## Modules over a principal ideal domain

Exercise 1. Find the invariant factors of the $\mathbb{Z}$-module

$$
M=\mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 16 \mathbb{Z} \oplus \mathbb{Z} / 6 \mathbb{Z} \oplus \mathbb{Z} / 18 \mathbb{Z} \oplus \mathbb{Z} / 5 \mathbb{Z}
$$

Exercise 2. How many isomorphism classes of abelian groups of order 24 are there?
Exercise 3. Compute the image and the kernel of the matric

$$
C=\left(\begin{array}{cccc}
1 & 4 & 0 & 3 \\
0 & 3 & 9 & 12 \\
-1 & -1 & 3 & 3
\end{array}\right)
$$

Exercise 4. Let $A$ be a principal ideal domain.

1. Let $M$ be a finitely generated $A$-module. $\operatorname{Describe~}^{A n n_{A}}(M)=\{a \in A \mid \forall x \in M, a x=0\}$ in terms of the invariant factors of $M$.
2. Let $G$ be a finite abelian group, and $d>0$ such that $(d)=\operatorname{Ann}_{\mathbb{Z}}(G)$. Show that $\operatorname{Card}(G) \geq d$, with equality if and only if $G$ is cyclic.
3. Deduce from this that any finite subgroup of the group of units of a field is cyclic.

Exercise 5. Compute the similarity invariants of the following matrices with coefficients in $\mathbb{C}$ :

$$
\left(\begin{array}{ccc}
-8 & 1 & 5 \\
2 & -3 & -1 \\
-4 & 1 & 1
\end{array}\right) ; \quad\left(\begin{array}{ccc}
0 & 2 & -1 \\
2 & -4 & 3 \\
2 & -6 & 4
\end{array}\right) ; \quad\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
-2 & -1 & 0 & 0 \\
1 & 0 & -1 & -2 \\
0 & 1 & 1 & 1
\end{array}\right)
$$

Exercise 6. What are the similarity invariants of : an homothety ? a transvection ? a diagonalizable endomorphism with distinct eigenvalues ? a projection ? a Jordan block ?

Exercise 7. Let $A$ be a ring, and $I$ and ideal of $A$. Show that the only endomorphisms of the $A$-module $A / I$ are multiplication by $a$ for some $a$ in $A$.

Let $E$ be a finite-dimensional $K$-vector space and $u$ an endomorphism of $E$. Show that $u$ is cyclic if and only if any endomorphism of $E$ that commutes with $u$ is a polynomial in $u$.

Exercise 8. We say that an $A$-module $M$ is indecomposable if it is nonzero and if for any submodules $P$ and $Q$ of $M$, the equality $M=P \oplus Q$ implies $P=0$ or $Q=0$.

1. Let $A$ be a principal ideal domain. Prove that the indecomposable finitely generated $A$-modules are, up to isomorphism, $A$ and the $A$-modules $A /\left(p^{n}\right)$, where $n \in \mathbb{N} \backslash\{0\}$ and $p$ is an irreducible element of $A$.
2. Give an example of indecomposable, non-finitely generated $A$-module.

Exercise 9. We say that an $A$-module $M$ is simple if it is nonzero and has no non-trivial submodule. We say that an $A$-module $M$ is semi-simple if and only if it is nonzero and for any submodule $P$ of $M$, there exists a submodule $Q$ such that $P \oplus Q=M$.

1. Prove that any simple module is finitely generated, and indecomposable. Is the reciprocal true ?
2. Prove that if $M$ is noetherian and semi-simple, then it is a finite sum of simple modules.
3. Let $A$ be a principal ideal domain. Prove that any simple $A$-module is of the form $A /(p)$ for some irreducible element $p$ of $A$. Deduce that any semi-simple, finitely generated $A$-module is of the form $\oplus_{i=1}^{n} A /\left(p_{i}\right)$ for some irreducible elements $p_{i}$ of $A$. Conversely, show that any such module is semi-simple.
4. Let $K$ be a field, and let $u$ be an endomorphism of $K^{n}$. We say that $u$ is semi-simple if and only if any stable subspace has a stable complement. Show that $u$ is semi-simple if and only if $u$ endows $K^{n}$ with a structure of semi-simple $K[X]$-module. Deduce that $u$ is semi-simple if and only if its minimal polynomial is a product of distinct irreducible polynomials. Does $u$ necessarily become diagonalizable over the algebraic closure of $K$ ?

