Cours M2: Compilation avancée et optimisation de programmes

Alain Darte

CNRS, Compsys
Laboratoire de l’Informatique du Parallélisme
École normale supérieure de Lyon

Kernel offloading optimizations and double buffering
Outline

1. Context and motivations
 - Kernel acceleration and kernel offloading
 - Application to HLS for FPGA using C2H
 - First attempts with sequential code rewriting

2. “Double buffering” execution style
 - Loop tiling and the polyhedral model
 - Overview of the compilation scheme
 - Implementation details: synchronization and memory mapping

3. Communication coalescing
 - Communication coalescing: related work
 - Exact inter-tile data reuse in a tile strip
 - Extensions to more general situations
Kernel acceleration: portability problem

Hardware accelerators: FPGA, GPU, dedicated board, multicore
- Better energetic profitability.
- Huge portability issue.
- Costly compiler development.

How to automate application porting?
- High-productivity and high-performance languages.
- Library/directives-type support, e.g., OpenAcc.
- Application-aware, compilation-aware, OS-aware, and architecture-aware languages.
- Source-to-source compilation, adaptable to back-ends.
Targeting C dialects. Example of high-level synthesis

Often a C dialect with good back-end optimizations. Ex: C-to-VHDL high-level synthesis (HLS).

Many academic and industrial tools

- Spark, Gaut, Ugh, Paro, Compaan, Catapult-C, Pico-Express, Impulse-C, C2H, . . .

HLS tools quite good at optimizing computation kernel

- Optimizes finite state machine (FSM).
- Exploits instruction-level parallelism (ILP).
- Performs operator selection, resource sharing, scheduling, etc.
Often a C dialect with good back-end optimizations. Ex: C-to-VHDL high-level synthesis (HLS).

Many academic and industrial tools
- Spark, Gaut, Ugh, Paro, Compaan, Catapult-C, Pico-Express, Impulse-C, C2H, ...

HLS tools quite good at optimizing computation kernel
- Optimizes finite state machine (FSM).
- Exploits instruction-level parallelism (ILP).
- Performs operator selection, resource sharing, scheduling, etc.

But still a huge problem for feeding the accelerators with data
- Sometimes, no synchronization support with memory unusable.
- In general, lack of interface support write (expert) VHDL glue.
- Lack of communication opt. redesign the algorithm.
- Lack of powerful code analyzers find tricks.

How to do this automatically at C-level?
Current trend: kernel offloading at C level

C-to-C layer for application *outlining or offloading* consisting in

- **Function isolation**: analyze function footprint and rewrite.
- **Optimization**: reduce communications, express parallelism.
- **Specialization**: adapt the code to the specific C compiler.

🎉 Ex: work of D. Quinlan (Livermore), S. Guelton, M. Amini (Mines Paris)

Elementary approach

- Analyze the data read and written by the function to offload.
- Perform the transfer from distant memory.
- Do accelerated computation on local memory.
- Transfer back for updating the distant memory.

🎉 No pipeline, no double-buffering, no data reuse, no local memory size optimization, etc.
Optimized offloading: pipelining, reuse, local memories

Optimized approach:

- Defines a notion of block (tile).
- Impacts the size of the local memory and the spatial locality.
Optimized offloading: pipelining, reuse, local memories

Optimized approach:

- Defines a notion of block (tile).
- Impacts the size of the local memory and the spatial locality.
- Computation of blocks in sequence, with no overlap.

Ex: compute (\(\bullet, \bullet\)) \(\rightarrow\) \(\bullet\) (block 1) then (\(\bullet, \bullet\)) \(\rightarrow\) \(\bullet\) (block 2).
Optimized approach:

- Defines a notion of block (tile).
- Impacts the size of the local memory and the spatial locality.
- Computation of blocks in sequence, with no overlap.

Ex: compute \((\bullet, \bullet) \rightarrow \bullet\) (block 1) then \((\bullet, \bullet) \rightarrow \bullet\) (block 2).

Load data for block 1 in local memory.
Optimized offloading: pipelining, reuse, local memories

Optimized approach:

- Defines a notion of block (tile).
- Impacts the size of the local memory and the spatial locality.
- Computation of blocks in sequence, with no overlap.

Ex: compute \((\text{red}, \text{blue}) \rightarrow \text{green} \) (block 1) then \((\text{red}, \text{blue}) \rightarrow \text{green} \) (block 2).

Load data for block 1 in local memory.
Optimized offloading: pipelining, reuse, local memories

Optimized approach:
- Defines a notion of block (tile).
- Impacts the size of the local memory and the spatial locality.
- Computation of blocks in sequence, with no overlap.

Ex: compute (\(\bullet, \bullet\)) \(\rightarrow\) \(\bullet\) (block 1) then (\(\bullet, \bullet\)) \(\rightarrow\) \(\bullet\) (block 2).

Load data for block 1 in local memory.
Optimized offloading: pipelining, reuse, local memories

Optimized approach:

- Defines a notion of block (tile).
- Impacts the size of the local memory and the spatial locality.
- Computation of blocks in sequence, with no overlap.

Ex: compute \((\text{red}, \text{blue}) \rightarrow \text{red}\) (block 1) then \((\text{red}, \text{green}) \rightarrow \text{green}\) (block 2).

Load data for block 1 in local memory.
Optimized approach:

- Defines a notion of block (tile).
- Impacts the size of the local memory and the spatial locality.
- Computation of blocks in sequence, with no overlap.

Ex: compute \((\bullet, \bullet) \rightarrow \bullet\) (block 1) then \((\bullet, \bullet) \rightarrow \bullet\) (block 2).

Compute block 1 locally.

Diagram:

- External DDR
- Local Memory
- Host Computer
- Accelerator
Optimized offloading: pipelining, reuse, local memories

Optimized approach:
- Defines a notion of block (tile).
- Impacts the size of the local memory and the spatial locality.
- Computation of blocks in sequence, with no overlap.

Ex: compute \((\bullet, \bullet) \rightarrow \bullet\) (block 1) then \((\bullet, \bullet) \rightarrow \bullet\) (block 2).

Compute block 1 locally.
Optimized offloading: pipelining, reuse, local memories

Optimized approach:

- Defines a notion of block (tile).
- Impacts the size of the local memory and the spatial locality.
- Computation of blocks in sequence, with no overlap.

Ex: compute (\bullet, \bullet) \rightarrow \bullet (block 1) then (\bullet, \bullet) \rightarrow \bullet (block 2).

Store results of block 1 to distant DDR memory.
Optimized approach:

- Defines a notion of block (tile).
- Impacts the size of the local memory and the spatial locality.
- Computation of blocks in sequence, with no overlap.

Ex: compute \((\bullet, \bullet) \rightarrow \bullet\) (block 1) then \((\bullet, \bullet) \rightarrow \bullet\) (block 2).

Store results of block 1 to distant DDR memory.
Optimized approach:

- Defines a notion of block (tile).
- Impacts the size of the local memory and the spatial locality.
- Computation of blocks in sequence, with no overlap.

Ex: compute \((\bullet, \bullet) \rightarrow \bullet\) (block 1) then \((\bullet, \bullet) \rightarrow \bullet\) (block 2).

Load data for block 2 in local memory.
Optimized approach:
- Defines a notion of block (tile).
- Impacts the size of the local memory and the spatial locality.
- Computation of blocks in sequence, with no overlap.

Ex: compute \((\bullet, \bullet) \rightarrow \bullet\) (block 1) then \((\bullet, \bullet) \rightarrow \bullet\) (block 2).

Load data for block 2 in local memory.
Optimized offloading: pipelining, reuse, local memories

Optimized approach:
- Defines a notion of block (tile).
- Impacts the size of the local memory and the spatial locality.
- Computation of blocks in sequence, with no overlap.

Ex: compute \((\bullet, \bullet) \rightarrow \bullet\) (block 1) then \((\bullet, \bullet) \rightarrow \bullet\) (block 2).

Load data for block 2 in local memory.
Optimized offloading: pipelining, reuse, local memories

Optimized approach:

- Defines a notion of block (tile).
- Impacts the size of the local memory and the spatial locality.
- Computation of blocks in sequence, with no overlap.

Ex: compute \((\bullet, \bullet) \rightarrow \bullet \text{ (block 1)}\) then \((\bullet, \bullet) \rightarrow \bullet \text{ (block 2)}\).

Load data for block 2 in local memory.
Optimized offloading: pipelining, reuse, local memories

Optimized approach:

- Defines a notion of block (tile).
- Impacts the size of the local memory and the spatial locality.
- Computation of blocks in sequence, with no overlap.

Ex: compute \((\bullet, \bullet) \rightarrow \bullet\) (block 1) then \((\bullet, \bullet) \rightarrow \bullet\) (block 2).

Compute block 2 locally.
Optimized offloading: pipelining, reuse, local memories

Optimized approach:

- Defines a notion of block (tile).
- Impacts the size of the local memory and the spatial locality.
- Computation of blocks in sequence, with no overlap.

Ex: compute \((\bullet, \bullet) \rightarrow \bullet \) (block 1) then \((\bullet, \bullet) \rightarrow \bullet \) (block 2).

