ENS de Lyon TD5 Master 1 – Algèbre avancée 2020-2021

Symmetric and exterior algebras; base change

In the following, A is a commutative ring.

Exercise 1. Let B be an A-algebra, $n \ge 1$ be an integer and M, N be two A-modules.

- 1. Show that any A-linear map $\varphi : M \to N$ induces canonically an A-linear map $\operatorname{Sym}^{n}(\varphi) : \operatorname{Sym}^{n}(M) \to \operatorname{Sym}^{n}(N)$ and an A-linear map $\Lambda^{n}(\varphi) : \Lambda^{n}(M) \to \Lambda^{n}(N)$.
- 2. Show that any A-linear map $\varphi : M \to B$ satisfying $\varphi(x)\varphi(y) = \varphi(y)\varphi(x)$ induces a unique homomorphism of A-algebras $\operatorname{Sym}(\varphi) : \operatorname{Sym}(M) \to B$.

Deduce that, if B is commutative, then there is a natural bijection between $\operatorname{Hom}_A(M, B)$ (A-module homomorphisms) and $\operatorname{Hom}_{A-\operatorname{alg}}(\operatorname{Sym}(M), B)$ (A-algebra homomorphisms).

Exercise 2. Let A be a ring, and M an A-module. Let $m \ge 1$ be an integer.

1. Show that for all $\sigma \in \mathfrak{S}_m$, there is a linear map $u_{\sigma}: T^m M \to T^m M$ such that $u_{\sigma}(x_1 \otimes \cdots \otimes x_m) = x_{\sigma(1)} \otimes \cdots \otimes x_{\sigma(m)}$.

Let

$$S^m M = \{ x \in T^m M \mid \forall \sigma \in \mathfrak{S}_m, u_\sigma(x) = x \}$$

and

$$A^{m}M = \{ x \in T^{m}M \mid \forall \sigma \in \mathfrak{S}_{m}, u_{\sigma}(x) = \varepsilon(\sigma)x \}.$$

- 2. Show that $S^m M$ and $A^m M$ are submodules of $T^m M$.
- 3. Assume that m! is invertible in A. Show that the natural projections $S^m M \to \operatorname{Sym}^m M$ and $A^m M \to \Lambda^m M$ are isomorphisms. Hint: introduce the *m*-linear maps

$$s: M^m \to T^m M, \ (x_1, \dots, x_m) \mapsto \frac{1}{m!} \sum_{\sigma \in \mathfrak{S}_m} x_{\sigma(1)} \otimes \dots \otimes x_{\sigma(m)}$$

and

$$a: M^m \to T^m M, \ (x_1, \dots, x_m) \mapsto \frac{1}{m!} \sum_{\sigma \in \mathfrak{S}_m} \varepsilon(\sigma) x_{\sigma(1)} \otimes \dots \otimes x_{\sigma(m)}.$$

Exercise 3. Let M, N be two A-modules.

- 1. Show that for any $n \ge 0$, there is a natural isomorphism of A-modules: $\operatorname{Sym}^n(M \oplus N) \simeq \bigoplus_{k=0}^n \left(\operatorname{Sym}^k(M) \otimes_A \operatorname{Sym}^{n-k}(N) \right)$, and show that the A-algebras $\operatorname{Sym}(M \oplus N)$ and $\operatorname{Sym}(M) \otimes_{\operatorname{Sym}(N)}$ are isomorphic.
- 2. Show that for any integer $n \ge 0$, there is a natural isomorphism of A-modules $\Lambda^n(M \oplus N) \simeq \bigoplus_{k=0}^n (\Lambda^k M \otimes_A \Lambda^{n-k} N).$

Exercise 4. Let M be a free A-module of rank n, and $f \in \operatorname{End}_A(M)$. Let $a(f) = \det(X \operatorname{Id} - f) \in A[X]$, and $b(f) = \sum_{i=0}^{n} (-1)^i X^{n-i} \operatorname{tr}(\Lambda^i f) \in A[X]$. Our goal is to show that a(f) = b(f).

- 1. Show that the identity holds if A is an algebraically closed field.
- 2. Let $u : B \to C$ be a ring homomorphism, and f a B-linear map $B^n \to B^n$. Assume that the equality holds for f. Show that it also holds for $\mathrm{Id}_C \otimes f \in \mathrm{End}_C(C \otimes_B M)$. If u is injective, show that the equality holds for $\mathrm{Id}_C \otimes f$ if and only if it holds for f.

3. Deduce that the equality holds for any ring A and $f \in \text{End}_A(A^n)$. Hint: introduce the ring $B = \mathbb{Z}[(T_{i,j})_{1 \leq i,j \leq n}]$ and the map $B^n \to B^n$ with matrix $T = (T_{i,j})_{1 \leq i,j \leq n}$.

Exercise 5.

- 1. Let *M* be an *A*-module and *I* an ideal of *A*. Show that M/IM is naturally endowed with a A/I-module structure, which coincides with $A/I \otimes_A M$.
- 2. Assume A is integral and let K be its fraction field. Let M be an A-module such that for any $a \in A \setminus \{0\}$, the multiplication-by-a map is an automorphism of M. Show that M is naturally endowed with a K-vector space structure, which coincides with $K \otimes_A M$.
- 3. Let M be an A-module and M[X] be the additive group of polynomials with coefficients in M. Provide an A[X]-module structure on M[X] so that M[X] and $M \otimes_A A[X]$ are isomorphic as A[X]-modules.

Exercise 6. Let M be an A-module and $A \rightarrow B$ be a homomorphism of commutative rings.

- 1. Show that if M is projective, then the B-module $B \otimes_A M$ is projective.
- 2. Show that if M is finitely generated, then the B-module $B \otimes_A M$ is finitely generated.
- 3. Show that if M is finitely presented, then the B-module $B \otimes_A M$ is finitely presented.
- 4. Find an example of A-module M such that the scalar restriction to A of the B-module $B \otimes_A M$ is not isomorphic to M.

Exercise 7. Let $A \to B$ be an homomorphism of commutative rings. Show that for any A-modules M and N, there exists a unique isomorphism of B-modules $B \otimes_A (M \otimes_A N) \simeq (B \otimes_A M) \otimes_B (B \otimes_A N)$ which sends $b \otimes (m \otimes n)$ onto $b((1 \otimes m) \otimes (1 \otimes n))$.