
Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Outline

1 Code representations
Control-flow graph
Loop-nesting forest
Static single assignment

2 Out-of-SSA translation
Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

3 SSA properties and liveness
Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

How to coalesce variables?

Two alternatives

Use a working interference graph where, in case of coalescing,
the corresponding nodes are merged. O(1) interference query.

Manipulate congruence classes, i.e., sets of coalesced
variables. Interferences must be tested between sets.

Chaitin, Sreedhar, Budimlić use congruence classes. Also useful to
avoid interference graph. Naive algorithm: quadratic complexity.

Key properties for linear-complexity live range intersection

2 variables intersect if one is live at the definition of the other.

In this case, the first definition dominates the second one.

Budimlić: a set contains 2 intersecting variables if it contains
a variable that intersects its “parent dominating” variable.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

How to coalesce variables?

Two alternatives

Use a working interference graph where, in case of coalescing,
the corresponding nodes are merged. O(1) interference query.

Manipulate congruence classes, i.e., sets of coalesced
variables. Interferences must be tested between sets.

Chaitin, Sreedhar, Budimlić use congruence classes. Also useful to
avoid interference graph. Naive algorithm: quadratic complexity.

Key properties for linear-complexity live range intersection

2 variables intersect if one is live at the definition of the other.

In this case, the first definition dominates the second one.

Budimlić: a set contains 2 intersecting variables if it contains
a variable that intersects its “parent dominating” variable.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Fast interference test for a set of variables

Scan dominator tree in a depth-first search.

Check interference with “parent dominating” variable.

a← · · ·

b ← a + · · ·
c ← b + · · ·
← c

d ← · · ·
e ← d + · · ·
← a + e

c

b

a

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Fast interference test for a set of variables

Scan dominator tree in a depth-first search.

Check interference with “parent dominating” variable.

a← · · ·

b ← a + · · ·
c ← b + · · ·
← c

d ← · · ·
e ← d + · · ·
← a + e

c

b

a

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Fast interference test for a set of variables

Scan dominator tree in a depth-first search.

Check interference with “parent dominating” variable.

a← · · ·

b ← a + · · ·
c ← b + · · ·
← c

d ← · · ·
e ← d + · · ·
← a + e

c

b

a

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Fast interference test for a set of variables

Scan dominator tree in a depth-first search.

Check interference with “parent dominating” variable.

a← · · ·

b ← a + · · ·
c ← b + · · ·
← c

d ← · · ·
e ← d + · · ·
← a + e

c

b

a

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Fast interference test for a set of variables

Scan dominator tree in a depth-first search.

Check interference with “parent dominating” variable.

a← · · ·

b ← a + · · ·
c ← b + · · ·
← c

d ← · · ·
e ← d + · · ·
← a + e

c

b

a

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Fast interference test for a set of variables

Scan dominator tree in a depth-first search.

Check interference with “parent dominating” variable.

a← · · ·

b ← a + · · ·
c ← b + · · ·
← c

d ← · · ·
e ← d + · · ·
← a + e

e

d

a

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Fast interference test for a set of variables

Scan dominator tree in a depth-first search.

Check interference with “parent dominating” variable.

a← · · ·

b ← a + · · ·
c ← b + · · ·
← c

d ← · · ·
e ← d + · · ·
← a + e

e

d

a

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Fast interference test for a set of variables

Scan dominator tree in a depth-first search.

Check interference with “parent dominating” variable.

a← · · ·

b ← a + · · ·
c ← b + · · ·
← c

d ← · · ·
e ← d + · · ·
← a + e

e

d

a

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Algorithm 2: Check intersection in a set of variables

Data: list sorted according to a pre-DFS order of the dominance tree
Output: Returns true if the list contains an interference

1 dom ← empty stack ; i ← 0 ; /* stack of the traversal */
2 while i < list.size() do
3 current ← list(i++) ;
4 other ← dom.top() ; /* null if dom is empty */
5 while (other 6= null) and dominate(other, current) = false do
6 dom.pop() ; /* not the desired parent, remove */
7 other ← dom.top() ; /* consider next one */

8 parent ← other ;
9 if (parent 6= null) and (intersect(current, parent) = true) then

return true ; /* intersection detected */
10 dom.push(current) ; /* otherwise, keep checking */

11 return false ;

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Linear interference test of two congruence classes

Generalization to interference test of two sets

Emulate a stack-based DFS traversal of dominance tree, for
two sorted sets instead of one * linear number of tests.

No need to test intersection of variables in the same set.

