The polyhedral model
 Catalog of loop transformations

 Systems of uniform recurrence equations
 Detection of parallel loops

 Multi-dimensional scheduling and applications
 Multi-dimensional ranking and worst-case execution time

# Outline

### The polyhedral model

Systems of uniform recurrence equations

### Multi-dimensional scheduling and applications

- Catalog of loop transformations
- Detection of parallel loops
- Multi-dimensional ranking and worst-case execution time

Catalog of loop transformations Detection of parallel loops Multi-dimensional ranking and worst-case execution time

**DO** 

# Loop distribution and loop fusion

| DO i=1, N<br>a(i) = b(i) | Loop distribution | a(i) = b(i)<br>ENDDO   |
|--------------------------|-------------------|------------------------|
| d(i) = a(i-1)            | $\rightarrow$     | DO i=1, N              |
| ENDDO                    | Loop fusion       | d(i) = a(i-1)<br>ENDDO |

#### Main consequences

- Loop distribution used to parallelize/vectorize loops.
- Loop fusion increases the granularity of computations.
- Loop fusion reduces loop overhead.
- Loop fusion usually improves spatial & temporal data locality.
- Loop fusion may enable array scalarization.

# Loop shifting

DO i=1, N a(i) = b(i) d(i) = a(i-1)ENDDO

Loop shifting

Catalog of loop transformations Detection of parallel loops Multi-dimensional ranking and worst-case execution time

> DO i=0, N IF (i > 0) THEN a(i) = b(i)IF (i < N) THEN d(i+1) = a(i)ENDDO

#### Main consequences

- Similar to software pipelining.
- Creates prelude/postlude or introduces if statements.
- Can be used to align accesses and enable loop fusion.
- Particularly suitable to handle constant dependence distances.

Catalog of loop transformations Detection of parallel loops Multi-dimensional ranking and worst-case execution time

# Loop peeling

| DO i=0, N<br>IF (i > 0) THEN<br>a(i) = b(i)<br>IF (i < N) THEN<br>d(i+1) = a(i)<br>ENDDO | Loop peeling<br>→<br>Loop sinking<br>← | d(1) = a(0) DO i=1, N-1 a(i) = b(i) d(i+1) = a(i) ENDDO a(N) = b(N) |
|------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------|
| ENDDO                                                                                    | $\leftarrow$                           | a(N)=b(N)                                                           |

Mais consequences

- Peeling removes a few iterations to make code simpler.
- Peeling extracts iterations with a specific behavior to enable more transformations.
- Peeling reduces the iteration domain (range of loop counter).
- Sinking is used to make loops perfectly nested.

Catalog of loop transformations Detection of parallel loops Multi-dimensional ranking and worst-case execution time

# Partial or total loop unrolling

DO i=1, 10 a(i) = b(i)d(i) = a(i-1)ENDDO

Unrolling by 2

DO i=1. 10. 2

#### Main consequences

- Replicates instructions to improve schedule & resource usage.
- Can be used for array scalarization.
- Increase code size.
- Total loop unrolling flattens the loops and changes structure.

Catalog of loop transformations Detection of parallel loops Multi-dimensional ranking and worst-case execution time

# Strip mining, loop coalescing



#### Main consequences

- Strip-mining performs parametric loop unrolling.
- It changes the structure and creates blocks of computations.
- It can be used as a preliminary step for tiling.
- Loop linearization can reduce the control of loops.
- It also reduces the problem dimension.

Catalog of loop transformations Detection of parallel loops Multi-dimensional ranking and worst-case execution time

# Loop interchange

 $\begin{array}{c|c} \text{Loop interchange: } (i,j) \mapsto (j,i). \\ \text{DO i=1, N} & \text{Loop interchange} \\ \text{DO j=1, i} & \longleftrightarrow & \text{DO j=1, N} \\ a(i,j+1) = a(i,j) + 1 & \text{DO i=j, N} \\ \text{ENDDO} & \text{ENDDO} \\ \text{ENDDO} & \text{ENDDO} \end{array}$ 

### Main consequences

- Can enable loop parallelism.
- Basis of loop tiling.
- Changes order of memory accesses and thus data locality.
- Needs bounds computations as in  $\sum_{i=1}^{n} \sum_{i=1}^{i} S_{i,j} = \sum_{i=1}^{n} \sum_{i=i}^{n} S_{i,j}$ .