Compute block 2 locally.
Optimized offloading: pipelining, reuse, local memories

Optimized approach:
- Defines a notion of block (tile).
- Impacts the size of the local memory and the spatial locality.
- Computation of blocks in sequence, with no overlap.

Ex: compute \((\bullet, \bullet) \rightarrow \bullet\) (block 1) then \((\bullet, \odot) \rightarrow \odot\) (block 2).

Store results of block 2 to distant DDR memory.
Optimized approach:

- Defines a notion of block (tile).
- Impacts the size of the local memory and the spatial locality.
- Computation of blocks in sequence, with no overlap.

Ex: compute \((\text{red, blue}) \rightarrow \text{red} \) (block 1) then \((\text{red, blue}) \rightarrow \text{green} \) (block 2).

Store results of block 2 to distant DDR memory.
Optimized offloading: pipelining, reuse, local memories

Optimized approach:

- Defines a notion of block (tile).
- Impacts the size of the local memory and the spatial locality.
- Overlapping of communications and computations (pipeline).

Ex: compute \((\bullet, \bullet) \rightarrow \bullet\) (block 1) then \((\bullet, \bullet) \rightarrow \bullet\) (block 2).
Optimized offloading: pipelining, reuse, local memories

Optimized approach:
- Defines a notion of block (tile).
- Impacts the size of the local memory and the spatial locality.
- Overlapping of communications and computations (pipeline).

Ex: compute (red, blue) → red (block 1) then (red, green) → green (block 2).

Load data for block 1 in local memory.
Optimized offloading: pipelining, reuse, local memories

Optimized approach:

- Defines a notion of block (tile).
- Impacts the size of the local memory and the spatial locality.
- Overlapping of communications and computations (pipeline).

Ex: compute (●, ●) \rightarrow ● (block 1) then (●, ●) \rightarrow ● (block 2). Load data for block 1 in local memory.
Optimized offloading: pipelining, reuse, local memories

Optimized approach:

- Defines a notion of block (tile).
- Impacts the size of the local memory and the spatial locality.
- Overlapping of communications and computations (pipeline).

Ex: compute (●, ○) → ○ (block 1) then (●, ○) → ○ (block 2).

Load data for block 1 in local memory.

[Diagram showing the flow of data between Host Computer, External DDR, Local Memory, and Accelerator]
Optimized offloading: pipelining, reuse, local memories

Optimized approach:
- Defines a notion of block (tile).
- Impacts the size of the local memory and the spatial locality.
- Overlapping of communications and computations (pipeline).

Ex: compute \((\bullet, \bullet) \rightarrow \bullet\) (block 1) then \((\bullet, \bullet) \rightarrow \bullet\) (block 2).

Load data for block 1 in local memory.
Optimized approach:

- Defines a notion of block (tile).
- Impacts the size of the local memory and the spatial locality.
- Overlapping of communications and computations (pipeline).

Ex: compute \((\bullet, \bullet) \rightarrow \bullet\) (block 1) then \((\bullet, \bullet) \rightarrow \bullet\) (block 2).

Compute block 1 locally and start loading for block 2.
Optimized offloading: pipelining, reuse, local memories

Optimized approach:

- Defines a notion of block (tile).
- Impacts the size of the local memory and the spatial locality.
- Overlapping of communications and computations (pipeline).

Ex: compute \((\text{block 1})\) then \((\text{block 2})\).

Compute block 1 locally and start loading for block 2.
Optimized offloading: pipelining, reuse, local memories

Optimized approach:

- Defines a notion of block (tile).
- Impacts the size of the local memory and the spatial locality.
- Overlapping of communications and computations (pipeline).

Ex: compute \((\bullet, \bullet) \rightarrow \bullet\) (block 1) then \((\bullet, \bullet) \rightarrow \bullet\) (block 2).

Store results of block 1 and finish loading for block 2.
Optimized offloading: pipelining, reuse, local memories

Optimized approach:

- Defines a notion of block (tile).
- Impacts the size of the local memory and the spatial locality.
- Overlapping of communications and computations (pipeline).

Ex: compute \((\text{block 1})\) then \((\text{block 2})\).

Wrong! Analysis for inter-block reuse is necessary.
Optimized offloading: pipelining, reuse, local memories

Optimized approach:

- Defines a notion of block (tile).
- Impacts the size of the local memory and the spatial locality.
- Pipeline with local data reuse.

Ex: compute (●, ●) → ● (block 1) then (●, ●) → ● (block 2).
Optimized offloading: pipelining, reuse, local memories

Optimized approach:
- Defines a notion of block (tile).
- Impacts the size of the local memory and the spatial locality.
- Pipeline with local data reuse.

Ex: compute \((\bullet, \bullet) \rightarrow \bullet\) (block 1) then \((\bullet, \bullet) \rightarrow \bullet\) (block 2).

Loading for block 1.
Optimized offloading: pipelining, reuse, local memories

Optimized approach:

- Defines a notion of block (tile).
- Impacts the size of the local memory and the spatial locality.
- Pipeline with local data reuse.

Ex: compute \((\bullet, \bullet) \rightarrow \bullet\) (block 1) then \((\bullet, \bullet) \rightarrow \bullet\) (block 2).

Loading for block 1.
Optimized offloading: pipelining, reuse, local memories

Optimized approach:
- Defines a notion of block (tile).
- Impacts the size of the local memory and the spatial locality.
- Pipeline with local data reuse.

Ex: compute \((\bullet, \bullet) \rightarrow \bullet\) (block 1) then \((\bullet, \bullet) \rightarrow \bullet\) (block 2).

Loading for block 1, start loading for block 2.
Optimized offloading: pipelining, reuse, local memories

Optimized approach:

- Defines a notion of block (tile).
- Impacts the size of the local memory and the spatial locality.
- Pipeline with local data reuse.

Ex: compute \((\cdot, \cdot) \rightarrow \cdot\) (block 1) then \((\cdot, \cdot) \rightarrow \cdot\) (block 2).

Loading for block 1, start loading for block 2.
Optimized offloading: pipelining, reuse, local memories

Optimized approach:
- Defines a notion of block (tile).
- Impacts the size of the local memory and the spatial locality.
- Pipeline with local data reuse.

Ex: compute (red, blue) → red (block 1) then (red, blue) → green (block 2).

Compute block 1 locally and finish loading for block 2.
Optimized offloading: pipelining, reuse, local memories

Optimized approach:
- Defines a notion of block (tile).
- Impacts the size of the local memory and the spatial locality.
- Pipeline with local data reuse.

Ex: compute (red, blue) → red (block 1) then (red, blue) → green (block 2).

Finish computing for block 1.
Optimized offloading: pipelining, reuse, local memories

Optimized approach:

- Defines a notion of block (tile).
- Impacts the size of the local memory and the spatial locality.
- Pipeline with local data reuse.

Ex: compute \((\bullet, \bullet) \rightarrow \bullet\) (block 1) then \((\bullet, \bullet) \rightarrow \bullet\) (block 2).

Store results of block 1, keep some data and compute block 2.
Optimized offloading: pipelining, reuse, local memories

Optimized approach:
- Defines a notion of block (tile).
- Impacts the size of the local memory and the spatial locality.
- Pipeline with local data reuse.

Ex: compute \((\text{red}, \text{blue}) \rightarrow \text{red}\) (block 1) then \((\text{red}, \text{green}) \rightarrow \text{green}\) (block 2).

Store results of block 1, keep some data and compute block 2.
Optimized offloading: pipelining, reuse, local memories

Optimized approach:

- Defines a notion of block (tile).
- Impacts the size of the local memory and the spatial locality.
- Pipeline with local data reuse.

Ex: compute \((\text{ },\text{ },\text{ })\) → \(\text{ }\) (block 1) then \((\text{ },\text{ },\text{ })\) → \(\text{ }\) (block 2).

Store results of block 2 in distant DDR memory.
Optimized offloading: pipelining, reuse, local memories

Optimized approach:

- Defines a notion of block (tile).
- Impacts the size of the local memory and the spatial locality.
- Pipeline with local data reuse.

Ex: compute \((\bullet, \bullet) \rightarrow \bullet\) (block 1) then \((\bullet, \bullet) \rightarrow \bullet\) (block 2).

Store results of block 2 in distant DDR memory.
C-to-C-to-VHDL optimizations using Altera C2H

Focus on accelerators limited by bandwidth

- Use the adequate FPGA resources for computation throughput.
- Optimize bandwidth throughput.
Focus on accelerators limited by bandwidth

- Use the adequate FPGA resources for computation throughput.
- Optimize bandwidth throughput.

Apply source-to-source transformations

- Push all the dirty work in the back-end compiler.
- Optimize transfers at C level.
- Compile any new functions with the same HLS tool.
Focus on accelerators limited by bandwidth

- Use the adequate FPGA resources for computation throughput.
- Optimize bandwidth throughput.

Apply source-to-source transformations

- Push all the dirty work in the back-end compiler.
- Optimize transfers at C level.
- Compile any new functions with the same HLS tool.

