Compilation avancée et optimisation de programmes

Alain Darte

CNRS, Compsys
Laboratoire de l’Informatique du Parallélisme
École normale supérieure de Lyon

Back-end code optimizations
Outline

1. Code representations
2. Out-of-SSA translation and SSA properties
3. Register allocation
 - Register allocation formulation
 - Example: iterated register coalescing
 - Determining if k registers are enough
What is register allocation?

Input:
- program (intermediate representation) with scalar variables.
- fixed instruction schedule.

Goal: assign variables to storage locations in
- a pool of limited resources: *registers*.
- a pool of unlimited resources: *memory*.

Memory hierarchy constraints:
- Register accesses: faster.
- Memory accesses: slower and higher power consumption.
What is register allocation?

Input:
- program (intermediate representation) with scalar variables.
- fixed instruction schedule.

Goal: assign variables to storage locations in
- a pool of limited resources: *registers*.
- a pool of unlimited resources: *memory*.

Memory hierarchy constraints:
- Register accesses: faster.
- Memory accesses: slower and higher power consumption.

> Prefer register accesses and register-to-register moves to memory transfers, i.e., try to minimize loads & stores.
Problem 1 (Chaitin-like register allocation)

Instance: Program P, number k of available registers.
Question: Can each variable of P be mapped to one of the k registers so that variables with interfering live ranges are mapped to different registers?

NP-complete with a reduction from graph-k-colorability.

- variable ⇔ vertex;
- interferences between variables ⇔ edge;
- variable assignment ⇔ graph coloring.

NP-completeness of Chaitin et al.

Problem 1 (Chaitin-like register allocation)

Instance: Program P, number k of available registers.
Question: Can each variable of P be mapped to one of the k registers so that variables with interfering live ranges are mapped to different registers?

NP-complete with a reduction from graph-k-colorability.
- variable \(\Leftrightarrow\) vertex;
- interferences between variables \(\Leftrightarrow\) edge;
- variable assignment \(\Leftrightarrow\) graph coloring.

Traditional (but wrong) interpretation: “Register allocation is NP-complete because graph coloring is NP-complete.”
The real life: more constraints & more freedom

Many architectural subtleties:

- load/store architecture or not.
- specific registers (sp, fp, r0), variable affinities (auto-inc), register pairing (64 bits ops), calling conventions, etc.
- distributed register banks, register aliasing, etc.
The real life: more constraints & more freedom

Many architectural subtleties:
- load/store architecture or not.
- specific registers (sp, fp, r0), variable affinities (auto-inc), register pairing (64 bits ops), calling conventions, etc.
- distributed register banks, register aliasing, etc.

More rules of the games:
- insert loads and stores: spilling.
- add register-to-register moves: live-range splitting.
- delete moves: coalescing.
- don’t store, recompute: rematerialization.
The real life: more constraints & more freedom

Many architectural subtleties:

- load/store architecture or not.
- specific registers (sp, fp, r0), variable affinities (auto-inc), register pairing (64 bits ops), calling conventions, etc.
- distributed register banks, register aliasing, etc.

More rules of the games:

- insert loads and stores: spilling.
- add register-to-register moves: live-range splitting.
- delete moves: coalescing.
- don’t store, recompute: rematerialization.

NP-completeness of Chaitin et al. use of heuristics interleaving all aspects: register assignment, spilling, splitting, coalescing.
Global register allocation: related work

Chaitin-like graph coloring Chaitin et al. (1981), Briggs et al. (1989-1992), George&Appel (1996), Smith et al. (2004), etc.

More involved live-range splitting Bergner et al. (1997), Cooper&Simpson (1998), Lueh et al. (2000), etc.

JIT linear-scan Poletto&Sarkar (1999), Wimmer&Mössenböck (2005), Sarkar&Barik (2007), etc.

Two-phases (SSA-based) register allocation Bouchez et al., Brisk, Hack, Pereira&Palsberg (2005-...).
Example: iterated register coalescing

Chaitin et al. (1981), Briggs-Cooper-Torczon (1994), Appel-George (2001), ...