Exercise 10. Let $A$ be a principal ideal domain, and $M$ a finitely generated torsion $A$-module. For $p$ an irreducible element of $A$, let $M(p)$ be the $p$-primary part of $M$.

Show that for each irreducible element $p$ of $A$, there exists an element $a_{p} \in A$ such that $a_{p} M=M(p)$ and multiplication by $a_{p}$ induces the identity of $M(p)$ and $a_{p} M(q)=0$ for any irreducible element $q$ that is not equivalent to $p$.

Let $K$ be an algebraically closed field, and $u$ an endomorphism of a finite-dimensional $K$-vector space $E$. For $\lambda \in K$, let $E_{\lambda}=\operatorname{ker}(u-\lambda \mathrm{Id})^{\operatorname{dim} E}$. Show that the projector with image $E_{\lambda}$ and kernel $\oplus_{\mu \neq \lambda} E_{\mu}$ is a polynomial in $u$.

Exercise 11. Let $K$ be an algebraically closed field, and $E$ a finite-dimensional $K$-vector space. Show that $u$ and $v$ are conjugated if and only if for all $\lambda \in K$ and all $n>0,(u-\lambda \mathrm{Id})^{n}$ and $(v-\lambda \mathrm{Id})^{n}$ have the same rank.

## Exercise 12. (Finite $\mathbb{Z}[i]$-modules)

1. Recall why the ring $\mathbb{Z}[i]$ is a PID.
2. Up to isomorphism, how many $\mathbb{Z}[i]$-modules have 3 elements ? 5 elements ? 9 elements ?
3. Let $p$ be a prime number such that $p \equiv 1 \bmod 4$. Provide a $\mathbb{Z}[i]$-module structure on $\mathbb{Z} / p \mathbb{Z}$.
4. Let $a+i b \in \mathbb{Z}[i]$. What is the cardinality of $\mathbb{Z}[i] /(a+i b)$ ?
5. Deduce that an odd prime number $p$ in $\mathbb{Z}$ is a sum of two squares if, and only if, $p \equiv 1 \bmod 4$.
6. What are the prime elements of $\mathbb{Z}[i]$ ? For each prime $p$ of $\mathbb{Z}[i]$, describe the ring $\mathbb{Z}[i] /(p)$.

Exercise 13. (A Bezout ring that is not principal) Let $U$ be a connected open subset of $\mathbb{C}$. Denote by $\mathcal{H}(U)$ the ring of holomorphic functions on $U$, and by $\mathcal{M}(U)$ the ring of meromorphic functions on $U$.

We recall the following theorems from complex analysis:
Theorem 1 (Weierstrass theorem) Let $A$ be a subset of $U$ with no accumulation point in $U$, and for all $a \in A$ let $m_{a} \in \mathbb{Z}_{>0}$. Then there exists $f \in \mathcal{H}(U)$ that has a zero of order exactly $m_{a}$ at a for each $a \in A$, and no zero outside $A$.

Theorem 2 (Mittag-Leffler theorem) Let $A$ be a subset of $U$ with no accumulation point in $U$, and for all $a \in A$ let $m_{a} \in \mathbb{Z}_{>0}$, and elements $c_{1, a}, \ldots, c_{m_{a}, a}$ in $\mathbb{C}$. Then there exists $f \in \mathcal{M}(U)$ with principal part $\sum_{i=1}^{m_{a}} c_{i, a}(z-a)^{-i}$ at each $a \in A$ and no pole outside $A$.

1. Let $f$ and $g$ be in $\mathcal{H}(U)$ with no common zero in $U$. Show that there exist $u, v$ in $\mathcal{H}(U)$ such that $u f+v g=1$ (Hint: find $F, G \in \mathcal{M}(U)$ such that $f F, g G$ and $F+G-1 / f g$ are holomorphic).
2. Let $f$ and $g$ be in $\mathcal{H}(U)$. Show that there exists $h \in \mathcal{H}(U)$ such that $(f, g)=(h)$. Deduce that any finitely generated ideal of $\mathcal{H}(U)$ is principal (we say that $\mathcal{H}(U)$ is a Bezout ring).
3. Show that $\mathcal{H}(U)$ is not noetherian, hence not a principal ideal domain*.
[^0]
[^0]:    *In fact, one could prove that $\mathcal{H}(U)$ is an elementary divisor ring but this is quite long.