Use Altera C2H as a back-end compiler. Main features:

- Syntax-directed translation to hardware:
 - Local array = local memory, other arrays/pointers = external memory.
 - Hierarchical FSMs: outer FSM stalls to wait for the latest inner FSM.

- Software pipelined loops:
 - Basic software pipelining with rough data dependence analysis.
 - Latency-aware pipelined DDR accesses (with internal FIFOs).

- Full interface within the complete system:
 - Accelerator(s) initiated as (blocking or not) function call(s).
 - Possibility to define FIFOs between accelerators.
void acc(int *a, int *b, int *c) {
 int i, j, k, a_sum, b_sum;
 for (i = 0; i < n; i++) {
 for (j = 0; j < m; j++)
 a_sum += a[j];
 for (j = 0; j < p; j++)
 b_sum += b[j];
 c[i] = a_sum + b_sum;
 }
}
DDR SDRAM asymmetric accesses

DDR specifications:
- DDR-400 128Mbx8, size 16MB, CAS 3, 200MHz.
- Successive reads to the same row: 10ns.
- Successive reads with a row change: 80ns.

For accelerators exploiting full bandwidth, frequent changes of rows kill performances. Need to use “burst” communications.
Context and motivations
“Double buffering” execution style
Communication coalescing

Kernel acceleration and kernel offloading
Application to HLS for FPGA using C2H
First attempts with sequential code rewriting

Throughput when accessing (asymmetric) DDR memory

Here, with DDR-400 128Mbx8, size 16MB, CAS 3, 200MHz, successive reads to the same row every 10 ns, to different rows every 80 ns.

⚠️ A bad spatial DDR locality can kill performances by a factor 8!

```c
void vector_sum (int* __restrict__ a, b, c, int n) {
    for (int i = 0; i < n; i++) c[i] = a[i] + b[i];
}
```

C2H-compiled code: pipelined but time gaps & data thrown away.
Throughput when accessing (asymmetric) DDR memory

Here, with DDR-400 128Mbx8, size 16MB, CAS 3, 200MHz, successive reads to the same row every \(10\) ns, to different rows every \(80\) ns.

A bad spatial DDR locality can kill performances by a factor 8!

```c
void vector_sum (int* __restrict__ a, b, c, int n) {
    for (int i = 0; i < n; i++) c[i] = a[i] + b[i];
}
```

Block version: reduces gaps, exploits bursts and temporal reuse.
Experimental results: typical examples

Typical speed-up vs block size figure (here vector sum).

<table>
<thead>
<tr>
<th>Kernel</th>
<th>Speed-up</th>
<th>ALUT</th>
<th>Dedicated registers</th>
<th>Total registers</th>
<th>Total block memory bits</th>
<th>DSP block 9-bit elements</th>
<th>Max Frequency (MHz > 100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
<td>1</td>
<td>5105</td>
<td>3606</td>
<td>3738</td>
<td>66908</td>
<td>8</td>
<td>205.85</td>
</tr>
<tr>
<td>VS0</td>
<td>1</td>
<td>5333</td>
<td>4607</td>
<td>4739</td>
<td>68956</td>
<td>8</td>
<td>189.04</td>
</tr>
<tr>
<td>VS1</td>
<td>6.54</td>
<td>10345</td>
<td>10346</td>
<td>11478</td>
<td>269148</td>
<td>8</td>
<td>175.93</td>
</tr>
<tr>
<td>MM0</td>
<td>1</td>
<td>6452</td>
<td>4557</td>
<td>4709</td>
<td>68956</td>
<td>40</td>
<td>191.09</td>
</tr>
<tr>
<td>MM1</td>
<td>7.37</td>
<td>15255</td>
<td>15630</td>
<td>15762</td>
<td>335196</td>
<td>188</td>
<td>162.02</td>
</tr>
</tbody>
</table>

- SA: system alone.
- VS0 & VS1: vector sum direct & optimized version.
- MM0 & MM1: matrix-matrix multiply direct & optimized (∼ 500 lines!)
Strip-mining and loop distribution

Loop distribution: too large local memory.
Unrolling: too many registers.

\[
\text{for } (i=0; i<\text{MAX}; i=i+\text{BLOCK}) \{
 \text{for } (j=0; j<\text{BLOCK}; j++) \ a_{\text{tmp}}[j] = a[i+j]; \quad \text{//prefetch}
 \text{for } (j=0; j<\text{BLOCK}; j++) \ b_{\text{tmp}}[j] = b[i+j]; \quad \text{//prefetch}
 \text{for } (j=0; j<\text{BLOCK}; j++) \ c_{\text{tmp}}[i+j] = a_{\text{tmp}}[j] + b_{\text{tmp}}[j];
 \text{for } (j=0; j<\text{BLOCK}; j++) \ c[i+j] = c_{\text{tmp}}[i+j]; \quad \text{//store}
\}
\]

Does not work!
Strip-mining and loop distribution

Loop distribution: too large local memory. Unrolling: too many registers.

\[
\text{for (i=0; i<MAX; i=i+BLOCK) } \{
\text{for (j=0; j<BLOCK; j++) a_tmp[j] = a[i+j]; //prefetch}
\text{for (j=0; j<BLOCK; j++) b_tmp[j] = b[i+j]; //prefetch}
\text{for (j=0; j<BLOCK; j++) c_tmp[i+j] = a_tmp[j] + b_tmp[j];}
\text{for (j=0; j<BLOCK; j++) c[i+j] = c_tmp[i+j]; //store}
\}\n\]

\(\Rightarrow\) Does not work!

- Accesses to arrays a and b still interleaved!
- Loop latency penalty.
- Outer loop not pipelined.
Introduce false dependences

```c
for (i=0; i<MAX; i=i+BLOCK) {
    for(j=0; j<BLOCK; j++) tmp = BLOCK; a_tmp[j] = a[i+j];
    for(j=0; j<tmp; j++) b_tmp[j] = b[i+j];
    for(j=0; j<BLOCK; j++) c_tmp[i+j] = a_tmp[j] + b_tmp[j];
    for(j=0; j<BLOCK; j++) c[i+j] = c_tmp[i+j];
}
```

Still pay loop latency penalty and poor outermost loop pipeline.
Emulating nested loops: similar to juggling

```c
i=0; j=0; bi=0;
for (k=0; k<4*MAX; k++) {
    if (j==0) a_tmp[i] = a[bi+i];
    else if (j==1) b_tmp[i] = b[bi+i];
    else if (j==2) c_tmp[i] = a_tmp[i] + b_tmp[i];
    else c[bi+i] = c_tmp[i];
}
if (i<BLOCK-1) i++;
else {
    i=0;
    if (j<3) j++;
    else {j=0; bi = bi + BLOCK;}
}
```

- Need to use `restrict` pragma for all arrays.
- CPLI (II) = 21! Problem with dependence analyzer and software pipeliner.
- Better behavior (CLPI=3) with case statement: by luck.
- Further loop unrolling to get CPLI 1: too complex.
- But still a problem with interleaved DDR accesses!
Emulating nested loops, regrouping transfers

i=0; j=0; bi=0;
for (k=0; k<3*MAX; k++) {
 if (j==0) { ptr_1 = &a[bi+i]; ptr_2 = &a_tmp[i]; }
 else if (j==1) { ptr_1 = &b[bi+i]; ptr_2 = &b_tmp[i]; }
 else if (j==2) { ptr_1 = &c_tmp[i]; ptr_2 = &c[bi+i];
 c_tmp[i] = a_tmp[i] + b_tmp[i]; }
 *ptr_2 = *ptr_1;

 if (i<BLOCK-1) i++;
 else { i=0; if (j<2) j++; else { j=0; bi = bi + BLOCK; } }
}

- No more interleaving between arrays a and b;
- CPLI not equal to 1, unless restrict pragma added: but leads to potentially wrong codes.

How to decrease CPLI and generalize to more complex codes?
Outline

1. Context and motivations

2. “Double buffering” execution style
 - Loop tiling and the polyhedral model
 - Overview of the compilation scheme
 - Implementation details: synchronization and memory mapping

3. Communication coalescing
Fortran-like C for loops:

```c
for (i=0, i<=2N; i++)
    c[i] = 0;
for (i=0; i<=N; i++)
    for (j=0; j<=N; j++)
        c[i+j] = c[i+j] + p[i]*q[j];
```

- Affine nested loops: polytopes.
- Multi-dimensional arrays with affine access functions.
- Orders: affine transformations.
- Static control, exact analysis.

Reminder: all-affine fully-analyzable polyhedral model 🌻
Fortran-like C for loops:

```c
for (i=0, i<=2N; i++)
    c[i] = 0;
for (i=0; i<=N; i++)
    for (j=0; j<=N; j++)
        c[i+j] = c[i+j] + p[i]*q[j];
```

- Affine nested loops: polytopes.
- Multi-dimensional arrays with affine access functions.
- Orders: affine transformations.
- Static control, exact analysis.

Typical criticism: such codes do not exist.
Fortran-like C for loops:

```
for (i=0, i<=2N; i++)
    c[i] = 0;
for (i=0; i<=N; i++)
    for (j=0; j<=N; j++)
        c[i+j] = c[i+j] + p[i]*q[j];
```

- Affine nested loops: polytopes.
- Multi-dimensional arrays with affine access functions.
- Orders: affine transformations.
- Static control, exact analysis.

