ENS de Lyon TD12 Master 1 – Algèbre avancée 2020-2021

Intoduction to algebraic geometry

Exercise 1. (An introduction to algebraic geometry) Let k be an algebraically closed field. If $S \subseteq k[X_1, \dots, X_n]$, we set

$$\mathcal{Z}(S) = \{ x \in k^n \mid \forall f \in S, f(x) = 0 \}$$

Subsets of k^n of the form $\mathcal{Z}(S)$ are called *affine algebraic sets*. If $T \subseteq k^n$ we set

$$\mathcal{I}(T) = \{ f \in k[X_1, \cdots, X_n] \mid \forall x \in T, f(x) = 0 \}$$

1. If $S \subseteq k[X_1, \ldots, X_n]$, show that $\mathcal{Z}(S) = \mathcal{Z}(\langle S \rangle)$ (where $\langle S \rangle$ is the ideal generated by S). Show that the affine algebraic sets are the closed subset of a topology on k^n . We call this topology the Zariski topology.

If T is a subset of k^n we denote by \overline{T} its closure for the Zariski topology.

- 2. Show that the maps $S \to \mathcal{Z}(S)$ and $T \mapsto \mathcal{I}(T)$ are decreasing.
- 3. Show that for all $T, \mathcal{I}(T)$ is a radical ideal of $k[X_1, \cdots, X_n]$ (that is, $\sqrt{\mathcal{I}(T)} = \mathcal{I}(T)$).
- 4. Show that if T is a subset of k^n , then $\mathcal{Z}(\mathcal{I}(T)) = \overline{T}$.
- 5. Show that if I is an ideal of $k[X_1, \dots, X_n]$ then $\mathcal{I}(\mathcal{Z}(I)) = \sqrt{I}$.
- 6. Deduce that the maps \mathcal{Z} and \mathcal{I} define reciprocal bijections between the set of radical ideals of $k[X_1, \dots, X_n]$ and the set of closed subsets of k^n . Show that under this bijection, maximal ideals correspond to points, $k[X_1, \dots, X_n]$ corresponds to the empty set, and $\{0\}$ corresponds to k^n .
- 7. Let X be a topological space. We say that X is irreducible if for all closed subset F_1 and F_2 of X such that $X = F_1 \cup F_2$, either $X = F_1$ or $X = F_2$. Show that under the bijection of the previous question, prime ideals correspond to irreducible subsets.
- 8. Let Z be an affine algebraic set. Give a bijection between Z and the set of maximal ideals of $k[X_1, \dots, X_n]/\mathcal{I}(Z)$.

Exercise 2. (Regular functions) Let k be an algebraically closed field. Let X be a locally closed subset of k^n (for the Zariski topology, i.e., $X = U \cap F$ where F is closed and U is open). We call such a set a "space".

A function f on X is regular at $x \in X$ if there is an open subset U of X containing x such that on U, f can be written as a quotient of polynomials.

A function is regular on X if it is regular everywhere. We denote by $\mathcal{O}(X)$ the k-algebra of regular functions on X.

- 1. Show that any regular function is Zariski-continuous.
- 2. Show that X is irreducible if and only if $\mathcal{O}(X)$ is integral.
- 3. Let $X = k^n$. Show that any regular function is represented by a unique rational function $f \in k(X_1, \ldots, X_n)$. Deduce that $\mathcal{O}(k^n) = k[X_1, \ldots, X_n]$ (Hint: regularity at x means that there is no pole at x).
- 4. Let \mathfrak{p} be a prime ideal of $k[X_1, \ldots, X_n]$. Show that any regular function of $X = \mathcal{Z}(\mathfrak{p})$ is represented by a unique element $f \in \operatorname{Frac}(k[X_1, \ldots, X_n]/\mathfrak{p})$. Deduce that $\mathcal{O}(\mathcal{Z}(\mathfrak{p})) = k[X_1, \ldots, X_n]/\mathfrak{p}$.

This can in fact be extended to any radical ideal I (Try to understand why as a bonus; this is hard).

- 5. Let $f \in k[X_1, \ldots, X_n]$, what is $\mathcal{O}(U(f))$, where $U(f) = k^n \setminus \mathcal{Z}(f)$?
- 6. Let U be an open subset of k^n . Show that any regular function on U is uniquely represented by an element of $k(X_1, \ldots, X_n)$. What is $\mathcal{O}(k^2 \setminus \{0\})$?

