A.

DO br = 0, 63
DO bc = 0, 63

DO r = 0, 7
S: A(br , bc , r , ∗) = . . .

ENDDO
ENDDO

ENDDO

DO br = 0, 63
DO bc = 0, 63

DO c = 0, 7
T: . . . = A(br , bc , ∗, c)

ENDDO
ENDDO

ENDDO

Full array (no reuse) 64× 64× 8× 8 = 218 = 256K .

Intuitive solution write in A(br mod 2, bc mod 2, r , c) (4 blocks)

Best linear allocation 112 with σ =

{
r mod 4
16(br + bc) + 2r + c mod 28

24 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Loop tiling and the polyhedral model
Overview of the compilation scheme
Implementation details: synchronization and memory mapping

Example of intermediate buffer: DCT-like example

Two synchronized, pipelined (ASAP) processes, communicating
through a shared buffer A.

DO br = 0, 63
DO bc = 0, 63

DO r = 0, 7
S: A(br , bc , r , ∗) = . . .

ENDDO
ENDDO

ENDDO

DO br = 0, 63
DO bc = 0, 63

DO c = 0, 7
T: . . . = A(br , bc , ∗, c)

ENDDO
ENDDO

ENDDO

Full array (no reuse) 64× 64× 8× 8 = 218 = 256K .

Intuitive solution write in A(br mod 2, bc mod 2, r , c) (4 blocks)

Best linear allocation 112 with σ =

{
r mod 4
16(br + bc) + 2r + c mod 28

24 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Loop tiling and the polyhedral model
Overview of the compilation scheme
Implementation details: synchronization and memory mapping

Memory reuse for scheduled programs

Given

An array A with multiple reads and writes.

Scheduled program or communicating processes, thanks to θ.

Goal

Reduction of the allocation size (size of buffer).

Simplicity of the addressing functions.

Solutions

Optimal size with Ehrhart counting * approximations?

Approximation of maximal number of live values * mapping?

Modular mapping ~i 7→ A~i mod b * simple and quite efficient.

25 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Loop tiling and the polyhedral model
Overview of the compilation scheme
Implementation details: synchronization and memory mapping

Modular mapping and admissible lattice

Definition (Modular mapping)

A modular mapping (M,~b), with M ∈Mp,n(Z) and ~b ∈ Np, maps

index ~i to σ(~i) = M~i mod ~b in p-dimensional array with shape ~b.

Definition (Lifetime analysis)

Two indices ~i and ~j of Zn are conflicting (~i ./~j) if they correspond
to two simultaneously live values in the schedule θ.

Define DS = {~i −~j | ~i ./~j}. * Can be over-approximated.

Lemma

The modular mapping σ = (M,~b) is valid iff DS ∩ ker σ = {~0}

* ker σ admissible lattice for DS.

26 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Loop tiling and the polyhedral model
Overview of the compilation scheme
Implementation details: synchronization and memory mapping

Modular mapping and admissible lattice

Definition (Modular mapping)

A modular mapping (M,~b), with M ∈Mp,n(Z) and ~b ∈ Np, maps

index ~i to σ(~i) = M~i mod ~b in p-dimensional array with shape ~b.

Definition (Lifetime analysis)

Two indices ~i and ~j of Zn are conflicting (~i ./~j) if they correspond
to two simultaneously live values in the schedule θ.

Define DS = {~i −~j | ~i ./~j}. * Can be over-approximated.

Lemma

The modular mapping σ = (M,~b) is valid iff DS ∩ ker σ = {~0}

* ker σ admissible lattice for DS.

26 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Loop tiling and the polyhedral model
Overview of the compilation scheme
Implementation details: synchronization and memory mapping

Critical and admissible lattices

Integer points

27 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Loop tiling and the polyhedral model
Overview of the compilation scheme
Implementation details: synchronization and memory mapping

Critical and admissible lattices

0−Symmetric Polytope: vertices (8,1), (−8,−1), (−1,5), and (1,−5)

27 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Loop tiling and the polyhedral model
Overview of the compilation scheme
Implementation details: synchronization and memory mapping

Critical and admissible lattices

Second minimum = 9/41 > 1/5

First minimum = 6/41 > 1/7

Lattice: Basis (7,0), (0,5) Determinant: 35 (i mod 7, j mod 5)

27 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Loop tiling and the polyhedral model
Overview of the compilation scheme
Implementation details: synchronization and memory mapping

Critical and admissible lattices

Lattice: Basis (9,0), (0,6) Determinant: 54 (i mod 9, j mod 6)

27 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Loop tiling and the polyhedral model
Overview of the compilation scheme
Implementation details: synchronization and memory mapping

Critical and admissible lattices

Lattice: Basis (9,0), (0,5) (i mod 9, j mod 5)Determinant: 45

27 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Loop tiling and the polyhedral model
Overview of the compilation scheme
Implementation details: synchronization and memory mapping

Critical and admissible lattices

(i−j mod 8, j mod 6)Lattice: Basis (8,0), (6,6) Determinant: 48

27 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Loop tiling and the polyhedral model
Overview of the compilation scheme
Implementation details: synchronization and memory mapping

Critical and admissible lattices

Lattice: Basis (8,0), (4,4) Determinant: 32 (i−j mod 8, j mod 4)

27 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Loop tiling and the polyhedral model
Overview of the compilation scheme
Implementation details: synchronization and memory mapping

Critical and admissible lattices

Determinant: 32Lattice: Basis (8,0), (3,4) 4i−3j mod 32

27 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Loop tiling and the polyhedral model
Overview of the compilation scheme
Implementation details: synchronization and memory mapping

Critical and admissible lattices

Lattice: Basis (7,0), (4,4) (i−j mod 7, j mod 4)Determinant: 28

27 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Loop tiling and the polyhedral model
Overview of the compilation scheme
Implementation details: synchronization and memory mapping

Critical and admissible lattices

Critical Lattice: Basis (4,3), (8,0) 3i−4j mod 24Determinant: 24

27 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Loop tiling and the polyhedral model
Overview of the compilation scheme
Implementation details: synchronization and memory mapping

Lattice-based memory allocation: process

1 Lifetime analysis of the array elements of A, w.r.t. θ.

2 Relation ./: Build the polytope of conflicting differences.

3 Admissible lattice: Build an admissible Λ of small determinant.

4 Modulo function: Compute σ = (M,~b) such that ker σ = Λ.

5 Code generation: Define new array A′ and replace each
occurrence of A(~i) with A′(M~i mod ~b).

* Not a perfect scheme, does not reach minimal size, but:
robust, expressed in terms of θ, usable with approximations.

28 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Loop tiling and the polyhedral model
Overview of the compilation scheme
Implementation details: synchronization and memory mapping

Remove nested-loop latency by linearization

Generate two functions for input data transfers.

