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Outline

@ Code representations
@ Control-flow graph
@ Loop-nesting forest
@ Static single assignment

© Out-of-SSA translation
@ Translation with copy insertions: pitfalls and solution
@ Improving code quality and ease of implementation
@ Fast implementation with reduced memory footprint

© SSA properties and liveness
@ Dominance, liveness, interferences, and chordal graphs
@ Construction of liveness sets in reducible CFGs for strict SSA
@ Extensions to irreducible CFGs and for checking liveness
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Loop-n g
Static single assignment

Back-end code analysis

Control-flow analysis determines control flow and control structure
of a program and build a program representation.

@ Basic block

e Control-flow graph

@ Loop-nesting forest

@ Static single assignment

Data-flow analysis determines the flow of scalar variables, their
live-ranges, and possibly their values.

Constant propagation

@ Redundancy elimination, dead-code elimination
@ Code motion and scheduling

@ Register allocation

Analysis: local, intra-procedural, or inter-procedural.
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Code representations Control-flow graph
Loop-nesting forest
Static single assignment

Basic block and control-flow graph

Basic block sequence of consecutive statements in any execution:
single entry & single exit.
Control-flow graph directed graph:
@ nodes are basic blocks
@ edges represent control flow
(jumps or fall-through), i.e., paths
that may be taken
@ block/edge frequencies

Vocabulary
e DFS, back-edge, cross-edge
@ loop, entry node, join node
@ reducible and irreducible graph
e critical edge (in red)

return ¢
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Code representations Control-flow graph
Loop-nesting forest
Static single assignment

Dominance, post-dominance, control dependences
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Static single assignment

Dominance, post-dominance, control dependences
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Code representations Control-flow graph
Loop-nesting forest
Static single assignment

Dominance, post-dominance, control dependences
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Code representations Control-flow graph
Loop-nesting forest
Static single assignment

Dominance, post-dominance, control dependences
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Code representations Control-flow graph
Loop-nesting forest
Static single assignment

Dominance, post-dominance, control dependences
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Control-flow graph
Loop-nesting forest
Static single assignment

control dependences

Code representations

Dominance, post-dominance,

Dominance relation =0
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a dominates b takes O(1).
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Control-flow graph
Loop-nesting forest
Static single assignment

Code representations

Dominance, post-dominance, control dependences

Dominance relation =0
) TN
@ a single entry node r. R
@ each node reachable from r. /) N\
1 5
@ a dominates b if every path N TV
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a dominates b takes O(1).
Similar for post-dominance, used for defining control dependences:
b is control-dependent on a if there is a path from a to b and b

does not strictly post-dominate a.
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Code representations Control-flow graph
Loop-nesting
Static single assignment

Loop nesting forest

Construction (minimal properties)

@ Partition the CFG into its strongly connected components
(SCCs). A SCC with at least one edge is called a loop.
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Code representations
Loop-nesting forest
Static single assignment

Loop nesting forest

Construction (minimal properties)

@ Partition the CFG into its strongly connected components
(SCCs). A SCC with at least one edge is called a loop.

@ For each loop L, select a subset of nodes in L not dominated
by any other node in L: @ |oop-headers of L. Remove all
edges in L that lead to a loop-header: @ |oop-edges of L.
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Code representations
Loop-nesting forest
Static single assignment

Loop nesting forest

Construction (minimal properties)
@ Partition the CFG into its strongly connected components
(SCCs). A SCC with at least one edge is called a loop.

@ For each loop L, select a subset of nodes in L not dominated
by any other node in L: @ |oop-headers of L. Remove all
edges in L that lead to a loop-header: @ |oop-edges of L.

@ Repeat this partitioning recursively for every SCC.
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Code representations Control-fl
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Loop nesting forest

Construction (minimal properties)
@ Partition the CFG into its strongly connected components
(SCCs). A SCC with at least one edge is called a loop.

@ For each loop L, select a subset of nodes in L not dominated
by any other node in L: @ |oop-headers of L. Remove all
edges in L that lead to a loop-header: @ |oop-edges of L.

@ Repeat this partitioning recursively for every SCC.
Corresponding loop-nesting forest

@ Leaves are the nodes of the CFG.
@ Internal nodes, labeled by loop-headers, correspond to loops.

@ The children of a loop's node represent all inner loops it
contains as well as the regular basic blocks of the loop’s body.
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Control-f
Loop-ne
Static sing

Code representations

ssignment

Loop-nesting forest: example

An irreducible CFG A possible Ioop—nesting forest

e g ! As the CFG is not reducible, sev-
@ eral loop forests are possible, with

loop headers 5 and/or 6.
Also, in general, the depth of a

loop forest is not uniquely defined.
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Code representations Control-flow graph
Loop-nesting forest
Static single assignment

Tarjan's algorithm for detecting loops (reducible case)

procedure collapse(loopBody, loopHeader)
for every z € loopBody do
loop-parent(z) := loopHeader; LP.union(z, loopHeader)
endfor

procedure findloop(potentialHeader)
loopBody = {}
worklist = {LP.find(y) | y — potentialHeader is a back-edge} \ {potentialHeader}
while (worklist is not empty) do
remove an arbitrary element y from worklist; add y to loopBody
for every predecessor z of y such that (z,y) is not a back-edge do
if (LP.find(z) ¢ (loopBody U {potentialHeader} U worklist)) then
add LP.find(z) to worklist
endif
endfor
endwhile
if (loopBody is not empty) then collapse(loopBody, potentialHeader)

procedure TarjanAlgorithm(G)
for every vertex x of G do loop-parent(x) := NULL; LP.add(x); endfor
for every vertex x of G in reverse-DFS-order do findloop(x); endfor
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Code representations Control-flow graph
Loop-nesting forest
Static single assignment

Ramalingam’s modified Havlak’s algorithm (general case)

procedure marklrreducibleLoops(z)
t := loop-parent(z)
while (t # NULL) do
u = RLH.find(t); mark u as irreducible-loop-header
t := loop-parent(u)
if (t # NULL) then RLH.union(u, t)
endwhile

procedure processCrossFwdEdges(x)
for every edge (y, z) in CrossFwdEdges[x] do
add edge (find(y), find(z)) to the graph; marklrreducibleLoops(z)
endfor

procedure ModifiedHavlakAlgorithm(G)
for every vertex x of G do
loop-parent(x) := NULL; crossFwdEdges[x] := {}; LP.add(x); RLH.add(x);
endfor
for every forward edge and cross edge (y, x) of G do
remove (y, x) from G and add it to crossFwdEdges[LCA(y, x)]
endfor
for every vertex x of G in reverse-DFS-order do
processCrossFwdEdges(x)
findloop(x) /* same procedure as for Tarjan's algorithm */
endfor
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