Outline

1. The polyhedral model
2. Systems of uniform recurrence equations
3. Multi-dimensional scheduling and applications
 - Catalog of loop transformations
 - Detection of parallel loops
 - Multi-dimensional ranking and worst-case execution time
Loop distribution and loop fusion

DO i=1, N
 a(i) = b(i)
 d(i) = a(i-1)
ENDDO

DO i=1, N
 a(i) = b(i)
ENDDO
DO i=1, N
 d(i) = a(i-1)
ENDDO

Main consequences

- Loop distribution used to parallelize/vectorize loops.
- Loop fusion increases the granularity of computations.
- Loop fusion reduces loop overhead.
- Loop fusion usually improves spatial & temporal data locality.
- Loop fusion may enable array scalarization.
Loop shifting

\[
\text{DO } i=1, N \\
\quad a(i) = b(i) \\
\quad d(i) = a(i-1) \\
\text{ENDDO}
\]

\[
\text{DO } i=0, N \\
\quad \begin{cases}
\text{IF } (i > 0) \text{ THEN } \\
\quad a(i) = b(i) \\
\quad \text{IF } (i < N) \text{ THEN } \\
\quad d(i+1) = a(i) \\
\text{ENDDO}
\end{cases}
\]

Main consequences

- Similar to software pipelining.
- Creates prelude/postlude or introduces if statements.
- Can be used to align accesses and enable loop fusion.
- Particularly suitable to handle constant dependence distances.
Loop peeling

\[
\text{DO } i = 0, N \\
\quad \text{IF } (i > 0) \text{ THEN} \quad a(i) = b(i) \\
\quad \text{IF } (i < N) \text{ THEN} \quad d(i+1) = a(i) \\
\text{ENDDO}
\]

Mais conséquences

- Peeling removes a few iterations to make code simpler.
- Peeling extracts iterations with a specific behavior to enable more transformations.
- Peeling reduces the iteration domain (range of loop counter).
- Sinking is used to make loops perfectly nested.
Partial or total loop unrolling

```
DO i=1, 10
  a(i) = b(i)
  d(i) = a(i-1)
ENDDO
```

Unrolling by 2

```
DO i=1, 10, 2
  a(i) = b(i)
  d(i) = a(i-1)
  a(i+1) = b(i+1)
  d(i+1) = a(i)
ENDDO
```

Main consequences

- Replicates instructions to improve schedule & resource usage.
- Can be used for array scalarization.
- Increase code size.
- Total loop unrolling flattens the loops and changes structure.
Strip mining, loop coalescing

DO i=1, N
 a(i) = b(i) + c(i)
ENDDO

Strip mining

DO l_s=1, N, s
 DO i=l_s, min(N, l_s+s-1)
 a(i) = b(i) + c(i)
 ENDDO
ENDDO

Loop linearization

Main consequences

- Strip-mining performs parametric loop unrolling.
- It changes the structure and creates blocks of computations.
- It can be used as a preliminary step for tiling.
- Loop linearization can reduce the control of loops.
- It also reduces the problem dimension.
Loop interchange

Loop interchange: \((i, j) \mapsto (j, i)\).

DO \(i=1, N\)
 DO \(j=1, i\)
 \(a(i,j+1) = a(i,j) + 1\)
 ENDDO
ENDDO

DO \(j=1, N\)
 DO \(i=j, N\)
 \(a(i,j+1) = a(i,j) + 1\)
 ENDDO
ENDDO

Main consequences

- Can enable loop parallelism.
- Basis of loop tiling.
- Changes order of memory accesses and thus data locality.
- Needs bounds computations as in \(\sum_{i=1}^{n} \sum_{j=1}^{n} S_{i,j} = \sum_{j=1}^{n} \sum_{i=j}^{n} S_{i,j}\).
Loop skewing, loop reversal, unimodular transformation

Loop skewing: \((i, j) \mapsto (i, j + i)\), loop iterations in the same order.

\[
\begin{align*}
\text{DO } & i=1, N \\
& \quad \text{DO } j=1, N \\
& \quad \quad a(i, j+1) = a(i, j) + 1 \\
& \quad \text{ENDDO} \\
& \text{ENDDO}
\end{align*}
\]

\[
\begin{align*}
\text{DO } & i=1, N \\
& \quad \text{DO } j=1+i, N+i \\
& \quad \quad a(i, j-i+1) = a(i, j-i) + 1 \\
& \quad \text{ENDDO} \\
& \text{ENDDO}
\end{align*}
\]

Loop reversal: \(i \mapsto -i\), loop executed in opposite order.