Generate (one or) two functions for output data transfers.

Generate one function for computations.

Use Boulet-Feautrier to iterate on input/output data sets and
computation sets. (Other solutions possible in simple cases.)

Insert synchronizations according to software pipeline.

Compile and run! (Actually, with some rewriting for C2H.)

* Correct (in theory) code generation. Still need to be validated
and improved in terms of code complexity.

29 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Communication coalescing: related work
Exact inter-tile data reuse in a tile strip
Extensions to more general situations

Outline

1 Context and motivations

2 “Double buffering” execution style

3 Communication coalescing
Communication coalescing: related work
Exact inter-tile data reuse in a tile strip
Extensions to more general situations

30 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Communication coalescing: related work
Exact inter-tile data reuse in a tile strip
Extensions to more general situations

Related work: parallel languages & scratchpad memories

Compiler-directed scratchpad memory hierarchy design & management:
Kandemir, Choudhary, DAC’02.

Effective communication coalescing for data-parallel applications:
Chavarŕıa-Miranda, Mellor-Crummey, PPoPP’05.

Communication optimizations for fine-grained UPC applications: Chen,
Iancu, Yelick, PACT’05.

DRDU: A data reuse analysis technique for efficient scratchpad memory
management: Issenin, Borckmeyer, Miranda, Dutt. ACM TODAES 2007.

Automatic data movement and computation mapping for multi-level
parallel architectures with explicitly managed memories: Baskaran,
Bondhugula, Krishnam., Ramanujam, Rountev, Sadayappan, PPoPP’08.

A mapping path for multi-GPGPU accelerated computers from a portable
high level programming abstraction: Leung, Vasilache, Meister, Baskaran,
Wohlford, Bastoul, Lethin, GPGPU’10.

A reuse-aware prefetching scheme for scratchpad memory: Cong, Huang,
Liu, Zou, DAC’11.

PIPS is not (just) polyhedral software: Amini, Ancourt, Coelho,
Creusillet, Guelton, Irigoin, Jouvelot, Keryell, Villalon, IMPACT’11.

31 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Communication coalescing: related work
Exact inter-tile data reuse in a tile strip
Extensions to more general situations

Communication coalescing: main principles

Hoist communications out of loops (out of tile or out of tile strip).

for (i=0; i<N; i++)

for (j=0; j<N; j++)

S(i,j)

endfor

endfor

for (I=0; I<N; I+=b)

for (J=0; J<N; J+=b)

Transfer(I,J)

for (i=I; i<min(I+b,N); i++)

for (j=J; j<min(J+b,N); j++)

S(i,j)

endfor

endfor

endfor

endfor

for (I=0; I<N; I+=b)

Transfer(I)

for (J=0; J<N; J+=b)

for (i=I; i<min(I+b,N); i++)

for (j=J; j<min(J+b,N); j++)

S(i,j)

endfor

endfor

endfor

endfor

Static scratch-pad optimizations
Decides statically which array portions will remain in SPM.
Granularity of arrays and function calls.

Dynamic scratch-pad optimizations
Make a copy of distant memory before a tile or before a tile strip.
Work at the granularity of array sections = approximation.
Only “regular” inter-tile reuse (null space of affine functions or shifts).
Apparently, no pipelining/overlapping (except in RStream).

32 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Communication coalescing: related work
Exact inter-tile data reuse in a tile strip
Extensions to more general situations

Communication coalescing: main principles

Hoist communications out of loops (out of tile or out of tile strip).

for (i=0; i<N; i++)

for (j=0; j<N; j++)

S(i,j)

endfor

endfor

for (I=0; I<N; I+=b)

for (J=0; J<N; J+=b)

Transfer(I,J)

for (i=I; i<min(I+b,N); i++)

for (j=J; j<min(J+b,N); j++)

S(i,j)

endfor

endfor

endfor

endfor

for (I=0; I<N; I+=b)

Transfer(I)

for (J=0; J<N; J+=b)

for (i=I; i<min(I+b,N); i++)

for (j=J; j<min(J+b,N); j++)

S(i,j)

endfor

endfor

endfor

endfor

Static scratch-pad optimizations
Decides statically which array portions will remain in SPM.
Granularity of arrays and function calls.

Dynamic scratch-pad optimizations * but unclear & incomplete
Make a copy of distant memory before a tile or before a tile strip.
Work at the granularity of array sections = approximation.
Only “regular” inter-tile reuse (null space of affine functions or shifts).
Apparently, no pipelining/overlapping (except in RStream).

32 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Communication coalescing: related work
Exact inter-tile data reuse in a tile strip
Extensions to more general situations

Loop tiling: impact on reuse and communication

for(i=0; i<n; i++)

for(j=0; j<n; j++)

c[i+j] = c[i+j] + p[i]*q[j];

(i , j) 7→ (n − j − 1, i)

j

i

phase 2
Double buffering

phase 1
Double buffering

Last write (c)

First read (c)

(i , j) 7→ (i + j , i)

i

j

phase 2
Double buffering

First

Read (c)

phase 1
Double buffering

Last write (c)

Load ' first reads ∩ tile domain. Store ' last writes ∩ tile domain.

33 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Communication coalescing: related work
Exact inter-tile data reuse in a tile strip
Extensions to more general situations

Loop tiling: impact on reuse and communication

for(i=0; i<n; i++)

for(j=0; j<n; j++)

c[i+j] = c[i+j] + p[i]*q[j];

(i , j) 7→ (n − j − 1, i)

j

i

phase 2
Double buffering

phase 1
Double buffering

Last write (c)

First read (c)

(i , j) 7→ (i + j , i)

i

j

phase 2
Double buffering

First

Read (c)

phase 1
Double buffering

Last write (c)

Load ' first reads ∩ tile domain. Store ' last writes ∩ tile domain.

33 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Communication coalescing: related work
Exact inter-tile data reuse in a tile strip
Extensions to more general situations

General specification of data transfers

Definition
Load(T): data loaded from DDR just before executing tile T .
Store(T): data stored to DDR just after T .
In(T): data read before being written in the tile T .
Out(T): data written by the tile T .

Minimal dependence structure
Tiles

Computes

Loads

Stores

T − 2 T − 1 T + 1 T + 2T

Goals
Reuse local data: intra and inter-tile reuse in a tile strip.
Do not store in external memory after each write.
Minimize live-ranges in local memory.

34 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Communication coalescing: related work
Exact inter-tile data reuse in a tile strip
Extensions to more general situations

What do we put in Load(T) and Store(T)?

Extreme solutions
∀T , Load(T) = ∅ except Load(T0) = copy of all the memory involved
in the tile strip * no pipelining and no overlapping.
∀T , Load(T) = In(T), Store(T) = Out(T) where In(T) = data read
before written in T , Out(T) = data written in T * no inter-tile reuse.