Loop skewing, loop reversal, unimodular transformation

Loop reversal:  $i \mapsto -i$ , loop executed in opposite order.

Catalog of loop transformations Detection of parallel loops Multi-dimensional ranking and worst-case execution time

In practice, need to combine all. Ex: HLS with C2H Altera

Optimize DDR accesses for bandwidth-bound accelerators.

- Use tiling for data reuse and to enable burst communication.
- Use fine-grain software pipelining to pipeline DDR requests.
- Use double buffering to hide DDR latencies.
- Use coarse-grain software pipelining to hide computations.



31/54

Catalog of loop transformations Detection of parallel loops Multi-dimensional ranking and worst-case execution time

In practice, need to combine all. Ex: HLS with C2H Altera

Optimize DDR accesses for bandwidth-bound accelerators.

- Use tiling for data reuse and to enable burst communication.
- Use fine-grain software pipelining to pipeline DDR requests.
- Use double buffering to hide DDR latencies.
- Use coarse-grain software pipelining to hide computations.



Catalog of loop transformations Detection of parallel loops Multi-dimensional ranking and worst-case execution time

# Outline

### The polyhedral model

- Paul Feautrier's static control programs
- Analyses, optimizations, and tools
- The polyhedral model is...a model
- 2 Systems of uniform recurrence equations
  - Model and problems
  - Computability of a system
  - Scheduling of a system

### Multi-dimensional scheduling and applications

- Catalog of loop transformations
- Detection of parallel loops
- Multi-dimensional ranking and worst-case execution time

## Loop terminology

Fortran D0 loops:

Catalog of loop transformations Detection of parallel loops Multi-dimensional ranking and worst-case execution time

- Nested loops, static control.
- Iteration domain and vector.
- Sequential order  $\leq_{seq}$ .
- Dependences:
  - R/W, W/R, W/R.

$$S(I) <_{seq} T(J) \Leftrightarrow (I|_d <_{lex} J|_d)$$
 or  $(I|_d = J|_d$  and  $S <_{txt} J)$ 

- EDG: dependence graph between operations  $S(I) \Rightarrow T(J)$ .
- RDG: dependence graph between statements  $S \rightarrow T$ .
- ADG: over-approximation, if  $S(I) \Rightarrow T(J)$ , then  $S \to T$ .

Catalog of loop transformations Detection of parallel loops Multi-dimensional ranking and worst-case execution time

## Representation of dependences

- Pair set (exact dependences): R<sub>S,T</sub> = {(I, J) | S(I) ⇒ T(J)}, in particular affine dependence I = f(J) if possible.
- Distance set:  $E_{S,T} = \{(J-I) \mid S(I) \Rightarrow T(J)\}.$
- Over-approximations  $E'_{S,T}$  such that  $E_{S,T} \subseteq E'_{S,T}$ .

Distance set:  

$$E = \left\{ \begin{pmatrix} i - j \\ j - i \end{pmatrix} \mid i - j \ge 1, \ 1 \le i, \ j \le N \right\}$$
Polyhedral approximation:  

$$E' = \left\{ \begin{pmatrix} 1 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \end{pmatrix} \mid \lambda \ge 0 \right\}$$
Direction vectors:  

$$E' = \begin{pmatrix} + \\ - \end{pmatrix} = \left\{ \begin{pmatrix} 1 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 0 \\ -1 \end{pmatrix} \mid \lambda, \ \mu \ge 0 \right\}$$
Level:  

$$\widehat{\nabla} = \begin{pmatrix} + \\ - \end{pmatrix} = \left\{ \begin{pmatrix} 1 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 0 \\ -1 \end{pmatrix} \mid \lambda, \ \mu \ge 0 \right\}$$

