
Code representations
Out-of-SSA translation

SSA properties and liveness

Control-flow graph
Loop-nesting forest
Static single assignment

Static single assignment

SSA with dominance property

Unique definition for each variable.

Each definition dominates its uses.

Conversion into SSA

Need to introduce φ-functions at
the (iterated) dominance frontier.

Interests of SSA

Link uses/definitions explicit.

Code optimizations: efficient,
easy-to-implement, fast.

More accurate program analysis.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Control-flow graph
Loop-nesting forest
Static single assignment

Static single assignment

SSA with dominance property

Unique definition for each variable.

Each definition dominates its uses.

Conversion into SSA

Need to introduce φ-functions at
the (iterated) dominance frontier.

Interests of SSA

Link uses/definitions explicit.

Code optimizations: efficient,
easy-to-implement, fast.

More accurate program analysis.

B0

B1

b = . . .
a = . . .

a = n
b = a
n = b

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Control-flow graph
Loop-nesting forest
Static single assignment

Static single assignment

SSA with dominance property

Unique definition for each variable.

Each definition dominates its uses.

Conversion into SSA

Need to introduce φ-functions at
the (iterated) dominance frontier.

Interests of SSA

Link uses/definitions explicit.

Code optimizations: efficient,
easy-to-implement, fast.

More accurate program analysis.

B0

B1

b = . . .
a = . . .

a = n
b = a
n = b

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Control-flow graph
Loop-nesting forest
Static single assignment

Static single assignment

SSA with dominance property

Unique definition for each variable.

Each definition dominates its uses.

Conversion into SSA

Need to introduce φ-functions at
the (iterated) dominance frontier.

Interests of SSA

Link uses/definitions explicit.

Code optimizations: efficient,
easy-to-implement, fast.

More accurate program analysis.

B0

a2 = φ(a1, a3)
b2 = φ(b1, b3)

B1

b1 = . . .
a1 = . . .

n = b2

b3 = a2

a3 = n

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Control-flow graph
Loop-nesting forest
Static single assignment

Static single assignment

SSA with dominance property

Unique definition for each variable.

Each definition dominates its uses.

Conversion into SSA

Need to introduce φ-functions at
the (iterated) dominance frontier.

Interests of SSA

Link uses/definitions explicit.

Code optimizations: efficient,
easy-to-implement, fast.

More accurate program analysis.

B0

a2 = φ(a1, a3)
b2 = φ(b1, b3)

B1

b1 = . . .
a1 = . . .

n = b2

b3 = a2

a3 = n

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Control-flow graph
Loop-nesting forest
Static single assignment

Static single assignment

SSA with dominance property

Unique definition for each variable.

Each definition dominates its uses.

Conversion into SSA

Need to introduce φ-functions at
the (iterated) dominance frontier.

Interests of SSA

Link uses/definitions explicit.

Code optimizations: efficient,
easy-to-implement, fast.

More accurate program analysis.

B0

a2 = φ(a1, b2)
b2 = φ(b1, a2)

B1

a1 = . . .
b1 = . . .

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Control-flow graph
Loop-nesting forest
Static single assignment

Dominance frontier (elementary algorithm)

Dominance can be computed by fixed-point iteration:

D(r) = {r} and D(n) = {n} ∪

 ⋂
p∈pred[n]

D[p]

Many other more efficient algorithms are possible. Then:

procedure computeDF(n)
S := {}
for each node y in succ[n] do

if (idom(y) 6= n) then S := S ∪ {y} /* successor of n not strictly dominated by n */
endfor
for each child c of n in the dominator tree do

computeDF(c)
for each element w of DF [c] do

if (n does not dominate w) then S := S ∪ {w}
endfor

endfor
DF [n] := S

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

 CMPUT 680 - Compiler Design and Optimization129

Example

1

13

2

3

4
12

10 11

9

8

6 7

5

What is the dominance frontier of node 5?

 CMPUT 680 - Compiler Design and Optimization130

Example

1

13

2

3

4
12

10 11

9

8

6 7

5

First we must find all nodes that node 5 strictly
dominates.

 CMPUT 680 - Compiler Design and Optimization131

Example

A node w is in the dominance frontier of node 5
if 5 dominates a predecessor of w, but 5 does not strictly
dominates w itself. What is the dominance frontier of 5?

1

13

2

3

4
12

10 11

9

8

6 7

5

 CMPUT 680 - Compiler Design and Optimization132

Example

1

13

2

3

4
12

10 11

9

8

6 7

5

DF(5) = {4, 5, 12, 13}

A node w is in the dominance frontier of node 5
if 5 dominates a predecessor of w, but 5 does not strictly
dominates w itself. What is the dominance frontier of 5?

