
The polyhedral model
Systems of uniform recurrence equations

Multi-dimensional scheduling and applications

Catalog of loop transformations
Detection of parallel loops
Multi-dimensional ranking and worst-case execution time

Outline

1 The polyhedral model

2 Systems of uniform recurrence equations

3 Multi-dimensional scheduling and applications
Catalog of loop transformations
Detection of parallel loops
Multi-dimensional ranking and worst-case execution time

23 / 54

The polyhedral model
Systems of uniform recurrence equations

Multi-dimensional scheduling and applications

Catalog of loop transformations
Detection of parallel loops
Multi-dimensional ranking and worst-case execution time

Loop distribution and loop fusion

DO i=1, N
a(i) = b(i)
d(i) = a(i-1)

ENDDO

Loop distribution
−→
←−

Loop fusion

DO i=1, N
a(i) = b(i)

ENDDO
DO i=1, N

d(i) = a(i-1)
ENDDO

Main consequences

Loop distribution used to parallelize/vectorize loops.

Loop fusion increases the granularity of computations.

Loop fusion reduces loop overhead.

Loop fusion usually improves spatial & temporal data locality.

Loop fusion may enable array scalarization.

24 / 54

The polyhedral model
Systems of uniform recurrence equations

Multi-dimensional scheduling and applications

Catalog of loop transformations
Detection of parallel loops
Multi-dimensional ranking and worst-case execution time

Loop shifting

DO i=1, N
a(i) = b(i)
d(i) = a(i-1)

ENDDO

Loop shifting
←→

DO i=0, N
IF (i > 0) THEN

a(i) = b(i)
IF (i < N) THEN

d(i+1) = a(i)
ENDDO

Main consequences

Similar to software pipelining.

Creates prelude/postlude or introduces if statements.

Can be used to align accesses and enable loop fusion.

Particularly suitable to handle constant dependence distances.

25 / 54

The polyhedral model
Systems of uniform recurrence equations

Multi-dimensional scheduling and applications

Catalog of loop transformations
Detection of parallel loops
Multi-dimensional ranking and worst-case execution time

Loop peeling

DO i=0, N
IF (i > 0) THEN

a(i) = b(i)
IF (i < N) THEN

d(i+1) = a(i)
ENDDO

Loop peeling
−→

Loop sinking
←−

d(1) = a(0)
DO i=1, N-1

a(i) = b(i)
d(i+1) = a(i)

ENDDO
a(N) = b(N)

Mais consequences

Peeling removes a few iterations to make code simpler.

Peeling extracts iterations with a specific behavior to enable
more transformations.

Peeling reduces the iteration domain (range of loop counter).

Sinking is used to make loops perfectly nested.

26 / 54

The polyhedral model
Systems of uniform recurrence equations

Multi-dimensional scheduling and applications

Catalog of loop transformations
Detection of parallel loops
Multi-dimensional ranking and worst-case execution time

Partial or total loop unrolling

DO i=1, 10
a(i) = b(i)
d(i) = a(i-1)

ENDDO

Unrolling by 2
−→

DO i=1, 10, 2
a(i) = b(i)
d(i) = a(i-1)
a(i+1) = b(i+1)
d(i+1) = a(i)

ENDDO
Main consequences

Replicates instructions to improve schedule & resource usage.

Can be used for array scalarization.

Increase code size.

Total loop unrolling flattens the loops and changes structure.

27 / 54

The polyhedral model
Systems of uniform recurrence equations

Multi-dimensional scheduling and applications

Catalog of loop transformations
Detection of parallel loops
Multi-dimensional ranking and worst-case execution time

Strip mining, loop coalescing

DO i=1, N
a(i) = b(i) + c(i)

ENDDO

Strip mining
−→
←−

Loop linearization

DO Is=1, N, s
DO i=Is , min(N, Is+s-1)

a(i) = b(i) + c(i)
ENDDO

ENDDO
Main consequences

Strip-mining performs parametric loop unrolling.

It changes the structure and creates blocks of computations.

