
Code representations
Out-of-SSA translation and SSA properties

Register allocation

Register allocation formulation
Example: iterated register coalescing
Determining if k registers are enough

Outline

1 Code representations

2 Out-of-SSA translation and SSA properties

3 Register allocation
Register allocation formulation
Example: iterated register coalescing
Determining if k registers are enough

Alain Darte Compilation avancée et optimisation de programmes



Code representations
Out-of-SSA translation and SSA properties

Register allocation

Register allocation formulation
Example: iterated register coalescing
Determining if k registers are enough

Where did the NP-completeness disappear?

Chaitin et al.

Can each variable be mapped to one of the k registers so that
simultaneously-live variables are mapped to di�erent registers?

NP-complete to decide.

SSA-based register allocation

Can the (chordal) interference graph be colored with k colors?
Can be checked in linear time.

So a proof that P = NP?

Of course not. But a new track to
analyze register allocation subtleties, in particular the impact of:

- Strictness.
- Live-range splitting.
- Critical edges.

- Parallel copies (e.g., swap).
- Instruction types (ISA).

Alain Darte Compilation avancée et optimisation de programmes



Code representations
Out-of-SSA translation and SSA properties

Register allocation

Register allocation formulation
Example: iterated register coalescing
Determining if k registers are enough

Where did the NP-completeness disappear?

Chaitin et al.

Can each variable be mapped to one of the k registers so that
simultaneously-live variables are mapped to di�erent registers?

NP-complete to decide.

SSA-based register allocation

Can the (chordal) interference graph be colored with k colors?
Can be checked in linear time.

So a proof that P = NP? Of course not. But a new track to
analyze register allocation subtleties, in particular the impact of:

- Strictness.
- Live-range splitting.
- Critical edges.

- Parallel copies (e.g., swap).
- Instruction types (ISA).

Alain Darte Compilation avancée et optimisation de programmes



Code representations
Out-of-SSA translation and SSA properties

Register allocation

Register allocation formulation
Example: iterated register coalescing
Determining if k registers are enough

Interpretation of original proof

switch
a

c d

b

x

a

c d

b

b = 2

x = a + b

a = 3

c = 4

x = a + c

b = 5

x = b + d x = c + d

return a + x return b + x return c + x return d + x

Ba Bb Bc Bd

Ba,c Bc,dBa,b Bb,d

a = 1

d = 6

c = 7

d = 8

NP-complete if each variable is mapped to a unique register.

Extension 1: NP-complete with live-range splitting but critical edges.

Alain Darte Compilation avancée et optimisation de programmes



Code representations
Out-of-SSA translation and SSA properties

Register allocation

Register allocation formulation
Example: iterated register coalescing
Determining if k registers are enough

Interpretation of original proof

switch
a

c d

b

x

a

c d

b

b = 2

x = a + b

a = 3

c = 4

x = a + c

b = 5

x = b + d x = c + d

return a + x return b + x return c + x return d + x

Ba Bb Bc Bd

Ba,c Bc,dBa,b Bb,d

a = 1

d = 6

c = 7

d = 8

NP-complete if each variable is mapped to a unique register.

Extension 1: NP-complete with live-range splitting but critical edges.

Alain Darte Compilation avancée et optimisation de programmes



Code representations
Out-of-SSA translation and SSA properties

Register allocation

Register allocation formulation
Example: iterated register coalescing
Determining if k registers are enough

Interpretation of original proof

a

c d

b

b = 2

x = a + b

a = 3

c = 4

x = a + c

b = 5

x = b + d x = c + d

return a + x return b + x return c + x return d + x

switch

Ba Bb Bc Bd

Ba,c Bc,dBa,b Bb,d

a = 1

d = 6

c = 7

d = 8

a

c d

b

x

NP-complete if each variable is mapped to a unique register.

* But ignore the possibility of using register-to-register moves!

Extension 1: NP-complete with live-range splitting but critical edges.

Alain Darte Compilation avancée et optimisation de programmes



Code representations
Out-of-SSA translation and SSA properties

Register allocation

Register allocation formulation
Example: iterated register coalescing
Determining if k registers are enough

Interpretation of original proof

a

c d

b

b = 2

x = a + b

a = 3

c = 4

x = a + c

b = 5

x = b + d x = c + d

return a + x return b + x return c + x return d + x

switch

Ba Bb Bc Bd

Ba,c Bc,dBa,b Bb,d

a = 1

d = 6

c = 7

d = 8

a

c d

b

x

NP-complete if each variable is mapped to a unique register.

Extension 1: NP-complete with live-range splitting but critical edges.