Exact situation with alap loads and asap stores
Always reuse local data: intra- and inter-tile reuse in a tile strip.
Remote store only after last write * external memory not up-to-date.
Minimize each local live-range * bounding box not enough.

To avoid useless transfers and reduce local lifetimes

Load(T) = In(T) \ {In(t < T) ∪Out(t < T)}
Store(T) = Out(T) \Out(t > T)

or, equivalently, defined by optimization

Load(T) = {~m | FirstOpReadBeforeWrite(~m) ∈ T}
Store(T) = {~m | LastOpWrite(~m) ∈ T}

35 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Communication coalescing: related work
Exact inter-tile data reuse in a tile strip
Extensions to more general situations

What do we put in Load(T) and Store(T)?

Extreme solutions
∀T , Load(T) = ∅ except Load(T0) = copy of all the memory involved
in the tile strip * no pipelining and no overlapping.
∀T , Load(T) = In(T), Store(T) = Out(T) where In(T) = data read
before written in T , Out(T) = data written in T * no inter-tile reuse.

Exact situation with alap loads and asap stores
Always reuse local data: intra- and inter-tile reuse in a tile strip.
Remote store only after last write * external memory not up-to-date.
Minimize each local live-range * bounding box not enough.

To avoid useless transfers and reduce local lifetimes

Load(T) = In(T) \ {In(t < T) ∪Out(t < T)}
Store(T) = Out(T) \Out(t > T)

or, equivalently, defined by optimization

Load(T) = {~m | FirstOpReadBeforeWrite(~m) ∈ T}
Store(T) = {~m | LastOpWrite(~m) ∈ T}

35 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Communication coalescing: related work
Exact inter-tile data reuse in a tile strip
Extensions to more general situations

What do we put in Load(T) and Store(T)?

Extreme solutions
∀T , Load(T) = ∅ except Load(T0) = copy of all the memory involved
in the tile strip * no pipelining and no overlapping.
∀T , Load(T) = In(T), Store(T) = Out(T) where In(T) = data read
before written in T , Out(T) = data written in T * no inter-tile reuse.

Exact situation with alap loads and asap stores
Always reuse local data: intra- and inter-tile reuse in a tile strip.
Remote store only after last write * external memory not up-to-date.
Minimize each local live-range * bounding box not enough.

To avoid useless transfers and reduce local lifetimes

Load(T) = In(T) \ {In(t < T) ∪Out(t < T)}
Store(T) = Out(T) \Out(t > T)

or, equivalently, defined by optimization

Load(T) = {~m | FirstOpReadBeforeWrite(~m) ∈ T}
Store(T) = {~m | LastOpWrite(~m) ∈ T}

35 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Communication coalescing: related work
Exact inter-tile data reuse in a tile strip
Extensions to more general situations

What do we put in Load(T) and Store(T)?

Extreme solutions
∀T , Load(T) = ∅ except Load(T0) = copy of all the memory involved
in the tile strip * no pipelining and no overlapping.
∀T , Load(T) = In(T), Store(T) = Out(T) where In(T) = data read
before written in T , Out(T) = data written in T * no inter-tile reuse.

Exact situation with alap loads and asap stores
Always reuse local data: intra- and inter-tile reuse in a tile strip.
Remote store only after last write * external memory not up-to-date.
Minimize each local live-range * bounding box not enough.

To avoid useless transfers and reduce local lifetimes

Load(T) = In(T) \ {In(t < T) ∪Out(t < T)}
Store(T) = Out(T) \Out(t > T)

or, equivalently, defined by optimization

Load(T) = {~m | FirstOpReadBeforeWrite(~m) ∈ T}
Store(T) = {~m | LastOpWrite(~m) ∈ T}

35 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Communication coalescing: related work
Exact inter-tile data reuse in a tile strip
Extensions to more general situations

Example: Load(J) for a b × b tile indexed by J

(i , j) 7→ (n − j − 1, i)

j

i

phase 2
Double buffering

phase 1
Double buffering

Last write (c)

First read (c)
Reads of c[m] as a function of (i , j):{

i + j = m

0 ≤ i ≤ n − 1, 0 ≤ j ≤ n − 1

blue=constant, red=parameter

After simplification:

FirstOpRead(m) = {(i , j) | (i , j) = (0,m), 0 ≤ m, n − 10− 10I ≤ m ≤ n − 1− 10I}
∪ {(i , j) | (i , j) = (10I − n + 1 + m, n − 1− 10I), n − 10I ≤ m ≤ 2n − 2− 10I}

Introduction of tile constraints and expression of m as a function of J:

FirstReadInTile(J) = {m | max(0, n − 10I − 10) ≤ m ≤ n − 1− 10I , J = 0}
∪ {m | max(1, 10J) ≤ m + 10I − n + 1 ≤ min(n − 1, 10J + 9)}

36 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Communication coalescing: related work
Exact inter-tile data reuse in a tile strip
Extensions to more general situations

Example: Load(J) for a b × b tile indexed by J

(i , j) 7→ (n − j − 1, i)

j

i

phase 2
Double buffering

phase 1
Double buffering

Last write (c)

First read (c)

Introduction of the change of basis
(i , j) 7→ (i ′ = n − 1− j , j ′ = i):{

i + j = m, i ′ = n − 1− j , j ′ = i

0 ≤ i ≤ n − 1, 0 ≤ j ≤ n − 1

blue=constant, red=parameter

After simplification:

FirstOpRead(m) = {(i , j) | (i , j) = (0,m), 0 ≤ m, n − 10− 10I ≤ m ≤ n − 1− 10I}
∪ {(i , j) | (i , j) = (10I − n + 1 + m, n − 1− 10I), n − 10I ≤ m ≤ 2n − 2− 10I}

Introduction of tile constraints and expression of m as a function of J:

FirstReadInTile(J) = {m | max(0, n − 10I − 10) ≤ m ≤ n − 1− 10I , J = 0}
∪ {m | max(1, 10J) ≤ m + 10I − n + 1 ≤ min(n − 1, 10J + 9)}

36 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Communication coalescing: related work
Exact inter-tile data reuse in a tile strip
Extensions to more general situations

Example: Load(J) for a b × b tile indexed by J

(i , j) 7→ (n − j − 1, i)

j

i

phase 2
Double buffering

phase 1
Double buffering

Last write (c)

First read (c)

Tiling (I , J) = (b i
′

b
c, b j

′

b
c), I parameter:

min
≺lex


i + j = m, i ′ = n − 1− j , j ′ = i

0 ≤ i ≤ n − 1, 0 ≤ j ≤ n − 1

bI ≤ i ′ ≤ b(I + 1)− 1

bJ ≤ j ′ ≤ b(J + 1)− 1

blue=constant, red=parameter

After simplification:

