Localization of modules and homomorphisms; Integral elements, integrally closed rings

Exercise 1. Let $A \subset B$ be an integral extension of integral domains. Show that $A \cap B^{\times}=A^{\times}$.
Exercise 2. Let $A \subset B$ be integral domains. We say that $x \in B$ is algebraic over A if there exists some non-zero $P \in A[X]$ with $P(x)=0$.

1. Let $x \in B$ be algebraic over A. Show that there is some non-zero $a \in A$ such that $a x$ is integral over A.
2. Assume that B is a finitely generated A-algebra and that every element of B is algebraic over A. Show that there exists some $f \in A$ such that $B[1 / f]$ is finite over $A[1 / f]$.

Exercise 3. Let $A=\mathbb{C}[X, Y] /\left(Y^{2}-X^{3}\right)$. Let $B=\mathbb{C}[X, Y] /\left(Y^{2}-X^{2}(X+1)\right)$
Show that A and B are domains whose fields of fractions are isomorphic to $\mathbb{C}(T)$. Deduce that A and B are not integrally closed and compute their integral closure.

Exercise 4. Let A be an integral domain. Show that if A is integrally closed, then so is $A[X]$.
Exercise 5. Show that the ring of holomorphic functions over \mathbb{C} is integrally closed but is not factorial.
Exercise 6. Let K / \mathbb{Q} be a field extension of dimension n. Let $x \in K$, and let x_{1}, \ldots, x_{n} be the roots of the minimal polynomial of x over \mathbb{Q} (taken in an algebraic closure). The endomorphism $m_{x}: K \rightarrow K$ of multiplication by x is a \mathbb{Q}-linear map; its trace and its determinant are therefore elements of \mathbb{Q}. We define $\operatorname{Tr}_{K / \mathbb{Q}}(x)=\operatorname{Tr}\left(m_{x}\right)$ and $\mathrm{N}_{K / \mathbb{Q}}(x)=\operatorname{det}\left(m_{x}\right)$.

1. Show that $\operatorname{Tr}_{K / \mathbb{Q}}(x)=[K: \mathbb{Q}(x)] \sum_{i=1}^{n} x_{i}$ and that $N_{K / \mathbb{Q}}(x)=\left(\prod_{i=1}^{n} x_{i}\right)^{[K: \mathbb{Q}(x)]}$. Deduce that if x is integral over \mathbb{Z}, then $\operatorname{Tr}_{K / \mathbb{Q}}(x)$ and $\mathrm{N}_{K / \mathbb{Q}}(x)$ are integral.
2. Let $x \in K$ be an integer over \mathbb{Z}. Show that $1 / x$ is integral over \mathbb{Z} is, and only if, $\mathrm{N}_{K / \mathbb{Q}}(x)= \pm 1$.
3. Let p be a prime number. Let $\zeta_{p}=\exp \left(\frac{2 i \pi}{p}\right)$ and $K=\mathbb{Q}\left(\zeta_{p}\right)$.
(a) Show that $\left(1-\zeta_{p}\right) \mathbb{Z}\left[\zeta_{p}\right] \cap \mathbb{Z}=p \mathbb{Z}$. (Hint: show first that $p=\varepsilon\left(1-\zeta_{p}\right)^{p-1}$, for some $\varepsilon \in \mathbb{Z}\left[\zeta_{p}\right]^{\times}$)
(b) Show that if $z=\sum_{i=0}^{p-2} a_{i} \zeta_{p}^{i}$ is integral over \mathbb{Z}, then $\operatorname{Tr}_{K / \mathbb{Q}}\left(\left(1-\zeta_{p}\right) z\right)$ is divisible by p. Deduce that the ring of integers of K is $\mathbb{Z}\left[\zeta_{p}\right]$.
4. We want to prove that the ring $\mathbb{Z}[\sqrt[3]{2}]$ is integrally closed.
(a) Show that it is integral over \mathbb{Z}.
(b) Let $z=a+b \sqrt[3]{2}+c(\sqrt[3]{2})^{2} \in \mathbb{Q}(\sqrt[3]{2})$ be an integral element over \mathbb{Z}. By computing the trace of z, of $\sqrt[3]{2} z$ and of $(\sqrt[3]{2})^{2} z$, show that $6 z \in \mathbb{Z}[\sqrt[3]{2}]$.
(c) Show that $6 a, 6 b$ and $6 c$ are multiple of 6 , and conclude.