It can be used as a preliminary step for tiling.

Loop linearization can reduce the control of loops.

It also reduces the problem dimension.

28 / 54

The polyhedral model
Systems of uniform recurrence equations

Multi-dimensional scheduling and applications

Catalog of loop transformations
Detection of parallel loops
Multi-dimensional ranking and worst-case execution time

Loop interchange

Loop interchange: (i , j) 7→ (j , i).

DO i=1, N
DO j=1, i

a(i,j+1) = a(i,j) + 1
ENDDO

ENDDO

Loop interchange
←→

DO j=1, N
DO i=j, N

a(i,j+1) = a(i,j) + 1
ENDDO

ENDDO

Main consequences

Can enable loop parallelism.

Basis of loop tiling.

Changes order of memory accesses and thus data locality.

Needs bounds computations as in
n∑

i=1

i∑
j=1

Si ,j =
n∑

j=1

n∑
i=j

Si ,j .

29 / 54

The polyhedral model
Systems of uniform recurrence equations

Multi-dimensional scheduling and applications

Catalog of loop transformations
Detection of parallel loops
Multi-dimensional ranking and worst-case execution time

Loop skewing, loop reversal, unimodular transformation

Loop skewing: (i , j) 7→ (i , j + i), loop iterations in the same order.
DO i=1, N

DO j=1, N
a(i,j+1) = a(i,j) + 1

ENDDO
ENDDO

←→

DO i=1, N
DO j=1+i, N+i

a(i,j-i+1) = a(i,j-i) + 1
ENDDO

ENDDO

Loop reversal: i 7→ −i , loop executed in opposite order.

Unimodular = combination of reversal, skewing, interchange.
DO i=1, N

DO j=1, N
a(i,j) = . . .

ENDDO
ENDDO

←→

DO t=2, 2N
DO p=max(1,t-N), min(N,t-1)

a(p,t-p) = . . .
ENDDO

ENDDO

30 / 54

The polyhedral model
Systems of uniform recurrence equations

Multi-dimensional scheduling and applications

Catalog of loop transformations
Detection of parallel loops
Multi-dimensional ranking and worst-case execution time

In practice, need to combine all. Ex: HLS with C2H Altera

Optimize DDR accesses for bandwidth-bound accelerators.

Use tiling for data reuse and to enable burst communication.

Use fine-grain software pipelining to pipeline DDR requests.

Use double buffering to hide DDR latencies.

Use coarse-grain software pipelining to hide computations.

iterations

time

=STORE0

STORE1

STORE0

STORE1

Note:

dependence

additional synchro.

COMP1

COMP0

COMP1

COMP0
LOAD0

LOAD1

LOAD0

LOAD1

31 / 54

The polyhedral model
Systems of uniform recurrence equations

Multi-dimensional scheduling and applications

Catalog of loop transformations
Detection of parallel loops
Multi-dimensional ranking and worst-case execution time

In practice, need to combine all. Ex: HLS with C2H Altera

Optimize DDR accesses for bandwidth-bound accelerators.

Use tiling for data reuse and to enable burst communication.

Use fine-grain software pipelining to pipeline DDR requests.

Use double buffering to hide DDR latencies.

Use coarse-grain software pipelining to hide computations.

ST0

STORE0

COMP0/1

STORE1

BUFF1

BUFF0 ST1
LOAD0

LOAD1

31 / 54

The polyhedral model
Systems of uniform recurrence equations

Multi-dimensional scheduling and applications

Catalog of loop transformations
Detection of parallel loops
Multi-dimensional ranking and worst-case execution time

Outline

1 The polyhedral model
Paul Feautrier’s static control programs
Analyses, optimizations, and tools
The polyhedral model is. . . a model

2 Systems of uniform recurrence equations
Model and problems
Computability of a system
Scheduling of a system

3 Multi-dimensional scheduling and applications
Catalog of loop transformations
Detection of parallel loops
Multi-dimensional ranking and worst-case execution time

32 / 54

The polyhedral model
Systems of uniform recurrence equations

Multi-dimensional scheduling and applications

Catalog of loop transformations
Detection of parallel loops
Multi-dimensional ranking and worst-case execution time

Loop terminology

Fortran DO loops:

DO i=1, N

DO j=1, N

a(i,j) = c(i,j-1)

c(i,j) = a(i,j) + a(i-1,N)

ENDDO

ENDDO

Nested loops, static control.

