ENS de Lyon
TD10

Master 1 - Introduction à la Théorie des Nombres
2020-2021

## Units

Exercise 1. [Fundamental units]

1. What number fields have a group of units of rank 1 ?
2. Let $K=\mathbb{Q}(\sqrt{d})$ with $d>1$ square-free. Show that there exists a unique generator $u=a+b \sqrt{d}$ of the free part of $\mathcal{O}_{K}^{\times}$with positive $a$ and $b$. We call this unit the fundamental unit of $K$.
3. Assume $d \equiv 2,3 \bmod 4$ and let $b$ be the smallest positive integer such that $d b^{2}+1$ or $d b^{2}-1$ is a square, and call it $a^{2}$ with $a>0$. Show that $a+b \sqrt{d}$ is the fundamental unit of $\mathbb{Q}(\sqrt{d})$.
4. Compute the fundamental unit of $\mathbb{Q}(\sqrt{d})$ for $d=2,3,6,7,10,11$.
5. Assume $d \equiv 1 \bmod 4$ and let $b$ be the smallest positive integer such that $d b^{2}+4$ or $d b^{2}-4$ is a square, and call it $a^{2}$ with $a>0$. Show that $\frac{a+b \sqrt{d}}{2}$ is the fundamental unit of $\mathbb{Q}(\sqrt{d})$.
6. Compute the fundamental unit of $\mathbb{Q}(\sqrt{d})$ for $d=5,13,17,21$.

Exercise 2. [Regulator of a number field]

1. Let $M=\left(m_{i, j}\right)_{1 \leq i, j \leq n} \in \mathcal{M}_{n}(\mathbb{R})$ with $m_{i, i}>0, m_{i, j}<0$ and $\sum_{k=1}^{n} m_{i, k}=0$ for $1 \leq i \neq j \leq n$. Show that any family of $n-1$ columns of $M$ is linearly independent over $\mathbb{R}$.
2. Let $M \in \mathcal{M}_{n-1, n}(\mathbb{R})$ with rows summing to zero. Prove that all the minors of size $n-1$ of $M$ are equal.
3. Let $K$ be a number field and $u_{1}, \ldots, u_{r_{1}+r_{2}-1}$ be a fundamental system of units of $\mathcal{O}_{K}$, i.e. a basis of the free part of $\mathcal{O}_{K}^{\times}$. The regulator of $K$ is

$$
R_{K}=\mid \operatorname{det}\left(\operatorname{dim}_{\mathbb{R}}\left(\sigma_{i}(K)\right) \log \left|\sigma_{i}\left(u_{j}\right)\right|\right) .
$$

Exercise 3. [Fundamental unit of a cubic field] Let $K$ be a cubic field of signature ( 1,1 ) and let $\varepsilon$ be its fundamental unit, i.e. a generator of the free part of $\mathcal{O}_{K}^{\times}$such that $\varepsilon>1$. We will show that

$$
\varepsilon^{2}>\frac{\left|\Delta_{K}\right|-24}{4} .
$$

1. Prove that $K=\mathbb{Q}(\varepsilon)$ and $N_{K / \mathbb{Q}}(\varepsilon)=1$.
2. Let $\varepsilon_{2}$ and $\overline{\varepsilon_{2}}$ be the conjugates of $\varepsilon$ over $\mathbb{Q}$, and $u \in \mathbb{R}$ such that $\varepsilon=u^{2}$. Show that $\varepsilon_{2}=u^{-1} \exp (-i \theta)$ with $0 \leq \theta \leq \pi$.
3. Show that $\sqrt{|\operatorname{disc}(\varepsilon)|}=4(a-\cos \theta) \sin \theta$ with $2 a=u^{3}+u^{-3}$.
4. Let $g=2 X^{2}-a X-1$ and let $\rho$ be a root of $g$ satisfying $|\rho| \leq 1$. Show that $\sqrt{|\operatorname{disc}(\varepsilon)|} \leq 4(a-\rho) \sqrt{1-\rho^{2}}$.
5. Show that there exists a unique root $\rho$ of $g$ such that $-1 \leq \rho \leq-\frac{1}{2 u^{3}}$.
6. Show that $|\operatorname{disc}(\varepsilon)|<4 u^{6}+24$ and conclude.
7. Let $\alpha=\mathbb{Q}(\sqrt[3]{2})$. Show that the fundamental unit of $\mathbb{Q}(\alpha)$ is $1+\alpha+\alpha^{2}$.

Exercise 4. [Cyclotomic units]
Let $n \geq 3$ and $K=\mathbb{Q}\left(\zeta_{n}\right)$ with $\zeta_{n}=e^{\frac{2 i \pi}{n}}$. Let

$$
I=\{k \in \mathbb{N} \mid<k<n / 2, \operatorname{gcd}(k, n)=1\} .
$$

1. Give a condition on $k \in \mathbb{Z} / n \mathbb{Z}$ for $\xi_{k}=\frac{1-\zeta_{n}^{k}}{1-\zeta_{n}}$ to be a unit in $\mathcal{O}_{K}$.
2. Show that for all $k \in(\mathbb{Z} / n \mathbb{Z})^{\times}$,

$$
\zeta_{n}^{\frac{1-k}{2}} \xi_{k}= \pm \frac{\sin (k \pi / n)}{\sin (\pi / n)}
$$

3. Deduce a relation between $\xi_{k}$ and $\xi_{n-k}$ up to a root of unity and an upper bound on the rank of the group generated by the $\xi_{k}$. Compare it to the rank of $\mathcal{O}_{K}^{\times}$.
4. Let $K^{+}$be the maximal real subfield of $K$. What is its degree over $\mathbb{Q}$ ? Describe its embeddings and compute the rank of $\mathcal{O}_{K^{+}}$.
5. Prove that every $\xi_{k}$ is, up to a $n^{\text {th }}$-root of unity, a unit of $\mathcal{O}_{K^{+}}$.

Remark. One can show that if $n$ is a prime power then the subgroup generated by the $\xi_{k}$ has finite index in $\mathcal{O}_{K}^{\times}$. Moreover, this index is $h_{K^{+}}$.

