Tensor product

Exercise 1. Let G be a finitely generated abelian group, seen as a \mathbb{Z}-module.

1. Assume that G is finite. Let H be a finite abelian group such that G and H have coprime orders. Show that $G \otimes_{\mathbb{Z}} H=0$.
2. Let m, n be positive integers. Compute $\mathbb{Z} / n \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / m \mathbb{Z}$.
3. Show that if G is of exponent m, then $\mathbb{Z} / n \mathbb{Z} \otimes_{\mathbb{Z}} G$ is a finite abelian group of exponent $\operatorname{gcd}(n, m)$.
4. Show that $G \otimes_{\mathbb{Z}} \mathbb{Q}=0$ if, and only if, G is finite. Deduce an example of \mathbb{Z}-modules M and N having submodules M^{\prime} and N^{\prime} such that the map

$$
M^{\prime} \otimes_{\mathbb{Z}} N^{\prime} \rightarrow M \otimes_{\mathbb{Z}} N
$$

is not injective.
5. Show that $\operatorname{Id}_{G} \otimes 1: G \rightarrow G \otimes_{\mathbb{Z}} \mathbb{Q}$ is injective if and only if G is free.

Exercise 2. Let n be a positive integer. Describe the following tensor products of \mathbb{Z}-modules:

$$
\mathbb{Z}^{n} \otimes_{\mathbb{Z}} \mathbb{Q}, \quad \mathbb{Q} / \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Q} / \mathbb{Z}, \quad \mathbb{R} \otimes_{\mathbb{Z}} \mathbb{Q}, \quad(\mathbb{Q} / \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{Z} / n \mathbb{Z}
$$

Exercise 3. Show that a free module is flat. Deduce that a projective module is flat.
Exercise 4. Let $M_{1}, N_{1}, M_{2}, N_{2}$ be four A-modules. Consider the homomorphism of A-modules:

$$
h: \operatorname{Hom}_{A}\left(M_{1}, N_{1}\right) \otimes_{A} \operatorname{Hom}_{A}\left(M_{2}, N_{2}\right) \rightarrow \operatorname{Hom}_{A}\left(M_{1} \otimes_{A} M_{2}, N_{1} \otimes_{A} N_{2}\right)
$$

defined in the lecture. Provide examples of a commutative ring A and of A-modules $M_{1}, M_{2}, N_{1}, N_{2}$ for which the map h is not surjective (resp. is not injective).

Exercise 5. Let N_{1}, N_{2} be two A-submodules of an A-module N, and let M be a flat A-module.

1. Show that there exists a short exact sequence of A-modules:

$$
0 \longrightarrow N_{1} \cap N_{2} \longrightarrow N \longrightarrow\left(N / N_{1}\right) \oplus\left(N / N_{2}\right)
$$

2. Show that, as A-submodules of $N \otimes_{A} M$, the modules $\left(N_{1} \cap N_{2}\right) \otimes_{A} M$ and $\left(N_{1} \otimes_{A} M\right) \cap\left(N_{2} \otimes_{A} M\right)$ are equal.

Exercise 6. Let M and N be two A-modules. Let $\sum_{i} x_{i} \otimes y_{i} \in M \otimes N$ be such that $\sum_{i} x_{i} \otimes y_{i}=0$. Show that there exists finitely generated submodules M^{\prime} of M and N^{\prime} of N such that $x_{i} \in M^{\prime}$ for all i, $y_{i} \in N^{\prime}$ for all i, and $\sum_{i} x_{i} \otimes y_{i}=0$ as an element of $M^{\prime} \otimes N^{\prime}$.

Deduce that: if there exists a family $\left(M_{i}\right)$ of submodules of M such that each M_{i} is flat over A, and such that any finitely generated submodule of M is contained in one of the M_{i}, then M is flat over A.

Let A be an integral domain and K its fraction field. Show that K is flat over A.
Exercise 7. Let k be a positive integer and M be a nonzero A-module. We denote the A-module $\underbrace{M \otimes_{A} \cdots \otimes_{A} M}_{k \text { terms }}$ by $M^{\otimes k}$ and $M^{\otimes 0}=A$.

1. Show that $M^{\otimes k+1}$ is isomorphic to $M^{\otimes k} \otimes_{A} M$.
2. Assume that M is finitely generated and let $\left(e_{1}, \ldots, e_{d}\right)$ be a generating family such that the submodule N of M generated by $\left(e_{1}, \ldots, e_{d-1}\right)$ is not equal to M.
(a) Show that $I=\left\{a \in A, a \cdot e_{d} \in N\right\}$ is a proper ideal of A and that A / I is isomorphic to M / N.
(b) Define a nonzero A-multilinear map $M^{k} \rightarrow A / I$ that sends $\left(e_{d}, \ldots, e_{d}\right)$ onto $1 \bmod I$.
(c) Deduce that $M^{\otimes k}$ is nonzero.
3. Give an example of a non finitely generated module M for which $M^{\otimes k}=0$ for any $k \geq 2$.
4. Let n be a positive integer and take $A=\mathbb{Z}$. Compute $(\mathbb{Z} / n \mathbb{Z})^{\otimes k}$.
5. Provide an example of a module M and a submodule N of M such that for all $k \geq 2$, the A-module $N^{\otimes k}$ is not isomorphic to any submodule of $M^{\otimes k}$.

Exercise 8. Let X be a compact Hausdorff topological space and Y be a normed \mathbb{R}-vector space. Show that the canonical \mathbb{R}-linear map $\mathrm{C}^{0}(X, \mathbb{R}) \otimes_{\mathbb{R}} Y \rightarrow \mathrm{C}^{0}(X, Y)$ is injective, and that its image is the subspace of continuous functions $f: X \rightarrow Y$ such that $\operatorname{Im}(f)$ is contained in a finite-dimensional subspace of Y. Deduce that $\mathrm{C}^{0}(X, \mathbb{R}) \otimes_{\mathbb{R}} \mathbb{C}=\mathrm{C}^{0}(X, \mathbb{C})$.

Exercise 9. Let $A=\mathbb{Z}[X]$ and $I=(2, X)$.

1. Show that $2 \otimes X-X \otimes 2 \neq 0$ in $I \otimes_{A} I$.

Hint: One can note that evaluation on even integers of polynomials in I is an even integer.
2. Show that $2 \otimes X-X \otimes 2$ is of 2 -torsion and of X-torsion.
3. Show that the A-submodule of $I \otimes_{A} I$ generated by $2 \otimes X-X \otimes 2$ is isomorphic to A / I.

Exercise 10.* Let A be a commutative ring and M be an A-module. We want to show that M is flat if (and only if) for all finitely generated ideal I of A, the map

$$
I \otimes_{A} M \rightarrow M
$$

is injective. Assume that the latter is true.

1. Show that for all ideal I of A, the map $I \otimes_{A} M \rightarrow M$ is injective.
2. We show by induction on n that if K is a submodule of A^{n}, then the map $K \otimes_{A} M \rightarrow M^{n}$ is injective; $\mathrm{n}=1$ is the previous question; assume the result to be true for n, show that there is a commutative diagram

with exact rows and conclude. (Here $K \cap A$ is the intersection of K with the submodule generated by $(1,0, \ldots, 0)$).
3. Let N be a finitely generated A-module and P an A-module. Assume that $N \rightarrow P$ is injective. Show that $N \otimes M \rightarrow P \otimes N$ is injective (Hint: a different snake).
4. Show that M is flat.