Code representations
Out-of-SSA translation

SSA properties and liveness

Control-flow graph
Loop-nesting forest
Static single assignment

Placement of φ-functions

procedure Place-φ-functions(G , DF , D) /* D[n] is the set of variables defined in n */
for each node n in G do

for each variable a in D[n] do
defsites[a] := defsites[a] ∪ {n}

endfor
endfor
for each variable a do

W := defsites[a]
while (W not empty) do

remove some node n from W
for each Y in DF [n] do

if (Y /∈ Dφ[n]) then
insert statement a = φ(a, . . . , a) at the top of Y
Dφ[n] := Dφ[n] ∪ {Y }
if (Y /∈ D[n]) then W := W ∪ {Y }

endif
endfor

endwhile
endfor

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Control-flow graph
Loop-nesting forest
Static single assignment

Renaming variables

procedure Rename(n)
for each statement S in block n do

if (S is not a φ-function) then
for each use of some variable x in S do

i := top(Stack[x]); replace the use of x with xi in S
endfor

endif
for each definition of some variable a in S

Count[a] + +; i := Count[a]; push i onto Stack[a]; replace definition with ai

endfor
endfor
for each successor Y of block n and each φ-function in Y do

i := top(Stack[a]) where a is the argument coming from n; replace it with ai

endfor
for each child (in the dominance tree) X of n do Rename(X)
for each definition of some variable a (in the original code) do pop Stack[a]

procedure RenameAll(G)
for each variable a do Count[a] := 0; Stack[a] := {}; push 0 onto Stack[a]
Rename(r) /* root of the dominance tree */

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

 CMPUT 680 - Compiler Design and Optimization144

SSA: A Complete Example.

i=1;
j=1;
k=0;
while(k<100) {
 if(j<20) {
 j=i;
 k=k+1;
 }
 else {
 j=k;
 k=k+2;
 }
}
return j;

i ← 1
j ← 1
k← 0

j ← i
k ← k+1

j ← k
k ← k+2

return jif j<20

if k<100

B1

B2

B3

B5 B6

B4

B7

 CMPUT 680 - Compiler Design and Optimization145

SSA: A Complete Example.

i=1;
j=1;
k=0;
while(k<100) {
 if(j<20) {
 j=i;
 k=k+1;
 }
 else {
 j=k;
 k=k+2;
 }
}
return j;

i ← 1
j ← 1
k← 0

j ← i
k ← k+1

j ← k
k ← k+2

return jif j<20

if k<100

j ← φ(j,j)
k ← φ(k,k)

B1

B2

B3

B5 B6

B4

B7

 CMPUT 680 - Compiler Design and Optimization146

SSA: A Complete Example.

i=1;
j=1;
k=0;
while(k<100) {
 if(j<20) {
 j=i;
 k=k+1;
 }
 else {
 j=k;
 k=k+2;
 }
}
return j;

i ← 1
j ← 1
k← 0

j ← i
k ← k+1

j ← k
k ← k+2

return jif j<20

j ← φ(j,j)
k ← φ(k,k)
if k<100

j ← φ(j,j)
k ← φ(k,k)

B1

B2

B3

B5 B6

B4

B7

 CMPUT 680 - Compiler Design and Optimization147

SSA: A Complete Example.

i=1;
j=1;
k=0;
while(k<100) {
 if(j<20) {
 j=i;
 k=k+1;
 }
 else {
 j=k;
 k=k+2;
 }
}
return j;

i0 ← 1
j0 ← 1
k0← 0

j ← i0
k ← k+1

j ← k
k ← k+2

return jif j<20

j ← φ(j0,j)
k ← φ(k0,k)
if k<100

j ← φ(j,j)
k ← φ(k,k)

B1

B2

B3

B5 B6

B4

B7

 CMPUT 680 - Compiler Design and Optimization148

SSA: A Complete Example.

i=1;
j=1;
k=0;
while(k<100) {
 if(j<20) {
 j=i;
 k=k+1;
 }
 else {
 j=k;
 k=k+2;
 }
}
return j;

i0 ← 1
j0 ← 1
k0← 0

j2 ← i0
k2 ← k1+1

j← k
k ← k+2

return j1if j1<20

j1 ← φ(j0,j)
k1 ← φ(k0,k)
if k1<100

j ← φ(j2,j)
k ← φ(k2,k)

B1

B2

B3

B5 B6
B4

B7

 CMPUT 680 - Compiler Design and Optimization149

SSA: A Complete Example.

i=1;
j=1;
k=0;
while(k<100) {
 if(j<20) {
 j=i;
 k=k+1;
 }
 else {
 j=k;
 k=k+2;
 }
}
return j;

i0 ← 1
j0 ← 1
k0← 0

j2 ← i0
k2 ← k1+1

j← k
k ← k+2

return j1if j1<20

j1 ← φ(j0,j3)
k1 ← φ(k0,k3)
if k1<100

j3← φ(j2,j)
k3 ← φ(k2,k)

B1

B2

B3

B5 B6
B4

B7

 CMPUT 680 - Compiler Design and Optimization150

SSA: A Complete Example.

