Equational criterion of flatness

Let A be a (commutative) ring. We let \otimes be the tensor product of A-modules.
Let M be an A-module. A relation $\sum_{i=1}^{n} a_{i} x_{i}=0$ in M (with $a_{i} \in A$ and $x_{i} \in M$) is trivial if it comes from relations in A i.e. if there is an integer m and a matrix $\left(b_{i j}\right) \in M_{n, m}(A)$ such that for all j, $\sum_{i=1}^{n} a_{i} b_{i j}=0$ and there are elements y_{j} of M such that for all $i, x_{i}=\sum_{j=1}^{m} b_{i j} y_{j}$

1. The goal of this question is to prove the equational criterion of flatness. This will give a more concrete caracterisation of flatness. The criterion is the following:
Let M be an A-module, then M is flat if and only if all relations are trivial in M.
(a) Assume that M is flat. Take a relation $\sum_{i=1}^{n} a_{i} x_{i}=0$ with $a_{i} \in A$ and $x_{i} \in M$. Let I be the ideal generated by a_{1}, \ldots, a_{n}. Show that the element $\sum_{i=1}^{n} a_{i} \otimes x_{i}$ of $I \otimes M$ is zero.
(b) Let e_{i} be the canonical basis of A^{n}. Let K be the kernel of the morphism $A^{n} \rightarrow I$ sending e_{i} to a_{i}. Show that there is an element of $K \otimes M$ mapping to $\sum_{i=1}^{n} e_{i} \otimes x_{i}$. Conclude that if M is flat, all relations are trivial in M.
(c) Assume that all relations are trivial in M. Let I be a finitely generated ideal of A and let $\sum_{i=1}^{n} a_{i} \otimes x_{i}$ be an element of $I \otimes M$ which is sent to 0 in $A \otimes M=M$. Show that $\sum_{i=1}^{n} a_{i} \otimes x_{i}=0$. Conclude.
2. Let k be a field and assume $A=k[x, y]$. Let M be the ideal of A generated by x and y. Is M flat over A ?
3. Assume that A is a local ring. Let \mathfrak{m} be its maximal ideal and $k=A / \mathfrak{m}$. Let M be a finitely generated flat A-module. We want to show that M is free. Let $\bar{M}=M / \mathfrak{m} M$ and let $\left(\overline{u_{1}}, \ldots, \overline{u_{n}}\right)$ be a free family of \bar{M} as a k-vector space.
(a) We will proceed by induction on n to show that $\left(u_{1}, \ldots, u_{n}\right)$ is free. Show that if $n=1,\left(u_{1}\right)$ is free.
(b) Assume the result for $n-1$. Let $\sum_{i=1}^{n} a_{i} u_{i}=0$ be a relation in M. Show that a_{n} is a linear combination of a_{1}, \ldots, a_{n-1}. Deduce that $\left(u_{1}, \ldots, u_{n}\right)$ is free.
(c) Show that if $\left(\overline{u_{1}}, \ldots, \overline{u_{n}}\right)$ is a generating family of $\bar{M},\left(u_{1}, \ldots, u_{n}\right)$ is a generating family of M. Conclude.
