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Loop distribution and loop fusion

DO i=1, N
DO i=1, N C a(i) = b(i)
a(i) = b(i) Loop ditr;butlon ENDDO
d(i) = a(i-1) - DO i=1, N
ENDDO Loop fusion d(i) = a(i-1)
ENDDO

Main consequences
e Loop distribution used to parallelize/vectorize loops.
@ Loop fusion increases the granularity of computations.
@ Loop fusion reduces loop overhead.
@ Loop fusion usually improves spatial & temporal data locality.
@ Loop fusion may enable array scalarization.
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Loop shifting

DO i=0, N
DO i=1, N IF (i > 0) THEN
20— o) oop shifting i < ) TN
ENDDO N d(i+1) = a(i)
ENDDO

Main consequences
@ Similar to software pipelining.
o Creates prelude/postlude or introduces if statements.
@ Can be used to align accesses and enable loop fusion.

@ Particularly suitable to handle constant dependence distances.
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Loop peeling

DO i=0, N d(1) = a(0)
IF (i > 0) THEN Loop pecling DO(i):l, N(é
a(i) = b(i) a(i) = b(i
IF (i < N) THEN o d(i+1) = a(i)
. . Loop sinking
d(i+1) = a(i) - ENDDO
ENDDO a(N) = b(N)

Mais consequences
@ Peeling removes a few iterations to make code simpler.

@ Peeling extracts iterations with a specific behavior to enable
more transformations.

@ Peeling reduces the iteration domain (range of loop counter).

@ Sinking is used to make loops perfectly nested.
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Partial or total loop unrolling

DO i=1, 10, 2
DO i=1, 10 a(i) = b(i)
a(i) = b(i) Unrolling by 2 d(i) = a(i-1)
d(i) = a(i-1) — a(i+1) = b(i+1)
ENDDO d(i+1) = a(i)
ENDDO

Main consequences

@ Replicates instructions to improve schedule & resource usage.
@ Can be used for array scalarization.

@ Increase code size.

@ Total loop unrolling flattens the loops and changes structure.
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Strip mining, loop coalescing

DO Is=1, N, s
DO i=1, N Strip mining DO i=ls, min(N, ls+s-1)
a(i) = b(i) + <(i) — a(i) = b(i) + <(i)
ENDDO Loop Ii;rization ENDDO
ENDDO

Main consequences
@ Strip-mining performs parametric loop unrolling.
@ It changes the structure and creates blocks of computations.
@ It can be used as a preliminary step for tiling.
@ Loop linearization can reduce the control of loops.

@ It also reduces the problem dimension.
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Loop interchange

Loop interchange: (i,j) + (j, ).

DO i=1, N Loop interchange DO j=1, N
DO j=1, i — DO i=j, N
a(ij+1) = a(ij) + 1 a(i,j+1) = a(i,j) + 1
ENDDO ENDDO
ENDDO ENDDO

Main consequences
@ Can enable loop parallelism.
@ Basis of loop tiling.

@ Changes order of memory accesses and thus data locality.

@ Needs bounds computations as in i iS;J = i i Sij-

i=1 j=1 j=1 i=j
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Loop skewing, loop reversal, unimodular transformation

Loop skewing: (i,j) + (i,j + i), loop iterations in the same order.

DO i=1, N DO i=1, N
DO j=1, N DO j=14i, N-+i
a(ij+1) =a(ij) +1 +— a(ij-i+1) = a(ij-i) + 1
ENDDO ENDDO
ENDDO ENDDO

Loop reversal: i — —i, loop executed in opposite order.

Unimodular = combination of reversal, skewing, interchange.

DO i=1, N DO t=2, 2N
DO j=1, N DO p=max(1,t-N), min(N,t-1)
a(ij) = ... — a(p,t-p) = ...
ENDDO ENDDO
ENDDO ENDDO
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In practice, need to combine all. Ex HLS W|th C2H Altera

Optimize DDR accesses for bandwidth-bound accelerators.