Iteration domain and vector.

Sequential order ≤seq.

Dependences:

R/W, W/R, W/R.

S(I) <seq T (J)⇔ (I |d <lex J|d) or (I |d = J|d and S <txt J)

EDG: dependence graph between operations S(I)⇒ T (J).

RDG: dependence graph between statements S → T .

ADG: over-approximation, if S(I)⇒ T (J), then S → T .

33 / 54

The polyhedral model
Systems of uniform recurrence equations

Multi-dimensional scheduling and applications

Catalog of loop transformations
Detection of parallel loops
Multi-dimensional ranking and worst-case execution time

Representation of dependences

Pair set (exact dependences): RS ,T = {(I , J) | S(I)⇒ T (J)},
in particular affine dependence I = f (J) if possible.

Distance set: ES,T = {(J − I) | S(I)⇒ T (J)}.
Over-approximations E ′S,T such that ES ,T ⊆ E ′S,T .

DO i=1, N

DO j=1, N

a(i,j) = a(j,i) + 1

ENDDO

ENDDO

Distance set:

E =

{(
i − j
j − i

) ∣∣∣∣ i − j ≥ 1, 1 ≤ i , j ≤ N

}
Polyhedral approximation:

E ′ =

{(
1
−1

)
+ λ

(
1
−1

) ∣∣∣∣ λ ≥ 0

}
Direction vectors:

E ′ =

(
+
−

)
=

{(
1
−1

)
+ λ

(
1
0

)
+ µ

(
0
−1

) ∣∣∣∣ λ, µ ≥ 0

}
Level:

E ′ = À =

(
+
∗

)
=

{(
1
0

)
+ λ

(
1
0

)
+ µ

(
0
1

) ∣∣∣∣ λ ≥ 0

}
34 / 54

The polyhedral model
Systems of uniform recurrence equations

Multi-dimensional scheduling and applications

Catalog of loop transformations
Detection of parallel loops
Multi-dimensional ranking and worst-case execution time

Uniformization of dependences: example
DO i=1, N

DO j=1, N

a(i,j) = c(i,j-1)

c(i,j) = a(i,j) + a(i-1,N)

ENDDO

ENDDO

a(i,j) ⇒ a(i-1,N)

Dep. distance (1, j − N).

Direction vector (1, 0−) = (1, 0) + k(0,−1), k ≥ 0.
Also X .(1, 0−) ≥ 1⇒ X .(1, 0) ≥ 1 and X .(0,−1) ≥ 0.

}
* SURE!

a c

0
0

0
1

1
0-

0
0

a

b

c

1
0

0
-1

0
0

0
1

No parallelism (d = 2). Code appears (here it is) purely sequential.

35 / 54

The polyhedral model
Systems of uniform recurrence equations

Multi-dimensional scheduling and applications

Catalog of loop transformations
Detection of parallel loops
Multi-dimensional ranking and worst-case execution time

Uniformization of dependences: example
DO i=1, N

DO j=1, N

a(i,j) = c(i,j-1)

c(i,j) = a(i,j) + a(i-1,N)

ENDDO

ENDDO

a(i,j) ⇒ a(i-1,N)

Dep. distance (1, j − N).

Direction vector (1, 0−) = (1, 0) + k(0,−1), k ≥ 0.
Also X .(1, 0−) ≥ 1⇒ X .(1, 0) ≥ 1 and X .(0,−1) ≥ 0.

}
* SURE!

a c

0
0

0
1

1
0-

0
0

a

b

c

1
0

0
-1

0
0

0
1

No parallelism (d = 2). Code appears (here it is) purely sequential.