Exercise 3. (Morphisms) Let k be an algebraically closed field. Let X and Y be spaces (in the sense of the previous exercise). A (continuous) function $f: X \to Y$ is called a morphism if for any regular function $g: Y \to k, g \circ f$ is regular. An isomorphism is an invertible morphism. We denote the set of morphisms from X to Y by $\operatorname{Hom}_{alg}(X, Y)$.

- 1. Show that if $f: X \to Y$ is a morphism, it induces a morphism of rings $\mathcal{O}(f): \mathcal{O}(Y) \to \mathcal{O}(X)$.
- 2. Show that a function $k^n \to X \subseteq k^m$ is a morphism if and only if it is polynomial with respect to each coordinate.
- 3. Same question but replace k^n with an irreducible closed subset.
- 4. Let $f \in k[X_1, \ldots, X_n]$. Show that U(f) is isomorphic to the closed subset $\mathcal{Z}(fX_0 1)$ of k^{n+1} .
- 5. Let X and Y be irreducible closed spaces. Show that the map

 $\mathcal{O}: \operatorname{Hom}_{alg}(X, Y) \to \operatorname{Hom}_{k-\mathrm{alg}}(\mathcal{O}(Y), \mathcal{O}(X))$

is a bijection. (In a fancy formalism, the (contravariant) functor \mathcal{O} is an equivalence of categories between irreducible closed spaces and finite type integral k-algebras). Deduce that $k^2 \setminus \{0\}$ is not an affine algebraic subset of any k^n and another way to compute $\mathcal{O}(U(f))$ for $f \in k[X_1, \ldots, X_n]$.

Exercise 4. (Products) Let k be an algebraically closed field. In this exercise we admit the bonus of question 3 of exercise 2. Let X and Y be closed spaces in k^n and k^m respectively.

- 1. Let I be an ideal of $k[X_1, \ldots, X_n]$ and J be an ideal of $k[X_{n+1}, \ldots, X_{n+m}]$, show that $k[X_1, \ldots, X_{n+m}]/(I, J) = k[X_1, \ldots, X_n]/I \otimes_k k[X_1, \ldots, X_m]/J.$
- 2. Let A and B be reduced k-algebras with A finitely generated. We would like to show that $A \otimes_k B$ is reduced.
 - (a) Let x be a nilpotent element of $A \otimes_k B$. Show that we can write $x = \sum_{i=1}^n a_i \otimes b_i$ with (b_i) linearly independent over k.
 - (b) Let \mathfrak{m} be a maximal ideal of A. Show that the a_i are in \mathfrak{m} . (Hint: use a consequence of the Nullstellensatz.) Conclude.
- 3. Deduce that $\mathcal{O}(X \times Y) = \mathcal{O}(X) \otimes_k \mathcal{O}(Y)$

Exercise 5. (Spectrum of a ring) Let A be a commutative ring. We would like to assign a "space" X_A to A such that A can be viewed as the ring of regular functions on X_A . For instance we associated the space $\mathcal{Z}(\mathfrak{p})$ to $k[X_1, \ldots, X_n]/\mathfrak{p}$; there is a bijection between the set $Max(k[X_1, \ldots, X_n]/\mathfrak{p})$ and $\mathcal{Z}(\mathfrak{p})$. However it occurs that when A is not a Jacobson ring (for instance if A is local and is not a field), the set Max(A) does not capture all the "geometric information" associated to A. Instead, the right space is rather the set Spec(A) of prime ideals of A.

Let I be an ideal of A. We denote by V(I) the subset $\{\mathfrak{p} \in \operatorname{Spec}(A) \mid I \subseteq \mathfrak{p}\}$.

- 1. Show that the V(I) are the closed subset of a topology on Spec(A). This topology is called the *Zariski topology*.
- 2. Show that if $A = k[X_1, \ldots, X_n]/\mathfrak{p}$, the topology on Max(A) induced by the Zariski topology on Spec(A) is the same as the Zariski topology induced by the bijection with $\mathcal{Z}(\mathfrak{p})$.
- 3. Show that A is a Jacobson ring if and only if Max(A) is a dense subset of Spec(A).