Use tiling for data reuse and to enable burst communication.
Use fine-grain software pipelining to pipeline DDR requests.
Use double buffering to hide DDR latencies.

o
o
o
@ Use coarse-grain software pipelining to hide computations.
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In practice, need to combine all. Ex: HLS with C2H Altera

Optimize DDR accesses for bandwidth-bound accelerators.

@ Use tiling for data reuse and to enable burst communication.
@ Use fine-grain software pipelining to pipeline DDR requests.
@ Use double buffering to hide DDR latencies.

@ Use coarse-grain software pipelining to hide computations.
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@ Detection of parallel loops
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Loop terminology

Fortran DO loops: @ Nested loops, static control.
DO i=1, N @ Iteration domain and vector.
DO j=1, N . <
ali]) = c(i,i-1) @ Sequential order <gq.
c(i,j) = a(i,j) + a(i-1,N) @ Dependences:
ENDDO e R/W, W/R, W/R.
ENDDO

5(/) <seq T(J) = (I’d <Jex J|d) or (I‘d = J|d and S <txt J)

e EDG: dependence graph between operations S(/) = T(J).
@ RDG: dependence graph between statements S — T.
e ADG: over-approximation, if S(/) = T(J), then S — T.
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Representation of dependences

@ Pair set (exact dependences): Rs 7 ={(/,J) | S(/) = T(J)},
in particular affine dependence | = f(J) if possible.

e Distance set: Es 7 ={(J—1) | S(I) = T(J)}.
e Over-approximations Egj such that Es 7 C Egj.

Distance set: DO i=1, N
DO j=1, N

e-{(;=7)
j—i a(i,j) = a(j,i) + 1
Polyhedral approximation: ENDDO
e={(A)(h) [rzop om0
-1 -1
Direction vectors:
! A L 0 A >0
1)t o ) trl 1 y B2

“(7)-
“0=(1)={(2)+(3)on() 129

ifJZLlﬁhjéN}

/

E
Level:
E
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Uniformization of dependences: example

DO i=1, N
DO j=1, N
a(i,j) = c(i,j-1) a(i,j) = a(i-1,M)
ci,j) = a@d,j) + a(i-1,M) Dep. distance (1, — N).
ENDDO
ENDDO
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Uniformization of dependences: example
DO i=1, N
DO j=1, N o _
a(i,j) = c(i,j-1) a(i,j) = a(i-1,N)
c(i,j) = a(d,j) + a(i-1,M) Dep. distance (1, — N).
ENDDO
ENDDO

Direction vector (1,0—) = (1,0) + k(0,—1), kK > 0.
Also X.(1,0—) > 1= X.(1,0) > 1 and X.(0,—1) > 0.

}U‘ SURE!

No parallelism (d = 2). Code appears (here it is) purely sequential.
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Emulation of dependence polyhedra

For a (self) dependence polyhedron P, with vertex v and ray r:
VpePXp>1VA>0X.(v+Ar)>1< Xiv>1and X.or >0

@ Emulate vertices, rays, and lines.

Example with direction vectors:

DOi=1, N 1
DOj=1,N N
DOk=1,j 0
a(ij.k) = c(ijk1) + 1 sl ./\ X
b(i.j.k) = a(i-1,j+i,k) + b(i,j-1,k) ) 0

c(ijk+1) = c(ij.k) + b(ij-1,k+i)

+ a(ijkk+1) 0 0

ENDDO + !
ENDDO s 0
ENDDO X
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Second example: dependence graphs

1
0
/\ !
S1 1
0
2
o S 0
2
0 0
. 1
-1 S3 0 - 0
0 1
1

Initial RDG.