Unimodular = combination of reversal, skewing, interchange.

\[
\begin{align*}
\text{DO } & i=1, N \\
& \quad \text{DO } j=1, N \\
& \quad \quad a(i, j) = \ldots \\
& \quad \text{ENDDO} \\
& \text{ENDDO}
\end{align*}
\]

\[
\begin{align*}
\text{DO } & t=2, 2N \\
& \quad \text{DO } p=\max(1,t-N), \min(N,t-1) \\
& \quad \quad a(p, t-p) = \ldots \\
& \quad \text{ENDDO} \\
& \text{ENDDO}
\end{align*}
\]
In practice, need to combine all. Ex: HLS with C2H Altera

Optimize DDR accesses for bandwidth-bound accelerators.

- Use tiling for **data reuse** and to enable **burst communication**.
- Use fine-grain software pipelining to **pipeline DDR requests**.
- Use double buffering to **hide DDR latencies**.
- Use coarse-grain software pipelining to **hide computations**.
In practice, need to combine all. Ex: HLS with C2H Altera

Optimize DDR accesses for bandwidth-bound accelerators.

- Use tiling for **data reuse** and to enable **burst communication**.
- Use fine-grain software pipelining to **pipeline DDR requests**.
- Use double buffering to **hide DDR latencies**.
- Use coarse-grain software pipelining to **hide computations**.
Outline

1. The polyhedral model
 - Paul Feautrier’s static control programs
 - Analyses, optimizations, and tools
 - The polyhedral model is... a model

2. Systems of uniform recurrence equations
 - Model and problems
 - Computability of a system
 - Scheduling of a system

3. Multi-dimensional scheduling and applications
 - Catalog of loop transformations
 - Detection of parallel loops
 - Multi-dimensional ranking and worst-case execution time
Fortran DO loops:

```
DO i=1, N
    DO j=1, N
        a(i,j) = c(i,j-1)
        c(i,j) = a(i,j) + a(i-1,N)
    ENDDO
ENDDO
```

- Nested loops, static control.
- Iteration domain and vector.
- Sequential order \leq_{seq}.
- Dependences:
 - R/W, W/R, W/R.

Dependence relations:

$$S(I) <_{seq} T(J) \iff (I|_d <_{lex} J|_d) \text{ or } (I|_d = J|_d \text{ and } S <_{txt} J)$$

- EDG: dependence graph between operations $S(I) \Rightarrow T(J)$.
- RDG: dependence graph between statements $S \rightarrow T$.
- ADG: over-approximation, if $S(I) \Rightarrow T(J)$, then $S \rightarrow T$.
Representation of dependences

- **Pair set** (exact dependences): \(R_{S,T} = \{(I, J) \mid S(I) \Rightarrow T(J)\} \)
 in particular **affine dependence** \(I = f(J) \) if possible.

- **Distance set**: \(E_{S,T} = \{(J - I) \mid S(I) \Rightarrow T(J)\} \).

- **Over-approximations** \(E'_{S,T} \) such that \(E_{S,T} \subseteq E'_{S,T} \).

Distance set:
\[
E = \left\{ \left(\begin{array}{c} i - j \\ j - i \end{array} \right) \mid i - j \geq 1, \ 1 \leq i, j \leq N \right\}
\]

Polyhedral approximation:
\[
E' = \left\{ \left(\begin{array}{c} 1 \\ -1 \end{array} \right) + \lambda \left(\begin{array}{c} 1 \\ -1 \end{array} \right) \mid \lambda \geq 0 \right\}
\]

Direction vectors:
\[
E' = \left(\begin{array}{c} + \\ - \end{array} \right) = \left\{ \left(\begin{array}{c} 1 \\ -1 \end{array} \right) + \lambda \left(\begin{array}{c} 1 \\ 0 \end{array} \right) + \mu \left(\begin{array}{c} 0 \\ -1 \end{array} \right) \mid \lambda, \mu \geq 0 \right\}
\]