Take values into account for value-based interference: need
links of “equal ancestors”, which may increase complexity.

Sort in linear time the resulting set, in case of coalescing.

Fewer intersection tests * possible now to use more expensive
queries for intersection/liveness and to avoid interference graph:

Budimlić intersection test, still using liveness sets.

Fast liveness checking of Boissinot et al. (CGO’08).

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Linear interference test of two congruence classes

Generalization to interference test of two sets

Emulate a stack-based DFS traversal of dominance tree, for
two sorted sets instead of one * linear number of tests.

1 ir ← 0 ; ib ← 0 ;
2 while (ir < red.size() and ib < blue.size()) do
3 if blue(ib) ≺ red(ir) then current ← blue(ib++) else current ← red(ir ++)

4 while(ir < red.size() and nb > 0) do current ← red(ir ++) /* still nb blue in stack */
5 while(ib < blue.size() and nr > 0) do current ← blue(ib++) /* still nr red in stack */

No need to test intersection of variables in the same set.

Take values into account for value-based interference: need
links of “equal ancestors”, which may increase complexity.

Sort in linear time the resulting set, in case of coalescing.

Fewer intersection tests * possible now to use more expensive
queries for intersection/liveness and to avoid interference graph:

Budimlić intersection test, still using liveness sets.
Fast liveness checking of Boissinot et al. (CGO’08).

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Linear interference test of two congruence classes

Generalization to interference test of two sets

Emulate a stack-based DFS traversal of dominance tree, for
two sorted sets instead of one * linear number of tests.

No need to test intersection of variables in the same set.

Take values into account for value-based interference: need
links of “equal ancestors”, which may increase complexity.

Sort in linear time the resulting set, in case of coalescing.

Fewer intersection tests * possible now to use more expensive
queries for intersection/liveness and to avoid interference graph:

Budimlić intersection test, still using liveness sets.

Fast liveness checking of Boissinot et al. (CGO’08).

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Linear interference test of two congruence classes

Generalization to interference test of two sets

Emulate a stack-based DFS traversal of dominance tree, for
two sorted sets instead of one * linear number of tests.

No need to test intersection of variables in the same set.

Take values into account for value-based interference: need
links of “equal ancestors”, which may increase complexity.

Sort in linear time the resulting set, in case of coalescing.

Fewer intersection tests * possible now to use more expensive
queries for intersection/liveness and to avoid interference graph:

Budimlić intersection test, still using liveness sets.

Fast liveness checking of Boissinot et al. (CGO’08).

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Algorithm 3: interference(a, b)
Data: A variable a and its parent b in the dominance tree
Output: Returns true if a interferes (i.e., intersects and has a different value)

with an already-visited variable. Also, update equal anc information
/* a and b are assumed to not be equal to null */

1 equal anc out(a) ← null ; /* initialization */
2 if a and b are in the same set then
3 b ← equal anc out(b) ; /* check/update in other set */

4 if value(a) 6= value(b) then
5 return chain intersect(a, b) ; /* check with b and its equal intersecting

ancestors in the other set */

6 else
7 update equal anc out(a, b) ; /* update equal intersecting ancestor going

up in the other set */
8 return false ; /* no interference */

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Algorithm 4: update equal anc out(a, b)
Data: Variables a and b, same value, but in different sets
Output: Set nearest intersecting ancestor of a, in other set, with same value (null if

does not exist)
1 tmp ← b ;
2 while (tmp 6= null) and (intersect(a, tmp) = false) do
3 tmp ← equal anc in(tmp) ; /* follow the chain of equal intersecting ancestors in

the other set */

4 equal anc out(a) ← tmp ; /* tmp intersects a or null */

Algorithm 5: chain intersect(a, b)
Data: Variables a and b, different value, in different sets
Output: Returns true if a intersects b or one of its equal intersecting ancestors in the

same set
1 tmp ← b ;
2 while (tmp 6= null) and (intersect(a, tmp) = false) do
3 tmp ← equal anc in(tmp) ; /* follow the chain of equal intersecting ancestors */

4 if tmp = null then return false else return true ;

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Speed-up for SPEC CINT2000: x2

General scheme

Sreedhar III: w.
virtualization.

Us I, Us III: our
proposal, w.o./w.
virtualization.

Interference checks

Default: liveness sets + interference graph.

InterCheck: Budimlić with liveness sets.

LiveCheck: Fast liveness checking.

Linear: Linear check instead of quadratic.

