Modules

All rings are assumed to be commutative.

Exercise 1. (Some examples of modules)

1. Let A be a ring. Describe submodules of A seen as a A-module.
2. Describe \mathbb{Z}-modules.
3. Let K be a field. Describe $K[X]$-modules, their submodules and linear maps.

Exercise 2. (Universal properties) Let A be a ring.

1. Let M be a A-module and N a submodule of M. Show that the quotient M / N satisfies the following universal property : for any A-module M^{\prime} and any A-linear map $f: M \longrightarrow M^{\prime}$ such that $N \subset \operatorname{ker} f$, there exists a unique A-linear map $\tilde{f}: M / N \longrightarrow M^{\prime}$ such that f factorizes through \tilde{f}, i.e. $f=\tilde{f} \circ \pi_{N}$, where $\pi_{N}: M \rightarrow M / N$ is the canonical projection (make a diagram representing the situation). Deduce that if P is a submodule of N, then $(M / P) /(N / P)$ is isomorphic to M / N.
2. Let $\left\{M_{i} \mid i \in I\right\}$ be a family of A-modules. Show that the direct sum $\oplus_{i \in I} M_{i}$ satisfies the following universal property : for any A-module N and any family $\left\{f_{i}: M_{i} \longrightarrow N \mid i \in I\right\}$ of A-linear maps, there exists a unique A-linear map $g: \oplus_{i \in I} M_{i} \longrightarrow N$ such that $g_{\mid M_{i}}=f_{i}$ for every $i \in I$. Draw a diagram in the case where I is finite and $M_{i}=A$?
3. Let $\left\{M_{i} \mid i \in I\right\}$ be a family of A-modules. Show that the product $\prod_{i \in I} M_{i}$ satisfies the following universal property : for any A-module N and any family $\left\{f_{i}: N \longrightarrow M_{i} \mid i \in I\right\}$ of A-linear maps, there exists a unique A-linear map $g: N \longrightarrow \prod_{i \in I} M_{i}$ such that $g_{i}=f_{i}$ for every $i \in I$. Draw a diagram in the case where I is finite and $M_{i}=A$?
4. Deduce from the last two points that if $\left\{M_{i} \mid i \in I\right\}$ and $\left\{N_{j} \mid j \in J\right\}$ are families of A-modules, then $\operatorname{Hom}_{A}\left(\oplus_{i \in I} M_{i}, \prod_{j \in J} N_{j}\right) \simeq \prod_{(i, j) \in I \times J} \operatorname{Hom}_{A}\left(M_{i}, N_{j}\right)$.

Exercise 3. Find two non-isomorphic \mathbb{Z}-modules M_{1}, M_{2} such that there exists an exact sequence $0 \rightarrow \mathbb{Z} / 2 \mathbb{Z} \rightarrow M_{i} \rightarrow \mathbb{Z} / 2 \mathbb{Z} \rightarrow 0$ for $i=1,2$.

Exercise 4. (Not as easy as linear algebra) Let A be a ring and M be a free A-module.

1. If $\left(x_{i}\right)_{i \in I}$ is a generating fmily of M, does it contain a basis of M ?
2. If $\left(x_{i}\right)_{i \in I}$ is a linearly independent family of M, can it be extended to a basis of M ? Does every submodule of M admit a direct sum complement?
3. Show that, if $n>1, \mathbb{Z} / n \mathbb{Z}$, seen as a \mathbb{Z}-module, does not contain any linearly independent family. Conclude that $\mathbb{Z} / n \mathbb{Z}$ is not a free \mathbb{Z}-module.

Exercise 5. (Dual module) If M is an A-module, we set $M^{\vee}=\operatorname{Hom}_{A}(M, A)$.

1. Compute $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Q}, \mathbb{Z})$.
2. If M is a torsion module over the ring A, that is if $M_{\text {tors }}=M$, and A is an integral domain, show that $M^{\vee}=0$.
3. Show that there is a natural map $M \rightarrow M^{\vee \vee}$. Show that this map is an isomorphism when A is a field and M a finite-dimensional vector space. Give an example where this map is not injective, and an example where it is not surjective.

Exercise 6. (Torsion) A module M is called a torsion module if $M_{\text {tors }}=M$, and torsion-free if $M_{\text {tors }}=\{0\}$.