Typical criticism: such codes do not exist. But:

- Applicable to specific domains: e.g., signal/video processing.
- Required for static automation, very suitable for HLS.
- Can be limited to the part to analyze: here non-local accesses.
- Central model & source of inspiration for more general cases.
- Recent revival: ISL, PIPS4ALL, PLUTO, GRAPHITE, R-STREAM, COMPAAN, CHUBA, GECOS, ...
Polyhedral model: tiling

- n loops transformed into n tile loops + n intra-tile loops.
- Expressed from permutable loops: affine function θ, here $\theta : (i, j) \mapsto (i + j, i)$.
Polyhedral model: tiling

- n loops transformed into n tile loops + n intra-tile loops.
- Expressed from permutable loops: affine function θ, here $\theta : (i, j) \mapsto (i + j, i)$.
- **Tile**: atomic block operation.
- Increases granularity of computations.
- Enables communication coalescing (hoisting).
Polyhedral model: tiling

- n loops transformed into n tile loops + n intra-tile loops.
- Expressed from permutible loops: affine function θ, here $\theta : (i, j) \mapsto (i + j, i)$.
- Tile: atomic block operation.
- Increases granularity of computations.
- Enables communication coalescing (hoisting).
- We focus on a tile strip: double buffering \simeq loop unrolling by 2.
Double buffering style for optimized communications.

- Communication coalescing: each tile T has a $\text{Load}(T)$ and a $\text{Store}(T)$.
- Five pipelined communicating processes for loading, computing, storing.
- Tiling + coarse-grain software pipelining = affine function θ'.
- Transfers are done according to rows: spatial locality for DDR accesses.
- Exploits data reuse: temporal locality + fewer communications.
Optimized transfers with maximal intra- & inter-tile reuse

Double buffering style for optimized communications.
- **Communication coalescing**: each tile T has a $\text{Load}(T)$ and a $\text{Store}(T)$.
- Five pipelined communicating processes for loading, computing, storing.
- Tiling + coarse-grain software pipelining = affine function θ'.
- Transfers are done according to rows: spatial locality for DDR accesses.
- Exploits data reuse: temporal locality + fewer communications.

Local memory management defines local buffers with reuse.
- Requires lifetime analysis with respect to θ'.
- Lattice-based memory reduction: mix bounding box & sliding window.
- Reduces memory size and provides access functions: $A\vec{i} \mod \vec{b}$.
Optimized transfers with maximal intra- & inter-tile reuse

Double buffering style for optimized communications.
- **Communication coalescing:** each tile T has a $\text{Load}(T)$ and a $\text{Store}(T)$.
- Five pipelined communicating processes for loading, computing, storing.
- Tiling + coarse-grain software pipelining = affine function θ'.
- Transfers are done according to rows: spatial locality for DDR accesses.
- Exploits data reuse: temporal locality + fewer communications.

Local memory management defines local buffers with reuse.
- Requires lifetime analysis with respect to θ'.
- Lattice-based memory reduction: mix bounding box & sliding window.
- Reduces memory size and provides access functions: $Ai \mod \vec{b}$.

Code generation generates final C code in a linearized form
- Placement of FIFO synchronizations.
- Boulet-Feautrier’s method for polytope scanning.
Possible organization of load/store and compute processes

- One function for each communicating process, one memory for each array.
- Dedicated FIFOs of size 1 for synchronizations.
- Transfers through explicit memory accesses.
Possible organization of load/store and compute processes

- One function for each communicating process, one memory for each array.
- Dedicated FIFOs of size 1 for synchronizations.
- Transfers through explicit memory accesses.

Note:
- Dependence synchro.
- DDR access synchro.
- Load(T) at time 2T
- Comp(T) at time 2T+2
- Store(T) at time 2T+5
How to synchronize at C-level?

Need two kinds of synchronizations

- Sequential access to shared resource (computation or DDR).
- Data-flow: wait for data to arrive.

```c
for (t=0; t<max_tile_domain; t+=tile_size) {
    dummy_read += *st1 ld0_read;
    for(r=true, tmp=dummy_read; r==true; ) {
        if (last iteration) {
            r=false; *ld0_st0_write = 0; tmp = 0;
        }
        transfer data from DDR to local memory: *p1=*p2
        compute next external and local addresses: Quast
        *ld0_comp_write = tmp;
        external linearized loop control;
    }
}
```
Generate local memory accesses

Tiling and inter-tile reuse requires **local storage**: need to define access function to local memory, avoiding “fragmentation”.

- Define software pipelining: new schedule dim., function of T.
- Compute **liveness and conflicting differences** (see hereafter), given transfer sets Load(T) & Store(T).
- Fold memory thanks to lattice-based memory allocation (**affine function + modulo**): existing software Bee+Cl@k.
- Replace in computation function all external accesses by local accesses and generate code for scanning transfer sets.
Memory reuse for scheduled programs

Given an array A with multiple reads/writes and a scheduled program (communicating processes + schedule θ'), target:

- Reduction of the allocation size (size of buffer).
- Simplicity of the addressing functions.

Alternative solutions

- Optimal size with Ehrhart counting \(\approx\) approximations?
- Approximation of maximal number of live values \(\approx\) mapping?
- Bounding box \(\approx\) too inefficient for general live-ranges.
Memory reuse for scheduled programs

Given an array A with multiple reads/writes and a scheduled program (communicating processes $+$ schedule θ'), target:

- Reduction of the allocation size (size of buffer).
- Simplicity of the addressing functions.

Alternative solutions

- Optimal size with Ehrhart counting \(\text{≈ approximations?}\)
- Approximation of maximal number of live values \(\text{≈ mapping?}\)
- Bounding box \(\text{≈ too inefficient for general live-ranges.}\)

- Modular mapping $\vec{i} \mapsto A\vec{i} \mod b$ \(\text{≈ simple and quite efficient.}\)
 - Not a perfect scheme, does not reach minimal size, but: robust, expressed in terms of θ', usable with approximations.
Example of intermediate buffer: DCT-like example

Two synchronized, pipelined (ASAP) processes, communicating through a shared buffer A.

\[
\begin{align*}
&\text{DO } b_r = 0, 63 \\
&\quad \text{DO } b_c = 0, 63 \\
&\quad \quad \text{DO } r = 0, 7 \\
&\quad \quad \quad \text{S: } A(b_r, b_c, r, \ast) = \ldots \\
&\quad \quad \text{ENDDO} \\
&\quad \text{ENDDO} \\
&\text{ENDDO}
\end{align*}
\]

\[
\begin{align*}
&\text{DO } b_r = 0, 63 \\
&\quad \text{DO } b_c = 0, 63 \\
&\quad \quad \text{DO } c = 0, 7 \\
&\quad \quad \quad \text{T: } \ldots = A(b_r, b_c, \ast, c) \\
&\quad \text{ENDDO} \\
&\quad \text{ENDDO} \\
&\text{ENDDO}
\end{align*}
\]
Example of intermediate buffer: DCT-like example

Two synchronized, pipelined (ASAP) processes, communicating through a shared buffer A.

\[
\begin{align*}
&\text{DO } b_r = 0, 63 \\
&\quad \text{DO } b_c = 0, 63 \\
&\quad \text{DO } r = 0, 7 \\
&\quad \quad S: A(b_r, b_c, r, *) = \ldots \\
&\quad \text{ENDDO} \\
&\text{ENDDO} \\
&\text{ENDDO}
\end{align*}
\]

\[
\begin{align*}
&\text{DO } b_r = 0, 63 \\
&\quad \text{DO } b_c = 0, 63 \\
&\quad \text{DO } c = 0, 7 \\
&\quad \quad T: \ldots = A(b_r, b_c, *, c) \\
&\quad \text{ENDDO} \\
&\text{ENDDO} \\
&\text{ENDDO}
\end{align*}
\]

Full array (no reuse) $64 \times 64 \times 8 \times 8 = 2^{18} = 256K$.

Intuitive solution write in $A(b_r \mod 2, b_c \mod 2, r, c)$ (4 blocks)

Best linear allocation 112 with $\sigma = \begin{cases}
 r \mod 4 \\
 16(b_r + b_c) + 2r + c \mod 28
\end{cases}$
Memory reuse for scheduled programs

Given

- An array A with multiple reads and writes.
- Scheduled program or communicating processes, thanks to θ.

Goal

- Reduction of the allocation size (size of buffer).
- Simplicity of the addressing functions.

Solutions

- Optimal size with Ehrhart counting ⭕ approximations?
- Approximation of maximal number of live values ⭕ mapping?
- Modular mapping $\vec{i} \mapsto A\vec{i} \mod b$ ⭕ simple and quite efficient.
Modular mapping and admissible lattice

Definition (Modular mapping)

A modular mapping (M, \vec{b}), with $M \in \mathcal{M}_{p,n}(\mathbb{Z})$ and $\vec{b} \in \mathbb{N}^p$, maps index \vec{i} to $\sigma(\vec{i}) = M\vec{i} \mod \vec{b}$ in p-dimensional array with shape \vec{b}.

