ENS de Lyon TD10

Localization of modules and homomorphisms; Integral elements, integrally closed rings

Exercise 1. Let $A \subset B$ be an integral extension of integral domains. Show that $A \cap B^{\times} = A^{\times}$.

Exercise 2. Let $A \subset B$ be integral domains. We say that $x \in B$ is algebraic over A if there exists some non-zero $P \in A[X]$ with P(x) = 0.

- 1. Let $x \in B$ be algebraic over A. Show that there is some non-zero $a \in A$ such that ax is integral over A.
- 2. Assume that B is a finitely generated A-algebra and that every element of B is algebraic over A. Show that there exists some $f \in A$ such that B[1/f] is finite over A[1/f].

Exercise 3. Let $A = \mathbb{C}[X, Y]/(Y^2 - X^3)$. Let $B = \mathbb{C}[X, Y]/(Y^2 - X^2(X + 1))$

Show that A and B are domains whose fields of fractions are isomorphic to $\mathbb{C}(T)$. Deduce that A and B are not integrally closed and compute their integral closure.

Exercise 4. Let A be an integral domain. Show that if A is integrally closed, then so is A[X].

Exercise 5. Show that the ring of holomorphic functions over \mathbb{C} is integrally closed but is not factorial.

Exercise 6. Let K/\mathbb{Q} be a field extension of dimension n. Let $x \in K$, and let x_1, \ldots, x_n be the roots of the minimal polynomial of x over \mathbb{Q} (taken in an algebraic closure). The endomorphism $m_x : K \to K$ of multiplication by x is a \mathbb{Q} -linear map; its trace and its determinant are therefore elements of \mathbb{Q} . We define $\operatorname{Tr}_{K/\mathbb{Q}}(x) = \operatorname{Tr}(m_x)$ and $\operatorname{N}_{K/\mathbb{Q}}(x) = \det(m_x)$.

- 1. Show that $\operatorname{Tr}_{K/\mathbb{Q}}(x) = [K : \mathbb{Q}(x)] \sum_{i=1}^{n} x_i$ and that $\operatorname{N}_{K/\mathbb{Q}}(x) = \left(\prod_{i=1}^{n} x_i\right)^{[K:\mathbb{Q}(x)]}$. Deduce that if x is integral over \mathbb{Z} , then $\operatorname{Tr}_{K/\mathbb{Q}}(x)$ and $\operatorname{N}_{K/\mathbb{Q}}(x)$ are integral.
- 2. Let $x \in K$ be an integer over \mathbb{Z} . Show that 1/x is integral over \mathbb{Z} is, and only if, $N_{K/\mathbb{Q}}(x) = \pm 1$.
- 3. Let p be a prime number. Let $\zeta_p = \exp\left(\frac{2i\pi}{p}\right)$ and $K = \mathbb{Q}(\zeta_p)$.
 - (a) Show that $(1-\zeta_p)\mathbb{Z}[\zeta_p]\cap\mathbb{Z}=p\mathbb{Z}$. (Hint: show first that $p=\varepsilon(1-\zeta_p)^{p-1}$, for some $\varepsilon\in\mathbb{Z}[\zeta_p]^{\times}$)
 - (b) Show that if $z = \sum_{i=0}^{p-2} a_i \zeta_p^i$ is integral over \mathbb{Z} , then $\operatorname{Tr}_{K/\mathbb{Q}}((1-\zeta_p)z)$ is divisible by p. Deduce that the ring of integers of K is $\mathbb{Z}[\zeta_p]$.
- 4. We want to prove that the ring $\mathbb{Z}[\sqrt[3]{2}]$ is integrally closed.
 - (a) Show that it is integral over \mathbb{Z} .
 - (b) Let $z = a + b\sqrt[3]{2} + c(\sqrt[3]{2})^2 \in \mathbb{Q}(\sqrt[3]{2})$ be an integral element over \mathbb{Z} . By computing the trace of z, of $\sqrt[3]{2}z$ and of $(\sqrt[3]{2})^2 z$, show that $6z \in \mathbb{Z}[\sqrt[3]{2}]$.
 - (c) Show that 6a, 6b and 6c are multiple of 6, and conclude.

Exercise 7. Is the algebraic number $\frac{1+\sqrt[3]{3}+3\sqrt[3]{9}}{2}$ integral over \mathbb{Z} ?

Exercise 8. (Kronecker's theorem) Let $x \in \mathbb{C}$ be integral over \mathbb{Z} . Denote by x_1, \ldots, x_d its conjugate.

- 1. Show that for any integer $n \ge 0$, the polynomial $P_n(X) = \prod_{i=1}^d (X x_i^n)$ has integral coefficients.
- 2. Assume that for any $i \in \{1, \dots, d\}$, we have $|x_i| \leq 1$. Prove that either x = 0, or all its conjugate are unit roots (and therefore also is x itself).

3. Deduce that if $P \in \mathbb{Z}[X]$ is a monic polynomial whose all complexes roots are inside the unit disc, then the irreducible factors of P are X and the cyclotomic polynomials.

Exercise 9. (Galois theory and integrally closed rings)

- 1. Let $A \subseteq B$ be commutative rings, \mathfrak{p} be a prime ideal of A, and \mathfrak{q} be a prime ideal of B. We say that \mathfrak{q} lies over \mathfrak{p} if $\mathfrak{q} \cap A = \mathfrak{p}$.
 - (a) Show that if \mathfrak{q} lies over \mathfrak{p} , the natural injection $A \hookrightarrow B$ induces an injection $A/\mathfrak{p} \hookrightarrow B/\mathfrak{q}$, and that if B is integral over A, then B/\mathfrak{q} is integral over A/\mathfrak{p} .
 - (b) Show that if B is integral over A, and that if \mathfrak{p} is a prime ideal of A, then $\mathfrak{p}B \neq B$ (hint: consider the case of a local ring A; and proceed by contradiction thanks to Nakayama's lemma). Deduce the existence of a prime ideal \mathfrak{q} of B lying over \mathfrak{p} .
 - (c) Show that if B is integral over A, and if q is a prime ideal of B lying over a prime ideal p of A, then q is maximal if, and only if, p is maximal.
- 2. Assume that A is a domain, and let K be its fraction field. Let L/K be a Galois extension, with Galois group G. Let B be the integral closure of A in L. Let \mathfrak{p} be a prime ideal of A.
 - (a) Show that if \mathbf{q}, \mathbf{q}' are two prime ideals of B lying over \mathbf{p} , then there exists $\sigma \in G$ such that $\sigma(\mathbf{q}) = \mathbf{q}'$ (hint: by contradiction, provide an element of B contained in all the $\sigma(\mathbf{q})$ for $\sigma \in G$, but in no-one of the $\sigma(\mathbf{q}')$ for $\sigma \in G$, and consider its norm, *cf.* exercise ??).
 - (b) Deduce that if A is integrally closed, and if E/K is a separable finite extension, then the set of prime ideals of the integral closure of A in E lying over \mathfrak{p} is finite.
 - (c) Let \mathfrak{q} be a prime ideal of B lying over \mathfrak{p} . We define $D_{\mathfrak{q}}$ as the stabilizer of \mathfrak{q} (for the action of G on the prime ideals of B lying over \mathfrak{p}). Show that the field of fixed points of $D_{\mathfrak{q}}$ is the smallest sub-extension E of L/K such that \mathfrak{q} is the unique prime ideal of B lying over $\mathfrak{q} \cap E$. We call this field the totally ramified closure of K in E.