35 / 54

The polyhedral model
Systems of uniform recurrence equations

Multi-dimensional scheduling and applications

Catalog of loop transformations
Detection of parallel loops
Multi-dimensional ranking and worst-case execution time

Emulation of dependence polyhedra

For a (self) dependence polyhedron P, with vertex v and ray r :

∀p ∈ P X .p ≥ 1⇔ ∀λ ≥ 0 X .(v+λr) ≥ 1⇔ X .v ≥ 1 and X .r ≥ 0

* Emulate vertices, rays, and lines.

Example with direction vectors:

DO i= 1, N
DO j = 1, N

DO k = 1, j
a(i,j,k) = c(i,j,k-1) + 1
b(i,j,k) = a(i-1,j+i,k) + b(i,j-1,k)
c(i,j,k+1) = c(i,j,k) + b(i,j-1,k+i)

+ a(i,j-k,k+1)
ENDDO

ENDDO
ENDDO

1

−

0

0

1

−

0

+

−1

0

0

2

0

1

0

0

0

1

S1

S3

S2

36 / 54

The polyhedral model
Systems of uniform recurrence equations

Multi-dimensional scheduling and applications

Catalog of loop transformations
Detection of parallel loops
Multi-dimensional ranking and worst-case execution time

Second example: dependence graphs

1

−

0

0

1

−

0

+

−1

0

0

2

0

1

0

0

0

1

S1

S3

S2

Initial RDG.

0

0

2

0

1

00

1

−1

0

0

0

0

−1

0 0

0

0

0

0

0

1

−1

0

0

1

0

0

1

−1

0

0

1

0

0

−1

S1

S3

S2

Uniformized RDG.

37 / 54

The polyhedral model
Systems of uniform recurrence equations

Multi-dimensional scheduling and applications

Catalog of loop transformations
Detection of parallel loops
Multi-dimensional ranking and worst-case execution time

Second example: G and G ′

0

0

2

0

1

00

1

−1

0

0

0

0

−1

0 0

0

0

0

0

0

1

−1

0

0

1

0

0

1

−1

0

0

1

0

0

−1

S1

S3

S2

Uniformized RDG.

0

0

2

0

1

00

1

−1

0

0

0

0

−1

0

0

1

0
0

0

1

0

0

−1

S1

S3

S2

G ′: zero-weight multi-cycles.

(2i , j) for S2, (2i + 1, 2k) for S1, and (2i + 1, 2k + 3) for S3.

38 / 54

The polyhedral model
Systems of uniform recurrence equations

Multi-dimensional scheduling and applications

Catalog of loop transformations
Detection of parallel loops
Multi-dimensional ranking and worst-case execution time

Second exemple: parallel code generation

DOSEQ i=1, n
DOSEQ j=1, n /* scheduling (2i, j) */

DOPAR k=1, j
b(i,j,k) = a(i-1,j+i,k) + b(i,j-1,k)

ENDDOPAR
ENDDOSEQ
DOSEQ k = 1, n+1

IF (k ≤ n) THEN /* scheduling (2i+1, 2k) */
DOPAR j=k, n

a(i,j,k) = c(i,j,k-1) + 1
ENDDOPAR

IF (k ≥ 2) THEN /* scheduling (2i+1, 2k+3) */
DOPAR j=k-1, n

c(i,j,k) = c(i,j,k-1) + b(i,j-1,k+i-1) + a(i,j-k+1,k)
ENDDOPAR

ENDDOSEQ
ENDDOSEQ

39 / 54

The polyhedral model
Systems of uniform recurrence equations

Multi-dimensional scheduling and applications

Catalog of loop transformations
Detection of parallel loops
Multi-dimensional ranking and worst-case execution time

Allen-(Callahan)-Kennedy (1987): loop distribution

AK(G , k):

Remove from G all edges of level < k.
Compute G1, . . . , Gs the s SCCs of G in topological order.