Definition (Lifetime analysis)

Two indices \vec{i} and \vec{j} of \mathbb{Z}^n are conflicting ($\vec{i} \triangledown \vec{j}$) if they correspond to two simultaneously live values in the schedule θ.

Define $DS = \{\vec{i} - \vec{j} | \vec{i} \triangledown \vec{j}\}$. Can be over-approximated.
Modular mapping and admissible lattice

Definition (Modular mapping)

A modular mapping \((M, \vec{b})\), with \(M \in \mathcal{M}_{p,n}(\mathbb{Z})\) and \(\vec{b} \in \mathbb{N}^p\), maps index \(\vec{i}\) to \(\sigma(\vec{i}) = M\vec{i} \mod \vec{b}\) in \(p\)-dimensional array with shape \(\vec{b}\).

Definition (Lifetime analysis)

Two indices \(\vec{i}\) and \(\vec{j}\) of \(\mathbb{Z}^n\) are conflicting \((\vec{i} \nabla \vec{j})\) if they correspond to two simultaneously live values in the schedule \(\theta\).

Define \(DS = \{\vec{i} - \vec{j} \mid \vec{i} \nabla \vec{j}\}\). ✗ Can be over-approximated.

Lemma

The modular mapping \(\sigma = (M, \vec{b})\) is valid iff \(DS \cap \ker \sigma = \{0\}\)

✈ \(\ker \sigma\) admissible lattice for \(DS\).
Critical and admissible lattices

<table>
<thead>
<tr>
<th>Integer points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Context and motivations

"Double buffering" execution style

Communication coalescing

Overview of the compilation scheme

Implementation details: synchronization and memory mapping

Critical and admissible lattices

0-Symmetric Polytope: vertices $(8,1)$, $(-8,-1)$, $(-1,5)$, and $(1,-5)$
Critical and admissible lattices

Lattice: Basis (7,0), (0,5) Determinant: 35 (i mod 7, j mod 5)

Second minimum = 9/41 > 1/5

First minimum = 6/41 > 1/7
Critical and admissible lattices

Lattice: Basis (9,0), (0,6) Determinant: 54 (i mod 9, j mod 6)
Critical and admissible lattices

Lattice: Basis (9,0), (0,5) Determinant: 45 (i mod 9, j mod 5)
Critical and admissible lattices

Lattice: Basis (8,0), (6,6) Determinant: 48 (i−j mod 8, j mod 6)
Critical and admissible lattices

Lattice: Basis (8,0), (4,4)
Determinant: 32
(i−j mod 8, j mod 4)
Critical and admissible lattices

Lattice: Basis (8,0), (3,4)
Determinant: 32
4i–3j mod 32
Critical and admissible lattices

Lattice: Basis (7,0), (4,4)
Determinant: 28
(i−j mod 7, j mod 4)
Critical and admissible lattices

Critical Lattice: Basis (4,3), (8,0)
Determinant: 24
3i–4j mod 24

Critical Lattice: Basis (4,3), (8,0)
Determinant: 24
3i–4j mod 24
Lattice-based memory allocation: process

1. **Lifetime analysis** of the array elements of A, w.r.t. θ.

2. **Relation $\Delta\bowtie$**: Build the polytope of conflicting differences.

3. **Admissible lattice**: Build an admissible Λ of small determinant.

4. **Modulo function**: Compute $\sigma = (M, \vec{b})$ such that $\ker \sigma = \Lambda$.

5. **Code generation**: Define new array A' and replace each occurrence of $A(i)$ with $A'(M\vec{i} \mod \vec{b})$.

Not a perfect scheme, does not reach minimal size, but: robust, expressed in terms of θ, **usable with approximations**.
Remove nested-loop latency by linearization

- Generate two functions for input data transfers.
- Generate (one or) two functions for output data transfers.
- Generate one function for computations.
- Use Boulet-Feautrier to iterate on input/output data sets and computation sets. (Other solutions possible in simple cases.)
- Insert synchronizations according to software pipeline.
- Compile and run! (Actually, with some rewriting for C2H.)

Correct (in theory) code generation. Still need to be validated and improved in terms of code complexity.
Outline

1. Context and motivations

2. “Double buffering” execution style

3. Communication coalescing
 - Communication coalescing: related work
 - Exact inter-tile data reuse in a tile strip
 - Extensions to more general situations
Related work: parallel languages & scratchpad memories

- Compiler-directed scratchpad memory hierarchy design & management: Kandemir, Choudhary, DAC’02.
- Effective communication coalescing for data-parallel applications: Chavarría-Miranda, Mellor-Crummey, PPoPP’05.
- Communication optimizations for fine-grained UPC applications: Chen, Iancu, Yelick, PACT’05.
- Automatic data movement and computation mapping for multi-level parallel architectures with explicitly managed memories: Baskaran, Bondhugula, Krishnam., Ramanujam, Rountev, Sadayappan, PPoPP’08.
- A mapping path for multi-GPGPU accelerated computers from a portable high level programming abstraction: Leung, Vasilache, Meister, Baskaran, Wohlford, Bastoul, Lethin, GPGPU’10.
- A reuse-aware prefetching scheme for scratchpad memory: Cong, Huang, Liu, Zou, DAC’11.
- PIPS is not (just) polyhedral software: Amini, Ancourt, Coelho, Creusillet, Guelton, Irigoin, Jouvelot, Keryell, Villalon, IMPACT’11.
Communication coalescing: main principles

Hoist communications out of loops (out of tile or out of tile strip).

```
for (i=0; i<N; i++)
  for (j=0; j<N; j++)
    S(i,j)
endfor
endfor
```

```
for (I=0; I<N; I+=b)
  for (J=0; J<N; J+=b)
    Transfer(I,J)
    for (i=I; i<min(I+b,N); i++)
      for (j=J; j<min(J+b,N); j++)
        S(i,j)
      endfor
    endfor
  endfor
endfor
```

Static scratch-pad optimizations
- Decides statically which array portions will remain in SPM.
- Granularity of arrays and function calls.

Dynamic scratch-pad optimizations
- Make a copy of distant memory before a tile or before a tile strip.
- Work at the granularity of array sections = approximation.
- Only “regular” inter-tile reuse (null space of affine functions or shifts).
- Apparently, no pipelining/overlapping (except in RStream).
Communication coalescing: main principles

Hoist communications out of loops (out of tile or out of tile strip).

```
for (I=0; I<N; I+=b)
  for (J=0; J<N; J+=b)
    Transfer(I,J)
    for (i=I; i<min(I+b,N); i++)
      for (j=J; j<min(J+b,N); j++)
        S(i,j)
    endfor
  endfor
endfor
```

Static scratch-pad optimizations
- Decides statically which array portions will remain in SPM.
- Granularity of arrays and function calls.

Dynamic scratch-pad optimizations but unclear & incomplete
- Make a copy of distant memory before a tile or before a tile strip.
- Work at the granularity of array sections = approximation.
- Only “regular” inter-tile reuse (null space of affine functions or shifts).
- Apparently, no pipelining/overlapping (except in RStream).
for(i=0; i<n; i++)
 for(j=0; j<n; j++)
 c[i+j] = c[i+j] + p[i]*q[j];

Load ≃ first reads ∩ tile domain. Store ≃ last writes ∩ tile domain.
for(i=0; i<n; i++)
 for(j=0; j<n; j++)
 c[i+j] = c[i+j] + p[i]*q[j];

\[(i,j) \mapsto (n-j-1, i)\]

\[(i,j) \mapsto (i+j, i)\]

\textbf{Load} \simeq \text{first reads} \cap \text{tile domain.} \quad \textbf{Store} \simeq \text{last writes} \cap \text{tile domain.}
General specification of data transfers

Definition

- **Load(\(T\)):** data loaded from DDR just before executing tile \(T\).
- **Store(\(T\)):** data stored to DDR just after \(T\).
- **In(\(T\)):** data read before being written in the tile \(T\).
- **Out(\(T\)):** data written by the tile \(T\).

Minimal dependence structure

![Diagram showing data transfers and dependencies between tiles](diag.png)

Goals

- Reuse local data: intra and inter-tile reuse in a tile strip.
- Do not store in external memory after each write.
- Minimize live-ranges in local memory.
What do we put in $\text{Load}(T)$ and $\text{Store}(T)$?

Extreme solutions

- $\forall T$, $\text{Load}(T) = \emptyset$ except $\text{Load}(T_0) =$ copy of all the memory involved in the tile strip \Rightarrow no pipelining and no overlapping.
- $\forall T$, $\text{Load}(T) = \text{In}(T)$, $\text{Store}(T) = \text{Out}(T)$ where $\text{In}(T) =$ data read before written in T, $\text{Out}(T) =$ data written in $T \Rightarrow$ no inter-tile reuse.
What do we put in \(\text{Load}(T) \) and \(\text{Store}(T) \)?