 $E' = \textcircled{1} = \begin{pmatrix} + \\ * \end{pmatrix} = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 0 \\ 1 \end{pmatrix} \middle| \lambda \ge 0 \right\}$ 

Catalog of loop transformations Detection of parallel loops Multi-dimensional ranking and worst-case execution time

## Uniformization of dependences: example

 $a(i,j) \Rightarrow a(i-1,N)$ Dep. distance (1, j - N).

イロト 不得下 イヨト イヨト 二日

35 / 54

Catalog of loop transformations Detection of parallel loops Multi-dimensional ranking and worst-case execution time

## Uniformization of dependences: example

$$extsf{a(i,j)} \Rightarrow extsf{a(i-1,N)} \ extsf{Dep.} extsf{ distance } (1,j- extsf{N}).$$

Direction vector 
$$(1, 0-) = (1, 0) + k(0, -1), k \ge 0$$
.  
Also  $X.(1, 0-) \ge 1 \Rightarrow X.(1, 0) \ge 1$  and  $X.(0, -1) \ge 0$ .



No parallelism (d = 2). Code appears (here it is) purely sequential.

## Emulation of dependence polyhedra

For a (self) dependence polyhedron  $\mathcal{P}$ , with vertex v and ray r:

 $\forall p \in \mathcal{P} X. p \ge 1 \Leftrightarrow \forall \lambda \ge 0 X. (v + \lambda r) \ge 1 \Leftrightarrow X. v \ge 1 \text{ and } X. r \ge 0$ 

Emulate vertices, rays, and lines.

#### Example with direction vectors:

```
 \begin{array}{l} \text{DO i= 1, N} \\ \text{DO j = 1, N} \\ \text{DO k = 1, j} \\ \text{a(i,j,k) = c(i,j,k-1) + 1} \\ \text{b(i,j,k) = a(i-1,j+i,k) + b(i,j-1,k)} \\ \text{c(i,j,k+1) = c(i,j,k) + b(i,j-1,k+i)} \\ \text{+ a(i,j-k,k+1)} \\ \text{ENDDO} \\ \text{ENDDO} \\ \text{ENDDO} \\ \text{ENDDO} \end{array}
```



Catalog of loop transformations Detection of parallel loops Multi-dimensional ranking and worst-case execution time

0

## Second example: dependence graphs





Initial RDG.

Catalog of loop transformations Detection of parallel loops Multi-dimensional ranking and worst-case execution time

## Second example: G and G'



Catalog of loop transformations Detection of parallel loops Multi-dimensional ranking and worst-case execution time

## Second exemple: parallel code generation

```
DOSEQ i=1, n
  DOSEQ j=1, n /* scheduling (2i, j) */
    DOPAR k=1 i
      b(i,j,k) = a(i-1,j+i,k) + b(i,j-1,k)
    FNDDOPAR
  ENDDOSEQ
  DOSEQ k = 1, n+1
    IF (k < n) THEN /* scheduling (2i+1, 2k) */
      DOPAR i=k, n
        a(i,j,k) = c(i,j,k-1) + 1
      FNDDOPAR
    IF (k \geq 2) THEN /* scheduling (2i+1, 2k+3) */
      DOPAR j=k-1, n
        c(i,j,k) = c(i,j,k-1) + b(i,j-1,k+i-1) + a(i,j-k+1,k)
      ENDDOPAR
  ENDDOSEQ
ENDDOSEQ
```

# Allen-(Callahan)-Kennedy (1987): loop distribution

AK(G, k):

- Remove from G all edges of level < k.
- Compute  $G_1, \ldots, G_s$  the s SCCs of G in topological order.
  - If G<sub>i</sub> has a single statement S, with no edge, generate DOPAR loops in all remaining dimensions, and generate code for S.
  - Otherwise:
    - Generate DOPAR loops from level k to level l − 1, and a DOSEQ loop for level l, where l is the minimal level in G<sub>i</sub>.
    - call AK(G<sub>i</sub>, l+1). /\* d<sub>S</sub> sequential loops for statement S \*/

▶ Variant of (dual of) KMW with DOPAR as high as possible.