i=1;
j=1;
k=0;
while(k<100) {
 if(j<20) {
 j=i;
 k=k+1;
 }
 else {
 j=k;
 k=k+2;
 }
}
return j;

i0 ← 1
j0 ← 1
k0← 0

j2 ← i0
k2 ← k1+1

j4← k1

k4 ← k1+2

return j1if j1<20

j1 ← φ(j0,j3)
k1 ← φ(k0,k3)
if k1<100

j3← φ(j2,j4)
k3 ← φ(k2,k4)

B1

B2

B3

B5 B6

B4

B7

 CMPUT 680 - Compiler Design and Optimization151

Example:
Constant Propagation

i0 ← 1
j0 ← 1
k0← 0

j2 ← i0
k2 ← k1+1

j4← k1

k4 ← k1+2

return j1if j1<20

j1 ← φ(j0,j3)
k1 ← φ(k0,k3)
if k1<100

j3← φ(j2,j4)
k3 ← φ(k2,k4)

B1

B2

B3

B5 B6

B4

B7

B5

B4

i0 ← 1
j0 ← 1
k0← 0

j2 ←1
k2 ← k1+1

j4← k1

k4 ← k1+2

return j1if j1<20

j1 ← φ(1,j3)
k1 ← φ(0,k3)
if k1<100

j3← φ(j2,j4)
k3 ← φ(k2,k4)

B1

B2

B3

B6

B7

 CMPUT 680 - Compiler Design and Optimization152

Example:
Dead-code Elimination

B5

B4

i0 ← 1
j0 ← 1
k0← 0

j2 ←1
k2 ← k1+1

j4← k1

k4 ← k1+2

return j1if j1<20

j1 ← φ(1,j3)
k1 ← φ(0,k3)
if k1<100

j3← φ(j2,j4)
k3 ← φ(k2,k4)

B1

B2

B3

B6

B7

B5

B4

j2 ←1
k2 ← k1+1

j4← k1

k4 ← k1+2

return j1if j1<20

j1 ← φ(1,j3)
k1 ← φ(0,k3)
if k1<100

j3← φ(j2,j4)
k3 ← φ(k2,k4)

B2

B3

B6

B7

 CMPUT 680 - Compiler Design and Optimization153

Constant Propagation and
Dead Code Elimination

B5

B4

j2 ←1
k2 ← k1+1

j4← k1

k4 ← k1+2

return j1if j1<20

j1 ← φ(1,j3)
k1 ← φ(0,k3)
if k1<100

j3← φ(j2,j4)
k3 ← φ(k2,k4)

B2

B3

B6

B7

B4

j2 ←1
k2 ← k1+1

j4← k1

k4 ← k1+2

return j1if j1<20

j1 ← φ(1,j3)
k1 ← φ(0,k3)
if k1<100

j3← φ(1,j4)
k3 ← φ(k2,k4)

B2

B3

B6

B7

 CMPUT 680 - Compiler Design and Optimization154

Example:
Is this the end?

But block 6 is never
executed! How can we

find this out, and simplify
the program?

SSA conditional constant
propagation finds the
least fixed point for the

program and allows
further elimination of

dead code.

See algorithm in Tiger book.

B4

k2 ← k1+1 j4← k1

k4 ← k1+2

return j1if j1<20

j1 ← φ(1,j3)
k1 ← φ(0,k3)
if k1<100

j3← φ(1,j4)
k3 ← φ(k2,k4)

B2

B3

B6

B7

 CMPUT 680 - Compiler Design and Optimization155

Example:
Dead code elimination

B4

k2 ← k1+1 j4← k1

k4 ← k1+2

return j1if j1<20

j1 ← φ(1,j3)
k1 ← φ(0,k3)
if k1<100

j3← φ(1,j4)
k3 ← φ(k2,k4)

B2

B3

B6

B7

B4

k2 ← k1+1

return j1

j1 ← φ(1,j3)
k1 ← φ(0,k3)
if k1<100

j3← φ(1)
k3 ← φ(k2)

B2

B7

 CMPUT 680 - Compiler Design and Optimization156

Example: Single Argument
φ-Function Elimination

B4

k2 ← k1+1

return j1

j1 ← φ(1,j3)
k1 ← φ(0,k3)
if k1<100

j3← 1
k3 ← k2

B2

B7

B4

k2 ← k1+1

return j1

j1 ← φ(1,j3)
k1 ← φ(0,k3)
if k1<100

j3← φ(1)
k3 ← φ(k2)