Extreme solutions

- \(\forall T, \text{Load}(T) = \emptyset \) except \(\text{Load}(T_0) = \) copy of all the memory involved in the tile strip \(\rightarrow \) no pipelining and no overlapping.
- \(\forall T, \text{Load}(T) = \text{In}(T), \text{Store}(T) = \text{Out}(T) \) where \(\text{In}(T) = \) data read before written in \(T \), \(\text{Out}(T) = \) data written in \(T \) \(\rightarrow \) no inter-tile reuse.

Exact situation with ALAP loads and ASAP stores

- Always reuse local data: intra- and inter-tile reuse in a tile strip.
- Remote store only after last write \(\rightarrow \) external memory not up-to-date.
- Minimize each local live-range \(\rightarrow \) bounding box not enough.
What do we put in $\text{Load}(T)$ and $\text{Store}(T)$?

Extreme solutions
- $\forall T$, $\text{Load}(T) = \emptyset$ except $\text{Load}(T_0) =$ copy of all the memory involved in the tile strip \Rightarrow no pipelining and no overlapping.
- $\forall T$, $\text{Load}(T) = \text{In}(T)$, $\text{Store}(T) = \text{Out}(T)$ where $\text{In}(T) =$ data read before written in T, $\text{Out}(T) =$ data written in T \Rightarrow no inter-tile reuse.

Exact situation with ALAP loads and ASAP stores
- Always reuse local data: intra- and inter-tile reuse in a tile strip.
- Remote store only after last write \Rightarrow external memory not up-to-date.
- Minimize each local live-range \Rightarrow bounding box not enough.

To avoid useless transfers and reduce local lifetimes
- $\text{Load}(T) = \text{In}(T) \setminus \{\text{In}(t < T) \cup \text{Out}(t < T)\}$
- $\text{Store}(T) = \text{Out}(T) \setminus \text{Out}(t > T)$
What do we put in \textbf{Load}(T) and \textbf{Store}(T)?

Extreme solutions
- \(\forall T, \text{Load}(T) = \emptyset\) except \(\text{Load}(T_0) = \) copy of all the memory involved in the tile strip \(\Rightarrow\) no pipelining and no overlapping.
- \(\forall T, \text{Load}(T) = \text{In}(T), \text{Store}(T) = \text{Out}(T)\) where \(\text{In}(T) = \) data read before written in \(T\), \(\text{Out}(T) = \) data written in \(T\) \(\Rightarrow\) no inter-tile reuse.

Exact situation with ALAP loads and ASAP stores
- Always reuse local data: intra- and inter-tile reuse in a tile strip.
- Remote store only after last write \(\Rightarrow\) external memory not up-to-date.
- Minimize each local live-range \(\Rightarrow\) bounding box not enough.

To avoid useless transfers and reduce local lifetimes
- \(\text{Load}(T) = \text{In}(T) \setminus \{\text{In}(t < T) \cup \text{Out}(t < T)\}\)
- \(\text{Store}(T) = \text{Out}(T) \setminus \text{Out}(t > T)\)

or, equivalently, defined by optimization
- \(\text{Load}(T) = \{\vec{m} \mid \text{FirstOpReadBeforeWrite}(\vec{m}) \in T\}\)
- \(\text{Store}(T) = \{\vec{m} \mid \text{LastOpWrite}(\vec{m}) \in T\}\)
Example: \(\text{Load}(J) \) for a \(b \times b \) tile indexed by \(J \)

\[(i, j) \mapsto (n - j - 1, i)\]

Reads of \(c[m] \) as a function of \((i, j) \):

\[
\begin{aligned}
i + j &= m \\
0 \leq i \leq n - 1, \ 0 \leq j \leq n - 1
\end{aligned}
\]

\(\text{blue} = \text{constant}, \ \text{red} = \text{parameter} \)
Example: \(\text{Load}(J) \) for a \(b \times b \) tile indexed by \(J \)

\[(i, j) \mapsto (n - j - 1, i)\]

Introduction of the change of basis

\[(i, j) \mapsto (i' = n - 1 - j, j' = i):\]

\[
\begin{align*}
&\begin{cases}
 i + j = m, & i' = n - 1 - j, j' = i\\
 0 \leq i \leq n - 1, & 0 \leq j \leq n - 1
\end{cases} \\
\end{align*}
\]

blue = constant, red = parameter
Example: \(\text{Load}(J) \) for a \(b \times b \) tile indexed by \(J \)

Tiling \((I, J) = (\lfloor i'/b \rfloor, \lfloor j'/b \rfloor) \), \(I \) parameter:

\[
\begin{align*}
&i + j = m, i' = n - 1 - j, j' = i \\
&0 \leq i \leq n - 1, 0 \leq j \leq n - 1 \\
&bI \leq i' \leq b(I + 1) - 1 \\
&bJ \leq j' \leq b(J + 1) - 1
\end{align*}
\]

\(\text{blue} = \text{constant}, \ \text{red} = \text{parameter} \)
Example: \(\text{Load}(J) \) for a \(b \times b \) tile indexed by \(J \)

Use PIP to find the first read in the tile strip, i.e., lexicographic minimum of \((I, J, i', j')\):

\[
\min_{<\text{lex}} \begin{cases}
 i + j = m, & i' = n - 1 - j, j' = i \\
 0 \leq i \leq n - 1, & 0 \leq j \leq n - 1 \\
 bI \leq i' \leq b(I + 1) - 1 \\
 bJ \leq j' \leq b(J + 1) - 1
\end{cases}
\]

\(\text{blue}=\text{constant}, \; \text{red}=\text{parameter} \)
Example: \textbf{Load}(J) for a } b \times b \text{ tile indexed by } J \\

\[
(i, j) \mapsto (n - j - 1, i)
\]

Use PIP to find the first read in the tile strip, i.e., lexicographic minimum of \((l, J, i', j')\):

\[
\min_{\text{lex}} \begin{cases}
 i + j = m, i' = n - 1 - j, j' = i \\
 0 \leq i \leq n - 1, 0 \leq j \leq n - 1 \\
 bl \leq i' \leq b(l + 1) - 1 \\
 bj \leq j' \leq b(J + 1) - 1
\end{cases}
\]

\text{blue} = 10, \text{ red} = \text{parameter}

\[
\text{if } (-10l + N - m \geq 0) \\
 \text{if } (10l - N + m + 9 \geq 0) /\ast \text{ vertical band of elements, first tile } /\ast/
 (J, ii, jj, i, j) = (0, N - m, 0, 0, m) \\
 \text{else } \bot /\ast \text{ means undefined } /\ast/
\]

\[
\text{else}
\]

\[
\text{if } (-10l + 2N - m \geq 0) \\
 \text{if } (-10l + N - m + 9 \geq 0) /\ast \text{ horizontal band, first tile } /\ast/
 (J, ii, jj, i, j) = (0, 10l, 10l - N + m, 10l - N + m, N - 10l) \\
 \text{else with } k = \lfloor \frac{N + 9m + 9}{10} \rfloor /\ast \text{ generic horizontal case } /\ast/
 (J, ii, jj, i, j) = (l + m - k, 10l, 10l - N + m, 10l - N + m, N - 10l) \\
 \text{else } \bot /\ast \text{ undefined } /\ast/
\]
Example: \(\text{Load}(J) \) for a \(b \times b \) tile indexed by \(J \)

Use PIP to find the first read in the tile strip, i.e., lexicographic minimum of \((l, J, i', j'):\)

\[
\min_{\text{lex}} \begin{cases}
 i + j = m, & i' = n - 1 - j, \quad j' = i \\
 0 \leq i \leq n - 1, & 0 \leq j \leq n - 1 \\
 bI \leq i' \leq b(l + 1) - 1 \\
 bJ \leq j' \leq b(J + 1) - 1
\end{cases}
\]

\(\text{blue}=10, \text{red}=\text{parameter} \)

If \((-10l + N - m \geq 0)\)

- If \((10l - N + m + 9 \geq 0) \) /* vertical band of elements, first tile */
 \((i, j) = (0, m)\)
- Else \(\bot\)

Else

- If \((-10l + 2N - m \geq 0)\)
 - If \((-10l + N - m + 9 \geq 0) \) /* horizontal band, first tile */
 \((i, j) = (10l - N + m, N - 10l)\)
 - Else with \(k = \left\lfloor \frac{N + 9m + 9}{10} \right\rfloor \) /* generic horizontal case */
 \((i, j) = (10l - N + m, N - 10l)\)
 - Else \(\bot\) /* means undefined */
Example: \(\text{Load}(J) \) for a \(b \times b \) tile indexed by \(J \)

Use PIP to find the first read in the tile strip, i.e., lexicographic minimum of \((I, J, i', j')\):

\[
\min_{\prec_{\text{lex}}} \begin{cases}
 i + j = m, i' = n - 1 - j, j' = i \\
 0 \leq i \leq n - 1, 0 \leq j \leq n - 1 \\
 bI \leq i' \leq b(I + 1) - 1 \\
 bJ \leq j' \leq b(J + 1) - 1
\end{cases}
\]

blue=10, red=parameter

This gives the array elements whose first access is a read:

\[
\{ m \mid \max(0, N - 10I - 9) \leq m \leq N - 10I \} \cup \{ m \mid N - 10I + 1 \leq m \leq 2N - 10I \}
\]
Example: \(\text{Load}(J) \) for a \(b \times b \) tile indexed by \(J \)