1. What are the torsion elements of the A-module A ?

We assume for the rest of the exercise that A is an integral domain.
2. Show that $M_{\text {tors }}$ is a submodule of M and that $M / M_{\text {tors }}$ is a torsion-free A-module. Does it still hold if A is not an integral domain?
3. Let N be a submodule of M. Express $N_{\text {tors }}$ in terms of $M_{\text {tors }}$. Deduce that $M_{\text {tors }}$ is a torsion module.
4. Let N and P be two submodules of M such that $M=N \oplus P$. Show that $M_{\text {tors }}=N_{\text {tors }} \oplus P_{\text {tors }}$. Deduce that A^{r} is torsion-free.
5. Let $\left(M_{i}\right)$ be a family of A-modules. Show that $\left(\oplus_{i} M_{i}\right)_{\text {tors }}=\oplus_{i}\left(M_{i, \text { tors }}\right)$ but that the inclusion $\left(\prod_{i} M_{i}\right)_{\text {tors }} \subset \prod_{i}\left(M_{i, \text { tors }}\right)$ is not necessarily an equality.
6. Prove that if the sequence $0 \rightarrow M \rightarrow N \rightarrow P$ is exact, then so is $0 \rightarrow M_{\text {tors }} \rightarrow N_{\text {tors }} \rightarrow P_{\text {tors }}$.
7. Show that there exists a unique A-linear map \tilde{f} such that the following diagram is commutative (here π_{M} and π_{N} denote canonical surjections),

Exercise 7. (Annihilators) Let A be a ring and M be a A-module.

1. Set $\operatorname{Ann}(M)=\{a \in A \mid \forall m \in M, a \cdot m=0\}$. Show that $\operatorname{Ann}(M)$ is an ideal of A and that M admits a natural structure of $A / \operatorname{Ann}(M)$-module.
2. Let $x \in M$, and set $\operatorname{Ann}(x)=\{a \in A \mid a \cdot x=0\}$. Show that $\operatorname{Ann}(x)$ is an ideal of A, and that the submodule $A \cdot x$ of M is isomorphic to $A / \operatorname{Ann}(x)$. Deduce that $A \cdot x$ is free if and only if x is not a torsion element of M.

Exercise 8. Let A be a ring and I an ideal of A. Show that I is a free submodule of A if and only if I is principal, generated by a non-zero divisor of A. Give an example of a submodule of a free module which is not free.

Exercise 9. Let A be a ring such that every A-module is free. Show that A is a field.

Exercise 10.* (The Baer-Specker group $\mathbb{Z}^{\mathbb{N}}$)

1. For any $n \in \mathbb{N}$, set $e_{n}=(0, \ldots, 0, \underbrace{1}_{n}, 0, \ldots) \in \mathbb{Z}^{\mathbb{N}}$. Let us show that $\operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}^{\mathbb{N}}, \mathbb{Z}\right) \simeq \mathbb{Z}^{(\mathbb{N})}$:
(a) Give a natural \mathbb{Z}-linear map $\mathbb{Z}^{(\mathbb{N})} \hookrightarrow \operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}^{\mathbb{N}}, \mathbb{Z}\right)$.
(b) Let $f \in \operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}^{\mathbb{N}}, \mathbb{Z}\right)$. Let us show that $f\left(e_{n}\right)=0$ for every sufficiently large n. If not, show that there exists a sequence $\left(d_{n}\right)_{n \in \mathbb{N}}$ such that no integer x satisfies $x \equiv \sum_{i=0}^{N-1} 2^{i} d_{i} f\left(e_{i}\right) \bmod 2^{N}$ for every $N \in \mathbb{N}$, and consider $S=\sum_{n \in \mathbb{N}} 2^{n} d_{n} e_{n} \in \mathbb{Z}^{\mathbb{N}}$. Hint: Use a diagonal argument.
(c) Let $x \in \mathbb{Z}^{\mathbb{N}}$. Show that for any $n \in \mathbb{N}$, there exist $a_{n}, b_{n} \in \mathbb{Z}$ such that $x_{n}=2^{n} a_{n}+3^{n} b_{n}$. Deduce that if $f \in \operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}^{\mathbb{N}}, \mathbb{Z}\right)$ vanishes on $\mathbb{Z}^{(\mathbb{N})}$ then $f(x)=0$. Conclude.
2. Show that \mathbb{Z}^{N} is not a free \mathbb{Z}-module. Hint : use Exercise 2.