16
4.
gz
ip

17
5.
vp
r

17
6.
gc
c

18
1.
m
cf

18
6.
cr
af
ty

19
7.
pa
rs
er

25
3.
pe
rl
bm
k

25
4.
ga
p

25
5.
vo
rt
ex

25
6.
bz
ip
2

30
0.
tw
ol
f

su
m

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Sreedhar III Us III Us III + InterCheck

Us III + InterCheck + LiveCheck Us III + Linear + InterCheck + LiveCheck Us I

Us I + Linear + InterCheck + LiveCheck

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

Memory footprint reduction for SPEC CINT2000: x10

Interference graph: half-size bit matrix.

Liveness sets: enumerated sets. Does not count construction.

Livenesss check: bit sets. Construction taken into account.

Data structures grow during virtualization. “Perfect memory”
evaluated, with both enumerated/bit sets for liveness sets.

Sum of memory footprint

Measured Evaluated (Ordered sets) Evaluated (Bit sets)
0

0.2

0.4

0.6

0.8

1

1.2

Max of memory footprint

Measured Evaluated (Ordered sets) Evaluated (Bit sets)
0

0.2

0.4

0.6

0.8

1

1.2

Sreedhar III

Us III

Us III + InterCheck

Us III + InterCheck + LiveCheck

Us III + Linear + InterCheck + LiveCheck

Us I

Us I + Linear + InterCheck + LiveCheck

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

General framework

Correctness clarified even for complex cases

Two-phases solution, based on coalescing

Results

Value-based interferences, for free, as good as Sreedhar III

Fast algorithm: Speed-up x2, memory reduction x10.

Implementation

No need to virtualize (at least for us)

Simpler implementation

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Outline

1 Code representations
Control-flow graph
Loop-nesting forest
Static single assignment

2 Out-of-SSA translation
Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

3 SSA properties and liveness
Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Dominance, liveness, and interference

A variable v is live(-in) at program point p if there is a path,
not containing the definition of v , from q to a use of v .

Each instruction `, where v is live, is dominated by def(v) the
definition point of v : def (v) � `.

start

v ← · · ·

` : · · ·

· · · ← v

Proof: if ` is not dominated by def (v)

there is a path from start to ` that
does not visit def (v).

v is live at `: there is a path from ` to
a use of v that does not visit def (v).

Thus, there is a path from start to a
use of v that does not visit def (v).

No: each use of v is dominated by def (v).

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Dominance, liveness, and interference

A variable v is live(-in) at program point p if there is a path,
not containing the definition of v , from q to a use of v .

Each instruction `, where v is live, is dominated by def(v) the
definition point of v : def (v) � `.

start

v ← · · ·

` : · · ·

· · · ← v

Proof: if ` is not dominated by def (v)

there is a path from start to ` that
does not visit def (v).

v is live at `: there is a path from ` to
a use of v that does not visit def (v).

Thus, there is a path from start to a
use of v that does not visit def (v).

No: each use of v is dominated by def (v).

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Dominance, liveness, and interference

A variable v is live(-in) at program point p if there is a path,
not containing the definition of v , from q to a use of v .

Each instruction `, where v is live, is dominated by def(v) the
definition point of v : def (v) � `.

start

v ← · · ·

` : · · ·

· · · ← v

Proof: if ` is not dominated by def (v)

there is a path from start to ` that
does not visit def (v).

v is live at `: there is a path from ` to
a use of v that does not visit def (v).

Thus, there is a path from start to a
use of v that does not visit def (v).

No: each use of v is dominated by def (v).

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Dominance, liveness, and interference

Assume that v and w are both live at some instruction `.

Then, def (v) � ` and def (w) � `.
Dominance = tree:

either def (v) � def (w) (and, in this case, v is live at def (w));
or def (w) � def (v) (and, in this case, w is live at def (v)).

* interference can be directed according to dominance.

Consequences

Strictness implies two equivalent notions of interferences:

live ranges intersect;
one variable is live at the definition of the other.

Assume no equality among intersecting variables: then, the
interference graph of an SSA program is chordal/triangulated.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Dominance, liveness, and interference

Assume that v and w are both live at some instruction `.

Then, def (v) � ` and def (w) � `.
Dominance = tree:

either def (v) � def (w) (and, in this case, v is live at def (w));
or def (w) � def (v) (and, in this case, w is live at def (v)).

* interference can be directed according to dominance.

Consequences

Strictness implies two equivalent notions of interferences:

live ranges intersect;
one variable is live at the definition of the other.

