Local rings, localization (1)

Exercise 1.

1. Is every subring of a local ring necessarily a local ring?
2. Let A be a ring and I an ideal of A. Describe the ideals of A / I, the prime ideals of A / I, the maximal ideals of A / I. Is every quotient of a local ring necessarily a local ring?
3. Letm be a maximal ideal of A and $n \geq 1$ a positive integer. Show that the ring A / \mathfrak{m}^{n} is local.
4. Show that the following are equivalent
(a) The ring A is local;
(b) the set $A \backslash A^{\times}$is an ideal of A;
(c) for any $a, b \in A$ such that $a+b=1$, we have $a \in A^{\times}$or $b \in A^{\times}$.

Exercise 2. Let A be a commutative ring and S a multiplicative subset of A. Consider the ideal $I=\{x \in A, s x=0$ for some $s \in S\}$. Show that if the image of any element of S is invertible in A / I, then $A / I=S^{-1} A$.

1. Let A and B be rings, and $S=\{(1,0),(1,1)\} \subset A \times B$. Compute $S^{-1}(A \times B)$.
2. Describe $(\mathbb{Z} / 6 \mathbb{Z})_{(2)}$ (localization with respect to a prime ideal).
3. Let $n \geq 2$, and $m \neq 0$ be integers. Describe $(\mathbb{Z} / n \mathbb{Z})[1 / m]$.

Exercise 3. Let A be an integral domain and K its field of fractions.

1. Show that for any multiplicative subset S of A that does not contain 0 , the ring $S^{-1} A$ is naturally a subring of K.
2. Describe the following localizations with respect to a prime ideal: $k[X]_{(X-a)}, \mathbb{Z}_{(p)}$.
3. What are $\bigcap_{\mathfrak{p} \text { prime }} A_{\mathfrak{p}}$ and $\bigcap_{\mathfrak{m} \text { maximal }} A_{\mathfrak{m}}$?

Exercise 4. Let A be a commutative ring and $f \in A$. Let $S_{f}=\left\{f^{n}, n \geq 0\right\}$. Show that $S_{f}^{-1} A$ is isomorphic to $A[X] /(f X-1)$.

Exercise 5. Let A be a commutative ring.

1. Let S be a multiplicative subset of A. Show that $S^{-1} A \neq 0$ if and only if $0 \notin S$. Deduce that $A[1 / f] \neq 0$ if and only if f is not nilpotent.
2. Let $\mathcal{N}(A)$ be the ideal of nilpotent elements of A. Show that $\mathcal{N}(A)$ is the intersection of all prime ideals of A.

Exercise 6. Let $S \subset T$ be multiplicative subsets of A, and $\phi_{S}: A \rightarrow S^{-1} A$ the natural map. Show that $T^{-1} A$ and $\phi_{S}(T)^{-1}\left(S^{-1} A\right)$ are naturally isomorphic.

Describe $\left(\mathbb{Z}^{2}\right)_{\mathbb{Z} \times\{0\}}$ (localization with respect to a prime ideal).
Exercise 7. Let A be a commutative ring, and S a multiplicative subset of A. Let M and N be two $S^{-1} A$-modules. Show that the natural map $\operatorname{Hom}_{S^{-1} A}(M, N) \rightarrow \operatorname{Hom}_{A}(M, N)$ is bijective. Deduce that $M \otimes_{A} N$ and $M \otimes_{S^{-1} A} N$ are canonically isomorphic.

Exercise 8. Let A be a commutative ring, and let S_{0} be the set of elements of A that are not zero divisors.

1. Show that S_{0} is a multiplicative subset of A, and that the canonical map $A \rightarrow S_{0}^{-1} A$ is injective. Show that for any element $x \in S_{0}^{-1} A$, either x is a unit or it is a zero divisor. The ring $S_{0}^{-1} A$ is called the total ring of fractions of A.
2. Let S be a multiplicative subset of A. Show that the map $A \rightarrow S^{-1} A$ is injective if and only if $S \subset S_{0}$.
3. Compute $S_{0}^{-1} A$ in the following cases: A is finite, $A=\mathbb{Z}^{2}$.

Exercise 9.

1. Let n be a positive integer. When is the ring $\mathbb{Z} / n \mathbb{Z}$ local ?

From now on we fix p a prime number.
2. For every $m \geq n \geq 1$, denote by

$$
\pi_{n, m}: \mathbb{Z} / p^{m} \mathbb{Z} \rightarrow \mathbb{Z} / p^{n} \mathbb{Z}
$$

the canonical reduction. We define

$$
\mathbb{Z}_{p}=\left\{\left(a_{n}\right)_{n} \in \prod_{n} \mathbb{Z} / p^{n} \mathbb{Z} \mid \pi_{n, m}\left(a_{m}\right)=a_{n} \text { for all } m \geq n \geq 1\right\}
$$

Show that $\left(a_{n}\right)_{n} \in \mathbb{Z}_{p}$ if and only if $\pi_{n, n+1}\left(a_{n+1}\right)=a_{n}$. Prove that \mathbb{Z}_{p} is a subring of the product $\prod_{n} \mathbb{Z} / p^{n} \mathbb{Z}$ and that the natural projection $\pi_{n}: \mathbb{Z}_{p} \rightarrow \mathbb{Z} / p^{n} \mathbb{Z}$ is surjective for all $n \geq 1$. The ring \mathbb{Z}_{p} is called the ring of p-adic integers.
3. Show that the natural ring homomorphism $\mathbb{Z} \rightarrow \mathbb{Z}_{p}$ is injective. Moreover, prove that \mathbb{Z}_{p} is an integral domain.
4. Show that an element $\left(a_{n}\right)_{n} \in \mathbb{Z}_{p}$ is a unit if and only if $a_{1} \neq 0$. Deduce that ker π_{1} is the unique maximal ideal of \mathbb{Z}_{p} and therefore that it is a local ring.
5. Show that \mathbb{Z}_{p} is a principal ideal domain whose ideals are generated by powers of p.