Level:
\[
E' = \left(\begin{array}{c} * \\ + \end{array} \right) = \left\{ \left(\begin{array}{c} 1 \\ 0 \end{array} \right) + \lambda \left(\begin{array}{c} 1 \\ 0 \end{array} \right) + \mu \left(\begin{array}{c} 0 \\ 1 \end{array} \right) \mid \lambda \geq 0 \right\}
\]
Uniformization of dependences: example

\[
\begin{align*}
\text{DO } & i=1, N \\
\text{DO } & j=1, N \\
& a(i,j) = c(i,j-1) \\
& c(i,j) = a(i,j) + a(i-1,N) \\
\text{ENDDO} \\
\text{ENDDO}
\end{align*}
\]

\[a(i,j) \Rightarrow a(i-1,N)\]
Dep. distance \((1,j-N)\).
Uniformization of dependences: example

DO i=1, N
 DO j=1, N
 a(i,j) = c(i,j-1)
 c(i,j) = a(i,j) + a(i-1,N)
 ENDDO
ENDDO

a(i,j) ⇒ a(i-1,N)
Dep. distance (1,j − N).

Direction vector \((1,0−) = (1,0) + k(0,−1), \ k \geq 0.\)
Also \(X.(1,0−) \geq 1 \Rightarrow X.(1,0) \geq 1\) and \(X.(0,−1) \geq 0.\) \{SURE!\}

No parallelism \((d = 2)\). Code appears (here it is) purely sequential.
Emulation of dependence polyhedra

For a (self) dependence polyhedron \mathcal{P}, with vertex v and ray r:

$$\forall p \in \mathcal{P} \ X.p \geq 1 \Leftrightarrow \forall \lambda \geq 0 \ X.(v + \lambda r) \geq 1 \Leftrightarrow X.v \geq 1 \text{ and } X.r \geq 0$$

Emulate vertices, rays, and lines.

Example with direction vectors:

DO i = 1, N
 DO j = 1, N
 DO k = 1, j
 a(i,j,k) = c(i,j,k-1) + 1
 b(i,j,k) = a(i-1,j+i,k) + b(i,j-1,k)
 c(i,j,k+1) = c(i,j,k) + b(i,j-1,k+i)
 + a(i,j-k,k+1)
 ENDDO
 ENDDO
ENDDO
ENDDO
ENDDO
Second example: dependence graphs

Initial RDG.

Uniformized RDG.
Second example: G and G'

Uniformized RDG.

$(2i, j)$ for S_2, $(2i + 1, 2k)$ for S_1, and $(2i + 1, 2k + 3)$ for S_3.
Second exemple: parallel code generation

```
DOSEQ i=1, n
    DOSEQ j=1, n /* scheduling (2i, j) */
        DOPAR k=1, j
            b(i,j,k) = a(i-1,j+i,k) + b(i,j-1,k)
        ENDDOPAR
    ENDDOSEQ

DOSEQ k = 1, n+1
    IF (k ≤ n) THEN /* scheduling (2i+1, 2k) */
        DOPAR j=k, n
            a(i,j,k) = c(i,j,k-1) + 1
        ENDDOPAR
    IF (k ≥ 2) THEN /* scheduling (2i+1, 2k+3) */
        DOPAR j=k-1, n
            c(i,j,k) = c(i,j,k-1) + b(i,j-1,k+i-1) + a(i,j-k+1,k)
        ENDDOPAR
    ENDDOSEQ
ENDDOSEQ
```
Allen-(Callahan)-Kennedy (1987): loop distribution

AK(G, k):
- Remove from G all edges of level < k.
- Compute G₁, . . . , Gₛ the s SCCs of G in topological order.
 - If Gᵢ has a single statement S, with no edge, generate DOPAR loops in all remaining dimensions, and generate code for S.
 - Otherwise:
 - Generate DOPAR loops from level k to level l − 1, and a DOSEQ loop for level l, where l is the minimal level in Gᵢ.
 - call AK(Gᵢ, l + 1). /* dₛ sequential loops for statement S */

Variant of (dual of) KMW with DOPAR as high as possible.
Allen-(Callahan)-Kennedy (1987): loop distribution