B2

B7

 CMPUT 680 - Compiler Design and Optimization157

Example: Constant and
Copy Propagation

B4

k2 ← k1+1

return j1

j1 ← φ(1,1)
k1 ← φ(0,k2)
if k1<100

j3← 1
k3 ← k2

B2

B7

B4

k2 ← k1+1

return j1

j1 ← φ(1,j3)
k1 ← φ(0,k3)
if k1<100

j3← 1
k3 ← k2

B2

B7

 CMPUT 680 - Compiler Design and Optimization158

Example:
Dead Code Elimination

B4

k2 ← k1+1

return j1

j1 ← φ(1,1)
k1 ← φ(0,k2)
if k1<100

j3← 1
k3 ← k2

B2

B7

B4

k2 ← k1+1

return j1

j1 ← φ(1,1)
k1 ← φ(0,k2)
if k1<100

B2

 CMPUT 680 - Compiler Design and Optimization159

Example:
 φ-Function Simplification

B4

k2 ← k1+1

return j1

j1 ← φ(1,1)
k1 ← φ(0,k2)
if k1<100

B2

B4

k2 ← k1+1

return j1

j1 ← 1
k1 ← φ(0,k2)
if k1<100

B2

 CMPUT 680 - Compiler Design and Optimization160

Example:
 Constant Propagation

B4

k2 ← k1+1

return j1

j1 ← 1
k1 ← φ(0,k2)
if k1<100

B2

B4

k2 ← k1+1

return 1

j1 ← 1
k1 ← φ(0,k2)
if k1<100

B2

 CMPUT 680 - Compiler Design and Optimization161

Example:
 Dead Code Elimination

return 1 B4
B4

k2 ← k1+1

return 1

j1 ← 1
k1 ← φ(0,k2)
if k1<100

B2

Code representations
Out-of-SSA translation

SSA properties and liveness

Control-flow graph
Loop-nesting forest
Static single assignment

More readings

References

Cytron, Ferrante, Rosen, Wegman, Zadek. Efficiently
computing static single assignment form and the control
dependence graph, ACM Transactions on Programming
Languages and Systems, 13(4):451–490, 1991.

Ramalingam. On loops, dominators, and dominance
frontiers. ACM Transactions on Programming Languages and
Systems, 24(5):455–490, 2002.

Recent advances in SSA

SSA-based compilers & JIT compilation.

Register allocation, out-of-SSA conversion, liveness analysis.

SSA extensions: SSI, gated SSA, psi-SSA, value state
dependence graph, array SSA, safeTSA, etc.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Control-flow graph
Loop-nesting forest
Static single assignment

Links between the different notions

A few important results:

If S contains the entry node, J(S) = J+(S) = DF +(S).

G is reducible

iff simplifiable by the rules T1 and T2.
iff each SCC has a unique entry node.
iff removing all (u, v) where v dominates u makes G acyclic.
. . .

Dominators and iterated dominance frontiers can be computed
quickly from loop-nesting forest, especially if G is reducible.

Conversely, DJ-graphs can be used to build loop forests.

Advanced algorithms use Tarjan’s union-find with
almost-linear complexity (see Ramalingam, Sreedhar, Havlak,
Steensgaard).

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Early attempts and pitfalls

Cytron et al. (1991): copies in
predecessor basic blocks.

Incorrect!

Bad understanding of parallel copies
Bad understanding of critical edges and
interferences.

Briggs et al. (1998): both problems
identified. General correctness unclear.

Sreedhar et al. (1999): correct but

handling of complex branching
instructions unclear;
interplay with coalescing unclear;
“virtualization” hard to implement.

Swap problem

B0

B1

b = . . .
a = . . .

a = n
b = a
n = b

* Many SSA optimizations turned off in gcc and Jikes.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Early attempts and pitfalls

Cytron et al. (1991): copies in
predecessor basic blocks.

Incorrect!

Bad understanding of parallel copies
Bad understanding of critical edges and
interferences.

Briggs et al. (1998): both problems
identified. General correctness unclear.

Sreedhar et al. (1999): correct but

handling of complex branching
instructions unclear;
interplay with coalescing unclear;
“virtualization” hard to implement.

Swap problem

B0

a2 = φ(a1, a3)
b2 = φ(b1, b3)

B1

b1 = . . .
a1 = . . .

n = b2

b3 = a2

a3 = n

* Many SSA optimizations turned off in gcc and Jikes.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Early attempts and pitfalls

Cytron et al. (1991): copies in
predecessor basic blocks.

Incorrect!

Bad understanding of parallel copies
Bad understanding of critical edges and
interferences.

Briggs et al. (1998): both problems
identified. General correctness unclear.

Sreedhar et al. (1999): correct but

handling of complex branching
instructions unclear;
interplay with coalescing unclear;
“virtualization” hard to implement.

Swap problem

B0

a2 = φ(a1, b2)
b2 = φ(b1, a2)

B1

a1 = . . .
b1 = . . .

* Many SSA optimizations turned off in gcc and Jikes.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Early attempts and pitfalls

Cytron et al. (1991): copies in
predecessor basic blocks.

Incorrect!

Bad understanding of parallel copies
Bad understanding of critical edges and
interferences.

Briggs et al. (1998): both problems
identified. General correctness unclear.

Sreedhar et al. (1999): correct but

handling of complex branching
instructions unclear;
interplay with coalescing unclear;
“virtualization” hard to implement.

Swap problem

B0

a2 = φ(a1, b2)
b2 = φ(b1, a2)

B1

b1 = . . .
a1 = . . .

a2 = a1

b2 = b1

b2 = a2

a2 = b2

* Many SSA optimizations turned off in gcc and Jikes.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Early attempts and pitfalls

Cytron et al. (1991): copies in
predecessor basic blocks. Incorrect!

