
Code representations
Out-of-SSA translation

SSA properties and liveness

Cours M2: Compilation avancée et
optimisation de programmes

Alain Darte

CNRS, Compsys
Laboratoire de l’Informatique du Parallélisme

École normale supérieure de Lyon

Back-end code optimizations

Alain Darte Cours M2: Compilation avancée et optimisation de programmes



Code representations
Out-of-SSA translation

SSA properties and liveness

Outline

1 Code representations
Control-flow graph
Loop-nesting forest
Static single assignment

2 Out-of-SSA translation
Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

3 SSA properties and liveness
Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Alain Darte Cours M2: Compilation avancée et optimisation de programmes



Code representations
Out-of-SSA translation

SSA properties and liveness

Control-flow graph
Loop-nesting forest
Static single assignment

Back-end code analysis

Control-flow analysis determines control flow and control structure
of a program and build a program representation.

Basic block
Control-flow graph
Loop-nesting forest
Static single assignment

Data-flow analysis determines the flow of scalar variables, their
live-ranges, and possibly their values.

Constant propagation
Redundancy elimination, dead-code elimination
Code motion and scheduling
Register allocation

Analysis: local, intra-procedural, or inter-procedural.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes



Code representations
Out-of-SSA translation

SSA properties and liveness

Control-flow graph
Loop-nesting forest
Static single assignment

Basic block and control-flow graph

Basic block sequence of consecutive statements in any execution:
single entry & single exit.

Control-flow graph directed graph:

nodes are basic blocks
edges represent control flow
(jumps or fall-through), i.e., paths
that may be taken
block/edge frequencies

Vocabulary

DFS, back-edge, cross-edge
loop, entry node, join node
reducible and irreducible graph
critical edge (in red)

(a, b)← . . .

if b < a

c ← a− b
if c > 10

c ← 0

c ← c mod 10

return c

Alain Darte Cours M2: Compilation avancée et optimisation de programmes



Code representations
Out-of-SSA translation

SSA properties and liveness

Control-flow graph
Loop-nesting forest
Static single assignment

Dominance, post-dominance, control dependences

Dominance relation

a single entry node r .

each node reachable from r .

a dominates b if every path
from r to b contains a.

Properties

The dominance relation
induces a tree.

With tree labeling, testing if
a dominates b takes O(1).

r=0

1 9

2

5

6

7

8

3

4

Similar for post-dominance, used for defining control dependences:
b is control-dependent on a if there is a path from a to b and b
does not strictly post-dominate a.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes



Code representations
Out-of-SSA translation

SSA properties and liveness

Control-flow graph
Loop-nesting forest
Static single assignment

Dominance, post-dominance, control dependences

Dominance relation

a single entry node r .

each node reachable from r .

a dominates b if every path
from r to b contains a.

Properties

The dominance relation
induces a tree.

With tree labeling, testing if
a dominates b takes O(1).

1 dominates 4?

r=0

1 9

2

5

6

7

8

3

4

1

4

Similar for post-dominance, used for defining control dependences:
b is control-dependent on a if there is a path from a to b and b
does not strictly post-dominate a.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes



Code representations
Out-of-SSA translation

SSA properties and liveness

Control-flow graph
Loop-nesting forest
Static single assignment

Dominance, post-dominance, control dependences

Dominance relation

a single entry node r .

each node reachable from r .

a dominates b if every path
from r to b contains a.

Properties

The dominance relation
induces a tree.

With tree labeling, testing if
a dominates b takes O(1).

1 dominates 4? YES

r=0

1 9

2

5

6

7

8

3

4

1

4

Similar for post-dominance, used for defining control dependences:
b is control-dependent on a if there is a path from a to b and b
does not strictly post-dominate a.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes



Code representations
Out-of-SSA translation

SSA properties and liveness

Control-flow graph
Loop-nesting forest
Static single assignment

Dominance, post-dominance, control dependences

Dominance relation

a single entry node r .

each node reachable from r .

a dominates b if every path
from r to b contains a.