FirstOpRead(m) = {(i , j) | (i , j) = (0,m), 0 ≤ m, n − 10− 10I ≤ m ≤ n − 1− 10I}
∪ {(i , j) | (i , j) = (10I − n + 1 + m, n − 1− 10I), n − 10I ≤ m ≤ 2n − 2− 10I}

Introduction of tile constraints and expression of m as a function of J:

FirstReadInTile(J) = {m | max(0, n − 10I − 10) ≤ m ≤ n − 1− 10I , J = 0}
∪ {m | max(1, 10J) ≤ m + 10I − n + 1 ≤ min(n − 1, 10J + 9)}

36 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Communication coalescing: related work
Exact inter-tile data reuse in a tile strip
Extensions to more general situations

Example: Load(J) for a b × b tile indexed by J

(i , j) 7→ (n − j − 1, i)

j

i

phase 2
Double buffering

phase 1
Double buffering

Last write (c)

First read (c)

Use pip to find the first read in the tile strip,
i.e., lexicographic minimum of (I , J, i ′, j ′):

min
≺lex


i + j = m, i ′ = n − 1− j , j ′ = i

0 ≤ i ≤ n − 1, 0 ≤ j ≤ n − 1

bI ≤ i ′ ≤ b(I + 1)− 1

bJ ≤ j ′ ≤ b(J + 1)− 1

blue=constant, red=parameter

After simplification:

FirstOpRead(m) = {(i , j) | (i , j) = (0,m), 0 ≤ m, n − 10− 10I ≤ m ≤ n − 1− 10I}
∪ {(i , j) | (i , j) = (10I − n + 1 + m, n − 1− 10I), n − 10I ≤ m ≤ 2n − 2− 10I}

Introduction of tile constraints and expression of m as a function of J:

FirstReadInTile(J) = {m | max(0, n − 10I − 10) ≤ m ≤ n − 1− 10I , J = 0}
∪ {m | max(1, 10J) ≤ m + 10I − n + 1 ≤ min(n − 1, 10J + 9)}

36 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Communication coalescing: related work
Exact inter-tile data reuse in a tile strip
Extensions to more general situations

Example: Load(J) for a b × b tile indexed by J

(i , j) 7→ (n − j − 1, i)

j

i

phase 2
Double buffering

phase 1
Double buffering

Last write (c)

First read (c)

Use pip to find the first read in the tile strip,
i.e., lexicographic minimum of (I , J, i ′, j ′):

min
≺lex


i + j = m, i ′ = n − 1− j , j ′ = i

0 ≤ i ≤ n − 1, 0 ≤ j ≤ n − 1

bI ≤ i ′ ≤ b(I + 1)− 1

bJ ≤ j ′ ≤ b(J + 1)− 1

blue=10, red=parameter

if (−10I + N −m ≥ 0)
if (10I − N + m + 9 ≥ 0) /* vertical band of elements, first tile */

(J, ii , jj , i , j) = (0,N −m, 0, 0,m)
else ⊥ /* means undefined */

else
if (−10I + 2N −m ≥ 0)

if (−10I + N −m + 9 ≥ 0) /* horizontal band, first tile */
(J, ii , jj , i , j) = (0, 10I , 10I − N + m, 10I − N + m,N − 10I)

else with k = bN+9m+9
10

c /* generic horizontal case */
(J, ii , jj , i , j) = (I + m − k, 10I , 10I − N + m, 10I − N + m,N − 10I)

else ⊥ /* undefined */

After simplification:

FirstOpRead(m) = {(i , j) | (i , j) = (0,m), 0 ≤ m, n − 10− 10I ≤ m ≤ n − 1− 10I}
∪ {(i , j) | (i , j) = (10I − n + 1 + m, n − 1− 10I), n − 10I ≤ m ≤ 2n − 2− 10I}

Introduction of tile constraints and expression of m as a function of J:

FirstReadInTile(J) = {m | max(0, n − 10I − 10) ≤ m ≤ n − 1− 10I , J = 0}
∪ {m | max(1, 10J) ≤ m + 10I − n + 1 ≤ min(n − 1, 10J + 9)}

36 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Communication coalescing: related work
Exact inter-tile data reuse in a tile strip
Extensions to more general situations

Example: Load(J) for a b × b tile indexed by J

(i , j) 7→ (n − j − 1, i)

j

i

phase 2
Double buffering

phase 1
Double buffering

Last write (c)

First read (c)

Use pip to find the first read in the tile strip,
i.e., lexicographic minimum of (I , J, i ′, j ′):

min
≺lex


i + j = m, i ′ = n − 1− j , j ′ = i

0 ≤ i ≤ n − 1, 0 ≤ j ≤ n − 1

bI ≤ i ′ ≤ b(I + 1)− 1

bJ ≤ j ′ ≤ b(J + 1)− 1

blue=10, red=parameter

if (−10I + N −m ≥ 0)
if (10I − N + m + 9 ≥ 0) /* vertical band of elements, first tile */

(i , j) = (0,m)
else ⊥

else
if (−10I + 2N −m ≥ 0)

if (−10I + N −m + 9 ≥ 0) /* horizontal band, first tile */
(i , j) = (10I − N + m,N − 10I)

else with k = bN+9m+9
10

c /* generic horizontal case */
(i , j) = (10I − N + m,N − 10I)

else ⊥ /* means undefined */

After simplification:

FirstOpRead(m) = {(i , j) | (i , j) = (0,m), 0 ≤ m, n − 10− 10I ≤ m ≤ n − 1− 10I}
∪ {(i , j) | (i , j) = (10I − n + 1 + m, n − 1− 10I), n − 10I ≤ m ≤ 2n − 2− 10I}

Introduction of tile constraints and expression of m as a function of J:

FirstReadInTile(J) = {m | max(0, n − 10I − 10) ≤ m ≤ n − 1− 10I , J = 0}
∪ {m | max(1, 10J) ≤ m + 10I − n + 1 ≤ min(n − 1, 10J + 9)}

36 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Communication coalescing: related work
Exact inter-tile data reuse in a tile strip
Extensions to more general situations

Example: Load(J) for a b × b tile indexed by J

(i , j) 7→ (n − j − 1, i)

j

i

phase 2
Double buffering

phase 1
Double buffering

Last write (c)

First read (c)

Use pip to find the first read in the tile strip,
i.e., lexicographic minimum of (I , J, i ′, j ′):

min
≺lex


i + j = m, i ′ = n − 1− j , j ′ = i

0 ≤ i ≤ n − 1, 0 ≤ j ≤ n − 1

bI ≤ i ′ ≤ b(I + 1)− 1

bJ ≤ j ′ ≤ b(J + 1)− 1

blue=10, red=parameter

if (−10I + N −m ≥ 0)
if (10I − N + m + 9 ≥ 0)