Bad understanding of parallel copies.

Bad understanding of critical edges and
interferences.

Briggs et al. (1998): both problems
identified. General correctness unclear.

Sreedhar et al. (1999): correct but

handling of complex branching
instructions unclear;
interplay with coalescing unclear;
“virtualization” hard to implement.

Swap problem

B0

B1

b1 = . . .
a1 = . . .

a2 = a1

b2 = b1

b2 = a2

a2 = b2

* Many SSA optimizations turned off in gcc and Jikes.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Early attempts and pitfalls

Cytron et al. (1991): copies in
predecessor basic blocks. Incorrect!

Bad understanding of parallel copies.

Bad understanding of critical edges and
interferences.

Briggs et al. (1998): both problems
identified. General correctness unclear.

Sreedhar et al. (1999): correct but

handling of complex branching
instructions unclear;
interplay with coalescing unclear;
“virtualization” hard to implement.

Lost copy problem

B0

B1

x = x + 1

y

x = . . .

y = x

* Many SSA optimizations turned off in gcc and Jikes.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Early attempts and pitfalls

Cytron et al. (1991): copies in
predecessor basic blocks. Incorrect!

Bad understanding of parallel copies.

Bad understanding of critical edges and
interferences.

Briggs et al. (1998): both problems
identified. General correctness unclear.

Sreedhar et al. (1999): correct but

handling of complex branching
instructions unclear;
interplay with coalescing unclear;
“virtualization” hard to implement.

Lost copy problem

B0

B1

x2 = φ(x1, x3)

x3 = x2 + 1

x1 = . . .

y

y = x2

* Many SSA optimizations turned off in gcc and Jikes.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Early attempts and pitfalls

Cytron et al. (1991): copies in
predecessor basic blocks. Incorrect!

Bad understanding of parallel copies.

Bad understanding of critical edges and
interferences.

Briggs et al. (1998): both problems
identified. General correctness unclear.

Sreedhar et al. (1999): correct but

handling of complex branching
instructions unclear;
interplay with coalescing unclear;
“virtualization” hard to implement.

Lost copy problem

B0

B1

x2 = φ(x1, x3)

x3 = x2 + 1

x1 = . . .

x2

* Many SSA optimizations turned off in gcc and Jikes.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Early attempts and pitfalls

Cytron et al. (1991): copies in
predecessor basic blocks. Incorrect!

Bad understanding of parallel copies.

Bad understanding of critical edges and
interferences.

Briggs et al. (1998): both problems
identified. General correctness unclear.

Sreedhar et al. (1999): correct but

handling of complex branching
instructions unclear;
interplay with coalescing unclear;
“virtualization” hard to implement.

Lost copy problem

B0

B1

x2 = φ(x1, x3)

x3 = x2 + 1

x1 = . . .

x2

x2 = x1

x2 = x3

* Many SSA optimizations turned off in gcc and Jikes.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Early attempts and pitfalls

Cytron et al. (1991): copies in
predecessor basic blocks. Incorrect!

Bad understanding of parallel copies;
Bad understanding of critical edges and
interferences.

Briggs et al. (1998): both problems
identified. General correctness unclear.

Sreedhar et al. (1999): correct but

handling of complex branching
instructions unclear;
interplay with coalescing unclear;
“virtualization” hard to implement.

Lost copy problem

B0

B1

x3 = x2 + 1

x1 = . . .

x2

x2 = x1

x2 = x3

* Many SSA optimizations turned off in gcc and Jikes.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Early attempts and pitfalls

Cytron et al. (1991): copies in
predecessor basic blocks. Incorrect!

Bad understanding of parallel copies;
Bad understanding of critical edges and
interferences.

Briggs et al. (1998): both problems
identified. General correctness unclear.

Sreedhar et al. (1999): correct but

handling of complex branching
instructions unclear;
interplay with coalescing unclear;
“virtualization” hard to implement.

Lost copy problem

B0

B1

x3 = x2 + 1

x1 = . . .

x2

x2 = x1

x2 = x3

* Many SSA optimizations turned off in gcc and Jikes.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Early attempts and pitfalls

Cytron et al. (1991): copies in
predecessor basic blocks. Incorrect!

Bad understanding of parallel copies;
Bad understanding of critical edges and
interferences.

Briggs et al. (1998): both problems
identified. General correctness unclear.

Sreedhar et al. (1999): correct but

handling of complex branching
instructions unclear;
interplay with coalescing unclear;
“virtualization” hard to implement.

Lost copy problem

B0

B1

x3 = x2 + 1

x1 = . . .

x2

x2 = x1

x2 = x3

* Many SSA optimizations turned off in gcc and Jikes.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Early attempts and pitfalls

Cytron et al. (1991): copies in
predecessor basic blocks. Incorrect!

Bad understanding of parallel copies;
Bad understanding of critical edges and
interferences.

Briggs et al. (1998): both problems
identified. General correctness unclear.

Sreedhar et al. (1999): correct but

handling of complex branching
instructions unclear;
interplay with coalescing unclear;
“virtualization” hard to implement.