- **Simplify** remove a non-move-related vertex with degree $< k$
- **Coalesce** merge (conservatively: Briggs/George rules) move-related vertices
- **Freeze** give up coalescing some moves
- **Potential spill** remove a vertex and push it on a stack
- **Select** pop a vertex and assign a color
- **Actual spill** if no color is found, really insert load/store
Example: iterated register coalescing

Chaitin et al. (1981), Briggs-Cooper-Torczon (1994), Appel-George (2001), ...

Simplify remove a non-move-related vertex with degree $< k$
Coalesce merge (conservatively: Briggs/George rules) move-related vertices
Freeze give up coalescing some moves
Potential spill remove a vertex and push it on a stack
Select pop a vertex and assign a color see powerpoint slides
Actual spill if no color is found, really insert load/store
LIVE-IN: k j

- \(g := \text{mem}[j+12] \)
- \(h := k - 1 \)
- \(f := g + h \)
- \(e := \text{mem}[j+8] \)
- \(m := \text{mem}[j+16] \)
- \(b := \text{mem}[f] \)
- \(c := e + 8 \)
- \(d := c \)
- \(k := m + 4 \)
- \(j := b \)

LIVE-OUT: d k j

borrowed from J. N. Amaral, slightly modified
http://www.cs.ualberta.ca/~amaral/courses/680
Example: Simplify (K=4)

(Appel, pp. 237)
Example: Simplify (K=4)

(stack)
(g, no-spill)
(h, no-spill)

(Appel, pp. 237)
Example: Simplify (K=4)

(Appel, pp. 237)
Example: Simplify (K=4)

(f, no-spill)
(k, no-spill)
(g, no-spill)
(h, no-spill)
Example: Simplify (K=4)

(Appel, pp. 237)
Example: Simplify (K=4)

(stack)

(m, no-spill)
(e, no-spill)
(f, no-spill)
(k, no-spill)
(g, no-spill)
(h, no-spill)

(Appel, pp. 237)
Example:
Coalesce (K=4)

Why can’t we simplify?

Cannot simplify move-related nodes.

(Appel, pp. 237)
Example: Coalesce (K=4)

stack

(m, no-spill)
(e, no-spill)
(f, no-spill)
(k, no-spill)
(g, no-spill)
(h, no-spill)

(Appel, pp. 237)
Example: Simplify (K=4)

(c-d, no-spill)
(m, no-spill)
(e, no-spill)
(f, no-spill)
(k, no-spill)
(g, no-spill)
(h, no-spill)
Example: Coalesce (K=4)

stack
(c-d, no-spill)
(m, no-spill)
(e, no-spill)
(f, no-spill)
(k, no-spill)
(g, no-spill)
(h, no-spill)

(j) -> (b)

(Appel, pp. 237)
Example:
Simplify (K=4) greedy-4-colorable

stack

(b-j, no-spill)
(c-d, no-spill)
(m, no-spill)
(e, no-spill)
(f, no-spill)
(k, no-spill)
(g, no-spill)
(h, no-spill)
Example: Select (K=4)

(b-j, no-spill)
(c-d, no-spill)
(m, no-spill)
(e, no-spill)
(f, no-spill)
(k, no-spill)
(g, no-spill)
(h, no-spill)
Example: Select (K=4)

(Appel, pp. 237)
Example: Select (K=4)

- (b-j, no-spill)
- (c-d, no-spill)
- (m, no-spill)
- (e, no-spill)
- (f, no-spill)
- (k, no-spill)
- (g, no-spill)
- (h, no-spill)

(Appel, pp. 237)
Example: Select (K=4)

(b-j, no-spill)
(c-d, no-spill)
(m, no-spill)
(e, no-spill)
(f, no-spill)
(k, no-spill)
(g, no-spill)

(Appel, pp. 237)
Example: Select (K=4)

(b-j, no-spill)
(c-d, no-spill)
(m, no-spill)
(e, no-spill)
(f, no-spill)
(k, no-spill)
(g, no-spill)
(h, no-spill)
Example: Select (K=4)

(b-j, no-spill)
(c-d, no-spill)
(m, no-spill)
(e, no-spill)
(f, no-spill)
(k, no-spill)
(g, no-spill)
(h, no-spill)
Example: Select (K=4)

(b-j, no-spill)
(c-d, no-spill)
(m, no-spill)
(e, no-spill)
(f, no-spill)
(k, no-spill)
(g, no-spill)
(h, no-spill)
Example: Select (K=4)

