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Outline

1 Code representations
Control-flow graph
Loop-nesting forest
Static single assignment

2 Out-of-SSA translation
Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

3 SSA properties and liveness
Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness
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Back-end code analysis

Control-flow analysis determines control flow and control structure
of a program and build a program representation.

Basic block
Control-flow graph
Loop-nesting forest
Static single assignment

Data-flow analysis determines the flow of scalar variables, their
live-ranges, and possibly their values.

Constant propagation
Redundancy elimination, dead-code elimination
Code motion and scheduling
Register allocation

Analysis: local, intra-procedural, or inter-procedural.
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Basic block and control-flow graph

Basic block sequence of consecutive statements in any execution:
single entry & single exit.

Control-flow graph directed graph:

nodes are basic blocks
edges represent control flow
(jumps or fall-through), i.e., paths
that may be taken
block/edge frequencies

Vocabulary

DFS, back-edge, cross-edge
loop, entry node, join node
reducible and irreducible graph
critical edge (in red)

(a, b)← . . .

if b < a

c ← a− b
if c > 10

c ← 0

c ← c mod 10

return c
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Dominance, post-dominance, control dependences

Dominance relation

a single entry node r .

each node reachable from r .

a dominates b if every path
from r to b contains a.

Properties

The dominance relation
induces a tree.

With tree labeling, testing if
a dominates b takes O(1).

r=0
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Similar for post-dominance, used for defining control dependences:
b is control-dependent on a if there is a path from a to b and b
does not strictly post-dominate a.
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Dominance, post-dominance, control dependences

Dominance relation

a single entry node r .

each node reachable from r .

a dominates b if every path
from r to b contains a.

Properties

The dominance relation
induces a tree.

With tree labeling, testing if
a dominates b takes O(1).

1 dominates 4?
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Similar for post-dominance, used for defining control dependences:
b is control-dependent on a if there is a path from a to b and b
does not strictly post-dominate a.
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Dominance, post-dominance, control dependences

Dominance relation

a single entry node r .

each node reachable from r .

a dominates b if every path
from r to b contains a.

Properties

The dominance relation
induces a tree.

With tree labeling, testing if
a dominates b takes O(1).

1 dominates 4? YES

r=0

1 9

2

5

6

7

8

3

4

1

4

Similar for post-dominance, used for defining control dependences:
b is control-dependent on a if there is a path from a to b and b
does not strictly post-dominate a.
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Dominance, post-dominance, control dependences

Dominance relation

a single entry node r .

each node reachable from r .

a dominates b if every path
from r to b contains a.

Properties

The dominance relation
induces a tree.

With tree labeling, testing if
a dominates b takes O(1).

2 dominates 4?
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Similar for post-dominance, used for defining control dependences:
b is control-dependent on a if there is a path from a to b and b
does not strictly post-dominate a.
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Dominance, post-dominance, control dependences

Dominance relation

a single entry node r .

each node reachable from r .

a dominates b if every path
from r to b contains a.

Properties

The dominance relation
induces a tree.

With tree labeling, testing if
a dominates b takes O(1).

2 dominates 4? NO
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Similar for post-dominance, used for defining control dependences:
b is control-dependent on a if there is a path from a to b and b
does not strictly post-dominate a.
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Dominance relation

a single entry node r .

each node reachable from r .

a dominates b if every path
from r to b contains a.

Properties

The dominance relation
induces a tree.

With tree labeling, testing if
a dominates b takes O(1).
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Similar for post-dominance, used for defining control dependences:
b is control-dependent on a if there is a path from a to b and b
does not strictly post-dominate a.
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Dominance relation

a single entry node r .

each node reachable from r .

a dominates b if every path
from r to b contains a.

Properties

The dominance relation
induces a tree.

With tree labeling, testing if
a dominates b takes O(1).
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Similar for post-dominance, used for defining control dependences:
b is control-dependent on a if there is a path from a to b and b
does not strictly post-dominate a.
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Loop nesting forest

Construction (minimal properties)

Partition the CFG into its strongly connected components
(SCCs). A SCC with at least one edge is called a loop.

For each loop L, select a subset of nodes in L not dominated
by any other node in L: * loop-headers of L. Remove all
edges in L that lead to a loop-header: * loop-edges of L.

Repeat this partitioning recursively for every SCC.