Properties

The dominance relation
induces a tree.

With tree labeling, testing if
a dominates b takes O(1).

2 dominates 4?

r=0

1 9

2

5

6

7

8

3

4

2

4

Similar for post-dominance, used for defining control dependences:
b is control-dependent on a if there is a path from a to b and b
does not strictly post-dominate a.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes



Code representations
Out-of-SSA translation

SSA properties and liveness

Control-flow graph
Loop-nesting forest
Static single assignment

Dominance, post-dominance, control dependences

Dominance relation

a single entry node r .

each node reachable from r .

a dominates b if every path
from r to b contains a.

Properties

The dominance relation
induces a tree.

With tree labeling, testing if
a dominates b takes O(1).

2 dominates 4? NO

r=0

1 9

2

5

6

7

8

3

4

2

4

Similar for post-dominance, used for defining control dependences:
b is control-dependent on a if there is a path from a to b and b
does not strictly post-dominate a.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes



Code representations
Out-of-SSA translation

SSA properties and liveness

Control-flow graph
Loop-nesting forest
Static single assignment

Dominance, post-dominance, control dependences

Dominance relation

a single entry node r .

each node reachable from r .

a dominates b if every path
from r to b contains a.

Properties

The dominance relation
induces a tree.

With tree labeling, testing if
a dominates b takes O(1).

r=0

1 9

2

5

6

7

8

3

4

Similar for post-dominance, used for defining control dependences:
b is control-dependent on a if there is a path from a to b and b
does not strictly post-dominate a.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes



Code representations
Out-of-SSA translation

SSA properties and liveness

Control-flow graph
Loop-nesting forest
Static single assignment

Dominance, post-dominance, control dependences

Dominance relation

a single entry node r .

each node reachable from r .

a dominates b if every path
from r to b contains a.

Properties

The dominance relation
induces a tree.

With tree labeling, testing if
a dominates b takes O(1).

r=0

1 9

2

5

6

7

8

3

4

Similar for post-dominance, used for defining control dependences:
b is control-dependent on a if there is a path from a to b and b
does not strictly post-dominate a.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes



Code representations
Out-of-SSA translation

SSA properties and liveness

Control-flow graph
Loop-nesting forest
Static single assignment

Loop nesting forest

Construction (minimal properties)

Partition the CFG into its strongly connected components
(SCCs). A SCC with at least one edge is called a loop.

For each loop L, select a subset of nodes in L not dominated
by any other node in L: * loop-headers of L. Remove all
edges in L that lead to a loop-header: * loop-edges of L.

Repeat this partitioning recursively for every SCC.

Corresponding loop-nesting forest

Leaves are the nodes of the CFG.

Internal nodes, labeled by loop-headers, correspond to loops.

The children of a loop’s node represent all inner loops it
contains as well as the regular basic blocks of the loop’s body.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes



Code representations
Out-of-SSA translation

SSA properties and liveness

Control-flow graph
Loop-nesting forest
Static single assignment

Loop nesting forest

Construction (minimal properties)

Partition the CFG into its strongly connected components
(SCCs). A SCC with at least one edge is called a loop.

For each loop L, select a subset of nodes in L not dominated
by any other node in L: * loop-headers of L. Remove all
edges in L that lead to a loop-header: * loop-edges of L.

Repeat this partitioning recursively for every SCC.

Corresponding loop-nesting forest

Leaves are the nodes of the CFG.

Internal nodes, labeled by loop-headers, correspond to loops.

The children of a loop’s node represent all inner loops it
contains as well as the regular basic blocks of the loop’s body.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes



Code representations
Out-of-SSA translation

SSA properties and liveness

Control-flow graph
Loop-nesting forest
Static single assignment

Loop nesting forest

Construction (minimal properties)

Partition the CFG into its strongly connected components
(SCCs). A SCC with at least one edge is called a loop.

For each loop L, select a subset of nodes in L not dominated
by any other node in L: * loop-headers of L. Remove all
edges in L that lead to a loop-header: * loop-edges of L.