\textbf{AK}(G, k):

\begin{itemize}
 \item Remove from G all edges of level $< k$.
 \item Compute G_1, \ldots, G_s the s SCCs of G in topological order.
 \begin{itemize}
 \item If G_i has a single statement S, with no edge, generate \textsc{DOPAR} loops in all remaining dimensions, and generate code for S.
 \item Otherwise:
 \begin{itemize}
 \item Generate \textsc{DOPAR} loops from level k to level $l - 1$, and a \textsc{DOSEQ} loop for level l, where l is the minimal level in G_i.
 \item call \textbf{AK}(\textit{G$_i$, $l + 1$}). /* \textit{d$_s$} sequential loops for statement S */
 \end{itemize}
 \end{itemize}
\end{itemize}

\begin{itemize}
 \item Variant of (dual of) KMW with \textsc{DOPAR} as high as possible.
\end{itemize}

\textbf{Theorem 1 (Optimality of AK for dependence levels)}

\textit{Nested loops \mathcal{L}, RDG G with levels. One can build nested loops \mathcal{L}', with same structure and same RDG, with bounds parameterized by N such that, for each SCC G_i of G, there is a path in the EDG of \mathcal{L}' that visits each statement S of G_i $\Omega(N^{d_s})$ times.}
Darte-Vivien (1997): unimodular + shift + distribution

Boolean $\text{DV}(G, k)$ /* G uniformized graph, with virtual and actual nodes */

- Build G' generated by the zero-weight multi-cycles of G.
- Modify slightly G' (technical detail not explained here).
- Choose X (vector) and, for each S in G', ρ_S (scalar) s.t.:

 $$\begin{cases}
 \text{if } e = (u, v) \in G' \text{ or } u \text{ is virtual, } X_w(e) + \rho_v - \rho_u \geq 0 \\
 \text{if } e \notin G' \text{ and } u \text{ is actual, } X_w(e) + \rho_v - \rho_u \geq 1
 \end{cases}$$

For each actual node S of G let $\rho_S^k = \rho_S$ and $X_S^k = X$.

- Compute G'_1, \ldots, G'_s the SCC of G' with ≥ 1 actual node:
 - If G' is empty or has only virtual nodes, return TRUE.
 - If G' is strongly connected with ≥ 1 actual node, return FALSE.
 - Otherwise, return $\bigwedge_{i=1}^s \text{DV}(G'_i, k + 1)$ ($\bigwedge = \text{logical AND}$).
General affine multi-dimensional schedules

Affine dependences (or even relations): \((S, I)\) depends on \((T, J)\) if
\((I, J) \in \mathcal{D}_e\) where \(e = (T, S)\) and \(\mathcal{D}_e\) is a polyhedron.

- Look for schedule \(\sigma\) such that \(\sigma(T, J) <_{\text{lex}} \sigma(S, I)\) for all
 \((I, J) \in \mathcal{D}_e\). If \(\sigma\) is affine, use affine form of Farkas lemma.
- Write \(\sigma(T, J) + \epsilon_e \leq \sigma(S, I)\) with \(\epsilon \geq 0\) and maximize the
 number of dependence edges \(e\) such that \(\epsilon_e \geq 1\).
- Remove edges \(e\) such that \(\epsilon_e \geq 1\) and continue to get
 remaining dimensions \(\Rightarrow\) multi-dimensional affine schedule.

To perform tiling, look for several dimensions (permutable loops)
such that \(\sigma(S, I) - \sigma(T, J) \geq 0\) instead of \(\sigma(S, I) - \sigma(T, J) \geq 1\).
Loop parallelization: optimality w.r.t. dep. abstraction

- **Lamport (1974)**: hyperplane method = skew + interchange.
- **Allen-Kennedy (1987)**: loop distribution, optimal for levels.
- **Wolf-Lam (1991)**: unimodular, optimal for direction vectors and one statement. Based on finding permutable loops.
- **Darte-Vivien (1997)**: unimodular + shifting + distribution, optimal for polyhedral abstraction and perfectly nested loops. Finds permutable loops, too.
- **Feautrier (1992)**: general affine scheduling, complete for affine dependences and affine transformations, but not optimal.
- **Lim-Lam (1998)**: extension to coarse-grain parallelism, vague.
- **Bondhugula-Ramanujam-Sadayappan (2008)**: improved extension to permutable loops, with locality optimization.
Outline