# Allen-(Callahan)-Kennedy (1987): loop distribution

AK(G, k):

- Remove from G all edges of level < k.
- Compute  $G_1, \ldots, G_s$  the s SCCs of G in topological order.
  - If G<sub>i</sub> has a single statement S, with no edge, generate DOPAR loops in all remaining dimensions, and generate code for S.
  - Otherwise:
    - Generate DOPAR loops from level k to level l − 1, and a DOSEQ loop for level l, where l is the minimal level in G<sub>i</sub>.
    - call AK(G<sub>i</sub>, l+1). /\* d<sub>S</sub> sequential loops for statement S \*/

▶ Variant of (dual of) KMW with DOPAR as high as possible.

#### Theorem 1 (Optimality of AK for dependence levels)

Nested loops  $\mathcal{L}$ , RDG G with levels. One can build nested loops  $\mathcal{L}'$ , with same structure and same RDG, with bounds parameterized by N such that, for each SCC G<sub>i</sub> of G, there is a path in the EDG of  $\mathcal{L}'$  that visits each statement S of G<sub>i</sub>  $\Omega(N^{d_s})$  times.

## Darte-Vivien (1997): unimodular + shift + distribution

Boolean DV(G, k) /\* G uniformized graph, with virtual and actual nodes \*/

- Build G' generated by the zero-weight multi-cycles of G.
- Modify slightly G' (technical detail not explained here).
- Choose X (vector) and, for each S in G',  $\rho_S$  (scalar) s.t.:

$$\left\{ \begin{array}{l} \text{if } e = (u, v) \in G' \text{ or } u \text{ is virtual}, \ Xw(e) + \rho_v - \rho_u \geq 0 \\ \text{if } e \notin G' \text{ and } u \text{ is actual}, \ Xw(e) + \rho_v - \rho_u \geq 1 \end{array} \right.$$

For each actual node S of G let  $\rho_S^k = \rho_S$  and  $X_S^k = X$ .

- Compute  $G'_1, \ldots, G'_s$  the SCC of G' with  $\geq 1$  actual node:
  - If G' is empty or has only virtual nodes, return TRUE.
  - If G' is strongly connected with  $\geq 1$  actual node, return FALSE.

• Otherwise, return 
$$\bigwedge_{i=1}^{k} \mathsf{DV}(G'_i, k+1)$$
 ( $\bigwedge = \mathsf{logical AND}$ ).

# General affine multi-dimensional schedules

Affine dependences (or even relations): (S, I) depends on (T, J) if  $(I, J) \in \mathcal{D}_e$  where e = (T, S) and  $\mathcal{D}_e$  is a polyhedron.

- Look for schedule  $\sigma$  such that  $\sigma(T, J) <_{lex} \sigma(S, I)$  for all  $(I, J) \in \mathcal{D}_e$ . If  $\sigma$  is affine, use affine form of Farkas lemma. •
- Write σ(T, J) + ε<sub>e</sub> ≤ σ(S, I) with ε ≥ 0 and maximize the number of dependence edges e such that ε<sub>e</sub> ≥ 1.
- Remove edges e such that e<sub>e</sub> ≥ 1 and continue to get remaining dimensions multi-dimensional affine schedule.

To perform tiling, look for several dimensions (permutable loops) such that  $\sigma(S, I) - \sigma(T, J) \ge 0$  instead of  $\sigma(S, I) - \sigma(T, J) \ge 1$ .