Assume no equality among intersecting variables: then, the
interference graph of an SSA program is chordal/triangulated.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Intersecting live ranges, subtrees of a tree

Assume
domv w

Then, v is live at def (w)

do
m

in
an

ce
su

bt
re

e
of

v

v ← · · ·

w ← · · ·

Live ranges of variables can be
represented as subtrees of the
dominance tree * intersection
graph = chordal graph.

Other proof: no chordless cycle

Consider a cycle in the interference
graph. There must be three vertices u,
v , w , such that:

� �

{�,�}

v

w

u

u and v are both live
at def (w). They thus
interfere (chord).

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Intersecting live ranges, subtrees of a tree

Assume
domv w

Then, v is live at def (w)

do
m

in
an

ce
su

bt
re

e
of

v

v ← · · ·

w ← · · ·

both live

← v ← w

Live ranges of variables can be
represented as subtrees of the
dominance tree * intersection
graph = chordal graph.

Other proof: no chordless cycle

Consider a cycle in the interference
graph. There must be three vertices u,
v , w , such that:

� �

{�,�}

v

w

u

u and v are both live
at def (w). They thus
interfere (chord).

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Intersecting live ranges, subtrees of a tree

Assume
domv w

Then, v is live at def (w)

do
m

in
an

ce
su

bt
re

e
of

v

v ← · · ·

w ← · · ·

both live

← v ← w

Live ranges of variables can be
represented as subtrees of the
dominance tree * intersection
graph = chordal graph.

Other proof: no chordless cycle

Consider a cycle in the interference
graph. There must be three vertices u,
v , w , such that:

� �

{�,�}

v

w

u

u and v are both live
at def (w). They thus
interfere (chord).

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Intersecting live ranges, subtrees of a tree

Assume
domv w

Then, v is live at def (w)

do
m

in
an

ce
su

bt
re

e
of

v

v ← · · ·

w ← · · ·

both live

← v ← w

Live ranges of variables can be
represented as subtrees of the
dominance tree * intersection
graph = chordal graph.

Other proof: no chordless cycle

Consider a cycle in the interference
graph. There must be three vertices u,
v , w , such that:

� �

???

{�,�}

v

w

u

u and v are both live
at def (w). They thus
interfere (chord).

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Intersecting live ranges, subtrees of a tree

Assume
domv w

Then, v is live at def (w)

do
m

in
an

ce
su

bt
re

e
of

v

v ← · · ·

w ← · · ·

both live

← v ← w

Live ranges of variables can be
represented as subtrees of the
dominance tree * intersection
graph = chordal graph.

Other proof: no chordless cycle

Consider a cycle in the interference
graph. There must be three vertices u,
v , w , such that:

� �

???

{�,�}

v

w

u u and v are both live
at def (w).

They thus
interfere (chord).

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Intersecting live ranges, subtrees of a tree

Assume
domv w

Then, v is live at def (w)

do
m

in
an

ce
su

bt
re

e
of

v

v ← · · ·

w ← · · ·

both live

← v ← w

Live ranges of variables can be
represented as subtrees of the
dominance tree * intersection
graph = chordal graph.

Other proof: no chordless cycle

Consider a cycle in the interference
graph. There must be three vertices u,
v , w , such that:

� �

{�,�}
v

w

u u and v are both live
at def (w). They thus
interfere (chord).

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

SSA versus non-SSA interference graphs

Program Live Ranges

aa← · · ·

bb ← · · ·
cc ← · · ·

dd ← a + b

ee ← c + 1

aa← · · ·

Interference Graph

a

b

c

d

e

How can we create a 4-cycle {a, c , d , e}?

Redefine a =⇒ SSA violated!

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

SSA versus non-SSA interference graphs

Program Live Ranges

aa← · · ·

bb ← · · ·
cc ← · · ·

dd ← a + b

ee ← c + 1

aa← · · ·

Interference Graph

a

b

c

d

e

How can we create a 4-cycle {a, c , d , e}?
Redefine a =⇒ SSA violated!

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

SSA versus non-SSA interference graphs

Program and live ranges

a← · · ·

d ← · · ·
e ← a + · · ·
← d

b ← · · ·
c ← a + · · ·
e ← b
← c

Interference Graph

d
a

b
c

e

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

SSA versus non-SSA interference graphs

Program and live ranges

a← · · ·

d ← · · ·
e1 ← a + · · ·
← d

b ← · · ·
c ← a + · · ·

e2 ← b
← c

e3 ← φ(e1, e2)

Interference Graph

d
a

b
c

e1

e3

e2

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Chordal k-colorable: greedy-k-colorable & tree-scan

a← · · ·

d ← · · ·
e1 ← a + · · ·
← d

b ← · · ·
c ← a + · · ·

e2 ← b
← c

e3 ← φ(e1, e2)

a

d

e1

b

c

e2

e3

If register pressure ≤ k, no spill is necessary. Here only 2 registers needed.