1. The polyhedral model
 - Paul Feautrier’s static control programs
 - Analyses, optimizations, and tools
 - The polyhedral model is... a model

2. Systems of uniform recurrence equations
 - Model and problems
 - Computability of a system
 - Scheduling of a system

3. Multi-dimensional scheduling and applications
 - Catalog of loop transformations
 - Detection of parallel loops
 - Multi-dimensional ranking and worst-case execution time
Yet another application of SUREs: understand “iterations”

Fortran DO loops:

```fortran
DO i=1, N
    DO j=1, N
        a(i,j) = c(i,j-1)
        c(i,j) = a(i,j) + a(i-1,N)
    ENDDO
ENDDO
```

C for and while loops:

```c
y = 0; x = 0;
while (x <= N && y <= N) {
    if (?) {
        x=x+1;
        while (y >= 0 && ?) y=y-1;
    }
    y=y+1;
}
```

Uniform recurrence equations:

\[\forall p \in \{ p = (i,j) \mid 1 \leq i, j \leq N \} \]

\[
\begin{align*}
 a(i,j) &= c(i,j - 1) \\
 b(i,j) &= a(i-1,j) + b(i,j + 1) \\
 c(i,j) &= a(i,j) + b(i,j)
\end{align*}
\]
Example of GCD of 2 polynomials

```c
// expression expr, array A, r>0 integer.
da = 2r; db = 2r;
while (da >= r) {
    cond = (da >= db || A[expr] == 0);
    if (!cond) {
        tmp = db; db = da; da = tmp - 1;
    } else da = da - 1;
}
```

Hard to optimize for HLS tools:
- No loop unrolling possible.
- Limited software pipelining.
- No nested-loops optimization.
- No information for coarse-grain scheduling/pipelining.

☞ Need to bound the number of iterations. When feasible, proves program termination as by-product.
Phase 1: build an integer interpreted automaton

Identify relevant variables:
- vector $\vec{x} \in \mathbb{Z}^n$, $n =$ problem dimension.

Build RDG:
- control-flow graph and conditional transitions.
- express evolution of \vec{x} with affine relations, a bit more general than affine dependences.

Refine automaton (if desired):
- analysis of Booleans: better accuracy, higher complexity.
- simple-path compression: reduces complexity.
- multiple-paths summary: better accuracy, impacts complexity.

Sequential automaton similar to affine recurrence equations, with a different semantics: different relations express non-determinism.
Phase 2: abstract interpretation to get “invariants”

Explicit dependences and schedule, but implicit iteration domains!

Here, we need to prove \(db \geq r \). Use abstract interpretation.

```
// expression expr, array A,
// r>0 integer.
da = 2r; db = 2r;
while (da >= r) {
  cond = (da >= db
 || A[expr] == 0);
  if (!cond) {
    tmp = db; db = da;
    da = tmp - 1;
  } else da = da - 1;
}
```

- **Invariant** = integer points in a polyhedron \(P_k \): conservative approximation of reachable values for each control point \(k \).
- Possibly infinite, parameterized by program inputs.
Phase 3: ranking function to prove termination

Ranking function Mapping $\sigma : K \times \mathbb{Z}^n \rightarrow (W, \preceq)$, decreasing on each transition, where (W, \preceq) is a well-founded set.

Multi-dimensional rankings $W = \mathbb{N}^p$ with lexicographic order.

Affine ranking $\sigma(k, \vec{x}) = A_k \cdot \vec{x} + \vec{b}_k$ \Rightarrow Farkas lemma.

Similar to multi-dimensional scheduling for loops, except:

- Higher dimension n (number of relevant variables).
- Flow not always lexicographically positive \Rightarrow recurrence equations.
- Hidden “counters” (number p of dimension of the ranking).
Phase 3: ranking function to prove termination

Ranking function Mapping $\sigma : K \times \mathbb{Z}^n \rightarrow (\mathcal{W}, \preceq)$, decreasing on each transition, where (\mathcal{W}, \preceq) is a well-founded set.

Multi-dimensional rankings $\mathcal{W} = \mathbb{N}^p$ with lexicographic order.

Affine ranking $\sigma(k, \vec{x}) = A_k \vec{x} + b_k \implies$ Farkas lemma.