Lost copy problem

B0

B1

x3 = x2 + 1

x1 = . . .

x2

x2 = x1

x2 = x3

* Many SSA optimizations turned off in gcc and Jikes.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Going to CSSA (conventional SSA): Sreedhar et al.

Definition (conventional SSA)

CSSA: if variables can be
renamed, without changing
program semantics, so that, for
all φ-function a0 = φ(a1, . . . , an),
a0, . . . , an have the same name.

Correctness

After introduction of variables a′i
and copies, the code is in CSSA.

Code quality

Aggressive coalescing can remove
useless copies. But better use
accurate notion of interferences.

From SSA to CSSA
B1 Bi

B0

Bn

a0 = φ(a1, . . . , an)

“Liveness of φ” defined by the a′i .
? Be careful with potential bugs
due to conditional branches that
use or define variables.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Going to CSSA (conventional SSA): Sreedhar et al.

Definition (conventional SSA)

CSSA: if variables can be
renamed, without changing
program semantics, so that, for
all φ-function a0 = φ(a1, . . . , an),
a0, . . . , an have the same name.

Correctness

After introduction of variables a′i
and copies, the code is in CSSA.

Code quality

Aggressive coalescing can remove
useless copies. But better use
accurate notion of interferences.

From SSA to CSSA
B1 Bi

B0

Bn

a′0 = φ(a′1, . . . , a
′
n)

a0 = a′0

a′1 = a1 a′i = ai a′n = an

“Liveness of φ” defined by the a′i .
? Be careful with potential bugs
due to conditional branches that
use or define variables.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Going to CSSA (conventional SSA): Sreedhar et al.

Definition (conventional SSA)

CSSA: if variables can be
renamed, without changing
program semantics, so that, for
all φ-function a0 = φ(a1, . . . , an),
a0, . . . , an have the same name.

Correctness

After introduction of variables a′i
and copies, the code is in CSSA.

Code quality

Aggressive coalescing can remove
useless copies. But better use
accurate notion of interferences.

From SSA to CSSA
B1 Bi

B0

Bn

a′0 = φ(a′1, . . . , a
′
n)

a0 = a′0

a′1 = a1 a′i = ai a′n = an

“Liveness of φ” defined by the a′i .
? Be careful with potential bugs
due to conditional branches that
use or define variables.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Coalesced example: the swap problem

B0

a2 = φ(a1, b2)
b2 = φ(b1, a2)

B1

a1 = . . .
b1 = . . .

B0

u0 = φ(u1, u2)
v0 = φ(v1, v2)

B1

(a2, b2) = (u0, v0)

b1 = . . .
a1 = . . .

(u1, v1) = (a1, b1)

(u2, v2) = (b2, a2)

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Coalesced example: the swap problem

a1

b1 v = (v0, v1, v2)

u = (u0, u1, u2)

b2

a2

B0

u0 = φ(u1, u2)
v0 = φ(v1, v2)

B1

(a2, b2) = (u0, v0)

b1 = . . .
a1 = . . .

(u1, v1) = (a1, b1)

(u2, v2) = (b2, a2)

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Coalesced example: the swap problem

a1

b1 v = (v0, v1, v2)

u = (u0, u1, u2)

b2

a2

B0

u0 = φ(u1, u2)
v0 = φ(v1, v2)

B1

(a2, b2) = (u0, v0)

b1 = . . .
a1 = . . .

(u1, v1) = (a1, b1)

(u2, v2) = (b2, a2)

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Coalesced example: the swap problem

B0

B1

b1 = . . .
a1 = . . .

(u2, v2) = (b2, a2)

B0

u0 = φ(u1, u2)
v0 = φ(v1, v2)

B1

(a2, b2) = (u0, v0)

b1 = . . .
a1 = . . .

(u1, v1) = (a1, b1)

(u2, v2) = (b2, a2)

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Coalesced example: the swap problem

B0

B1

b1 = . . .
a1 = . . .

(u2, v2) = (b2, a2)

B0

B1

b1 = . . .
a1 = . . .

a1 = n
b1 = a1

n = b1

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Coalesced example: the lost copy problem

B0

B1

x2 = φ(x1, x3)

x3 = x2 + 1

x1 = . . .

x2

B0

B1

u0 = φ(u1, u2)

x3 = x2 + 1

x1 = . . .
u1 = x1

x2 = u0

x2

u2 = x3

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Coalesced example: the lost copy problem

u = (u0, u1, u2)x1 x3

x2

B0

B1

u0 = φ(u1, u2)

x3 = x2 + 1

x1 = . . .
u1 = x1

x2 = u0

x2

u2 = x3

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Coalesced example: the lost copy problem

u = (u0, u1, u2)x1 x3

x2

B0

B1

u0 = φ(u1, u2)

x3 = x2 + 1

x1 = . . .
u1 = x1

x2 = u0

x2

u2 = x3

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Coalesced example: the lost copy problem

B0

B1

x1 = x2 + 1

x1 = . . .

x2 = x1

x2

B0

B1

u0 = φ(u1, u2)

x3 = x2 + 1

x1 = . . .
u1 = x1

x2 = u0

x2

u2 = x3

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Outline

1 Code representations
Control-flow graph
Loop-nesting forest
Static single assignment

2 Out-of-SSA translation
Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

3 SSA properties and liveness
Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Exploiting SSA: value-based interferences

Definition (Chaitin interference)

Two variables interfere if one is live
at the definition of the other, which
is not a copy of the first.