## Loop parallelization: optimality w.r.t. dep. abstraction

- Lamport (1974): hyperplane method = skew + interchange.
- Allen-Kennedy (1987): loop distribution, optimal for levels.
- Wolf-Lam (1991): unimodular, optimal for direction vectors and one statement. Based on finding permutable loops.
- Darte-Vivien (1997): unimodular + shifting + distribution, optimal for polyhedral abstraction and perfectly nested loops. Finds permutable loops, too.
- Feautrier (1992): general affine scheduling, complete for affine dependences and affine transformations, but not optimal.
- Lim-Lam (1998): extension to coarse-grain parallelism, vague.
- Bondhugula-Ramanujam-Sadayappan (2008): improved extension to permutable loops, with locality optimization.

The polyhedral model Catalog of loop transformations Systems of uniform recurrence equations Multi-dimensional scheduling and applications Multi-dimensional ranking and worst-case execution time

# Outline

### The polyhedral model

- Paul Feautrier's static control programs
- Analyses, optimizations, and tools
- The polyhedral model is...a model
- 2 Systems of uniform recurrence equations
  - Model and problems
  - Computability of a system
  - Scheduling of a system

### Multi-dimensional scheduling and applications

- Catalog of loop transformations
- Detection of parallel loops
- Multi-dimensional ranking and worst-case execution time

Catalog of loop transformations Detection of parallel loops Multi-dimensional ranking and worst-case execution time

## Yet another application of SUREs: understand "iterations"

#### Fortran DO loops:

#### Uniform recurrence equations:

$$\forall p \in \{p = (i,j) \mid 1 \le i,j \le N\}$$

$$\begin{cases} a(i,j) = c(i,j-1) \\ b(i,j) = a(i-1,j) + b(i,j+1) \\ c(i,j) = a(i,j) + b(i,j) \end{cases}$$

#### C for and while loops:

45 / 54

The polyhedral model Systems of uniform recurrence equations Multi-dimensional scheduling and applications Structure difference of the polyhedral model Detection of parallel loops Multi-dimensional ranking and worst-case execution time

# Context: transforming WHILE loops into DO loops

#### Example of GCD of 2 polynomials

```
// expression expr, array A, r>0 integer.
da = 2r; db = 2r;
while (da >= r) {
   cond = (da >= db || A[expr] == 0);
   if (!cond) {
     tmp = db; db = da; da = tmp - 1;
   } else da = da - 1;
}
```

#### Hard to optimize for HLS tools:

- No loop unrolling possible.
- Limited software pipelining.
- No nested-loops optimization.
- No information for coarse-grain scheduling/pipelining.



 Need to bound the number of iterations. When feasible, proves program termination as by-product.

# Phase 1: build an integer interpreted automaton

#### Identify relevant variables:

• vector  $\vec{x} \in \mathbb{Z}^n$ , n = problem dimension.

Build RDG:

- control-flow graph and conditional transitions.
- express evolution of  $\vec{x}$  with affine relations, a bit more general than affine dependences.

Refine automaton (if desired):

- analysis of Booleans: better accuracy, higher complexity.
- simple-path compression: reduces complexity.
- multiple-paths summary: better accuracy, impacts complexity.

Sequential automaton similar to affine recurrence equations, with a different semantics: different relations express non-determinism.

## Phase 2: abstract interpretation to get "invariants"

Explicit dependences and schedule, but implicit iteration domains! Here, we need to prove  $db \ge r$ .  $\clubsuit$  Use abstract interpretation.



- Invariant = integer points in a polyhedron \$\mathcal{P}\_k\$: conservative approximation of reachable values for each control point \$k\$.
- Possibly infinite, parameterized by program inputs.

## Phase 3: ranking function to prove termination

Ranking function Mapping  $\sigma : \mathcal{K} \times \mathbb{Z}^n \to (\mathcal{W}, \preceq)$ , decreasing on each transition, where  $(\mathcal{W}, \preceq)$  is a well-founded set. Multi-dimensional rankings  $W = \mathbb{N}^p$  with lexicographic order. Affine ranking  $\sigma(k, \vec{x}) = A_k \cdot \vec{x} + \vec{b_k} \implies$  Farkas lemma.