(b-j, no-spill)
(c-d, no-spill)
(m, no-spill)
(e, no-spill)
(f, no-spill)
(k, no-spill)
(g, no-spill)
(h, no-spill)
Example:
Select (K=4)

(b-j, no-spill)
(c-d, no-spill)
(m, no-spill)
(e, no-spill)
(f, no-spill)
(k, no-spill)
(g, no-spill)
(h, no-spill)
Example: Allocation with 4 registers

LIVE-IN: k j

<table>
<thead>
<tr>
<th>Statement</th>
<th>Register</th>
</tr>
</thead>
<tbody>
<tr>
<td>g := mem[j+12]</td>
<td>g</td>
</tr>
<tr>
<td>h := k -1</td>
<td>h</td>
</tr>
<tr>
<td>f := g + h</td>
<td>f</td>
</tr>
<tr>
<td>e := mem[j+8]</td>
<td>e</td>
</tr>
<tr>
<td>m := mem[j+16]</td>
<td>m</td>
</tr>
<tr>
<td>b := mem[f]</td>
<td>b</td>
</tr>
<tr>
<td>c := e + 8</td>
<td>c</td>
</tr>
<tr>
<td>d := c</td>
<td>d</td>
</tr>
<tr>
<td>k := m + 4</td>
<td>k</td>
</tr>
<tr>
<td>j := b</td>
<td>j</td>
</tr>
</tbody>
</table>

LIVE-OUT: d k j
Example: Allocation with 4 registers

LIVE-IN: k j

\[
\begin{align*}
g &:= \text{mem}[j+12] \\
h &:= k -1 \\
f &:= g + h \\
e &:= \text{mem}[j+8] \\
m &:= \text{mem}[j+16] \\
j &:= \text{mem}[f] \\
d &:= e + 8 \\
k &:= m + 4
\end{align*}
\]

LIVE-OUT: d k j
Could we do the allocation in the previous example with 3 registers?
Example: Simplify (K=3)

(Appel, pp. 237)
Example: Simplify (K=3)

(stack)
(g, no-spill)
(h, no-spill)

(Appel, pp. 237)
Example:
Freeze (K=3)

Coalescing may make things worse (not always).

George’s rule would coalesce the move d-c, Briggs’ rule would freeze.

(Appel, pp. 237)
Example: Simplify (K=3)

(c, no-spill)
(g, no-spill)
(h, no-spill)
Example: Potential Spill (K=3)

Neither coalescing nor freezing help us. At this point we should use some profitability analysis to choose a node as may-spill.

(Appel, pp. 237)
Example:
Simplify (K=3)

(f, no-spill)
(e, may-spill)
(c, no-spill)
(g, no-spill)
(h, no-spill)

(Appel, pp. 237)
Example: Simplify (K=3)

(Appel, pp. 237)
Example: Coalesce (K=3)

\[\text{stack}\]
- (m, no-spill)
- (f, no-spill)
- (e, may-spill)
- (c, no-spill)
- (g, no-spill)
- (h, no-spill)

(Appel, pp. 237)
Example: Coalesce (K=3)

j-b ─ k ─ d

stack
(d, no-spill)
(m, no-spill)
(f, no-spill)
(e, may-spill)
(c, no-spill)
(g, no-spill)
(h, no-spill)

(Appel, pp. 237)
Example: Coalesce (K=3)

```
stack
(k, no-spill)
(d, no-spill)
(m, no-spill)
(f, no-spill)
(e, may-spill)
(c, no-spill)
(g, no-spill)
(h, no-spill)
```

(Appel, pp. 237)
Example: Coalesce (K=3)

(j-b, no-spill)
(k, no-spill)
(d, no-spill)
(m, no-spill)
(f, no-spill)
(e, may-spill)
(c, no-spill)
(g, no-spill)
(h, no-spill)

(Appel, pp. 237)
Example: Select (K=3)

(j-b, no-spill)
(k, no-spill)
(d, no-spill)
(m, no-spill)
(f, no-spill)
(e, may-spill)
(c, no-spill)
(g, no-spill)
(h, no-spill)

(Appel, pp. 237)
Example: Select (K=3)

![Graph Diagram]