(i , j) = (0,m) /* vertical portion of c */
else ⊥

else
if (−10I + 2N −m ≥ 0)

(i , j) = (10I − N + m,N − 10I) /* horizontal portion of c */
else ⊥ /* means undefined */

This gives the array elements whose first access is a read:

{m | max(0,N − 10I − 9) ≤ m ≤ N − 10I} ∪ {m | N − 10I + 1 ≤ m ≤ 2N − 10I}

After simplification:

FirstOpRead(m) = {(i , j) | (i , j) = (0,m), 0 ≤ m, n − 10− 10I ≤ m ≤ n − 1− 10I}
∪ {(i , j) | (i , j) = (10I − n + 1 + m, n − 1− 10I), n − 10I ≤ m ≤ 2n − 2− 10I}

Introduction of tile constraints and expression of m as a function of J:

FirstReadInTile(J) = {m | max(0, n − 10I − 10) ≤ m ≤ n − 1− 10I , J = 0}
∪ {m | max(1, 10J) ≤ m + 10I − n + 1 ≤ min(n − 1, 10J + 9)}

36 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Communication coalescing: related work
Exact inter-tile data reuse in a tile strip
Extensions to more general situations

Example: Load(J) for a b × b tile indexed by J

(i , j) 7→ (n − j − 1, i)

j

i

phase 2
Double buffering

phase 1
Double buffering

Last write (c)

First read (c)

Use pip to find the first read in the tile strip,
i.e., lexicographic minimum of (I , J, i ′, j ′):

min
≺lex


i + j = m, i ′ = n − 1− j , j ′ = i

0 ≤ i ≤ n − 1, 0 ≤ j ≤ n − 1

bI ≤ i ′ ≤ b(I + 1)− 1

bJ ≤ j ′ ≤ b(J + 1)− 1

blue=10, red=parameter

After simplification:

FirstOpRead(m) = {(i , j) | (i , j) = (0,m), 0 ≤ m, n − 10− 10I ≤ m ≤ n − 1− 10I}
∪ {(i , j) | (i , j) = (10I − n + 1 + m, n − 1− 10I), n − 10I ≤ m ≤ 2n − 2− 10I}

Introduction of tile constraints and expression of m as a function of J:

FirstReadInTile(J) = {m | max(0, n − 10I − 10) ≤ m ≤ n − 1− 10I , J = 0}
∪ {m | max(1, 10J) ≤ m + 10I − n + 1 ≤ min(n − 1, 10J + 9)}

36 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Communication coalescing: related work
Exact inter-tile data reuse in a tile strip
Extensions to more general situations

Example: Load(J) for a b × b tile indexed by J

(i , j) 7→ (n − j − 1, i)

j

i

phase 2
Double buffering

phase 1
Double buffering

Last write (c)

First read (c)

Use pip to find the first read in the tile strip,
i.e., lexicographic minimum of (I , J, i ′, j ′):

min
≺lex


i + j = m, i ′ = n − 1− j , j ′ = i

0 ≤ i ≤ n − 1, 0 ≤ j ≤ n − 1

bI ≤ i ′ ≤ b(I + 1)− 1

bJ ≤ j ′ ≤ b(J + 1)− 1

blue=10, red=parameter

After simplification:

FirstOpRead(m) = {(i , j) | (i , j) = (0,m), 0 ≤ m, n − 10− 10I ≤ m ≤ n − 1− 10I}
∪ {(i , j) | (i , j) = (10I − n + 1 + m, n − 1− 10I), n − 10I ≤ m ≤ 2n − 2− 10I}

Introduction of tile constraints and expression of m as a function of J:

FirstReadInTile(J) = {m | max(0, n − 10I − 10) ≤ m ≤ n − 1− 10I , J = 0}
∪ {m | max(1, 10J) ≤ m + 10I − n + 1 ≤ min(n − 1, 10J + 9)}

36 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Communication coalescing: related work
Exact inter-tile data reuse in a tile strip
Extensions to more general situations

Weaknesses and potential for improvements

Note

This is the first process to automate double-buffering with
intra- and inter-tile reuse, and entirely at C level.
Combination of several polyhedral techniques: tiling, code
analysis, memory reuse with modulo (not explained here),
polyhedral code generation.

Weaknesses

Needs “tilable” portion of code.
Needs exact analysis of data usage * approximations?
Needs constant tile size * parameterization?

Recompile (analysis & code generation) for each tile size.
Painful (hand-made) code specialization for each tile size.
Local memory size known only at the end of the process.

37 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Communication coalescing: related work
Exact inter-tile data reuse in a tile strip
Extensions to more general situations

Reminder: beyond the polyhedral model

Polyhedral model.

Real life.

Extensions.

Non-affine constraints.

Non-static control, while loops.

Beyond induction variables.

Approximations.

Dependences, lifetime, data &
iteration domains, etc.

Array region analysis (Creusillet).

Runtime info., trace analysis.

In(T): data read before being written in the tile T .
Out(T): data written by the tile T .
In(T): possibly read before being written, over-approximation of In(T).
Out(T): data possibly written, over-approximation of Out(T).
Out(T): data provably written, under-approximation of Out(T).

38 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Communication coalescing: related work
Exact inter-tile data reuse in a tile strip
Extensions to more general situations

Reminder: beyond the polyhedral model

Polyhedral model.
Real life.

Extensions.

Non-affine constraints.

Non-static control, while loops.

Beyond induction variables.

Approximations.

Dependences, lifetime, data &
iteration domains, etc.

Array region analysis (Creusillet).

Runtime info., trace analysis.

In(T): data read before being written in the tile T .
Out(T): data written by the tile T .
In(T): possibly read before being written, over-approximation of In(T).
Out(T): data possibly written, over-approximation of Out(T).
Out(T): data provably written, under-approximation of Out(T).

38 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Communication coalescing: related work
Exact inter-tile data reuse in a tile strip
Extensions to more general situations

Reminder: beyond the polyhedral model

Polyhedral model.
Real life.

Extensions.

Non-affine constraints.

Non-static control, while loops.

Beyond induction variables.

Approximations.

Dependences, lifetime, data &
iteration domains, etc.

Array region analysis (Creusillet).

Runtime info., trace analysis.

In(T): data read before being written in the tile T .
Out(T): data written by the tile T .
In(T): possibly read before being written, over-approximation of In(T).
Out(T): data possibly written, over-approximation of Out(T).
Out(T): data provably written, under-approximation of Out(T).