Greedy-k-colorable: all vertices can be successively “simplified” (do < k).

A post order walk of the dominance tree gives such an elimination order.

A pre order walk of the dominance tree directly yields a coloring sequence.

No need to build the interference graph itself.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Chordal k-colorable: greedy-k-colorable & tree-scan

a← · · ·

d ← · · ·
e1 ← a + · · ·
← d

b ← · · ·
c ← a + · · ·

e2 ← b
← c

e3 ← φ(e1, e2)

a

d

e1

b

c

e2

e3

If register pressure ≤ k, no spill is necessary. Here only 2 registers needed.

Greedy-k-colorable: all vertices can be successively “simplified” (do < k).

A post order walk of the dominance tree gives such an elimination order.

A pre order walk of the dominance tree directly yields a coloring sequence.

No need to build the interference graph itself.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Chordal k-colorable: greedy-k-colorable & tree-scan

a← · · ·

d ← · · ·
e1 ← a + · · ·
← d

b ← · · ·
c ← a + · · ·

e2 ← b
← c

e3 ← φ(e1, e2)

a

d

e1

b

c

e2

e3

If register pressure ≤ k, no spill is necessary. Here only 2 registers needed.

Greedy-k-colorable: all vertices can be successively “simplified” (do < k).

A post order walk of the dominance tree gives such an elimination order.

A pre order walk of the dominance tree directly yields a coloring sequence.

No need to build the interference graph itself.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Chordal k-colorable: greedy-k-colorable & tree-scan

a← · · ·

d ← · · ·
e1 ← a + · · ·
← d

b ← · · ·
c ← a + · · ·

e2 ← b
← c

e3 ← φ(e1, e2)

a

d

e1

b

c

e2

e3

If register pressure ≤ k, no spill is necessary. Here only 2 registers needed.

Greedy-k-colorable: all vertices can be successively “simplified” (do < k).

A post order walk of the dominance tree gives such an elimination order.

A pre order walk of the dominance tree directly yields a coloring sequence.

No need to build the interference graph itself.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Chordal k-colorable: greedy-k-colorable & tree-scan

a← · · ·

d ← · · ·
e1 ← a + · · ·
← d

b ← · · ·
c ← a + · · ·

e2 ← b
← c

e3 ← φ(e1, e2)

a

d

e1

b

c

e2

e3

If register pressure ≤ k, no spill is necessary. Here only 2 registers needed.

Greedy-k-colorable: all vertices can be successively “simplified” (do < k).

A post order walk of the dominance tree gives such an elimination order.

A pre order walk of the dominance tree directly yields a coloring sequence.

No need to build the interference graph itself.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Chordal k-colorable: greedy-k-colorable & tree-scan

a← · · ·

d ← · · ·
e1 ← a + · · ·
← d

b ← · · ·
c ← a + · · ·

e2 ← b
← c

e3 ← φ(e1, e2)

a

d

e1

b

c

e2

e3

If register pressure ≤ k, no spill is necessary. Here only 2 registers needed.

Greedy-k-colorable: all vertices can be successively “simplified” (do < k).

A post order walk of the dominance tree gives such an elimination order.

A pre order walk of the dominance tree directly yields a coloring sequence.

No need to build the interference graph itself.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Chordal k-colorable: greedy-k-colorable & tree-scan

a← · · ·

d ← · · ·
e1 ← a + · · ·
← d

b ← · · ·
c ← a + · · ·

e2 ← b
← c

e3 ← φ(e1, e2)

a

d

e1

b

c

e2

e3

If register pressure ≤ k, no spill is necessary. Here only 2 registers needed.

Greedy-k-colorable: all vertices can be successively “simplified” (do < k).

A post order walk of the dominance tree gives such an elimination order.

A pre order walk of the dominance tree directly yields a coloring sequence.

No need to build the interference graph itself.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Chordal k-colorable: greedy-k-colorable & tree-scan

a← · · ·

d ← · · ·
e1 ← a + · · ·
← d

b ← · · ·
c ← a + · · ·

e2 ← b
← c

e3 ← φ(e1, e2)

a

d

e1

b

c

e2

e3

If register pressure ≤ k, no spill is necessary. Here only 2 registers needed.

Greedy-k-colorable: all vertices can be successively “simplified” (do < k).