Similar to multi-dimensional scheduling for loops, except:

- Higher dimension *n* (number of relevant variables).
- Flow not always lexico-positive **recurrence equations**.
- Hidden "counters" (number *p* of dimension of the ranking).

## Phase 3: ranking function to prove termination

Ranking function Mapping  $\sigma : \mathcal{K} \times \mathbb{Z}^n \to (\mathcal{W}, \preceq)$ , decreasing on each transition, where  $(\mathcal{W}, \preceq)$  is a well-founded set. Multi-dimensional rankings  $W = \mathbb{N}^p$  with lexicographic order. Affine ranking  $\sigma(k, \vec{x}) = A_k \cdot \vec{x} + \vec{b_k} \implies$  Farkas lemma.

Similar to multi-dimensional scheduling for loops, except:

- Higher dimension *n* (number of relevant variables).
- Flow not always lexico-positive **recurrence equations**.
- Hidden "counters" (number *p* of dimension of the ranking).



## Phase 4: bound on the number of program steps

Worst-case computational complexity (WCCC): maximum number of transitions fired by the automaton:

$$WCCC \leq \# \bigcup \sigma(k, \mathcal{P}_k) \leq \sum_k \# \sigma(k, \mathcal{P}_k)$$

Counting points in (images of) polyhedra: Ehrhart polynomials, projections, Smith form, union of polyhedra, etc.

<ロ > < 部 > < 言 > < 言 > 言 の < で 50 / 54

Catalog of loop transformations Detection of parallel loops Multi-dimensional ranking and worst-case execution time

# Alias-Darte-Feautrier-Gonnord (2010)

### Greedy algorithm

- i = 0; T = T, set of all transitions.
- While *T* is not empty do
  - Find a 1D affine function  $(X, \rho_S)$ , not increasing for any transitions, and decreasing for as many transitions as possible.
  - Let  $\sigma_i = X$ ; i = i + 1;
  - If no transition is decreasing, return FALSE.
  - Remove from T all decreasing transitions.
- d = i, return TRUE.

#### Theorem 7 (Completeness of greedy algorithm w.r.t. invariants)

If an affine interpreted automaton, with associated invariants, has a multi-dimensional affine ranking function, then the greedy algorithm generates one such ranking. Moreover, the dimension of the generated ranking is minimal. Multi-dimensional scheduling and applications