Alain Darte Compilation avancée et optimisation de programmes



Code representations
Out-of-SSA translation and SSA properties

Register allocation

Register allocation formulation
Example: iterated register coalescing
Determining if k registers are enough

Interpretation of original proof

switch
a

c d

b

x

a

c d

b

b = 2

x = a + b

a = 3

c = 4

x = a + c

b = 5

x = b + d x = c + d

return a + x return b + x return c + x return d + x

Ba Bb Bc Bd

Ba,c Bc,dBa,b Bb,d

a = 1

d = 6

c = 7

d = 8

NP-complete if each variable is mapped to a unique register.

Extension 1: NP-complete with live-range splitting but critical edges.

Alain Darte Compilation avancée et optimisation de programmes



Code representations
Out-of-SSA translation and SSA properties

Register allocation

Register allocation formulation
Example: iterated register coalescing
Determining if k registers are enough

Interpretation of original proof

b = 2

x = a + b

a = 3

c = 4

x = a + c

return a + x return b + x

switch

Ba

Ba,cBa,b

a = 1

a

c d

b

x

Bb

a

c d

b

NP-complete if each variable is mapped to a unique register.

Extension 1: NP-complete with live-range splitting but critical edges.

Alain Darte Compilation avancée et optimisation de programmes



Code representations
Out-of-SSA translation and SSA properties

Register allocation

Register allocation formulation
Example: iterated register coalescing
Determining if k registers are enough

Interpretation of original proof

a

c d

b

b = 2

x = a + b

a = 3

c = 4

x = a + c

b = 5

x = b + d x = c + d

return a + x return b + x return c + x return d + x

switch

Ba

Ba,c Bc,dBa,b Bb,d

a = 1

d = 6

c = 7

d = 8

a

c d

b

x

Bb

Bc

Bd

NP-complete if each variable is mapped to a unique register.

Extension 1: NP-complete with live-range splitting but critical edges.
Extension 2: Same if no critical edge but program is not strict.

Note: making a program strict (e.g., with SSA) can increase register pressure.

Alain Darte Compilation avancée et optimisation de programmes



Code representations
Out-of-SSA translation and SSA properties

Register allocation

Register allocation formulation
Example: iterated register coalescing
Determining if k registers are enough

Useless proof if blocks & moves can be inserted!

switch

Ba,c Bc,dBa,b Bb,d

a = 3

c = 4

b = 5

d = 6

c = 7

d = 8

x = a + c x = b + d x = c + d

Ba Bb Bc Bd

return a + x return b + x return c + x return d + x

c = c d = d d = db = b

a = 1

b = 2

x = a + b

Alain Darte Compilation avancée et optimisation de programmes



Code representations
Out-of-SSA translation and SSA properties

Register allocation

Register allocation formulation
Example: iterated register coalescing
Determining if k registers are enough

Strict program, swaps, and edge splitting allowed

Maxlive = maximal number of distinct variables simultaneously live.

One needs Maxlive ≤ k , so spill to get Maxlive ≤ k .

Split critical edges (= add basic blocks).

Color each program point independently with ≤ Maxlive colors.

Use permutations to match colors (thanks to swaps).

* correct assignment. . . but with many many moves.

More promising approaches:

Basic block coloring (interval graph).

SSA-like coloring (chordal graph).

Guided live-range/edge splitting + permutation motion.

Alain Darte Compilation avancée et optimisation de programmes



Code representations
Out-of-SSA translation and SSA properties

Register allocation

Register allocation formulation
Example: iterated register coalescing
Determining if k registers are enough

Strict program, swaps, and edge splitting allowed

Maxlive = maximal number of distinct variables simultaneously live.

One needs Maxlive ≤ k , so spill to get Maxlive ≤ k .

Split critical edges (= add basic blocks).

Color each program point independently with ≤ Maxlive colors.

Use permutations to match colors (thanks to swaps).

* correct assignment. . . but with many many moves.

More promising approaches:

Basic block coloring (interval graph).

SSA-like coloring (chordal graph).

Guided live-range/edge splitting + permutation motion.

Alain Darte Compilation avancée et optimisation de programmes



Code representations
Out-of-SSA translation and SSA properties

Register allocation

Register allocation formulation
Example: iterated register coalescing
Determining if k registers are enough

What if swaps are not available?

Pereira&Palsberg question (fossacs'06)

} Can we do polynomial-time register allocation by �rst transforming
the program to SSA form, then doing linear-time register allocation for
the SSA form, and �nally doing SSA elimination while maintaining the
mapping from temporaries to registers? ~

* NP-complete if swaps are not available.

Reduction from k-coloring circular-arc graph.