A post order walk of the dominance tree gives such an elimination order.

A pre order walk of the dominance tree directly yields a coloring sequence.

No need to build the interference graph itself.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Chordal k-colorable: greedy-k-colorable & tree-scan

a← · · ·

d ← · · ·
e1 ← a + · · ·
← d

b ← · · ·
c ← a + · · ·

e2 ← b
← c

e3 ← φ(e1, e2)

a

d

e1

b

c

e2

e3

If register pressure ≤ k, no spill is necessary. Here only 2 registers needed.

Greedy-k-colorable: all vertices can be successively “simplified” (do < k).

A post order walk of the dominance tree gives such an elimination order.

A pre order walk of the dominance tree directly yields a coloring sequence.

No need to build the interference graph itself.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Chordal k-colorable: greedy-k-colorable & tree-scan

a← · · ·

d ← · · ·
e1 ← a + · · ·
← d

b ← · · ·
c ← a + · · ·

e2 ← b
← c

e3 ← φ(e1, e2)

a

d

e1

b

c

e2

e3

If register pressure ≤ k, no spill is necessary. Here only 2 registers needed.

Greedy-k-colorable: all vertices can be successively “simplified” (do < k).

A post order walk of the dominance tree gives such an elimination order.

A pre order walk of the dominance tree directly yields a coloring sequence.

No need to build the interference graph itself.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Chordal k-colorable: greedy-k-colorable & tree-scan

a← · · ·

d ← · · ·
e1 ← a + · · ·
← d

b ← · · ·
c ← a + · · ·

e2 ← b
← c

e3 ← φ(e1, e2)

a

d

e1

b

c

e2

e3

If register pressure ≤ k, no spill is necessary. Here only 2 registers needed.

Greedy-k-colorable: all vertices can be successively “simplified” (do < k).

A post order walk of the dominance tree gives such an elimination order.

A pre order walk of the dominance tree directly yields a coloring sequence.

No need to build the interference graph itself.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Chordal k-colorable: greedy-k-colorable & tree-scan

a← · · ·

d ← · · ·
e1 ← a + · · ·
← d

b ← · · ·
c ← a + · · ·

e2 ← b
← c

e3 ← φ(e1, e2)

a

d

e1

b

c

e2

e3

If register pressure ≤ k, no spill is necessary. Here only 2 registers needed.

Greedy-k-colorable: all vertices can be successively “simplified” (do < k).

A post order walk of the dominance tree gives such an elimination order.

A pre order walk of the dominance tree directly yields a coloring sequence.

No need to build the interference graph itself.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Chordal k-colorable: greedy-k-colorable & tree-scan

a← · · ·

d ← · · ·
e1 ← a + · · ·
← d

b ← · · ·
c ← a + · · ·

e2 ← b
← c

e3 ← φ(e1, e2)

a

d

e1

b

c

e2

e3

If register pressure ≤ k, no spill is necessary. Here only 2 registers needed.

Greedy-k-colorable: all vertices can be successively “simplified” (do < k).

A post order walk of the dominance tree gives such an elimination order.

A pre order walk of the dominance tree directly yields a coloring sequence.

No need to build the interference graph itself.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Chordal k-colorable: greedy-k-colorable & tree-scan

a← · · ·

d ← · · ·
e1 ← a + · · ·
← d

b ← · · ·
c ← a + · · ·

e2 ← b
← c

e3 ← φ(e1, e2)

a

d

e1

b

c

e2

e3

If register pressure ≤ k, no spill is necessary. Here only 2 registers needed.

Greedy-k-colorable: all vertices can be successively “simplified” (do < k).

A post order walk of the dominance tree gives such an elimination order.

A pre order walk of the dominance tree directly yields a coloring sequence.

No need to build the interference graph itself.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Chordal k-colorable: greedy-k-colorable & tree-scan

a← · · ·

d ← · · ·
e1 ← a + · · ·
← d

b ← · · ·
c ← a + · · ·

e2 ← b
← c

e3 ← φ(e1, e2)

a

d

e1

b

c

e2

e3

If register pressure ≤ k, no spill is necessary. Here only 2 registers needed.

Greedy-k-colorable: all vertices can be successively “simplified” (do < k).

A post order walk of the dominance tree gives such an elimination order.

A pre order walk of the dominance tree directly yields a coloring sequence.