38 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Communication coalescing: related work
Exact inter-tile data reuse in a tile strip
Extensions to more general situations

Reminder: beyond the polyhedral model

Polyhedral model.
Real life.

Extensions.

Non-affine constraints.

Non-static control, while loops.

Beyond induction variables.

Approximations.

Dependences, lifetime, data &
iteration domains, etc.

Array region analysis (Creusillet).

Runtime info., trace analysis.

In(T): data read before being written in the tile T .
Out(T): data written by the tile T .
In(T): possibly read before being written, over-approximation of In(T).
Out(T): data possibly written, over-approximation of Out(T).
Out(T): data provably written, under-approximation of Out(T).

38 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Communication coalescing: related work
Exact inter-tile data reuse in a tile strip
Extensions to more general situations

Reminder: beyond the polyhedral model

Polyhedral model.
Real life.

Extensions.

Non-affine constraints.

Non-static control, while loops.

Beyond induction variables.

Approximations.

Dependences, lifetime, data &
iteration domains, etc.

Array region analysis (Creusillet).

Runtime info., trace analysis.

In(T): data read before being written in the tile T .
Out(T): data written by the tile T .
In(T): possibly read before being written, over-approximation of In(T).
Out(T): data possibly written, over-approximation of Out(T).
Out(T): data provably written, under-approximation of Out(T).

38 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Communication coalescing: related work
Exact inter-tile data reuse in a tile strip
Extensions to more general situations

Approximation scheme for Load(T) and Store(T)

Valid approximated loads and stores

(i) Load at least the exact amount of data:

In(T) \Out(t < T) ⊆ Load(t ≤ T) * need to over-approximate

(ii) Do not overwrite possibly locally-defined data:

Out(t < T) ∩ Load(T) = ∅ * be careful with over-loading

(iii) Preload any data that may be written but not for sure:

Store(T) \Out(t ≤ T) ⊆ Load(t ≤ T) * risk of storing garbage

In In InOut Out Out
T−2 T−1 T Tiles

A
rr

ay
 a

d
d

re
ss

es

Out

LD
LD

LD

LD

39 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Communication coalescing: related work
Exact inter-tile data reuse in a tile strip
Extensions to more general situations

Approximation scheme for Load(T) and Store(T)

Valid approximated loads and stores

(i) Load at least the exact amount of data:

In(T) \Out(t < T) ⊆ Load(t ≤ T) * need to over-approximate

(ii) Do not overwrite possibly locally-defined data:

Out(t < T) ∩ Load(T) = ∅ * be careful with over-loading

(iii) Preload any data that may be written but not for sure:

Store(T) \Out(t ≤ T) ⊆ Load(t ≤ T) * risk of storing garbage

In In InOut Out Out
T−2 T−1 T Tiles

A
rr

ay
 a

d
d

re
ss

es

Out

LD
LD

LD

LDLD

39 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Communication coalescing: related work
Exact inter-tile data reuse in a tile strip
Extensions to more general situations

Approximation is (unexpectedly) feasible!

Intuition for loading alap and storing asap
Store x just after T if x is never written after T , i.e., x /∈ Out(t > T).
Preload x if written, not for sure: x ∈ Out(t ≤ Tmax) \Out(t ≤ Tmax).
Load a value x always before it may be written, i.e., x /∈ Out(t < T).

Solution with set equations Don’t read! ,
Out(T) \Out(t > T) ⊆ Store(T) (data possibly written)

In
′
(T) = In(T) ∪ (Store(T) \Out(T)) (all data that are “read”)

Ra(T) = In
′
(T) \Out(t < T) (all data that need a remote access)

Load(T) =
(
In
′
(T) ∪ (Out(T) ∩ Ra(t > T))

)
\
(
In
′
(t < T) ∪Out(t < T)

)
Solution by optimization Don’t read! ,

In(~m) = min{T | ~m ∈ In(T)} (first time it is read).
Out(~m) = min{T | ~m ∈ Out(T)} (first time it may be written).
Out(~m) = min{T | ~m ∈ Out(T)} (first time it is written for sure).

then combine to get T (~m) = min(Out(~m),Out(~m), In(~m)), unless
Out(~m) ≤lex In(~m) in which case T (~m) = −∞ (no need to load).

40 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Communication coalescing: related work
Exact inter-tile data reuse in a tile strip
Extensions to more general situations

Approximation is (unexpectedly) feasible!

Intuition for loading alap and storing asap
Store x just after T if x is never written after T , i.e., x /∈ Out(t > T).
Preload x if written, not for sure: x ∈ Out(t ≤ Tmax) \Out(t ≤ Tmax).
Load a value x always before it may be written, i.e., x /∈ Out(t < T).

Solution with set equations Don’t read! ,
Out(T) \Out(t > T) ⊆ Store(T) (data possibly written)

In
′
(T) = In(T) ∪ (Store(T) \Out(T)) (all data that are “read”)

Ra(T) = In
′
(T) \Out(t < T) (all data that need a remote access)

Load(T) =
(
In
′
(T) ∪ (Out(T) ∩ Ra(t > T))

)
\
(
In
′
(t < T) ∪Out(t < T)

)

Solution by optimization Don’t read! ,
In(~m) = min{T | ~m ∈ In(T)} (first time it is read).
Out(~m) = min{T | ~m ∈ Out(T)} (first time it may be written).
Out(~m) = min{T | ~m ∈ Out(T)} (first time it is written for sure).

then combine to get T (~m) = min(Out(~m),Out(~m), In(~m)), unless
Out(~m) ≤lex In(~m) in which case T (~m) = −∞ (no need to load).

40 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Communication coalescing: related work
Exact inter-tile data reuse in a tile strip
Extensions to more general situations

Approximation is (unexpectedly) feasible!

Intuition for loading alap and storing asap
Store x just after T if x is never written after T , i.e., x /∈ Out(t > T).
Preload x if written, not for sure: x ∈ Out(t ≤ Tmax) \Out(t ≤ Tmax).
Load a value x always before it may be written, i.e., x /∈ Out(t < T).

Solution with set equations Don’t read! ,
Out(T) \Out(t > T) ⊆ Store(T) (data possibly written)

In
′
(T) = In(T) ∪ (Store(T) \Out(T)) (all data that are “read”)

Ra(T) = In
′
(T) \Out(t < T) (all data that need a remote access)

Load(T) =
(
In
′
(T) ∪ (Out(T) ∩ Ra(t > T))

)
\
(
In
′
(t < T) ∪Out(t < T)

)
Solution by optimization Don’t read! ,

In(~m) = min{T | ~m ∈ In(T)} (first time it is read).
Out(~m) = min{T | ~m ∈ Out(T)} (first time it may be written).
Out(~m) = min{T | ~m ∈ Out(T)} (first time it is written for sure).

then combine to get T (~m) = min(Out(~m),Out(~m), In(~m)), unless
Out(~m) ≤lex In(~m) in which case T (~m) = −∞ (no need to load).