* Need to update interference
graph after coalescing.

Unique value V of a SSA variable

For a copy b = a, V (b) = V (a)
(traversal of dominance tree).

Value-based interference

a and b interfere if V (a) 6= V (b) and
Live-range(a) ∩ Live-range(b) 6= ∅.

b = . . . c = . . .

a = φ(b, c)

d = φ(b, a)

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Exploiting SSA: value-based interferences

Definition (Chaitin interference)

Two variables interfere if one is live
at the definition of the other, which
is not a copy of the first.

* Need to update interference
graph after coalescing.

Unique value V of a SSA variable

For a copy b = a, V (b) = V (a)
(traversal of dominance tree).

Value-based interference

a and b interfere if V (a) 6= V (b) and
Live-range(a) ∩ Live-range(b) 6= ∅.

b = . . . c = . . .

d ′ = b
a′ = ca′ = b

a = a′

d = d ′

d ′ = a

a′

d ′

d a

b c

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Exploiting SSA: value-based interferences

Definition (Chaitin interference)

Two variables interfere if one is live
at the definition of the other, which
is not a copy of the first.

* Need to update interference
graph after coalescing.

Unique value V of a SSA variable

For a copy b = a, V (b) = V (a)
(traversal of dominance tree).

Value-based interference

a and b interfere if V (a) 6= V (b) and
Live-range(a) ∩ Live-range(b) 6= ∅.

b = . . . c = . . .

d ′ = b
a′ = ca′ = b

a = a′

d = d ′

d ′ = a

a′

d ′

d a

b c

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Exploiting SSA: value-based interferences

Definition (Chaitin interference)

Two variables interfere if one is live
at the definition of the other, which
is not a copy of the first.

* Need to update interference
graph after coalescing.

Unique value V of a SSA variable

For a copy b = a, V (b) = V (a)
(traversal of dominance tree).

Value-based interference

a and b interfere if V (a) 6= V (b) and
Live-range(a) ∩ Live-range(b) 6= ∅.

b = . . . c = . . .
c = b

b = c

b

a′

d ′

d a

b c

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Exploiting SSA: value-based interferences

Definition (Chaitin interference)

Two variables interfere if one is live
at the definition of the other, which
is not a copy of the first.

* Need to update interference
graph after coalescing.

Unique value V of a SSA variable

For a copy b = a, V (b) = V (a)
(traversal of dominance tree).

Value-based interference

a and b interfere if V (a) 6= V (b) and
Live-range(a) ∩ Live-range(b) 6= ∅.

b = . . . c = . . .

d ′ = b
a′ = ca′ = b

a = a′

d = d ′

d ′ = a

a′

d ′

d a

b c

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Exploiting SSA: value-based interferences

Definition (Chaitin interference)

Two variables interfere if one is live
at the definition of the other, which
is not a copy of the first.

* Need to update interference
graph after coalescing.

Unique value V of a SSA variable

For a copy b = a, V (b) = V (a)
(traversal of dominance tree).

Value-based interference

a and b interfere if V (a) 6= V (b) and
Live-range(a) ∩ Live-range(b) 6= ∅.

b = . . . b = . . .

b

a′

d ′

d a

b c

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Using parallel copies instead of sequential copies

Parallel copy semantics

In (a1, . . . , an) = (b1, . . . , bn), all copies
ai = bi are simultaneous.

Fewer interferences than with
sequential copies.

Easier insertion & liveness updates.

But need to sequentialize.

Particular copy structure

Directed graph with edges bi → ai .

Directed trees with roots=circuits.

Insert copies for the leaves first.

Simple circuit: one more copy.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Using parallel copies instead of sequential copies

Parallel copy semantics

In (a1, . . . , an) = (b1, . . . , bn), all copies
ai = bi are simultaneous.

Fewer interferences than with
sequential copies.

Easier insertion & liveness updates.

But need to sequentialize.

Particular copy structure

Directed graph with edges bi → ai .

Directed trees with roots=circuits.

Insert copies for the leaves first.

Simple circuit: one more copy.

(a, b, c , d) = (c , a, b, c)

a b

cd

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Using parallel copies instead of sequential copies

Parallel copy semantics

In (a1, . . . , an) = (b1, . . . , bn), all copies
ai = bi are simultaneous.

Fewer interferences than with
sequential copies.

Easier insertion & liveness updates.

But need to sequentialize.

Particular copy structure

Directed graph with edges bi → ai .

Directed trees with roots=circuits.

Insert copies for the leaves first.