Make sure k variables are live on the back edge (where SSA
will split) so that a non-trivial permutation is impossible.

Note: polynomial for a �xed k . (See Garey, Johnson, Miller, Papadimitriou.)

Alain Darte Compilation avancée et optimisation de programmes



Code representations
Out-of-SSA translation and SSA properties

Register allocation

Register allocation formulation
Example: iterated register coalescing
Determining if k registers are enough

If swaps not available: variant of Chaitin et al.

yd = c + xc,d
xd = 8

a c

b d

c

db

a

xa,b xc,d

xa,c

xb,d

xb

xc

xd

yc

ydyb

xa

ya

switch

Ba,c Bc,dBa,b Bb,d

Ba Bb Bc Bd

return xb + yb + breturn xa + ya + a

xc,d = c + dxb,d = b + dxa,c = a + cxa,b = a + b

b = 2

a = 1

c = 4

a = 3

d = 6

b = 5

d = 8

c = 7

return xc + yc + c return xd + yd + d

ya = c + xa,c
xb = 3

yc = d + xc,d

yb = a + xa,b
xc = 6

yc = a + xa,c
xd = 7

xa = 2

ya = b + xa,b
xa = 1 xc = 4

xb = 5

yb = d + xb,d

yd = b + xb,d

register pressure = 3
on all edges

NP-complete if moves on entry/exit of blocks only, even for k = 3.

Alain Darte Compilation avancée et optimisation de programmes



Code representations
Out-of-SSA translation and SSA properties

Register allocation

Register allocation formulation
Example: iterated register coalescing
Determining if k registers are enough

If swaps not available: variant of Chaitin et al.

yd = c + xc,d
xd = 8

a c

b d

c

db

a

xa,b xc,d

xa,c

xb,d

xb

xc

xd

yc

ydyb

xa

ya

switch

Ba,c Bc,dBa,b Bb,d

Ba Bb Bc Bd

return xb + yb + breturn xa + ya + a

xc,d = c + dxb,d = b + dxa,c = a + cxa,b = a + b

b = 2

a = 1

c = 4

a = 3

d = 6

b = 5

d = 8

c = 7

return xc + yc + c return xd + yd + d

ya = c + xa,c
xb = 3

yc = d + xc,d

yb = a + xa,b
xc = 6

yc = a + xa,c
xd = 7

xa = 2

ya = b + xa,b
xa = 1 xc = 4

xb = 5

yb = d + xb,d

yd = b + xb,d

register pressure = 3
on all edges

NP-complete if moves on entry/exit of blocks only, even for k = 3.

Alain Darte Compilation avancée et optimisation de programmes



Code representations
Out-of-SSA translation and SSA properties

Register allocation

Register allocation formulation
Example: iterated register coalescing
Determining if k registers are enough

If swaps are not available, what can we conclude?

NP-complete if moves on entry/exit of basic blocks only.

* But why not inserting moves in the middle of a block?

NP-complete if instructions can de�ne two variables simultaneously.

* But, often, either swaps are available or such instructions have
low register pressure (ex: function call, 64 bits load).

Polynomial if instructions have only one result!

So, NP-completeness did not disappear, it was simply not there! The
proof of Chaitin et al. does not say anything about register allocation
with live-range splitting and critical edge splitting.

Alain Darte Compilation avancée et optimisation de programmes



Code representations
Out-of-SSA translation and SSA properties

Register allocation

Register allocation formulation
Example: iterated register coalescing
Determining if k registers are enough

If swaps are not available, what can we conclude?

NP-complete if moves on entry/exit of basic blocks only.

* But why not inserting moves in the middle of a block?

NP-complete if instructions can de�ne two variables simultaneously.

* But, often, either swaps are available or such instructions have
low register pressure (ex: function call, 64 bits load).

Polynomial if instructions have only one result!

So, NP-completeness did not disappear, it was simply not there! The
proof of Chaitin et al. does not say anything about register allocation
with live-range splitting and critical edge splitting.

Alain Darte Compilation avancée et optimisation de programmes



Code representations
Out-of-SSA translation and SSA properties

Register allocation

Register allocation formulation
Example: iterated register coalescing
Determining if k registers are enough

If swaps are not available, what can we conclude?

NP-complete if moves on entry/exit of basic blocks only.

* But why not inserting moves in the middle of a block?

NP-complete if instructions can de�ne two variables simultaneously.

Proof: change
ya = b + xa,b
xa = 1

into (xa, ya) = f (b, xa,b) .

* But, often, either swaps are available or such instructions have
low register pressure (ex: function call, 64 bits load).
Polynomial if instructions have only one result!

