ENS de Lyon TD2

Free, finitely generated and Noetherian modules

Exercise 1. Let A be a ring, M be an A-module and $(e_i)_{i \in I}$ a family of elements of M. Show that (e_i) is a basis of M if and only if $M = \bigoplus_{i \in I} Ae_i$ and the e_i are not torsion.

Exercise 2. Let A be a ring

- 1. Show that any A-module has a generating family. Deduce that any A-module is the quotient of some free A-module.
- 2. Let M be an A-module and N a submodule. Assume that N and M/N are free. Show that M is free.
- 3. Show that any direct sum and any finite product of free A-modules is free.
- 4. Let $A = \mathbb{Z}/6\mathbb{Z}$. Show that 2A and 3A are not free A-modules, but $2A \oplus 3A$ is a free A-module.

Exercise 3. Consider \mathbb{Q} as a \mathbb{Z} -module.

- 1. Show that any finitely generated submodule of \mathbb{Q} is free of rank 0 or 1.
- 2. Deduce that \mathbb{Q} is not a finitely generated \mathbb{Z} -module. Show that \mathbb{Q}/\mathbb{Z} is not a finitely generated \mathbb{Z} -module.
- 3. Let $(e_i)_{i \in I}$ be a generating family of \mathbb{Q} , and let $j \in I$. Show that the family $(e_i)_{i \in I \setminus \{j\}}$ is still a generating family of \mathbb{Q} .
- 4. Show that \mathbb{Q} is not a free \mathbb{Z} -module.

Exercise 4. Let A be a ring

1. If I is an ideal of A, show that A/I is a noetherian A-module if and only if A/I is a noetherian ring.

Now, let M be an A-module and I be the annihilator of M, that is, $I = Ann(M) = \{a \in A, ax = 0 \forall x \in M\}$.

- 2. Show that I is an ideal of A, and that M is naturally an A/I-module.
- 3. Assume that M is finitely generated, and let (x_1, \ldots, x_n) be a generating family. Let $u : A \to M^n$, $a \mapsto (ax_1, \ldots, ax_n)$. Show that $I = \ker(u)$.
- 4. Assume that M is a noetherian A-module. Show that A/I is a noetherian ring, and that M is a finitely generated A/I-module (but A itself is not necessarily noetherian).

Exercise 5. Let A be a ring and let I be an ideal of A. We say that I is nilpotent if $I^n = 0$ for some $n \in \mathbb{N}$.

- 1. Show that every element of a nilpotent ideal is nilpotent.
- 2. Suppose that A is noetherian, prove that an ideal I is nilpotent if and only if it is generated by nilpotent elements.
- 3. Give an example of a non-nilpotent ideal generated by nilpotent elements.

Exercise 6. Let A be a ring and consider the polynomial ring in two variables A[X, Y]. Let

$$B = A[X] \bigoplus_{n=1}^{\infty} A[X] X Y^n.$$

- 1. Show that B is a subring of A[X, Y].
- 2. Is B a noetherian ring? (Hint: consider the ideal generated by the XY^n).

Exercise 7. Let A be a ring. Let I be an ideal of A. Let M be a finitely generated A-module and ϕ an endomorphism of M such that $\phi(M) \subset IM$.

- 1. Show that ϕ naturally induces a structure of A[X]-module on M.
- 2. Assume ϕ is surjective. Show that ϕ is an isomorphism by using the determinant trick for the identity map of M, seen as a A[X]-linear map. Find a counterexample when M is not finitely generated.
- 3. Is an injective endomorphism of a finitely generated A-module surjective ?
- 4. Let M be a free A-module of rank n and (f_1, \ldots, f_n) be a generating family of M. Show that (f_1, \ldots, f_n) is a basis of M.
- 5. If (f_1, \ldots, f_n) is a linearly independent family of a rank *n* A-module *M*, is it a basis of *M*?

Exercise 8. (On exact sequences) Let A be a ring.

- 1. Find A-modules N_2, N_3 and M and a surjective map $v : N_2 \to N_3$ such that the corresponding map $v_* : \operatorname{Hom}_A(M, N_2) \to \operatorname{Hom}_A(M, N_3)$ is not surjective.
- 2. Find A-modules N_1, N_2 and M and an injective map $u : N_1 \to N_2$ such that the corresponding map $u^* : \operatorname{Hom}_A(N_2, M) \to \operatorname{Hom}_A(N_1, M)$ is not surjective.
- 3. Show that if A is a field and N_1, N_2, N_3 and M are finite dimensional over A then for any exact sequence $0 \to N_1 \to N_2 \to N_3 \to 0$, the corresponding sequences

$$0 \to \operatorname{Hom}_A(M, N_1) \to \operatorname{Hom}_A(M, N_2) \to \operatorname{Hom}_A(M, N_3) \to 0$$

and

$$0 \to \operatorname{Hom}_A(N_3, M) \to \operatorname{Hom}_A(N_2, M) \to \operatorname{Hom}_A(N_1, M) \to 0$$

are exact.

Exercise 9. (Chains and artinian modules) Let A be a ring. Let M be an A-module. We define the length of M as the supremum of the lengths of chains of submodules of M, that is

$$l(M) = \sup\{n \in \mathbb{N} \mid \exists\{0\} = M_0 \subsetneq M_1 \subsetneq \cdots \subsetneq M_n = M\}$$

- 1. Find a noetherian module of infinite length.
- 2. If l(M) = 1 we say that M is simple. Show that, if M is simple, M is noetherian and is isomorphic to A/\mathfrak{m} for some maximal ideal \mathfrak{m} of A.
- 3. Let N be a submodule of M. Show that

$$l(M) = l(N) + l(M/N).$$

Deduce that if $\{0\} = M_0 \subsetneq M_1 \subsetneq \cdots \subsetneq M_n = M$ is a maximal chain of submodules of M, then M_{i+1}/M_i is simple for all $i \in \{0, \ldots, n-1\}$.

- 4. Show that if M is of finite length, there exists $\mathfrak{m}_1, \ldots, \mathfrak{m}_r$ maximal ideals of A such that $\mathfrak{m}_1 \cdots \mathfrak{m}_r M = 0$.
- 5. An A-module M is said to be artinian if any decreasing chain of submodules of M is stationary. Show that artinian noetherian module are exactly modules of finite length.

Remark. Any artinian ring is in fact noetherian.