Corresponding loop-nesting forest

Leaves are the nodes of the CFG.

Internal nodes, labeled by loop-headers, correspond to loops.

The children of a loop’s node represent all inner loops it
contains as well as the regular basic blocks of the loop’s body.
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Loop nesting forest

Construction (minimal properties)

Partition the CFG into its strongly connected components
(SCCs). A SCC with at least one edge is called a loop.

For each loop L, select a subset of nodes in L not dominated
by any other node in L: * loop-headers of L. Remove all
edges in L that lead to a loop-header: * loop-edges of L.

Repeat this partitioning recursively for every SCC.

Corresponding loop-nesting forest

Leaves are the nodes of the CFG.

Internal nodes, labeled by loop-headers, correspond to loops.

The children of a loop’s node represent all inner loops it
contains as well as the regular basic blocks of the loop’s body.
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Loop nesting forest

Construction (minimal properties)

Partition the CFG into its strongly connected components
(SCCs). A SCC with at least one edge is called a loop.

For each loop L, select a subset of nodes in L not dominated
by any other node in L: * loop-headers of L. Remove all
edges in L that lead to a loop-header: * loop-edges of L.

Repeat this partitioning recursively for every SCC.

Corresponding loop-nesting forest

Leaves are the nodes of the CFG.

Internal nodes, labeled by loop-headers, correspond to loops.

The children of a loop’s node represent all inner loops it
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Loop nesting forest

Construction (minimal properties)

Partition the CFG into its strongly connected components
(SCCs). A SCC with at least one edge is called a loop.

For each loop L, select a subset of nodes in L not dominated
by any other node in L: * loop-headers of L. Remove all
edges in L that lead to a loop-header: * loop-edges of L.

Repeat this partitioning recursively for every SCC.

Corresponding loop-nesting forest

Leaves are the nodes of the CFG.

Internal nodes, labeled by loop-headers, correspond to loops.

The children of a loop’s node represent all inner loops it
contains as well as the regular basic blocks of the loop’s body.
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Loop-nesting forest: example

An irreducible CFG
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A possible loop-nesting forest

1 L2 10

2 3 4 L5 7L8

5 68 9

As the CFG is not reducible, sev-
eral loop forests are possible, with
loop headers 5 and/or 6.
Also, in general, the depth of a
loop forest is not uniquely defined.
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Tarjan’s algorithm for detecting loops (reducible case)

procedure collapse(loopBody , loopHeader)
for every z ∈ loopBody do

loop-parent(z) := loopHeader ; LP.union(z, loopHeader)
endfor

procedure findloop(potentialHeader)
loopBody = {}
worklist = {LP.find(y) | y → potentialHeader is a back-edge} \ {potentialHeader}
while (worklist is not empty) do

remove an arbitrary element y from worklist; add y to loopBody
for every predecessor z of y such that (z, y) is not a back-edge do

if (LP.find(z) /∈ (loopBody ∪ {potentialHeader} ∪ worklist)) then
add LP.find(z) to worklist

endif
endfor

endwhile
if (loopBody is not empty) then collapse(loopBody , potentialHeader)

procedure TarjanAlgorithm(G)
for every vertex x of G do loop-parent(x) := NULL; LP.add(x); endfor
for every vertex x of G in reverse-DFS-order do findloop(x); endfor
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Ramalingam’s modified Havlak’s algorithm (general case)
procedure markIrreducibleLoops(z)

t := loop-parent(z)
while (t 6= NULL) do

u = RLH.find(t); mark u as irreducible-loop-header
t := loop-parent(u)
if (t 6= NULL) then RLH.union(u, t)

endwhile

procedure processCrossFwdEdges(x)
for every edge (y , z) in CrossFwdEdges[x] do

add edge (find(y), find(z)) to the graph; markIrreducibleLoops(z)
endfor

procedure ModifiedHavlakAlgorithm(G)
for every vertex x of G do

loop-parent(x) := NULL; crossFwdEdges[x] := {}; LP.add(x); RLH.add(x);
endfor
for every forward edge and cross edge (y , x) of G do

remove (y , x) from G and add it to crossFwdEdges[LCA(y , x)]
endfor
for every vertex x of G in reverse-DFS-order do

processCrossFwdEdges(x)
findloop(x) /* same procedure as for Tarjan’s algorithm */

endfor
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