If Gi has a single statement S , with no edge, generate DOPAR
loops in all remaining dimensions, and generate code for S .
Otherwise:

Generate DOPAR loops from level k to level l − 1, and a
DOSEQ loop for level l , where l is the minimal level in Gi .
call AK(Gi , l + 1). /* dS sequential loops for statement S */

ý Variant of (dual of) KMW with DOPAR as high as possible.

Theorem 1 (Optimality of AK for dependence levels)

Nested loops L, RDG G with levels. One can build nested loops L′,
with same structure and same RDG, with bounds parameterized
by N such that, for each SCC Gi of G , there is a path in the EDG
of L′ that visits each statement S of Gi Ω(Nds) times.

40 / 54

The polyhedral model
Systems of uniform recurrence equations

Multi-dimensional scheduling and applications

Catalog of loop transformations
Detection of parallel loops
Multi-dimensional ranking and worst-case execution time

Allen-(Callahan)-Kennedy (1987): loop distribution

AK(G , k):

Remove from G all edges of level < k.
Compute G1, . . . , Gs the s SCCs of G in topological order.

If Gi has a single statement S , with no edge, generate DOPAR
loops in all remaining dimensions, and generate code for S .
Otherwise:

Generate DOPAR loops from level k to level l − 1, and a
DOSEQ loop for level l , where l is the minimal level in Gi .
call AK(Gi , l + 1). /* dS sequential loops for statement S */

ý Variant of (dual of) KMW with DOPAR as high as possible.

Theorem 1 (Optimality of AK for dependence levels)

Nested loops L, RDG G with levels. One can build nested loops L′,
with same structure and same RDG, with bounds parameterized
by N such that, for each SCC Gi of G , there is a path in the EDG
of L′ that visits each statement S of Gi Ω(Nds) times.

40 / 54

The polyhedral model
Systems of uniform recurrence equations

Multi-dimensional scheduling and applications

Catalog of loop transformations
Detection of parallel loops
Multi-dimensional ranking and worst-case execution time

Darte-Vivien (1997): unimodular + shift + distribution

Boolean DV(G , k) /* G uniformized graph, with virtual and actual nodes */

Build G ′ generated by the zero-weight multi-cycles of G .

Modify slightly G ′ (technical detail not explained here).

Choose X (vector) and, for each S in G ′, ρS (scalar) s.t.:{
if e = (u, v) ∈ G ′ or u is virtual, Xw(e) + ρv − ρu ≥ 0
if e /∈ G ′ and u is actual, Xw(e) + ρv − ρu ≥ 1

For each actual node S of G let ρkS = ρS and X k
S = X .

Compute G ′1, . . . , G ′s the SCC of G ′ with ≥ 1 actual node:

If G ′ is empty or has only virtual nodes, return true.
If G ′ is strongly connected with ≥ 1 actual node, return false.

Otherwise, return
s∧

i=1

DV(G ′
i , k + 1) (

∧
= logical and).

41 / 54

The polyhedral model
Systems of uniform recurrence equations

Multi-dimensional scheduling and applications

Catalog of loop transformations
Detection of parallel loops
Multi-dimensional ranking and worst-case execution time

General affine multi-dimensional schedules

Affine dependences (or even relations): (S , I) depends on (T , J) if
(I , J) ∈ De where e = (T , S) and De is a polyhedron.

Look for schedule σ such that σ(T , J) <lex σ(S , I) for all
(I , J) ∈ De . If σ is affine, use affine form of Farkas lemma.

Write σ(T , J) + εe ≤ σ(S , I) with ε ≥ 0 and maximize the
number of dependence edges e such that εe ≥ 1.

Remove edges e such that εe ≥ 1 and continue to get
remaining dimensions * multi-dimensional affine schedule.

To perform tiling, look for several dimensions (permutable loops)
such that σ(S , I)− σ(T , J) ≥ 0 instead of σ(S , I)− σ(T , J) ≥ 1.

