ENS de Lyon TD10 Master 1 – Introduction à la Théorie des Nombres 2020-2021

Units

Exercise 1. [Fundamental units]

- 1. What number fields have a group of units of rank 1?
- 2. Let $K = \mathbb{Q}(\sqrt{d})$ with d > 1 square-free. Show that there exists a unique generator $u = a + b\sqrt{d}$ of the free part of \mathcal{O}_K^{\times} with positive a and b. We call this unit the fundamental unit of K.
- 3. Assume $d \equiv 2, 3 \mod 4$ and let b be the smallest positive integer such that $db^2 + 1$ or $db^2 1$ is a square, and call it a^2 with a > 0. Show that $a + b\sqrt{d}$ is the fundamental unit of $\mathbb{Q}(\sqrt{d})$.
- 4. Compute the fundamental unit of $\mathbb{Q}(\sqrt{d})$ for d = 2, 3, 6, 7, 10, 11.
- 5. Assume $d \equiv 1 \mod 4$ and let b be the smallest positive integer such that $db^2 + 4$ or $db^2 4$ is a square, and call it a^2 with a > 0. Show that $\frac{a+b\sqrt{d}}{2}$ is the fundamental unit of $\mathbb{Q}(\sqrt{d})$.
- 6. Compute the fundamental unit of $\mathbb{Q}(\sqrt{d})$ for d = 5, 13, 17, 21.

Exercise 2. [Regulator of a number field]

- 1. Let $M = (m_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{R})$ with $m_{i,i} > 0, m_{i,j} < 0$ and $\sum_{k=1}^n m_{i,k} = 0$ for $1 \le i \ne j \le n$. Show that any family of n-1 columns of M is linearly independent over \mathbb{R} .
- 2. Let $M \in \mathcal{M}_{n-1,n}(\mathbb{R})$ with rows summing to zero. Prove that all the minors of size n-1 of M are equal.
- 3. Let K be a number field and $u_1, \ldots, u_{r_1+r_2-1}$ be a fundamental system of units of \mathcal{O}_K , *i.e.* a basis of the free part of \mathcal{O}_K^{\times} . The regulator of K is

$$R_K = |\det(\dim_{\mathbb{R}}(\sigma_i(K)) \log |\sigma_i(u_j)|).$$

Exercise 3. [Fundamental unit of a cubic field] Let K be a cubic field of signature (1, 1) and let ε be its fundamental unit, *i.e.* a generator of the free part of \mathcal{O}_K^{\times} such that $\varepsilon > 1$. We will show that

$$\varepsilon^2 > \frac{|\Delta_K| - 24}{4}.$$

- 1. Prove that $K = \mathbb{Q}(\varepsilon)$ and $N_{K/\mathbb{Q}}(\varepsilon) = 1$.
- 2. Let ε_2 and $\overline{\varepsilon_2}$ be the conjugates of ε over \mathbb{Q} , and $u \in \mathbb{R}$ such that $\varepsilon = u^2$. Show that $\varepsilon_2 = u^{-1} \exp(-i\theta)$ with $0 \le \theta \le \pi$.
- 3. Show that $\sqrt{|\operatorname{disc}(\varepsilon)|} = 4(a \cos\theta)\sin\theta$ with $2a = u^3 + u^{-3}$.
- 4. Let $g = 2X^2 aX 1$ and let ρ be a root of g satisfying $|\rho| \leq 1$. Show that $\sqrt{|\operatorname{disc}(\varepsilon)|} \leq 4(a-\rho)\sqrt{1-\rho^2}$.
- 5. Show that there exists a unique root ρ of g such that $-1 \leq \rho \leq -\frac{1}{2u^3}$.
- 6. Show that $|\operatorname{disc}(\varepsilon)| < 4u^6 + 24$ and conclude.

7. Let $\alpha = \mathbb{Q}(\sqrt[3]{2})$. Show that the fundamental unit of $\mathbb{Q}(\alpha)$ is $1 + \alpha + \alpha^2$.

Exercise 4. [Cyclotomic units]

Let $n \ge 3$ and $K = \mathbb{Q}(\zeta_n)$ with $\zeta_n = e^{\frac{2i\pi}{n}}$. Let

$$I = \{k \in \mathbb{N} \mid < k < n/2, \gcd(k, n) = 1\}.$$

1. Give a condition on $k \in \mathbb{Z}/n\mathbb{Z}$ for $\xi_k = \frac{1-\zeta_n^k}{1-\zeta_n}$ to be a unit in \mathcal{O}_K .

2. Show that for all $k \in (\mathbb{Z}/n\mathbb{Z})^{\times}$,

$$\zeta_n^{\frac{1-k}{2}}\xi_k = \pm \frac{\sin(k\pi/n)}{\sin(\pi/n)}.$$

- 3. Deduce a relation between ξ_k and ξ_{n-k} up to a root of unity and an upper bound on the rank of the group generated by the ξ_k . Compare it to the rank of \mathcal{O}_K^{\times} .
- 4. Let K^+ be the maximal real subfield of K. What is its degree over \mathbb{Q} ? Describe its embeddings and compute the rank of $\mathcal{O}_{K^+}^{\times}$.
- 5. Prove that every ξ_k is, up to a n^{th} -root of unity, a unit of \mathcal{O}_{K^+} .

Remark. One can show that if n is a prime power then the subgroup generated by the ξ_k has finite index in \mathcal{O}_K^{\times} . Moreover, this index is h_{K^+} .