Exercise 7. Is the algebraic number $\frac{1+\sqrt[3]{3}+3 \sqrt[3]{9}}{2}$ integral over \mathbb{Z} ?
Exercise 8. (Kronecker's theorem) Let $x \in \mathbb{C}$ be integral over \mathbb{Z}. Denote by x_{1}, \ldots, x_{d} its conjugate.

1. Show that for any integer $n \geqslant 0$, the polynomial $P_{n}(X)=\prod_{i=1}^{d}\left(X-x_{i}^{n}\right)$ has integral coefficients.
2. Assume that for any $i \in\{1, \cdots, d\}$, we have $\left|x_{i}\right| \leqslant 1$. Prove that either $x=0$, or all its conjugate are unit roots (and therefore also is x itself).
3. Deduce that if $P \in \mathbb{Z}[X]$ is a monic polynomial whose all complexes roots are inside the unit disc, then the irreducible factors of P are X and the cyclotomic polynomials.

Exercise 9. (Galois theory and integrally closed rings)

1. Let $A \subseteq B$ be commutative rings, \mathfrak{p} be a prime ideal of A, and \mathfrak{q} be a prime ideal of B. We say that \mathfrak{q} lies over \mathfrak{p} if $\mathfrak{q} \cap A=\mathfrak{p}$.
(a) Show that if \mathfrak{q} lies over \mathfrak{p}, the natural injection $A \hookrightarrow B$ induces an injection $A / \mathfrak{p} \hookrightarrow B / \mathfrak{q}$, and that if B is integral over A, then B / \mathfrak{q} is integral over A / \mathfrak{p}.
(b) Show that if B is integral over A, and that if \mathfrak{p} is a prime ideal of A, then $\mathfrak{p} B \neq B$ (hint: consider the case of a local ring A; and proceed by contradiction thanks to Nakayama's lemma). Deduce the existence of a prime ideal \mathfrak{q} of B lying over \mathfrak{p}.
(c) Show that if B is integral over A, and if \mathfrak{q} is a prime ideal of B lying over a prime ideal \mathfrak{p} of A, then \mathfrak{q} is maximal if, and only if, \mathfrak{p} is maximal.
2. Assume that A is a domain, and let K be its fraction field. Let L / K be a Galois extension, with Galois group G. Let B be the integral closure of A in L. Let \mathfrak{p} be a prime ideal of A.
(a) Show that if $\mathfrak{q}, \mathfrak{q}^{\prime}$ are two prime ideals of B lying over \mathfrak{p}, then there exists $\sigma \in G$ such that $\sigma(\mathfrak{q})=\mathfrak{q}^{\prime}$ (hint: by contradiction, provide an element of B contained in all the $\sigma(\mathfrak{q})$ for $\sigma \in G$, but in no-one of the $\sigma\left(\mathfrak{q}^{\prime}\right)$ for $\sigma \in G$, and consider its norm, $c f$. exercise ??).
(b) Deduce that if A is integrally closed, and if E / K is a separable finite extension, then the set of prime ideals of the integral closure of A in E lying over \mathfrak{p} is finite.
(c) Let \mathfrak{q} be a prime ideal of B lying over \mathfrak{p}. We define $D_{\mathfrak{q}}$ as the stabilizer of \mathfrak{q} (for the action of G on the prime ideals of B lying over \mathfrak{p}). Show that the field of fixed points of $\mathrm{D}_{\mathfrak{q}}$ is the smallest sub-extension E of L / K such that \mathfrak{q} is the unique prime ideal of B lying over $\mathfrak{q} \cap E$. We call this field the totally ramified closure of K in E.