Repeat this partitioning recursively for every SCC.

Corresponding loop-nesting forest

Leaves are the nodes of the CFG.

Internal nodes, labeled by loop-headers, correspond to loops.

The children of a loop’s node represent all inner loops it
contains as well as the regular basic blocks of the loop’s body.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes



Code representations
Out-of-SSA translation

SSA properties and liveness

Control-flow graph
Loop-nesting forest
Static single assignment

Loop nesting forest

Construction (minimal properties)

Partition the CFG into its strongly connected components
(SCCs). A SCC with at least one edge is called a loop.

For each loop L, select a subset of nodes in L not dominated
by any other node in L: * loop-headers of L. Remove all
edges in L that lead to a loop-header: * loop-edges of L.

Repeat this partitioning recursively for every SCC.

Corresponding loop-nesting forest

Leaves are the nodes of the CFG.

Internal nodes, labeled by loop-headers, correspond to loops.

The children of a loop’s node represent all inner loops it
contains as well as the regular basic blocks of the loop’s body.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes



Code representations
Out-of-SSA translation

SSA properties and liveness

Control-flow graph
Loop-nesting forest
Static single assignment

Loop-nesting forest: example

An irreducible CFG

1

2

103

8

9

4

5

6

7

A possible loop-nesting forest

1 L2 10

2 3 4 L5 7L8

5 68 9

As the CFG is not reducible, sev-
eral loop forests are possible, with
loop headers 5 and/or 6.
Also, in general, the depth of a
loop forest is not uniquely defined.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes



Code representations
Out-of-SSA translation

SSA properties and liveness

Control-flow graph
Loop-nesting forest
Static single assignment

Tarjan’s algorithm for detecting loops (reducible case)

procedure collapse(loopBody , loopHeader)
for every z ∈ loopBody do

loop-parent(z) := loopHeader ; LP.union(z, loopHeader)
endfor

procedure findloop(potentialHeader)
loopBody = {}
worklist = {LP.find(y) | y → potentialHeader is a back-edge} \ {potentialHeader}
while (worklist is not empty) do

remove an arbitrary element y from worklist; add y to loopBody
for every predecessor z of y such that (z, y) is not a back-edge do

if (LP.find(z) /∈ (loopBody ∪ {potentialHeader} ∪ worklist)) then
add LP.find(z) to worklist

endif
endfor

endwhile
if (loopBody is not empty) then collapse(loopBody , potentialHeader)

procedure TarjanAlgorithm(G)
for every vertex x of G do loop-parent(x) := NULL; LP.add(x); endfor
for every vertex x of G in reverse-DFS-order do findloop(x); endfor

Alain Darte Cours M2: Compilation avancée et optimisation de programmes



Code representations
Out-of-SSA translation

SSA properties and liveness

Control-flow graph
Loop-nesting forest
Static single assignment

Ramalingam’s modified Havlak’s algorithm (general case)
procedure markIrreducibleLoops(z)

t := loop-parent(z)
while (t 6= NULL) do

u = RLH.find(t); mark u as irreducible-loop-header
t := loop-parent(u)
if (t 6= NULL) then RLH.union(u, t)

endwhile

procedure processCrossFwdEdges(x)
for every edge (y , z) in CrossFwdEdges[x] do

add edge (find(y), find(z)) to the graph; markIrreducibleLoops(z)
endfor

procedure ModifiedHavlakAlgorithm(G)
for every vertex x of G do

loop-parent(x) := NULL; crossFwdEdges[x] := {}; LP.add(x); RLH.add(x);
endfor
for every forward edge and cross edge (y , x) of G do

remove (y , x) from G and add it to crossFwdEdges[LCA(y , x)]
endfor
for every vertex x of G in reverse-DFS-order do

processCrossFwdEdges(x)
findloop(x) /* same procedure as for Tarjan’s algorithm */

endfor
Alain Darte Cours M2: Compilation avancée et optimisation de programmes