Simple circuit: one more copy.

d = c
(a, b, c) = (d , a, b)

a b

cd

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Using parallel copies instead of sequential copies

Parallel copy semantics

In (a1, . . . , an) = (b1, . . . , bn), all copies
ai = bi are simultaneous.

Fewer interferences than with
sequential copies.

Easier insertion & liveness updates.

But need to sequentialize.

Particular copy structure

Directed graph with edges bi → ai .

Directed trees with roots=circuits.

Insert copies for the leaves first.

Simple circuit: one more copy.

d = c
c = b
b = a
a = d

a b

cd

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Using parallel copies instead of sequential copies

Parallel copy semantics

In (a1, . . . , an) = (b1, . . . , bn), all copies
ai = bi are simultaneous.

Fewer interferences than with
sequential copies.

Easier insertion & liveness updates.

But need to sequentialize.

Particular copy structure

Directed graph with edges bi → ai .

Directed trees with roots=circuits.

Insert copies for the leaves first.

Simple circuit: one more copy.

d = c
c = b
b = a
a = d

a b

cd

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Algorithm 1: Parallel copy sequentialization algorithm
Data: Set P of parallel copies a 7→ b, a 6= b, one extra fresh variable n
Output: List of copies in sequential order

1 ready ← [] ; to do ← [] ; pred(n) ← ⊥ ;
2 forall the (a 7→ b) ∈ P do
3 loc(b)← ⊥ ; pred(a) ← ⊥ ; /* initialization */

4 forall the (a 7→ b) ∈ P do
5 loc(a) ← a ; pred(b) ← a ; to do.push(b) ; /* copy into b to be done */

6 forall the (a 7→ b) ∈ P do
7 if loc(b) = ⊥ then ready.push(b) ; /* b is not used and can be overwritten */

8 while to do 6= [] do
9 while ready 6= [] do

10 b ← ready.pop() ; a← pred(b) ; /* pick a free location */
11 c ← loc(a) ; emit copy(c 7→ b) ; loc(a) ← b ; /* generate the copy */
12 if a = c and pred(a) 6= ⊥ then ready.push(a) ; /* first time copied */

13 b ← to do.pop() ; /* look for remaining copy */
14 if b = loc(b) then
15 emit copy(b 7→ n) ; loc(b) ← n ; ready.push(b) ; /* break circuit */

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Qualitative experiments with SPEC CINT2000

Key points of the out-of-SSA translation

Copy insertion (to go to CSSA and to handle register
renaming constraints) followed by coalescing.

Value-based interferences * coalescing is improved and
independent of virtualization (i.e., as in Sreedhar III).

Parallel copies followed by sequentialization.

16
4.
gz
ip

17
5.
vp
r

17
6.
gc
c

18
1.
m
cf

18
6.
cr
af
ty

19
7.
pa
rs
er

25
3.
pe
rl
bm
k

25
4.
ga
p

25
5.
vo
rt
ex

25
6.
bz
ip
2

30
0.
tw
ol
f

su
m

0.4

0.5

0.6

0.7

0.8

0.9

1

Intersection

Sreedhar I

Chaitin

Value

Sreedhar III

Value IS

Sharing

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Bug tracking RVM-254 of Jikes RVM

Problems with SSA form: lack of loop unrolling breaks VM

This problem is probably one of the most serious in the RVM currently. When loop
unrolling is disabled and SSA enabled the created IR is corrupt. The error has in the
past look like we were suffering from the ”lost copy” problem, but implementing a
naive solution to this didn’t solve the problem. Their is sound logic behind the code so
we need to identify a small test case where things are broken and then reason about
what’s wrong in leave SSA. This has been attempted once (with the code that
removes an element from the live set) but the problem no longer appears to surface
here. Currently these optimizations are disabled but by RVM 3.0 they should be
re-enable and this bug cured.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Potential bugs with conditional branches

u = . . .

v = . . .

B0

B3

B1 B2

w = φ(u, v)
. . . = w

Br(u, B3, B4)

B4

Initial code

u = . . .

v = . . .

B0

B3

B1 B2

. . . = w
w = φ(u, v ′)

Br(u, B3, B4)
v ′ = v

B4

“Blind” Sreedhar III

v = . . .

B0

B3

B1 B2

. . . = w

w = . . .

Br(w , B3, B4)
w = v

B4

Wrong output code

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Unfeasible out-of-SSA translation example

t2 = t1 + . . .

u0

B1

B2

Br(u2, B1, B2)
t0 = u2

u2 = u1 − 1
u1 = φ(u0, u2)

Br(t2, B1, B2)

. . . = u2

B3

t1 = φ(t0, t2)

Initial code

t2 = t1 + . . .

u

B1

B2

Br(t2, B1, B2)

. . . = u
B3

t1 = φ(u, t2)

Br dec(u, B1, B2)

After optimization

t2 = t1 + . . .

u

B1

B2

Br(t2, B1, B2)

. . . = u
B3

Br dec(u, B1, B2)

t0 = u

t1 = φ(t0, t2)

Needs edge splitting

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

