ENS de Lyon Mini-DM 2

Equational criterion of flatness

Let A be a (commutative) ring. We let \otimes be the tensor product of A-modules.

Let M be an A-module. A relation $\sum_{i=1}^{n} a_i x_i = 0$ in M (with $a_i \in A$ and $x_i \in M$) is trivial if it comes from relations in A i.e. if there is an integer m and a matrix $(b_{ij}) \in M_{n,m}(A)$ such that for all j, $\sum_{i=1}^{n} a_i b_{ij} = 0$ and there are elements y_j of M such that for all i, $x_i = \sum_{j=1}^{m} b_{ij} y_j$

1. The goal of this question is to prove the equational criterion of flatness. This will give a more concrete caracterisation of flatness. The criterion is the following:

Let M be an A-module, then M is flat if and only if all relations are trivial in M.

- (a) Assume that M is flat. Take a relation $\sum_{i=1}^{n} a_i x_i = 0$ with $a_i \in A$ and $x_i \in M$. Let I be the ideal generated by a_1, \ldots, a_n . Show that the element $\sum_{i=1}^{n} a_i \otimes x_i$ of $I \otimes M$ is zero.
- (b) Let e_i be the canonical basis of A^n . Let K be the kernel of the morphism $A^n \to I$ sending e_i to a_i . Show that there is an element of $K \otimes M$ mapping to $\sum_{i=1}^n e_i \otimes x_i$. Conclude that if M is flat, all relations are trivial in M.
- (c) Assume that all relations are trivial in M. Let I be a finitely generated ideal of A and let $\sum_{i=1}^{n} a_i \otimes x_i$ be an element of $I \otimes M$ which is sent to 0 in $A \otimes M = M$. Show that $\sum_{i=1}^{n} a_i \otimes x_i = 0$. Conclude.
- 2. Let k be a field and assume A = k[x, y]. Let M be the ideal of A generated by x and y. Is M flat over A?
- 3. Assume that A is a local ring. Let \mathfrak{m} be its maximal ideal and $k = A/\mathfrak{m}$. Let M be a finitely generated flat A-module. We want to show that M is free. Let $\overline{M} = M/\mathfrak{m}M$ and let $(\overline{u_1}, \ldots, \overline{u_n})$ be a free family of \overline{M} as a k-vector space.
 - (a) We will proceed by induction on n to show that (u_1, \ldots, u_n) is free. Show that if $n = 1, (u_1)$ is free.
 - (b) Assume the result for n-1. Let $\sum_{i=1}^{n} a_i u_i = 0$ be a relation in M. Show that a_n is a linear combination of a_1, \ldots, a_{n-1} . Deduce that (u_1, \ldots, u_n) is free.
 - (c) Show that if $(\overline{u_1}, \ldots, \overline{u_n})$ is a generating family of \overline{M} , (u_1, \ldots, u_n) is a generating family of M. Conclude.