Multi-dimensional ranking and worst-case execution time

start

## Yet another example

| <pre>y = 0;<br/>x = m;<br/>while(x&gt;<br/>if(ind<br/>whil<br/>y+<br/>x;<br/>}<br/>y;<br/>}</pre> | >=0 && y<br>let()){<br>.e(y <=<br>++; | y>=0){<br><u>⊻y+</u><br>m && indet())                                             | $\begin{array}{c} 1 \leq 0 \\ 1 \leq 0 \\ \text{stop} \\ \text{true} \\ \text{true} \\ \begin{array}{c} 0 \leq x \land 0 \leq t \\ 0 \leq x \land 0 \leq t \\ 0 \leq x \land 0 \leq t \\ y := y - 1 \\ 0 \leq x \land 0 \leq t \\ y := y - 1 \\ 0 \leq x \land 0 \leq t \\ y := y - 1 \\ 0 \leq x \land 0 \leq t \\ y := y - 1 \\ 0 \leq x \land 0 \leq t \\ y := y - 1 \\ 0 \leq x \land 0 \leq t \\ y := y - 1 \\ 0 \leq x \land 0 \leq t \\ y := y - 1 \\ 0 \leq x \land 0 \leq t \\ y := y - 1 \\ 0 \leq x \land 0 \leq t \\ y := y - 1 \\ 0 \leq x \land 0 \leq t \\ y := y - 1 \\ 0 \leq x \land 0 \leq t \\ y := y - 1 \\ 0 \leq x \land 0 \leq t \\ y := y - 1 \\ 0 \leq x \land 0 \leq t \\ y := y - 1 \\ 0 \leq x \land 0 \leq t \\ y := y - 1 \\ 0 \leq x \land 0 \leq t \\ y := y - 1 \\ 0 \leq x \land 0 \leq t \\ y := y - 1 \\ 0 \leq x \land 0 \leq t \\ y := y - 1 \\ 0 \leq x \land 0 \leq t \\ y := y - 1 \\ 0 \leq x \land 0 \leq t \\ y := y - 1 \\ 0 \leq x \land 0 \leq t \\ y := y - 1 \\ 0 \leq x \land 0 \leq t \\ y := y - 1 \\ 0 \leq x \land 0 \leq t \\ 0 \leq$ |
|---------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                   | start                                 | $m \ge 0$                                                                         | 2m + 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                   | Ibl <sub>4</sub>                      | $m \ge x > 0, m \ge y > 0$                                                        | (2x+3, 3y+3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                   | Ibl <sub>5</sub>                      | $m \ge x \ge 0, m \ge y \ge 0$                                                    | (2x+3, 3y+2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                   | Ibl <sub>6</sub>                      | $m \ge x \ge 0, m+1 \ge y \ge 0$                                                  | 0 $(2x+2, m-y+1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                   | lbl <sub>10</sub>                     | $ \begin{cases}     m \ge x \ge -1, m+1 \ge y \ge \\     2m \ge x+y \end{cases} $ | $\geq 0$ (2x + 3, 3y + 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

 $WCCC = 5 + 7m + 4m^2$ 

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ э

52 / 54

# Link with Karp, Miller, Winograd's decomposition

 $\begin{array}{l} \mbox{Podelski-Rybalchenko} \ (2004) \sim \mbox{URE} \sim \mbox{Lamport} \ (1974). \\ \mbox{Bradley-Manna-Sipma} \ (2005) \sim \mbox{Wolf-Lam} \ (1991). \\ \mbox{Colón-Sipma} \ (2002) \ \mbox{between Wolf-Lam} \ \ \mbox{Darte-Vivien} \ (1997). \\ \mbox{Alias-Darte-Feautrier-Gonnord} \ (2010) \sim \ \mbox{Feautrier} \ (1992). \end{array}$ 

Gulwani (2009) very different but similar theoretical power.

- Iteration domains  $\Leftrightarrow$  Invariants.
- Loop counters  $\Leftrightarrow$  Integer variables involved in the control.
- Dependences: partial order  $\Leftrightarrow$  Evolution of variables.
- Scheduling functions ⇔ Ranking functions.
- Latency ⇔ Worst-case execution time (ideal).
- Parallelism  $\Leftrightarrow$  Non determinism.
- In both cases, algorithm depth = measure of sequentiality.

Catalog of loop transformations Detection of parallel loops Multi-dimensional ranking and worst-case execution time

#### Theorem 2 (Farkas' lemma)

Let A be a matrix and b a vector. There exists a vector  $x \ge 0$  with Ax = b if and only if  $yb \ge 0$  for each row vector y with  $yA \ge 0$ .

#### Theorem 3 (Duality)

Provided that both sets are nonempty:  $\max{cx \mid Ax \le b} = \min{yb \mid y \ge 0, yA = c}$ 

#### Theorem 4 (Complementary slackness)

If both optima are finite,  $x_0$  and  $y_0$  are optimum solutions if and only if they are feasible and  $y_0(b - Ax_0) = 0$ .

#### Theorem 5 (Affine form of Farkas' lemma)

If  $Ax \leq b$  is nonempty then  $cx \leq \delta$  for all x such that  $Ax \leq b$  if and only if there exists  $y \geq 0$  such that c = yA and  $yb \leq \delta$ .