ENS de Lyon TD6

Tensor products of algebras, Galois theory, modules over principal ideal domains

In the following, A is a commutative ring.

Exercise 1. Describe the following \mathbb{Q} -algebras:

 $\mathbb{Q}(i) \otimes_{\mathbb{Q}} \mathbb{R}, \quad \mathbb{Q}(\sqrt{2}) \otimes_{\mathbb{Q}} \mathbb{R}, \quad \mathbb{Q}(\sqrt[3]{2}) \otimes_{\mathbb{Q}} \mathbb{R}, \quad \mathbb{Q}(i) \otimes_{\mathbb{Q}} \mathbb{Q}(i).$

Exercise 2. Let K be a field and L/K a finite extension of degree n. Denote by \overline{K} an algebraic closure of K.

- 1. Show that the following are equivalent:
 - (i) the extension L/K is separable;
 - (ii) for any extension M/K, the algebra $L \otimes_K M$ does not contain nonzero nilpotent elements;
 - (iii) the algebra $L \otimes_K \overline{K}$ does not contain nonzero nilpotent elements.
- 2. Show that L/K is a Galois extension if, and only if, the algebras $L \otimes_K L$ and L^n are isomorphic.

Exercise 3. Let A be a ring and B a commutative A-algebra. Let M and N be B-modules. We see them as A-modules via the map $A \to B$.

- 1. Show that we have a natural injective map: $\Phi_{M,N}$: $\operatorname{Hom}_B(M,N) \to \operatorname{Hom}_A(M,N)$. Show that this map is bijective for all *B*-modules *M* and *N* if B = A/I for some ideal *I* of *A*, or if *A* is a domain and $B = \operatorname{Frac}(A)$.
- 2. Show that there exists a canonical surjective A-linear map $f_{M,N} : M \otimes_A N \to M \otimes_B N$ sending $m \otimes n$ to $m \otimes n$.

We can define two *B*-module structures on $M \otimes_A N$, via the action of *B* on *M* or on *N*.

- 3. Assume that for all *B*-modules *M* and *N*, the map $\Phi_{M,N}$ is bijective. Show that for all *B*-modules *M* and *N*, $f_{M,N}$ is an isomorphism, the two *B*-module structures on $M \otimes_A N$ are the same, and $f_{M,N}$ is *B*-linear.
- 4. Give an example where $f_{M,N}$ is not an isomorphism, and an example where the two *B*-module structures on $M \otimes_A N$ are not the same.

Exercise 4. Let $A \to B$ be an homomorphism of commutative rings. Show that for any A-modules M and N, there exists a unique isomorphism of B-modules $B \otimes_A (M \otimes_A N) \simeq (B \otimes_A M) \otimes_B (B \otimes_A N)$ which sends $b \otimes (m \otimes n)$ onto $b((1 \otimes m) \otimes (1 \otimes n))$.

Exercise 5. Let A be an integral domain, and K be its fraction field.

- 1. Let V and W be two K-vector spaces. Explain why for any $v \in V \setminus \{0\}$ and any $w \in W \setminus \{0\}$, we have $v \otimes w \neq 0$.
- 2. Let V and W be two K-vector spaces. Show that $V \otimes_A W$ and $V \otimes_K W$ are canonically isomorphic.
- 3. Let M be an A-module.
 - (a) Show that we have an isomorphism of A-modules $K \otimes_A M \simeq K \otimes_A (M/M_{\text{tors}})$.
 - (b) Deduce that M_{tors} is the kernel of the A-linear map $M \to K \otimes_A M$ sending $m \in M$ onto $1 \otimes m$.
- 4. Let M and N be two A-modules. Show that for any elements $m \in M$ and $n \in N$ that are not A-torsion elements, we have $m \otimes n \neq 0$.

Exercise 6. Let M be a noetherian A-module.

- 1. Show that if A is notherian, then M[X] is a notherian A[X]-module.
- 2. Let $Ann_A(M) = \{a \in A, a \cdot m = 0 \ \forall m \in M\}$ be the annihilator of M. Show that the ring $B = A/Ann_A(M)$ is noetherian.
- 3. Deduce that M[X] is a noetherian A[X]-module (we do not assume that A is a noetherian ring).

Exercise 7. Let k be an algebraically closed field and let A, B be two finitely generated k-algebras. In this exercise we show that if A becomes isomorphic to B after base change by some k-algebra C, then they are already isomorphic over k.

- 1. Let $f : A \otimes_k C \to B \otimes_k C$ be an isomorphism of *C*-algebras. Show that there exists a *k*-subalgebra $C' \subset C$, finitely generated over *k*, such that *f* is defined over *C'*, i.e. that there exists an isomorphism $f' : A \otimes_k C' \to B \otimes_k C'$ of *C'*-algebras such that *f* is the extension of scalars of *f'*.
- By reducing modulo a maximal ideal of C', show that f' induces an isomorphism from A to B. Hint: you can use the following fact (Nullstellensatz): if k is algebraically closed, any field that is also a finitely generated k-algebra is equal to k.
- 3. Let M and N be two finitely generated A-modules. Show that if $M \otimes_k C \cong N \otimes_k C$ as $A \otimes_k C$ -modules then M is isomorphic to N as A-modules.

Hint: use the fact that M and N are of finite presentation and the same idea as in the previous point.

4. Give an example of two non isomorphic finitely generated k-algebras which are isomorphic after the extension of scalars $k \to \overline{k}$ (here we do not assume k algebraically closed).