- Stack:
 - (j-b, no-spill)
 - (k, no-spill)
 - (d, no-spill)
 - (m, no-spill)
 - (f, no-spill)
 - (e, may-spill)
 - (c, no-spill)
 - (g, no-spill)
 - (h, no-spill)

(Appel, pp. 237)
Example: Select (K=3)

(j-b, no-spill)
(k, no-spill)
(d, no-spill)
(m, no-spill)
(f, no-spill)
(e, may-spill)
(c, no-spill)
(g, no-spill)
(h, no-spill)

(Appel, pp. 237)
Example:
Select (K=3)

(j-b, no-spill) (k, no-spill) (d, no-spill)
(m, no-spill) (f, no-spill) (e, may-spill)
(c, no-spill) (g, no-spill) (h, no-spill)
Example: Select (K=3)

Stack:
- (j-b, no-spill)
- (k, no-spill)
- (d, no-spill)
- (m, no-spill)
- (f, no-spill)
- (e, may-spill)
- (c, no-spill)
- (g, no-spill)
- (h, no-spill)

(Appel, pp. 237)
Example: Select (K=3)

This is when our optimism could have paid off.

(Appel, pp. 237)
Example: Select (K=3)

(j-b, no-spill)
(k, no-spill)
(d, no-spill)
(m, no-spill)
(f, no-spill)
(e, may-spill)
(c, no-spill)
(g, no-spill)
(h, no-spill)

(Appel, pp. 237)
Example: Select (K=3)

\[
\begin{align*}
(j-b, \text{no-spill}) \\
(k, \text{no-spill}) \\
(d, \text{no-spill}) \\
(m, \text{no-spill}) \\
(f, \text{no-spill}) \\
(e, \text{may-spill}) \\
(c, \text{no-spill}) \\
(g, \text{no-spill}) \\
(h, \text{no-spill})
\end{align*}
\]
Example: Select (K=3)

(j-b, no-spill)
(k, no-spill)
(d, no-spill)
(m, no-spill)
(f, no-spill)
(e, may-spill)
(c, no-spill)
(g, no-spill)
(h, no-spill)
So, is it possible for K=3?

(Appel, pp. 237)
Example:
Simplify (K=3)

(Appel, pp. 237)
Example: Simplify (K=3)
Example: Simplify (K=3)
Example: Simplify (K=3)

Impossible!

But only 3 variables are live at any time… there may be a way?

(Appel, pp. 237)
Example as basic block: 3 Registers by renaming k & j

<table>
<thead>
<tr>
<th>LIVE-IN: k j</th>
</tr>
</thead>
<tbody>
<tr>
<td>g := mem[j+12]</td>
</tr>
<tr>
<td>h := k -1</td>
</tr>
<tr>
<td>f := g + h</td>
</tr>
<tr>
<td>e := mem[j+8]</td>
</tr>
<tr>
<td>m := mem[j+16]</td>
</tr>
<tr>
<td>b := mem[f]</td>
</tr>
<tr>
<td>c := e + 8</td>
</tr>
<tr>
<td>d := c</td>
</tr>
<tr>
<td>k' := m + 4</td>
</tr>
<tr>
<td>j' := b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LIVE-OUT: d k' j'</th>
</tr>
</thead>
<tbody>
<tr>
<td>g h f e m b c d</td>
</tr>
<tr>
<td>k' j'</td>
</tr>
</tbody>
</table>
Example as basic block: 3 Registers by renaming k & j

LIVE-IN: k j

<table>
<thead>
<tr>
<th>Expression</th>
<th>k j</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g := \text{mem}[j+12]$</td>
<td></td>
</tr>
<tr>
<td>$h := k -1$</td>
<td></td>
</tr>
<tr>
<td>$f := g + h$</td>
<td></td>
</tr>
<tr>
<td>$e := \text{mem}[j+8]$</td>
<td></td>
</tr>
<tr>
<td>$m := \text{mem}[j+16]$</td>
<td></td>
</tr>
<tr>
<td>$j' := \text{mem}[f]$</td>
<td></td>
</tr>
<tr>
<td>$d := e + 8$</td>
<td></td>
</tr>
<tr>
<td>$k' := m + 4$</td>
<td></td>
</tr>
</tbody>
</table>

LIVE-OUT: d k' j'
Example as basic block: A 3-coloring of the graph

The two assignments of k (resp. j) can be placed in two different registers.