Uniformized RDG.
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Second example: G and G’

0
1
0
0! \
L 10
0 0
-1
Uniformized RDG. G': zero-weight multi-cycles.

|(2i,j) for Sy, (2i +1,2k) for Sy, and (2i + 1,2k + 3) for Ss.|
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Second exemple: parallel code generation

DOSEQ i=1, n
DOSEQ j=1, n /* scheduling (2i, j) */
DOPAR k=1, ]
b(i.jk) = a(i-1,j+ik) + b(i,j-1,k)
ENDDOPAR
ENDDOSEQ
DOSEQ k =1, n+1
IF (k < n) THEN /* scheduling (2i+1, 2k) */
DOPAR j=k, n
a(ijk) = c(ijk-1) + 1
ENDDOPAR
IF (k > 2) THEN /* scheduling (2i+1, 2k+3) */
DOPAR j=k-1, n
c(ii.k) = c(ijk-1) + b(i -1 k+i-1) + a(i,j-k-+1,k)
ENDDOPAR
ENDDOSEQ
ENDDOSEQ
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Allen-(Callahan)-Kennedy (1987): loop distribution

AK(G, k):
@ Remove from G all edges of level < k.
@ Compute Gy, ..., Gs the s SCCs of G in topological order.
e If G; has a single statement S, with no edge, generate DOPAR
loops in all remaining dimensions, and generate code for S.
o Otherwise:
o Generate DOPAR loops from level k to level /| — 1, and a
DOSEQ loop for level /, where [ is the minimal level in G;.
o call AK(G;, I+ 1). /* ds sequential loops for statement S */

» Variant of (dual of) KMW with DOPAR as high as possible.
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Allen-(Callahan)-Kennedy (1987): loop distribution

AK(G, k):
@ Remove from G all edges of level < k.
@ Compute Gy, ..., Gs the s SCCs of G in topological order.

e If G; has a single statement S, with no edge, generate DOPAR
loops in all remaining dimensions, and generate code for S.
o Otherwise:
o Generate DOPAR loops from level k to level /| — 1, and a
DOSEQ loop for level /, where [ is the minimal level in G;.
o call AK(G;, I+ 1). /* ds sequential loops for statement S */

» Variant of (dual of) KMW with DOPAR as high as possible.

Theorem 1 (Optimality of AK for dependence levels)

Nested loops L, RDG G with levels. One can build nested loops L,
with same structure and same RDG, with bounds parameterized
by N such that, for each SCC G; of G, there is a path in the EDG
of L' that visits each statement S of G; Q(N%) times.
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Darte-Vivien (1997): unimodular + shift + distribution

Boolean DV(G, k) /* G uniformized graph, with virtual and actual nodes */
@ Build G’ generated by the zero-weight multi-cycles of G.
Modify slightly G’ (technical detail not explained here).

Choose X (vector) and, for each S in G, ps (scalar) s.t.:

if e=(u,v) € G’ or u is virtual, Xw(e) + p, — py, > 0
if e ¢ G' and u is actual, Xw(e) + p, — p, > 1

For each actual node S of G let pf‘g = ps and Xé‘ = X.
Compute Gy, ..., G/ the SCC of G’ with > 1 actual node:

o If G’ is empty or has only virtual nodes, return TRUE.
o If G’ is strongly connected with > 1 actual node, return FALSE.

S
o Otherwise, return /\ DV(G/, k+ 1) (A = logical AND).
i=1
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General affine multi-dimensional schedules

Affine dependences (or even relations): (S, /) depends on (T, J) if
(I,J) € Do where e = (T,S) and D, is a polyhedron.

@ Look for schedule o such that (T, J) <jex o(S, 1) for all
(1,J) € De. If o is affine, use affine form of Farkas lemma.

e Write o(T,J) + €. < 0(S, 1) with € > 0 and maximize the
number of dependence edges e such that ¢, > 1.

@ Remove edges e such that ¢, > 1 and continue to get
remaining dimensions @ multi-dimensional affine schedule.