No need to build the interference graph itself.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Outline

1 Code representations
Control-flow graph
Loop-nesting forest
Static single assignment

2 Out-of-SSA translation
Translation with copy insertions: pitfalls and solution
Improving code quality and ease of implementation
Fast implementation with reduced memory footprint

3 SSA properties and liveness
Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Traditional fixed-point data-flow analysis

Equations

LiveIn(B) = PhiDefs(B) ∪UpwardExposed(B) ∪ (LiveOut(B) \Defs(B))

LiveOut(B) =
⋃

S∈succs(B)(LiveIn(S) \ PhiDefs(S)) ∪ PhiUses(B)

PhiDefs(B): variables defined by φ-operations at entry of B.

PhiUses(B): used by φ-operations at a successor block of B.

UpwardExposed(B): used in B but not defined earlier in B.

Complexity

W : non-local variables (i.e., not fully in a block), P: program.

G = (V ,E): CFG with |V | − 1 ≤ |E | ≤ |V |2.

O(|P|) + O(|W |)× number of iterations, i.e., O(|E ||W |) for
worklist algorithms and O(|E |(d(G ,T) + 3)) for round robin.

d(G ,T): max. number of back edges (for a DFS tree T), in a cycle-free path of G .

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Traditional fixed-point data-flow analysis

Equations

LiveIn(B) = PhiDefs(B) ∪UpwardExposed(B) ∪ (LiveOut(B) \Defs(B))

LiveOut(B) =
⋃

S∈succs(B)(LiveIn(S) \ PhiDefs(S)) ∪ PhiUses(B)

PhiDefs(B): variables defined by φ-operations at entry of B.

PhiUses(B): used by φ-operations at a successor block of B.

UpwardExposed(B): used in B but not defined earlier in B.

Complexity

W : non-local variables (i.e., not fully in a block), P: program.

G = (V ,E): CFG with |V | − 1 ≤ |E | ≤ |V |2.

O(|P|) + O(|W |)× number of iterations, i.e., O(|E ||W |) for
worklist algorithms and O(|E |(d(G ,T) + 3)) for round robin.

d(G ,T): max. number of back edges (for a DFS tree T), in a cycle-free path of G .

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Exploiting loop structure

G = (V ,E): reducible CFG with strict SSA.

FL(G): DAG obtained by removing loop-edges.

Bad case for iterative data-flow analysis:

1a← . . .

2· · · ← a

3

4

Control-flow graph

Lr

L2

L3

4321

Loop-nesting forest

Principles to avoid iteration:

Compute liveness information, traversing FL(G) bottom-up.

Refine liveness by exploiting loop structure.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Key lemmas related to loop structure

Lemma 1

Let G be a reducible CFG, v an SSA variable, and d its definition.
If L is a maximal loop not containing d, then v is live-in at the
loop-header h of L iff there is a path in FL(G), not containing d,
from h to a use of v.

Lemma 2

Let G be a reducible CFG, v an SSA variable, and d its definition.
Let p be a node of G such that all loops containing p also
contain d. Then v is live-in at p iff there is a path in FL(G),
from p to a use of v, not containing d.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Key lemmas related to loop structure (cont’d)

Propagating liveness along FL(G) can only mark live-in
variables that are indeed live-in.

If, after this propagation, v is missing at p, p belongs to a
loop that does not contain the definition of v (Lemma 2).

If L is such a maximal loop, v is correctly marked as live-in at
the header of L (Lemma 1).

Lemma 3

Consider L a loop and v an SSA variable. If v is live-in at the
loop-header of L, it is live-in and live-out at every node in L.

* Propagating inside loops is enough to patch the liveness sets.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Partial liveness, with postorder traversal

Algorithm 6: DAG DFS(block B)

1 for each S ∈ succs(B) if (B,S) is not a loop-edge do
2 if S is unprocessed then
3 DAG DFS(S)

4 Live = PhiUses(B) /* used by φ-functions in B’s successors */
5 for each S ∈ succs(B) if (B, S) is not a loop-edge do
6 Live = Live ∪ (LiveIn(S) \ PhiDefs(S))

7 LiveOut(B) = Live;
8 for each program point p in B, backward do
9 remove variables defined at p from Live;

10 add uses at p in Live

11 LiveIn(B) = Live ∪ PhiDefs(B) ;
12 mark B as processed

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Propagate live variables within loop bodies

Algorithm 7: LoopTree DFS(node N of the loop forest)

1 if N is a loop node then
2 Let BN = Block(N) /* the loop-header of N */
3 Let LiveLoop = LiveIn(BN) \ PhiDefs(BN);
4 for each M ∈ LoopTree children(N) do
5 Let BM = Block(M) /* loop-header or block */
6 LiveIn(BM) = LiveIn(BM) ∪ LiveLoop;
7 LiveOut(BM) = LiveOut(BM) ∪ LiveLoop;
8 LoopTree DFS(M)