Similar to multi-dimensional scheduling for loops, except:

- Higher dimension n (number of relevant variables).
- Flow not always lexicographic-positive \implies recurrence equations.
- Hidden “counters” (number p of dimension of the ranking).

\[
\begin{align*}
2r & \quad da + db = cte \\
2r & \quad da \\
r & \quad r - 1 \\
& \quad da
\end{align*}
\]
Phase 4: bound on the number of program steps

Worst-case computational complexity (WCCC): maximum number of transitions fired by the automaton:

\[WCCC \leq \# \bigcup \sigma(k, P_k) \leq \sum_k \# \sigma(k, P_k) \]

Counting points in (images of) polyhedra: Ehrhart polynomials, projections, Smith form, union of polyhedra, etc.

\[WCCC \leq \# \sigma(\text{init}, P_{\text{init}}) + \# \sigma(\text{loop}, P_{\text{loop}}) + \# \sigma(\text{end}, P_{\text{end}}) \]

\[= 2 + \# \{ (1, i) \mid 1 \leq i \leq 2r + 2 \} \]

\[= 2r + 4 \]
Alias-Darte-Feautrier-Gonnord (2010)

Greedy algorithm

- $i = 0; \ T = \mathcal{T}$, set of all transitions.
- While T is not empty do
 - Find a 1D affine function (X, ρ_S), not increasing for any transitions, and decreasing for as many transitions as possible.
 - Let $\sigma_i = X \ ; \ i = i + 1$;
 - If no transition is decreasing, return FALSE.
 - Remove from T all decreasing transitions.
- $d = i$, return TRUE.

Theorem 7 (Completeness of greedy algorithm w.r.t. invariants)

If an affine interpreted automaton, with associated invariants, has a multi-dimensional affine ranking function, then the greedy algorithm generates one such ranking. Moreover, the dimension of the generated ranking is minimal.
Yet another example

```plaintext
y = 0;
x = m;
while(x>=0 && y>=0){
    if(indet()){
        while(y <= m && indet())
            y++;
        x--;
    }
y--;
}
```

<table>
<thead>
<tr>
<th>start</th>
<th>$m \geq 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>lbl_4</td>
<td>$m \geq x > 0, m \geq y > 0$</td>
</tr>
<tr>
<td>lbl_5</td>
<td>$m \geq x \geq 0, m \geq y \geq 0$</td>
</tr>
<tr>
<td>lbl_6</td>
<td>$m \geq x \geq 0, m + 1 \geq y \geq 0$</td>
</tr>
<tr>
<td>lbl_{10}</td>
<td>{ $m \geq x \geq -1, m + 1 \geq y \geq 0$, $2m \geq x + y$ }</td>
</tr>
</tbody>
</table>

$$WCCC = 5 + 7m + 4m^2$$
Link with Karp, Miller, Winograd’s decomposition

Gulwani (2009) very different but similar theoretical power.

- Iteration domains \Leftrightarrow Invariants.
- Loop counters \Leftrightarrow Integer variables involved in the control.
- Dependences: partial order \Leftrightarrow Evolution of variables.
- Scheduling functions \Leftrightarrow Ranking functions.
- Latency \Leftrightarrow Worst-case execution time (ideal).
- Parallelism \Leftrightarrow Non determinism.
- In both cases, algorithm depth $=$ measure of sequentiality.
Theorem 2 (Farkas’ lemma)

Let A be a matrix and b a vector. There exists a vector $x \geq 0$ with $Ax = b$ if and only if $yb \geq 0$ for each row vector y with $yA \geq 0$.

Theorem 3 (Duality)

Provided that both sets are nonempty:

$$\max \{ cx \mid Ax \leq b \} = \min \{ yb \mid y \geq 0, yA = c \}$$

Theorem 4 (Complementary slackness)

If both optima are finite, x_0 and y_0 are optimum solutions if and only if they are feasible and $y_0(b - Ax_0) = 0$.

Theorem 5 (Affine form of Farkas’ lemma)

If $Ax \leq b$ is nonempty then $cx \leq \delta$ for all x such that $Ax \leq b$ if and only if there exists $y \geq 0$ such that $c = yA$ and $yb \leq \delta$.