42 / 54

The polyhedral model
Systems of uniform recurrence equations

Multi-dimensional scheduling and applications

Catalog of loop transformations
Detection of parallel loops
Multi-dimensional ranking and worst-case execution time

Loop parallelization: optimality w.r.t. dep. abstraction

Lamport (1974): hyperplane method = skew + interchange.

Allen-Kennedy (1987): loop distribution, optimal for levels.

Wolf-Lam (1991): unimodular, optimal for direction vectors
and one statement. Based on finding permutable loops.

Darte-Vivien (1997): unimodular + shifting + distribution,
optimal for polyhedral abstraction and perfectly nested loops.
Finds permutable loops, too.

Feautrier (1992): general affine scheduling, complete for affine
dependences and affine transformations, but not optimal.

Lim-Lam (1998): extension to coarse-grain parallelism, vague.

Bondhugula-Ramanujam-Sadayappan (2008): improved
extension to permutable loops, with locality optimization.

43 / 54

The polyhedral model
Systems of uniform recurrence equations

Multi-dimensional scheduling and applications

Catalog of loop transformations
Detection of parallel loops
Multi-dimensional ranking and worst-case execution time

Outline

1 The polyhedral model
Paul Feautrier’s static control programs
Analyses, optimizations, and tools
The polyhedral model is. . . a model

2 Systems of uniform recurrence equations
Model and problems
Computability of a system
Scheduling of a system

3 Multi-dimensional scheduling and applications
Catalog of loop transformations
Detection of parallel loops
Multi-dimensional ranking and worst-case execution time

44 / 54

The polyhedral model
Systems of uniform recurrence equations

Multi-dimensional scheduling and applications

Catalog of loop transformations
Detection of parallel loops
Multi-dimensional ranking and worst-case execution time

Yet another application of SUREs: understand “iterations”

Fortran DO loops:

DO i=1, N

DO j=1, N

a(i,j) = c(i,j-1)

c(i,j) = a(i,j) + a(i-1,N)

ENDDO

ENDDO

C for and while loops:

y = 0; x = 0;

while (x <= N && y <= N) {
if (?) {

x=x+1;

while (y >= 0 && ?) y=y-1;

}
y=y+1;

}
Uniform recurrence equations:

∀p ∈ {p = (i , j) | 1 ≤ i , j ≤ N}
a(i , j) = c(i , j − 1)
b(i , j) = a(i − 1, j) + b(i , j + 1)
c(i , j) = a(i , j) + b(i , j)

0
0

a

b

c

1
0

0
-1

0
0

0
1

45 / 54

The polyhedral model
Systems of uniform recurrence equations

Multi-dimensional scheduling and applications

Catalog of loop transformations
Detection of parallel loops
Multi-dimensional ranking and worst-case execution time

Context: transforming WHILE loops into DO loops

Example of GCD of 2 polynomials

// expression expr, array A, r>0 integer.

da = 2r; db = 2r;

while (da >= r) {

cond = (da >= db || A[expr] == 0);

if (!cond) {

tmp = db; db = da; da = tmp - 1;

} else da = da - 1;

}
da

da + db = cte

r − 1

2r
r

db

2r

Hard to optimize for HLS tools:
No loop unrolling possible.

Limited software pipelining.

No nested-loops optimization.

No information for coarse-grain
scheduling/pipelining.

* Need to bound the num-
ber of iterations. When
feasible, proves program
termination as by-product.

46 / 54

The polyhedral model
Systems of uniform recurrence equations

Multi-dimensional scheduling and applications

Catalog of loop transformations
Detection of parallel loops
Multi-dimensional ranking and worst-case execution time

Phase 1: build an integer interpreted automaton

Identify relevant variables:

vector ~x ∈ Zn, n = problem dimension.

Build RDG:

control-flow graph and conditional transitions.

express evolution of ~x with affine relations, a bit more general
than affine dependences.

Refine automaton (if desired):

analysis of Booleans: better accuracy, higher complexity.

simple-path compression: reduces complexity.

multiple-paths summary: better accuracy, impacts complexity.