Use PIP to find the first read in the tile strip, i.e., lexicographic minimum of \((l, J, i', j') \):

\[
\min_{\text{lex}} \begin{cases}
 i + j = m, & i' = n - 1 - j, \quad j' = i \\
 0 \leq i \leq n - 1, & 0 \leq j \leq n - 1 \\
 bI \leq i' \leq b(l + 1) - 1 \\
 bJ \leq j' \leq b(J + 1) - 1
\end{cases}
\]

\text{blue}=10, \text{ red}=\text{parameter}

After simplification:

\[
\text{FirstOpRead}(m) = \{(i, j) \mid (i, j) = (0, m), \quad 0 \leq m, \quad n - 10 - 10l \leq m \leq n - 1 - 10l\} \\
\cup \{(i, j) \mid (i, j) = (10l - n + 1 + m, n - 1 - 10l), \quad n - 10l \leq m \leq 2n - 2 - 10l\}
\]
Example: Load\((J)\) for a \(b \times b\) tile indexed by \(J\)

Use PIP to find the first read in the tile strip, i.e., lexicographic minimum of \((I, J, i', j')\):

\[
\begin{align*}
\text{min} & \quad \langle \text{lex} \rangle \\
& \begin{cases}
 i + j = m, \quad i' = n - 1 - j, \quad j' = i \\
 0 \leq i \leq n - 1, \quad 0 \leq j \leq n - 1 \\
 bi \leq i' \leq b(I + 1) - 1 \\
 bJ \leq j' \leq b(J + 1) - 1
\end{cases}
\end{align*}
\]

blue = 10, red = parameter

After simplification:

FirstOpRead\((m)\) = \{(i, j) \mid (i, j) = (0, m), \ 0 \leq m, \ n - 10 - 10l \leq m \leq n - 1 - 10l\} \cup \{(i, j) \mid (i, j) = (10l - n + 1 + m, n - 1 - 10l), \ n - 10l \leq m \leq 2n - 2 - 10l\}

Introduction of tile constraints and expression of \(m\) as a function of \(J\):

FirstReadInTile\((J)\) = \{\(m \mid \max(0, n - 10l - 10) \leq m \leq n - 1 - 10l, \ J = 0\} \cup \{\(m \mid \max(1, 10J) \leq m + 10l - n + 1 \leq \min(n - 1, 10J + 9)\}\}
Weaknesses and potential for improvements

Note

- This is the first process to automate double-buffering with intra- and inter-tile reuse, and entirely at C level.
- Combination of several polyhedral techniques: tiling, code analysis, memory reuse with modulo (not explained here), polyhedral code generation.

Weaknesses

- Needs “tilable” portion of code.
- Needs exact analysis of data usage approximations?
- Needs constant tile size parameterization?
 - Recompile (analysis & code generation) for each tile size.
 - Painful (hand-made) code specialization for each tile size.
- Local memory size known only at the end of the process.
Reminder: beyond the polyhedral model

Polyhedral model.
Reminder: beyond the polyhedral model

Polyhedral model.
Real life.
Reminder: beyond the polyhedral model

Polyhedral model.
Real life.

Extensions.

- Non-affine constraints.
- Non-static control, while loops.
- Beyond induction variables.
Reminder: beyond the polyhedral model

Polyhedral model.
Real life.

Extensions.
- Non-affine constraints.
- Non-static control, while loops.
- Beyond induction variables.

Approximations.
- Dependences, lifetime, data & iteration domains, etc.
- Array region analysis (Creusillet).
- Runtime info., trace analysis.
Reminder: beyond the polyhedral model

Polyhedral model.
Real life.

Extensions.
- Non-affine constraints.
- Non-static control, while loops.
- Beyond induction variables.

Approximations.
- Dependences, lifetime, data & iteration domains, etc.
- Array region analysis (Creusillet).
- Runtime info., trace analysis.

- $\text{In}(T)$: data read before being written in the tile T.
- $\text{Out}(T)$: data written by the tile T.
- $\overline{\text{In}}(T)$: possibly read before being written, over-approximation of $\text{In}(T)$.
- $\overline{\text{Out}}(T)$: data possibly written, over-approximation of $\text{Out}(T)$.
- $\underline{\text{Out}}(T)$: data provably written, under-approximation of $\text{Out}(T)$.
Approximation scheme for \(\text{Load}(T) \) and \(\text{Store}(T) \)

Valid approximated loads and stores

(i) Load at least the exact amount of data:
\[
\overline{\text{In}}(T) \setminus \overline{\text{Out}}(t < T) \subseteq \text{Load}(t \leq T)
\]

(ii) Do not overwrite possibly locally-defined data:
\[
\overline{\text{Out}}(t < T) \cap \text{Load}(T) = \emptyset
\]

(iii) Preload any data that may be written but not for sure:
\[
\text{Store}(T) \setminus \overline{\text{Out}}(t \leq T) \subseteq \text{Load}(t \leq T)
\]
Approximation scheme for $\text{Load}(T)$ and $\text{Store}(T)$

Valid approximated loads and stores:

(i) Load at least the exact amount of data:
\[
\overline{\text{In}}(T) \setminus \text{Out}(t < T) \subseteq \text{Load}(t \leq T)
\]

need to over-approximate

(ii) Do not overwrite possibly locally-defined data:
\[
\text{Out}(t < T) \cap \text{Load}(T) = \emptyset
\]

be careful with over-loading

(iii) Preload any data that may be written but not for sure:
\[
\text{Store}(T) \setminus \text{Out}(t \leq T) \subseteq \text{Load}(t \leq T)
\]

risk of storing garbage

Array addresses:

In | Out | T−2 | T−1 | T | Out | Tiles
Approximation is (unexpectedly) feasible!

Intuition for loading **ALAP** and storing **ASAP**

- Store \(x \) just after \(T \) if \(x \) is never written after \(T \), i.e., \(x \notin \text{Out}(t > T) \).
- Preload \(x \) if written, not for sure: \(x \in \overline{\text{Out}}(t \leq T_{\text{max}}) \setminus \text{Out}(t \leq T_{\text{max}}) \).
- Load a value \(x \) always before it may be written, i.e., \(x \notin \text{Out}(t < T) \).
Approximation is (unexpectedly) feasible!

Intuition for loading ALAP and storing ASAP

- Store x just after T if x is never written after T, i.e., $x \notin \overline{\text{Out}}(t > T)$.
- Preload x if written, not for sure: $x \in \overline{\text{Out}}(t \leq T_{\text{max}}) \setminus \overline{\text{Out}}(t \leq T_{\text{max}})$.
- Load a value x always before it may be written, i.e., $x \notin \overline{\text{Out}}(t < T)$.

Solution with set equations Don’t read! 😊

\[
\begin{align*}
\overline{\text{Out}}(T) \setminus \overline{\text{Out}}(t > T) & \subseteq \text{Store}(T) & \text{(data possibly written)} \\
\overline{\text{In}}'(T) &= \overline{\text{In}}(T) \cup (\text{Store}(T) \setminus \overline{\text{Out}}(T)) & \text{(all data that are “read”)} \\
\overline{\text{Ra}}(T) &= \overline{\text{In}}'(T) \setminus \overline{\text{Out}}(t < T) & \text{(all data that need a remote access)} \\
\text{Load}(T) &= \left(\overline{\text{In}}'(T) \cup (\overline{\text{Out}}(T) \cap \overline{\text{Ra}}(t > T))\right) \setminus \left(\overline{\text{In}}'(t < T) \cup \overline{\text{Out}}(t < T)\right)
\end{align*}
\]
Approximation is (unexpectedly) feasible!

Intuition for loading **ALAP** and storing **ASAP**

- Store \(x \) just after \(T \) if \(x \) is never written after \(T \), i.e., \(x \notin \text{Out}(t > T) \).
- Preload \(x \) if written, not for sure: \(x \in \text{Out}(t \leq T_{\text{max}}) \setminus \text{Out}(t \leq T_{\text{max}}) \).
- Load a value \(x \) always before it may be written, i.e., \(x \notin \text{Out}(t < T) \).

Solution with set equations **Don’t read! 😊**

\[
\begin{align*}
\text{Out}(T) \setminus \text{Out}(t > T) & \subseteq \text{Store}(T) & \text{(data possibly written)} \\
\text{In}'(T) &= \text{In}(T) \cup (\text{Store}(T) \setminus \text{Out}(T)) & \text{(all data that are “read”)} \\
\text{Ra}(T) &= \text{In}(T) \setminus \text{Out}(t < T) & \text{(all data that need a remote access)} \\
\text{Load}(T) &= \left(\text{In}'(T) \cup (\text{Out}(T) \cap \text{Ra}(t > T)) \right) \setminus \left(\text{In}'(t < T) \cup \text{Out}(t < T) \right)
\end{align*}
\]

Solution by optimization **Don’t read! 😊**

- \(\text{In}(\vec{m}) = \min\{ T \mid \vec{m} \in \text{In}(T) \} \) (first time it is read).
- \(\text{Out}(\vec{m}) = \min\{ T \mid \vec{m} \in \text{Out}(T) \} \) (first time it may be written).
- \(\text{Out}(\vec{m}) = \min\{ T \mid \vec{m} \in \text{Out}(T) \} \) (first time it is written for sure).

then combine to get \(T(\vec{m}) = \min(\text{Out}(\vec{m}), \text{Out}(\vec{m}), \text{In}(\vec{m})) \), unless \(\text{Out}(\vec{m}) \leq_{\text{lex}} \text{In}(\vec{m}) \) in which case \(T(\vec{m}) = -\infty \) (no need to load).
Parameterization is (unexpectedly) feasible!