40 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Communication coalescing: related work
Exact inter-tile data reuse in a tile strip
Extensions to more general situations

Parameterization is (unexpectedly) feasible!

I

J
j

i

Last write (c)

First read (c)

Tiling:

(i , j) 7→ (i ′, j ′) = (n − j − 1, i)

Parameters:

(I,J): first index in tile.

n: loop bound, b: tile size.

Transfers (m = i + j = j ′ + n− i ′ − 1):

Loadp, Loadq, Loadc , Storec .

Loadp = {m | 1− b ≤ I ≤ n − 1, 0 ≤ m ≤ n − 1, J ≤ m ≤ J + b − 1}
Loadq = {m | 1− b ≤ J ≤ n − 1, J ≤ 0, 0 ≤ m ≤ n − 1, 1 ≤ n − I −m ≤ b}
Loadc = {m | 1− b ≤ J ≤ 0, 0 ≤ m ≤ n − 1, 2 ≤ n − I −m ≤ b}
∪ {m | 1− b ≤ I ≤ −1, n ≤ m ≤ 2n − 2, n + J − 1 ≤ m ≤ n + J + b − 2}
∪ {m | 0 ≤ I ≤ n − 1, max(0, J) ≤ m − (n − I − 1) ≤ min(J + b − 1, n − 1)}
Storec = {m | I ≤ n − 1, J ≤ n − b − 1, 0 ≤ m, n − I + J ≤ m ≤ J + b − 1}
∪ {m | I ≤ n − 1, n − b ≤ J, 0 ≤ m ≤ 2n − 2, n − I + J ≤ m ≤ 2n − I − 2}
∪ {m | 1− b ≤ I , J ≤ n − 1, 0 ≤ m ≤ 2n − 2, J ≤ m, n − I − b ≤ m,

n − I + J − b ≤ m ≤ n − I + J − 1}

41 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Communication coalescing: related work
Exact inter-tile data reuse in a tile strip
Extensions to more general situations

Parameterization is (unexpectedly) feasible!

I

J
j

i

First read (p)

Tiling:

(i , j) 7→ (i ′, j ′) = (n − j − 1, i)

Parameters:

(I,J): first index in tile.

n: loop bound, b: tile size.

Transfers (m = i + j = j ′ + n− i ′ − 1):

Loadp, Loadq, Loadc , Storec .

Loadp = {m | 1− b ≤ I ≤ n − 1, 0 ≤ m ≤ n − 1, J ≤ m ≤ J + b − 1}

Loadq = {m | 1− b ≤ J ≤ n − 1, J ≤ 0, 0 ≤ m ≤ n − 1, 1 ≤ n − I −m ≤ b}
Loadc = {m | 1− b ≤ J ≤ 0, 0 ≤ m ≤ n − 1, 2 ≤ n − I −m ≤ b}
∪ {m | 1− b ≤ I ≤ −1, n ≤ m ≤ 2n − 2, n + J − 1 ≤ m ≤ n + J + b − 2}
∪ {m | 0 ≤ I ≤ n − 1, max(0, J) ≤ m − (n − I − 1) ≤ min(J + b − 1, n − 1)}
Storec = {m | I ≤ n − 1, J ≤ n − b − 1, 0 ≤ m, n − I + J ≤ m ≤ J + b − 1}
∪ {m | I ≤ n − 1, n − b ≤ J, 0 ≤ m ≤ 2n − 2, n − I + J ≤ m ≤ 2n − I − 2}
∪ {m | 1− b ≤ I , J ≤ n − 1, 0 ≤ m ≤ 2n − 2, J ≤ m, n − I − b ≤ m,

n − I + J − b ≤ m ≤ n − I + J − 1}

41 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Communication coalescing: related work
Exact inter-tile data reuse in a tile strip
Extensions to more general situations

Parameterization is (unexpectedly) feasible!

I

J
j

i

First read (q)

Tiling:

(i , j) 7→ (i ′, j ′) = (n − j − 1, i)

Parameters:

(I,J): first index in tile.

n: loop bound, b: tile size.

Transfers (m = i + j = j ′ + n− i ′ − 1):

Loadp, Loadq, Loadc , Storec .

Loadp = {m | 1− b ≤ I ≤ n − 1, 0 ≤ m ≤ n − 1, J ≤ m ≤ J + b − 1}
Loadq = {m | 1− b ≤ J ≤ n − 1, J ≤ 0, 0 ≤ m ≤ n − 1, 1 ≤ n − I −m ≤ b}

Loadc = {m | 1− b ≤ J ≤ 0, 0 ≤ m ≤ n − 1, 2 ≤ n − I −m ≤ b}
∪ {m | 1− b ≤ I ≤ −1, n ≤ m ≤ 2n − 2, n + J − 1 ≤ m ≤ n + J + b − 2}
∪ {m | 0 ≤ I ≤ n − 1, max(0, J) ≤ m − (n − I − 1) ≤ min(J + b − 1, n − 1)}
Storec = {m | I ≤ n − 1, J ≤ n − b − 1, 0 ≤ m, n − I + J ≤ m ≤ J + b − 1}
∪ {m | I ≤ n − 1, n − b ≤ J, 0 ≤ m ≤ 2n − 2, n − I + J ≤ m ≤ 2n − I − 2}
∪ {m | 1− b ≤ I , J ≤ n − 1, 0 ≤ m ≤ 2n − 2, J ≤ m, n − I − b ≤ m,

n − I + J − b ≤ m ≤ n − I + J − 1}

41 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Communication coalescing: related work
Exact inter-tile data reuse in a tile strip
Extensions to more general situations

Parameterization is (unexpectedly) feasible!

I

J
j

i

First read (c)

Tiling:

(i , j) 7→ (i ′, j ′) = (n − j − 1, i)

Parameters:

(I,J): first index in tile.

n: loop bound, b: tile size.

Transfers (m = i + j = j ′ + n− i ′ − 1):

Loadp, Loadq, Loadc , Storec .