Sequential automaton similar to affine recurrence equations, with a
different semantics: different relations express non-determinism.

47 / 54

The polyhedral model
Systems of uniform recurrence equations

Multi-dimensional scheduling and applications

Catalog of loop transformations
Detection of parallel loops
Multi-dimensional ranking and worst-case execution time

Phase 2: abstract interpretation to get “invariants”

Explicit dependences and schedule, but implicit iteration domains!

Here, we need to prove db ≥ r . * Use abstract interpretation.

// expression expr, array A,

// r>0 integer.

da = 2r; db = 2r;

while (da >= r) {

cond = (da >= db

|| A[expr] == 0);

if (!cond) {

tmp = db; db = da;

da = tmp - 1;

} else da = da - 1;

}

init

loop

stop

Ploop =







r − 1 6 da 6 2r

r 6 db 6 2r

1 6 r

t1

t2 t3

t4

Pstop =







1 6 r

r 6 db 6 2r

r − 1 6 da < r

Pinit = 1 6 r

Invariant = integer points in a polyhedron Pk : conservative
approximation of reachable values for each control point k.

Possibly infinite, parameterized by program inputs.

48 / 54

The polyhedral model
Systems of uniform recurrence equations

Multi-dimensional scheduling and applications

Catalog of loop transformations
Detection of parallel loops
Multi-dimensional ranking and worst-case execution time

Phase 3: ranking function to prove termination

Ranking function Mapping σ : K × Zn → (W,�), decreasing on
each transition, where (W,�) is a well-founded set.

Multi-dimensional rankings W = Np with lexicographic order.
Affine ranking σ(k,~x) = Ak .~x + ~bk à Farkas lemma.

* Similar to multi-dimensional scheduling for loops, except:

Higher dimension n (number of relevant variables).
Flow not always lexico-positive à recurrence equations.
Hidden “counters” (number p of dimension of the ranking).

da

da + db = cte

r − 1

2r
r

db

2r
init

loop

stop

(

1
da + db − 2r + 2

)

t1

t2 t3

t4

(0)

(2)

49 / 54

The polyhedral model
Systems of uniform recurrence equations

Multi-dimensional scheduling and applications

Catalog of loop transformations
Detection of parallel loops
Multi-dimensional ranking and worst-case execution time

Phase 3: ranking function to prove termination

Ranking function Mapping σ : K × Zn → (W,�), decreasing on
each transition, where (W,�) is a well-founded set.

Multi-dimensional rankings W = Np with lexicographic order.
Affine ranking σ(k,~x) = Ak .~x + ~bk à Farkas lemma.

* Similar to multi-dimensional scheduling for loops, except:

Higher dimension n (number of relevant variables).
Flow not always lexico-positive à recurrence equations.
Hidden “counters” (number p of dimension of the ranking).

da

da + db = cte

r − 1

2r
r

db

2r
init

loop

stop

(

1
da + db − 2r + 2

)

t1

t2 t3

t4

(0)

(2)

49 / 54

The polyhedral model
Systems of uniform recurrence equations

Multi-dimensional scheduling and applications

Catalog of loop transformations
Detection of parallel loops
Multi-dimensional ranking and worst-case execution time

Phase 4: bound on the number of program steps

Worst-case computational complexity (WCCC): maximum number
of transitions fired by the automaton:

WCCC ≤ #
⋃
σ(k ,Pk) ≤

∑
k

#σ(k ,Pk)

Counting points in (images of) polyhedra: Ehrhart polynomials,
projections, Smith form, union of polyhedra, etc.

WCCC ≤ #σ(init,Pinit)
+#σ(loop,Ploop)
+#σ(end,Pend)

= 2 + #{(1, i) | 1 ≤ i ≤ 2r + 2}
= 2r + 4

init

loop

stop

(

1
da + db − 2r + 2

)

t1

t2 t3

t4

(0)

(2)

50 / 54

The polyhedral model
Systems of uniform recurrence equations

Multi-dimensional scheduling and applications

Catalog of loop transformations
Detection of parallel loops
Multi-dimensional ranking and worst-case execution time

Alias-Darte-Feautrier-Gonnord (2010)

Greedy algorithm

i = 0; T = T , set of all transitions.