To perform tiling, look for several dimensions (permutable loops)
such that o(S,/) — o(T,J) > 0 instead of o(S,/) —o(T,J) > 1.
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Loop parallelization: optimality w.r.t. dep. abstraction

e Lamport (1974): hyperplane method = skew -+ interchange.
o Allen-Kennedy (1987): loop distribution, optimal for levels.

e Wolf-Lam (1991): unimodular, optimal for direction vectors
and one statement. Based on finding permutable loops.

@ Darte-Vivien (1997): unimodular + shifting + distribution,
optimal for polyhedral abstraction and perfectly nested loops.
Finds permutable loops, too.

e Feautrier (1992): general affine scheduling, complete for affine
dependences and affine transformations, but not optimal.

@ Lim-Lam (1998): extension to coarse-grain parallelism, vague.

e Bondhugula-Ramanujam-Sadayappan (2008): improved
extension to permutable loops, with locality optimization.
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@ Multi-dimensional ranking and worst-case execution time
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Yet another application of SUREs: understand “iterations”

Fortran DO loops: C for and while loops:
y =0; x=0;

DO i=1, N
DO j=1, N while (x <= N & y <= N) {
a(i,j) = c(i,j-1) if (7) {
c(i,j) = a(i,j) + a(i-1,M x=x+1;
ENDDO while (y >= 0 && ?) y=y-1;
ENDDQ }
y=y+i;

}

Uniform recurrence equations:
Vpef{p=1(ij)[1<ij<N}

a(ij) =c(i,j—1)
b(i,j) = a(i — 1,j) + b(i,j + 1)
c(i,j) = a(i,j) + b(i,j)
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Context: transforming WHILE loops into DO loops

Example of GCD of 2 polynomials

// expression expr, array A, r>0 integer. o,
da = 2r; db = 2r;
while (da >= r) {

cond = (da >= db || Alexpr] == 0);

if (!'cond) {
tmp = db; db = da; da = tmp - 1;
} else da = da - 1; r
- 2r
} A I -
r—1 da

Hard to optimize for HLS tools:

@ No loop unrolling possible.
@ Need to bound the num-

ber of iterations. When

feasible, proves program
No information for coarse-grain  termination as by-product.

scheduling/pipelining.

Limited software pipelining.

o
@ No nested-loops optimization.
o
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Phase 1: build an integer interpreted automaton

Identify relevant variables:
@ vector X € Z", n = problem dimension.
Build RDG:
@ control-flow graph and conditional transitions.

@ express evolution of X with affine relations, a bit more general
than affine dependences.

Refine automaton (if desired):
@ analysis of Booleans: better accuracy, higher complexity.
@ simple-path compression: reduces complexity.
@ multiple-paths summary: better accuracy, impacts complexity.

Sequential automaton similar to affine recurrence equations, with a
different semantics: different relations express non-determinism.
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Phase 2: abstract interpretation to get “invariants”

Explicit dependences and schedule, but implicit iteration domains!

Here, we need to prove db > r. @ Use abstract interpretation.

// expression expr, array A,
// r>0 integer.

da = 2r; db = 2r;

hil da >=

while (da 04 r—1<da<2r

cond = (da >= db
I | A[expr] = O), am [)loop = T S db S 2r
1<r

if (!cond) {
tmp = db; db = da;
da = tmp - 1;
} else da = da - 1;
}

Py =1<r

1<r
Poop = 7 <db<2r
r—1<da<r

@ Invariant = integer points in a polyhedron Py: conservative
approximation of reachable values for each control point k.

@ Possibly infinite, parameterized by program inputs.
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Phase 3: ranking function to prove termination

Ranking function Mapping o : K x Z" — (W, <), decreasing on
each transition, where (W, <) is a well-founded set.

Multi-dimensional rankings W = NP with lexicographic order.

Affine ranking o(k,X) = Ax.X + b ™ Farkas lemma.