So, NP-completeness did not disappear, it was simply not there! The
proof of Chaitin et al. does not say anything about register allocation
with live-range splitting and critical edge splitting.

Alain Darte Compilation avancée et optimisation de programmes



Code representations
Out-of-SSA translation and SSA properties

Register allocation

Register allocation formulation
Example: iterated register coalescing
Determining if k registers are enough

If swaps are not available, what can we conclude?

NP-complete if moves on entry/exit of basic blocks only.

* But why not inserting moves in the middle of a block?

NP-complete if instructions can de�ne two variables simultaneously.

* But, often, either swaps are available or such instructions have
low register pressure (ex: function call, 64 bits load).

Polynomial if instructions have only one result!

So, NP-completeness did not disappear, it was simply not there! The
proof of Chaitin et al. does not say anything about register allocation
with live-range splitting and critical edge splitting.

Alain Darte Compilation avancée et optimisation de programmes



Code representations
Out-of-SSA translation and SSA properties

Register allocation

Register allocation formulation
Example: iterated register coalescing
Determining if k registers are enough

If swaps are not available, what can we conclude?

NP-complete if moves on entry/exit of basic blocks only.

* But why not inserting moves in the middle of a block?

NP-complete if instructions can de�ne two variables simultaneously.

* But, often, either swaps are available or such instructions have
low register pressure (ex: function call, 64 bits load).

Polynomial if instructions have only one result!

Proof: greedy traversal (backwards and forwards) along control �ow
where register pressure = k .

So, NP-completeness did not disappear, it was simply not there! The
proof of Chaitin et al. does not say anything about register allocation
with live-range splitting and critical edge splitting.

Alain Darte Compilation avancée et optimisation de programmes



Code representations
Out-of-SSA translation and SSA properties

Register allocation

Register allocation formulation
Example: iterated register coalescing
Determining if k registers are enough

If swaps are not available, what can we conclude?

NP-complete if moves on entry/exit of basic blocks only.

* But why not inserting moves in the middle of a block?

NP-complete if instructions can de�ne two variables simultaneously.

* But, often, either swaps are available or such instructions have
low register pressure (ex: function call, 64 bits load).

Polynomial if instructions have only one result!

So, NP-completeness did not disappear, it was simply not there! The
proof of Chaitin et al. does not say anything about register allocation
with live-range splitting and critical edge splitting.

Alain Darte Compilation avancée et optimisation de programmes



Code representations
Out-of-SSA translation and SSA properties

Register allocation

Register allocation formulation
Example: iterated register coalescing
Determining if k registers are enough

On the complexity of register allocation

* If moves are more suitable than loads and stores, it is in general
easy to decide if some spilling is necessary or not.

Spill test

Chaitin (degree ≥ k) Ù Briggs (potential spill) Ù Appel-George
(iterated) Ù Biased coloring Ù Optimal test

But register allocation remains di�cult:

When critical edges cannot be split or code is not strict.
But compilers often go through strict SSA and almost always
split critical edges. . .

Because optimal spilling is hard

Because optimal coalescing is hard

Alain Darte Compilation avancée et optimisation de programmes



Code representations
Out-of-SSA translation and SSA properties

Register allocation

Register allocation formulation
Example: iterated register coalescing
Determining if k registers are enough

Summary on register allocation complexity

Complexity has to be considered with care: determining if
spilling is necessary is easier than one can think.

Interference graphs of SSA-form programs are chordal.

Optimal register assignment in linear time (tree scan).

Do not need to construct interference graph.

Use live-range splitting to handle register constraints.

Register allocator without iteration (i.e., 2 decoupled phases):

Lower pressure Color/coalesce Φ-Implem.

Alain Darte Compilation avancée et optimisation de programmes



Code representations
Out-of-SSA translation and SSA properties

Register allocation

Register allocation formulation
Example: iterated register coalescing
Determining if k registers are enough

If moves can be anywhere, the proof is broken.

yd = c + xc,d
xd = 8

switch

Ba,c Bc,dBa,b Bb,d

Ba Bb Bc Bd

return xb + yb + breturn xa + ya + a

xc,d = c + dxb,d = b + dxa,c = a + cxa,b = a + b

b = 2

a = 1

c = 4

a = 3

d = 6

b = 5

d = 8

c = 7

return xc + yc + c return xd + yd + d

ya = c + xa,c
xb = 3

yc = d + xc,d

yb = a + xa,b
xc = 6

yc = a + xa,c
xd = 7

xa = 2

ya = b + xa,b
xa = 1 xc = 4

xb = 5

yb = d + xb,d

yd = b + xb,d

move red to blue

Alain Darte Compilation avancée et optimisation de programmes