While T is not empty do

Find a 1D affine function (X , ρS), not increasing for any
transitions, and decreasing for as many transitions as possible.
Let σi = X ; i = i + 1;
If no transition is decreasing, return false.
Remove from T all decreasing transitions.

d = i , return true.

Theorem 7 (Completeness of greedy algorithm w.r.t. invariants)

If an affine interpreted automaton, with associated invariants, has
a multi-dimensional affine ranking function, then the greedy
algorithm generates one such ranking. Moreover, the dimension of
the generated ranking is minimal.

51 / 54

The polyhedral model
Systems of uniform recurrence equations

Multi-dimensional scheduling and applications

Catalog of loop transformations
Detection of parallel loops
Multi-dimensional ranking and worst-case execution time

Yet another example

y = 0;

x = m;

while(x>=0 && y>=0){

if(indet()){

while(y <= m && indet())

y++;

x--;

}

y--;

}

start

lbl4

lbl5

stop lbl6

lbl10

x := n; y := 0

0 6 x ∧ 0 6 y
x + 1 6 0

∨y + 1 6 0

true

true

y 6 n

y := y + 1

x := x − 1

y := y − 1

start m ≥ 0 2m + 4
lbl4 m ≥ x > 0,m ≥ y > 0 (2x + 3, 3y + 3)
lbl5 m ≥ x ≥ 0,m ≥ y ≥ 0 (2x + 3, 3y + 2)
lbl6 m ≥ x ≥ 0,m + 1 ≥ y ≥ 0 (2x + 2,m − y + 1)

lbl10

{
m ≥ x ≥ −1,m + 1 ≥ y ≥ 0

2m ≥ x + y
(2x + 3, 3y + 1)

wccc = 5 + 7m + 4m2
52 / 54

The polyhedral model
Systems of uniform recurrence equations

Multi-dimensional scheduling and applications

Catalog of loop transformations
Detection of parallel loops
Multi-dimensional ranking and worst-case execution time

Link with Karp, Miller, Winograd’s decomposition

Podelski-Rybalchenko (2004) ∼ URE ∼ Lamport (1974).
Bradley-Manna-Sipma (2005) ∼ Wolf-Lam (1991).
Colón-Sipma (2002) between Wolf-Lam & Darte-Vivien (1997).
Alias-Darte-Feautrier-Gonnord (2010) ∼ Feautrier (1992).

Gulwani (2009) very different but similar theoretical power.

Iteration domains ⇔ Invariants.

Loop counters ⇔ Integer variables involved in the control.

Dependences: partial order ⇔ Evolution of variables.

Scheduling functions ⇔ Ranking functions.

Latency ⇔ Worst-case execution time (ideal).

Parallelism ⇔ Non determinism.

In both cases, algorithm depth = measure of sequentiality.

53 / 54

The polyhedral model
Systems of uniform recurrence equations

Multi-dimensional scheduling and applications

Catalog of loop transformations
Detection of parallel loops
Multi-dimensional ranking and worst-case execution time

Theorem 2 (Farkas’ lemma)

Let A be a matrix and b a vector. There exists a vector x ≥ 0 with
Ax = b if and only if yb ≥ 0 for each row vector y with yA ≥ 0.

Theorem 3 (Duality)

Provided that both sets are nonempty:
max{cx | Ax ≤ b} = min{yb | y ≥ 0, yA = c}

Theorem 4 (Complementary slackness)

If both optima are finite, x0 and y0 are optimum solutions if and
only if they are feasible and y0(b − Ax0) = 0.

Theorem 5 (Affine form of Farkas’ lemma)

If Ax ≤ b is nonempty then cx ≤ δ for all x such that Ax ≤ b if
and only if there exists y ≥ 0 such that c = yA and yb ≤ δ.

54 / 54