@ Similar to multi-dimensional scheduling for loops, except:

e Higher dimension n (number of relevant variables).
@ Flow not always lexico-positive " recurrence equations.
e Hidden “counters” (number p of dimension of the ranking).
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Phase 3: ranking function to prove termination

Ranking function Mapping o : K x Z" — (W, <), decreasing on
each transition, where (W, <) is a well-founded set.
Multi-dimensional rankings W = NP with lexicographic order.
Affine ranking o(k,X) = Ax.X + b ™ Farkas lemma.
@ Similar to multi-dimensional scheduling for loops, except:
e Higher dimension n (number of relevant variables).

@ Flow not always lexico-positive " recurrence equations.

e Hidden “counters” (number p of dimension of the ranking).
db da+ db = cte

1
da+db—2r+2 )
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Phase 4: bound on the number of program steps

Worst-case computational complexity (WCCC): maximum number
of transitions fired by the automaton:

wecee < #|Jo(k, Pe) < #o(k, Pi)
k

Counting points in (images of) polyhedra: Ehrhart polynomials,
projections, Smith form, union of polyhedra, etc.

WCCC < #o(init, Pinit)
+#U(|0°paploop)
++#0(end, Peng) ! )

da +db—2r 42

—2 4 #{(Li)[1<i<2r 2}

=2r+4
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Alias-Darte-Feautrier-Gonnord (2010)

Greedy algorithm
@ /=0; T =T, set of all transitions.
@ While T is not empty do

o Find a 1D affine function (X, ps), not increasing for any
transitions, and decreasing for as many transitions as possible.

o Leto; =X ;i=1i+1,

e If no transition is decreasing, return FALSE.

e Remove from T all decreasing transitions.

@ d = i, return TRUE.

Theorem 7 (Completeness of greedy algorithm w.r.t. invariants)

If an affine interpreted automaton, with associated invariants, has
a multi-dimensional affine ranking function, then the greedy
algorithm generates one such ranking. Moreover, the dimension of
the generated ranking is minimal.
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another example

= 0;

X = m;
while(x>=0 && y>=0){
if (indet ()){
while(y <= m && indet())
y++;
x==;3
}
Yy
}

start m>0 2m+ 4

Ibly m>x>0m>y>0 (2x +3,3y +3)

Ibls m>x>0m>y>0 (2x+3,3y +2)

Iblg m>x>0m+1>y>0 (2x+2,m—y+1)
m>x>—-1,m+1>y>0

Iblo { 2m > x4y (2x+3,3y +1)

WCCC = 54+ 7Tm 4 4m?
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Link with Karp, Miller, Winograd's decomposition

Podelski-Rybalchenko (2004) ~ URE ~ Lamport (1974).
Bradley-Manna-Sipma (2005) ~ Wolf-Lam (1991).
Coldn-Sipma (2002) between Wolf-Lam & Darte-Vivien (1997).
Alias-Darte-Feautrier-Gonnord (2010) ~ Feautrier (1992).

Gulwani (2009) very different but similar theoretical power.

Iteration domains <> Invariants.
Loop counters < Integer variables involved in the control.

Dependences: partial order < Evolution of variables.

Latency < Worst-case execution time (ideal).

°
°
°
@ Scheduling functions < Ranking functions.
°
o Parallelism < Non determinism.

°

In both cases, algorithm depth = measure of sequentiality.
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Theorem 2 (Farkas' lemma)

Let A be a matrix and b a vector. There exists a vector x > 0 with
Ax = b if and only if yb > 0 for each row vector y with yA > 0.

<

Theorem 3 (Duality)

Provided that both sets are nonempty:
max{cx | Ax < b} =min{yb | y >0, yA = c}

A\

Theorem 4 (Complementary slackness)

If both optima are finite, xo and yy are optimum solutions if and
only if they are feasible and yp(b — Axp) = 0.

N

Theorem 5 (Affine form of Farkas’ lemma)

If Ax < b is nonempty then cx < 0 for all x such that Ax < b if
and only if there exists y > 0 such that ¢ = yA and yb < 6.

A
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