## Symmetric and exterior algebras; base change

In the following, $A$ is a commutative ring.
Exercise 1. Let $B$ be an $A$-algebra, $n \geq 1$ be an integer and $M, N$ be two $A$-modules.

1. Show that any $A$-linear map $\varphi: M \rightarrow N$ induces canonically an $A$-linear map $\operatorname{Sym}^{n}(\varphi)$ : $\operatorname{Sym}^{n}(M) \rightarrow \operatorname{Sym}^{n}(N)$ and an $A$-linear map $\Lambda^{n}(\varphi): \Lambda^{n}(M) \rightarrow \Lambda^{n}(N)$.
2. Show that any $A$-linear map $\varphi: M \rightarrow B$ satisfying $\varphi(x) \varphi(y)=\varphi(y) \varphi(x)$ induces a unique homomorphism of $A$-algebras $\operatorname{Sym}(\varphi): \operatorname{Sym}(M) \rightarrow B$.
Deduce that, if $B$ is commutative, then there is a natural bijection between $\operatorname{Hom}_{A}(M, B)$ ( $A$-module homomorphisms) and $\operatorname{Hom}_{A-\mathrm{alg}}(\operatorname{Sym}(M), B)$ ( $A$-algebra homomorphisms).

Exercise 2. Let $A$ be a ring, and $M$ an $A$-module. Let $m \geq 1$ be an integer.

1. Show that for all $\sigma \in \mathfrak{S}_{m}$, there is a linear map $u_{\sigma}: T^{m} M \rightarrow T^{m} M$ such that $u_{\sigma}\left(x_{1} \otimes \cdots \otimes x_{m}\right)=$ $x_{\sigma(1)} \otimes \cdots \otimes x_{\sigma(m)}$.
Let

$$
S^{m} M=\left\{x \in T^{m} M \mid \forall \sigma \in \mathfrak{S}_{m}, u_{\sigma}(x)=x\right\}
$$

and

$$
A^{m} M=\left\{x \in T^{m} M \mid \forall \sigma \in \mathfrak{S}_{m}, u_{\sigma}(x)=\varepsilon(\sigma) x\right\}
$$

2. Show that $S^{m} M$ and $A^{m} M$ are submodules of $T^{m} M$.
3. Assume that $m$ ! is invertible in $A$. Show that the natural projections $S^{m} M \rightarrow \mathrm{Sym}^{m} M$ and $A^{m} M \rightarrow \Lambda^{m} M$ are isomorphisms. Hint: introduce the $m$-linear maps

$$
s: M^{m} \rightarrow T^{m} M,\left(x_{1}, \ldots, x_{m}\right) \mapsto \frac{1}{m!} \sum_{\sigma \in \mathfrak{S}_{m}} x_{\sigma(1)} \otimes \cdots \otimes x_{\sigma(m)}
$$

and

$$
a: M^{m} \rightarrow T^{m} M,\left(x_{1}, \ldots, x_{m}\right) \mapsto \frac{1}{m!} \sum_{\sigma \in \mathfrak{S}_{m}} \varepsilon(\sigma) x_{\sigma(1)} \otimes \cdots \otimes x_{\sigma(m)}
$$

Exercise 3. Let $M, N$ be two $A$-modules.

1. Show that for any $n \geqslant 0$, there is a natural isomorphism of $A$-modules: $\operatorname{Sym}^{n}(M \oplus N) \simeq$ $\bigoplus_{k=0}^{n}\left(\operatorname{Sym}^{k}(M) \otimes_{A} \operatorname{Sym}^{n-k}(N)\right)$, and show that the $A$-algebras $\operatorname{Sym}(M \oplus N)$ and $\operatorname{Sym}(M) \otimes$ $\operatorname{Sym}(N)$ are isomorphic.
2. Show that for any integer $n \geqslant 0$, there is a natural isomorphism of $A$-modules $\Lambda^{n}(M \oplus N) \simeq$ $\bigoplus_{k=0}^{n}\left(\Lambda^{k} M \otimes_{A} \Lambda^{n-k} N\right)$.

Exercise 4. Let $M$ be a free $A$-module of rank $n$, and $f \in \operatorname{End}_{A}(M)$. Let $a(f)=\operatorname{det}(X \operatorname{Id}-f) \in A[X]$, and $b(f)=\sum_{i=0}^{n}(-1)^{i} X^{n-i} \operatorname{tr}\left(\Lambda^{i} f\right) \in A[X]$. Our goal is to show that $a(f)=b(f)$.

1. Show that the identity holds if $A$ is an algebraically closed field.
2. Let $u: B \rightarrow C$ be a ring homomorphism, and $f$ a $B$-linear map $B^{n} \rightarrow B^{n}$. Assume that the equality holds for $f$. Show that it also holds for $\operatorname{Id}_{C} \otimes f \in \operatorname{End}_{C}\left(C \otimes_{B} M\right)$. If $u$ is injective, show that the equality holds for $\operatorname{Id}_{C} \otimes f$ if and only if it holds for $f$.
3. Deduce that the equality holds for any ring $A$ and $f \in \operatorname{End}_{A}\left(A^{n}\right)$. Hint: introduce the ring $B=\mathbb{Z}\left[\left(T_{i, j}\right)_{1 \leq i, j \leq n}\right]$ and the map $B^{n} \rightarrow B^{n}$ with matrix $T=\left(T_{i, j}\right)_{1 \leq i, j \leq n}$.

## Exercise 5.

1. Let $M$ be an $A$-module and $I$ an ideal of $A$. Show that $M / I M$ is naturally endowed with a $A / I$-module structure, which coincides with $A / I \otimes_{A} M$.
2. Assume $A$ is integral and let $K$ be its fraction field. Let $M$ be an $A$-module such that for any $a \in A \backslash\{0\}$, the multiplication-by- $a$ map is an automorphism of $M$. Show that $M$ is naturally endowed with a $K$-vector space structure, which coincides with $K \otimes_{A} M$.
3. Let $M$ be an $A$-module and $M[X]$ be the additive group of polynomials with coefficients in $M$. Provide an $A[X]$-module structure on $M[X]$ so that $M[X]$ and $M \otimes_{A} A[X]$ are isomorphic as $A[X]$-modules.

Exercise 6. Let $M$ be an $A$-module and $A \rightarrow B$ be a homomorphism of commutative rings.

1. Show that if $M$ is projective, then the $B$-module $B \otimes_{A} M$ is projective.
2. Show that if $M$ is finitely generated, then the $B$-module $B \otimes_{A} M$ is finitely generated.
3. Show that if $M$ is finitely presented, then the $B$-module $B \otimes_{A} M$ is finitely presented.
4. Find an example of $A$-module $M$ such that the scalar restriction to $A$ of the $B$-module $B \otimes_{A} M$ is not isomorphic to $M$.

Exercise 7. Let $A \rightarrow B$ be an homomorphism of commutative rings. Show that for any $A$-modules $M$ and $N$, there exists a unique isomorphism of $B$-modules $B \otimes_{A}\left(M \otimes_{A} N\right) \simeq\left(B \otimes_{A} M\right) \otimes_{B}\left(B \otimes_{A} N\right)$ which sends $b \otimes(m \otimes n)$ onto $b((1 \otimes m) \otimes(1 \otimes n))$.