Algorithm 8: Compute LiveSets SSA Reducible(CFG)

1 for each basic block B do
2 mark B as unprocessed

3 DAG DFS(R) /* R is the CFG root node */
4 for each root node L of the loop-nesting forest do
5 LoopTree DFS(L)

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Transformation of an irreducible CFG into a reducible one

E ′ = E \ LoopEdges(L) \ EntryEdges(L) ∪ {(s, δL) | s ∈ PreEntries(L)}
∪{(s, δL) | ∃(s, h) ∈ LoopEdges(L)} ∪ {(δL, h) | h ∈ LoopHeaders(L)}

1

2

103

8

9

4

5

6

7

G : Irreducible

1

2

103

8

9

4

δL5

5

6

7

ΨL(G): Reducible

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Key results to analyze liveness in irreducible CFGs

Lemma 4

If d dominates u in G , d dominates u in ΨL(G).

Theorem 5

Let v be an SSA variable, G a CFG, transformed into ΨL(G) when
considering a loop L of a loop forest of G. Then, for each node q
of G , v is live-in (resp. live-out) at q in G iff v is live-in (resp.
live-out) at q in ΨL(G).

* HnCA(B,S): highest non common ancestor (in the loop forest)
of B and S , i.e., highest ancestor of S that is not ancestor of B.

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Algorithm 9: DAG DFS(block B) /* if loops have one header */

1 for each S ∈ succs(B) if (B,S) is not a loop-edge do
2 if S is unprocessed then
3 T = HnCA(B, S);
4 DAG DFS(T)

5 Live = PhiUses(B) /* used by φ-functions in B’s successors */
6 for each S ∈ succs(B) if (B, S) is not a loop-edge do
7 T = HnCA(B,S);
8 Live = Live ∪ (LiveIn(T) \ PhiDefs(T))

9 LiveOut(B) = Live;
10 for each program point p in B, backward do
11 remove variables defined at p from Live;
12 add uses at p in Live

13 LiveIn(B) = Live ∪ PhiDefs(B) ;
14 mark B as processed

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Experimental results

Speed-up w.r.t. iterative data-flow, unoptimized programs, bitsets.

16
4.g
zip

17
5.v
pr

17
6.g
cc

18
1.m

cf

18
6.c
raf
ty

19
7.p
ars
er

25
3.p
erl
bm
k

25
4.g
ap

25
5.v
ort
ex

25
6.b
zip
2

30
0.t
wo
lf

Av
era
ge

0.75

1.25

1.75

2.25

use
var
forest
iterative

1.22

1.99

2.19

Speed-up w.r.t. iterative data-flow, optimized programs, bitsets.

16
4.g
zip

17
5.v
pr

17
6.g
cc

18
1.m

cf

18
6.c
raf
ty

19
7.p
ars
er

25
3.p
erl
bm
k

25
4.g
ap

25
5.v
ort
ex

25
6.b
zip
2

30
0.t
wo
lf

Av
era
ge

0.75

1.25

1.75

2.25

use
var
forest
iterative

2.00

1.40

1.18

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

Code representations
Out-of-SSA translation

SSA properties and liveness

Dominance, liveness, interferences, and chordal graphs
Construction of liveness sets in reducible CFGs for strict SSA
Extensions to irreducible CFGs and for checking liveness

Experimental results

Speed-up w.r.t iterative

data-flow, for optimized

programs, with bitsets.

164.gzip
175.vpr

176.gcc
181.mcf

186.crafty
197.parser

253.perlbmk
254.gap

255.vortex
256.bzip2

300.twolf
0.3

0.5

1

2

4

8

16

forest
use
var

Ratio of the different phases in the forest-based algorithm (forward & backward

passes, computation of PhiUses & PhiDefs sets, initialization), bitsets,

unoptimized & optimized programs.

164.gzip
175.vpr

176.gcc
181.mcf
186.crafty

197.parser
253.perlbmk

254.gap
255.vortex

256.bzip2
300.twolf

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

backward rest forward phisets

T
im
e

68%

27%

3%
2%

164.gzip
175.vpr

176.gcc
181.mcf
186.crafty

197.parser
253.perlbmk

254.gap
255.vortex

256.bzip2
300.twolf

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

backward rest forward phisets

T
im
e

53%

36%

6%

5%

Alain Darte Cours M2: Compilation avancée et optimisation de programmes