(Appel, pp. 237)
Example as a loop: 3 Registers are enough!

LIVE-IN: k j

\[g := \text{mem}[j+12] \]
\[h := k - 1 \]
\[f := g + h \]
\[e := \text{mem}[j+8] \]
\[m := \text{mem}[j+16] \]
\[b := \text{mem}[f] \]
\[c := e + 8 \]
\[d := c \]
\[k := m + 4 \]
\[j := b \]

LIVE-OUT: d k j

\[m \]
\[f \]
\[h \]
\[g \]
\[e \]
\[b \]
\[c \]
\[d \]
\[k \]
\[j \]
Example as a loop: 3 Registers are enough!

\[
\begin{align*}
g &:= \text{mem}[j+12] \\
h &:= k - 1 \\
f &:= g + h \\
e &:= \text{mem}[j+8] \\
m &:= \text{mem}[j+16] \\
b &:= \text{mem}[f] \\
d &:= e + 8 \\
k &:= m + 4
\end{align*}
\]

LIVE-OUT: d k j
Example as a loop: 3 Registers are enough!

<table>
<thead>
<tr>
<th>LIVE-IN: k j</th>
</tr>
</thead>
<tbody>
<tr>
<td>g := mem[j+12]</td>
</tr>
<tr>
<td>h := k -1</td>
</tr>
<tr>
<td>f := g + h</td>
</tr>
<tr>
<td>e := mem[j+8]</td>
</tr>
<tr>
<td>m := mem[j+16]</td>
</tr>
<tr>
<td>j := mem[f]</td>
</tr>
<tr>
<td>d := e + 8</td>
</tr>
<tr>
<td>k := m + 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LIVE-OUT: d k j</th>
</tr>
</thead>
</table>

```
\[
\begin{align*}
g &:= \text{mem}[j+12] \\
h &:= k -1 \\
f &:= g + h \\
e &:= \text{mem}[j+8] \\
m &:= \text{mem}[j+16] \\
j &:= \text{mem}[f] \\
d &:= e + 8 \\
k &:= m + 4 \\
d &\quad\text{LIVE-OUT: d  k  j}
\end{align*}
\]
Example as a loop: 3 Registers are enough!

<table>
<thead>
<tr>
<th>LIVE-IN: k j</th>
</tr>
</thead>
<tbody>
<tr>
<td>g := mem[j+12]</td>
</tr>
<tr>
<td>h := k -1</td>
</tr>
<tr>
<td>f := g + h</td>
</tr>
<tr>
<td>j' := j</td>
</tr>
<tr>
<td>f' := f</td>
</tr>
<tr>
<td>e := mem[j'+8]</td>
</tr>
<tr>
<td>m := mem[j'+16]</td>
</tr>
<tr>
<td>j := mem[f']</td>
</tr>
<tr>
<td>d := e + 8</td>
</tr>
<tr>
<td>k := m + 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LIVE-OUT: d k j</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
</tr>
<tr>
<td>k</td>
</tr>
<tr>
<td>j</td>
</tr>
</tbody>
</table>
Outline

1. Code representations

2. Out-of-SSA translation and SSA properties

3. Register allocation
   - Register allocation formulation
   - Example: iterated register coalescing
   - Determining if $k$ registers are enough
Where did the NP-completeness disappear?

Chaitin et al.
Can each variable be mapped to one of the $k$ registers so that simultaneously-live variables are mapped to different registers?

NP-complete to decide.

SSA-based register allocation
Can the (chordal) interference graph be colored with $k$ colors?

Can be checked in linear time.

So a proof that $P = NP$?
Where did the NP-completeness disappear?

Chaitin et al.
Can each variable be mapped to one of the $k$ registers so that simultaneously-live variables are mapped to different registers?

NP-complete to decide.

SSA-based register allocation
Can the (chordal) interference graph be colored with $k$ colors?

Can be checked in linear time.

So a proof that $P = NP$? Of course not. But a new track to analyze register allocation subtleties, in particular the impact of:

- Strictness.
- Live-range splitting.
- Critical edges.
- Parallel copies (e.g., swap).
- Instruction types (ISA).