Loadp = {m | 1− b ≤ I ≤ n − 1, 0 ≤ m ≤ n − 1, J ≤ m ≤ J + b − 1}
Loadq = {m | 1− b ≤ J ≤ n − 1, J ≤ 0, 0 ≤ m ≤ n − 1, 1 ≤ n − I −m ≤ b}
Loadc = {m | 1− b ≤ J ≤ 0, 0 ≤ m ≤ n − 1, 2 ≤ n − I −m ≤ b}
∪ {m | 1− b ≤ I ≤ −1, n ≤ m ≤ 2n − 2, n + J − 1 ≤ m ≤ n + J + b − 2}
∪ {m | 0 ≤ I ≤ n − 1, max(0, J) ≤ m − (n − I − 1) ≤ min(J + b − 1, n − 1)}

Storec = {m | I ≤ n − 1, J ≤ n − b − 1, 0 ≤ m, n − I + J ≤ m ≤ J + b − 1}
∪ {m | I ≤ n − 1, n − b ≤ J, 0 ≤ m ≤ 2n − 2, n − I + J ≤ m ≤ 2n − I − 2}
∪ {m | 1− b ≤ I , J ≤ n − 1, 0 ≤ m ≤ 2n − 2, J ≤ m, n − I − b ≤ m,

n − I + J − b ≤ m ≤ n − I + J − 1}

41 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Communication coalescing: related work
Exact inter-tile data reuse in a tile strip
Extensions to more general situations

Parameterization is (unexpectedly) feasible!

I

J
j

i

First read (c)

Tiling:

(i , j) 7→ (i ′, j ′) = (n − j − 1, i)

Parameters:

(I,J): first index in tile.

n: loop bound, b: tile size.

Transfers (m = i + j = j ′ + n− i ′ − 1):

Loadp, Loadq, Loadc , Storec .

Loadp = {m | 1− b ≤ I ≤ n − 1, 0 ≤ m ≤ n − 1, J ≤ m ≤ J + b − 1}
Loadq = {m | 1− b ≤ J ≤ n − 1, J ≤ 0, 0 ≤ m ≤ n − 1, 1 ≤ n − I −m ≤ b}
Loadc = {m | 1− b ≤ J ≤ 0, 0 ≤ m ≤ n − 1, 2 ≤ n − I −m ≤ b}
∪ {m | 1− b ≤ I ≤ −1, n ≤ m ≤ 2n − 2, n + J − 1 ≤ m ≤ n + J + b − 2}
∪ {m | 0 ≤ I ≤ n − 1, max(0, J) ≤ m − (n − I − 1) ≤ min(J + b − 1, n − 1)}

Storec = {m | I ≤ n − 1, J ≤ n − b − 1, 0 ≤ m, n − I + J ≤ m ≤ J + b − 1}
∪ {m | I ≤ n − 1, n − b ≤ J, 0 ≤ m ≤ 2n − 2, n − I + J ≤ m ≤ 2n − I − 2}
∪ {m | 1− b ≤ I , J ≤ n − 1, 0 ≤ m ≤ 2n − 2, J ≤ m, n − I − b ≤ m,

n − I + J − b ≤ m ≤ n − I + J − 1}

41 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Communication coalescing: related work
Exact inter-tile data reuse in a tile strip
Extensions to more general situations

Parameterization is (unexpectedly) feasible!

I

J
j

i

Last write (c)

Tiling:

(i , j) 7→ (i ′, j ′) = (n − j − 1, i)

Parameters:

(I,J): first index in tile.

n: loop bound, b: tile size.

Transfers (m = i + j = j ′ + n− i ′ − 1):

Loadp, Loadq, Loadc , Storec .

Loadp = {m | 1− b ≤ I ≤ n − 1, 0 ≤ m ≤ n − 1, J ≤ m ≤ J + b − 1}
Loadq = {m | 1− b ≤ J ≤ n − 1, J ≤ 0, 0 ≤ m ≤ n − 1, 1 ≤ n − I −m ≤ b}
Loadc = {m | 1− b ≤ J ≤ 0, 0 ≤ m ≤ n − 1, 2 ≤ n − I −m ≤ b}
∪ {m | 1− b ≤ I ≤ −1, n ≤ m ≤ 2n − 2, n + J − 1 ≤ m ≤ n + J + b − 2}
∪ {m | 0 ≤ I ≤ n − 1, max(0, J) ≤ m − (n − I − 1) ≤ min(J + b − 1, n − 1)}
Storec = {m | I ≤ n − 1, J ≤ n − b − 1, 0 ≤ m, n − I + J ≤ m ≤ J + b − 1}
∪ {m | I ≤ n − 1, n − b ≤ J, 0 ≤ m ≤ 2n − 2, n − I + J ≤ m ≤ 2n − I − 2}
∪ {m | 1− b ≤ I , J ≤ n − 1, 0 ≤ m ≤ 2n − 2, J ≤ m, n − I − b ≤ m,

n − I + J − b ≤ m ≤ n − I + J − 1}
41 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Communication coalescing: related work
Exact inter-tile data reuse in a tile strip
Extensions to more general situations

Size of local buffers, with “double-buffering” execution

isl/omega-like input (with b > 0 and n > 0)
Domain := [b,n] -> { [i,j] : 0 <= i,j < n };

Read := [b,n] -> { [i,j] -> c[m] : m = i+j } * Domain

+ [b,n] -> { [i,j] -> p[m] : m = i } * Domain

+ [b,n] -> { [i,j] -> q[m] : m = j } * Domain;

Write := [b,n] -> { [i,j] -> c[m] : m = i+j } * Domain;

Schedule := [b,n] -> { [i,j] -> [n-j-1,i] } * Domain;

Output for memory size
Array p

size 2b, if n ≥ 2b + 1: 2 overlapping tiles.
size n if n ≤ 2b: less than 2 tiles.

Array q

size b if n ≥ b: 1 full tile.
size n if n ≤ b − 1: 1 incomplete tile.

Array c

size (2b − 1) + b = 3b − 1 if n ≥ 2b + 1: 2 full overlapping tiles.
size (2b − 1) + (n − b) = b + n − 1 if b ≤ n ≤ 2b: 1 full, one incomplete
size 2n − 1 if n ≤ b − 1: only one tile.

* Distinguishes incomplete tiles and tiles starting out of domain.
42 / 43

Context and motivations
“Double buffering” execution style

Communication coalescing

Communication coalescing: related work
Exact inter-tile data reuse in a tile strip
Extensions to more general situations

Conclusions

Contributions

Automate double-buffering with inter-tile reuse, at C level.
Starting point for using HLS tools as back-end compilers?
Quite general mechanisms: gpus, other?

Perspectives

More approximations & parameters in polyhedral model.
More than parallelism, pipelining.
Synthesis of communicating processes + customized buffers.
Compilation of streaming languages with multi-dimensional
shared buffers (i.e., not fifos)?

43 / 43

	Context and motivations
	Kernel acceleration and kernel offloading
	Application to HLS for FPGA using C2H
	First attempts with sequential code rewriting

	``Double buffering'' execution style
	Loop tiling and the polyhedral model
	Overview of the compilation scheme
	Implementation details: synchronization and memory mapping

	Communication coalescing
	Communication coalescing: related work
	Exact inter-tile data reuse in a tile strip
	Extensions to more general situations