Tiling:
\[(i, j) \mapsto (i', j') = (n - j - 1, i) \]

Parameters:
- \((l, J)\): first index in tile.
- \(n\): loop bound, \(b\): tile size.

Transfers \((m = i + j = j' + n - i' - 1)\):
- \(\text{Load}_p, \text{Load}_q, \text{Load}_c, \text{Store}_c\).
Parameterization is (unexpectedly) feasible!

Tiling:
- \((i, j) \mapsto (i', j') = (n - j - 1, i)\)

Parameters:
- \((I, J)\): first index in tile.
- \(n\): loop bound, \(b\): tile size.

Transfers \((m = i + j = j' + n - i' - 1)\):
- \(\text{Load}_p, \text{Load}_q, \text{Load}_c, \text{Store}_c\).

\[
\text{Load}_p = \{m \mid 1 - b \leq l \leq n - 1, 0 \leq m \leq n - 1, J \leq m \leq J + b - 1\}
\]
Parameterization is (unexpectedly) feasible!

Tiling:

- \((i, j) \mapsto (i', j') = (n - j - 1, i) \)

Parameters:
- \((I, J)\): first index in tile.
- \(n\): loop bound, \(b\): tile size.

Transfers \((m = i + j = j' + n - i' - 1)\):
- \(\text{Load}_p, \text{Load}_q, \text{Load}_c, \text{Store}_c\).

\[
\text{Load}_p = \{m \mid 1 - b \leq I \leq n - 1, \ 0 \leq m \leq n - 1, \ J \leq m \leq J + b - 1\}
\]

\[
\text{Load}_q = \{m \mid 1 - b \leq J \leq n - 1, \ J \leq 0, \ 0 \leq m \leq n - 1, \ 1 \leq n - I - m \leq b\}.
\]
Parameterization is (unexpectedly) feasible!

Tiling:

- \((i, j) \mapsto (i', j') = (n - j - 1, i)\)

Parameters:

- \((I, J)\): first index in tile.
- \(n\): loop bound, \(b\): tile size.

Transfers \((m = i + j = j' + n - i' - 1)\):

- \(\text{Load}_p\), \(\text{Load}_q\), \(\text{Load}_c\), \(\text{Store}_c\).

\[
\begin{align*}
\text{Load}_p &= \{m \mid 1 - b \leq l \leq n - 1, 0 \leq m \leq n - 1, J \leq m \leq J + b - 1\} \\
\text{Load}_q &= \{m \mid 1 - b \leq J \leq n - 1, J \leq 0, 0 \leq m \leq n - 1, 1 \leq n - l - m \leq b\} \\
\text{Load}_c &= \{m \mid 1 - b \leq J \leq 0, 0 \leq m \leq n - 1, 2 \leq n - l - m \leq b\} \\
&\quad \cup \{m \mid 1 - b \leq l \leq -1, n \leq m \leq 2n - 2, n + J - 1 \leq m \leq n + J + b - 2\} \\
&\quad \cup \{m \mid 0 \leq l \leq n - 1, \max(0, J) \leq m - (n - l - 1) \leq \min(J + b - 1, n - 1)\}
\end{align*}
\]
Parameterization is (unexpectedly) feasible!

Tiling:
- \((i, j) \mapsto (i', j') = (n - j - 1, i)\)

Parameters:
- \((I, J)\): first index in tile.
- \(n\): loop bound, \(b\): tile size.

Transfers \((m = i + j = j' + n - i' - 1)\):
- \(\text{Load}_p, \text{Load}_q, \text{Load}_c, \text{Store}_c\).

\[
\begin{align*}
\text{Load}_p &= \{m \mid 1 - b \leq l \leq n - 1, 0 \leq m \leq n - 1, J \leq m \leq J + b - 1\} \\
\text{Load}_q &= \{m \mid 1 - b \leq J \leq n - 1, J \leq 0, 0 \leq m \leq n - 1, 1 \leq n - l - m \leq b\} \\
\text{Load}_c &= \{m \mid 1 - b \leq J \leq 0, 0 \leq m \leq n - 1, 2 \leq n - l - m \leq b\} \\
&\quad \cup \{m \mid 1 - b \leq l \leq -1, n \leq m \leq 2n - 2, n + J - 1 \leq m \leq n + J + b - 2\} \\
&\quad \cup \{m \mid 0 \leq l \leq n - 1, \max(0, J) \leq m - (n - l - 1) \leq \min(J + b - 1, n - 1)\}
\end{align*}
\]
Parameterization is (unexpectedly) feasible!

Tiling:
- \((i, j) \mapsto (i', j') = (n - j - 1, i)\)

Parameters:
- \((I, J)\): first index in tile.
- \(n\): loop bound, \(b\): tile size.

Transfers \((m = i + j = j' + n - i' - 1)\):
- \(\text{Load}_p, \text{Load}_q, \text{Load}_c, \text{Store}_c\).

\[
\text{Load}_p = \{m \mid 1 - b \leq l \leq n - 1, 0 \leq m \leq n - 1, J \leq m \leq J + b - 1\}
\]
\[
\text{Load}_q = \{m \mid 1 - b \leq J \leq n - 1, J \leq 0, 0 \leq m \leq n - 1, 1 \leq n - l - m \leq b\}
\]
\[
\text{Load}_c = \{m \mid 1 - b \leq J \leq 0, 0 \leq m \leq n - 1, 2 \leq n - l - m \leq b\}
\]
\[
\bigcup \{m \mid 1 - b \leq l \leq -1, n \leq m \leq 2n - 2, n + J - 1 \leq m \leq n + J + b - 2\}
\]
\[
\bigcup \{m \mid 0 \leq l \leq n - 1, \max(0, J) \leq m - (n - l - 1) \leq \min(J + b - 1, n - 1)\}
\]
\[
\text{Store}_c = \{m \mid l \leq n - 1, J \leq n - b - 1, 0 \leq m, n - l + J \leq m \leq J + b - 1\}
\]
\[
\bigcup \{m \mid l \leq n - 1, n - b \leq J, 0 \leq m \leq 2n - 2, n - l + J \leq m \leq 2n - l - 2\}
\]
\[
\bigcup \{m \mid 1 - b \leq l, J \leq n - 1, 0 \leq m \leq 2n - 2, J \leq m, n - l - b \leq m, n - l + J - b \leq m \leq n - l + J - 1\}
\]
Context and motivations
“Double buffering” execution style
Communication coalescing

Size of local buffers, with “double-buffering” execution

ISL/OMEGA-like input (with \(b > 0 \) and \(n > 0 \))

\[
\begin{align*}
\text{Domain} & := [b,n] \rightarrow \{ [i,j] : 0 \leq i,j < n \}; \\
\text{Read} & := [b,n] \rightarrow \{ [i,j] \rightarrow c[m] : m = i+j \} \ast \text{Domain} \\
& + [b,n] \rightarrow \{ [i,j] \rightarrow p[m] : m = i \} \ast \text{Domain} \\
& + [b,n] \rightarrow \{ [i,j] \rightarrow q[m] : m = j \} \ast \text{Domain}; \\
\text{Write} & := [b,n] \rightarrow \{ [i,j] \rightarrow c[m] : m = i+j \} \ast \text{Domain}; \\
\text{Schedule} & := [b,n] \rightarrow \{ [i,j] \rightarrow [n-j-1,i] \} \ast \text{Domain};
\end{align*}
\]

Output for memory size

Array \(p \)

- size \(2b \), if \(n \geq 2b + 1 \): 2 overlapping tiles.
- size \(n \) if \(n \leq 2b \): less than 2 tiles.

Array \(q \)

- size \(b \) if \(n \geq b \): 1 full tile.
- size \(n \) if \(n \leq b - 1 \): 1 incomplete tile.

Array \(c \)

- size \((2b - 1) + b = 3b - 1\) if \(n \geq 2b + 1 \): 2 full overlapping tiles.
- size \((2b - 1) + (n - b) = b + n - 1\) if \(b \leq n \leq 2b \): 1 full, one incomplete
- size \(2n - 1\) if \(n \leq b - 1 \): only one tile.

Distinguishes incomplete tiles and tiles starting out of domain.
Contributions

- Automate double-buffering with inter-tile reuse, at C level.
- Starting point for using HLS tools as back-end compilers?
- Quite general mechanisms: GPUs, other?

Perspectives

- More approximations & parameters in polyhedral model.
- More than parallelism, pipelining.
- Synthesis of communicating processes + customized buffers.
- Compilation of streaming languages with multi-dimensional shared buffers (i.e., not FIFOs)?