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The prime number theorem - Part 1

The goal of this exercise sheet and the next is to prove the prime number theorem :
If 7(x) = #{p < z | p prime}, then
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This takes many steps and relies on properties of the Riemann zeta function, defined by
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for Re(s) > 1.

In the following, the letter p always denotes a prime number, a summation over n < x
means a summation over {n € N | n <z} or {n € N* | n <z} depending on context, and
log denotes the natural logarithm. We also recall that log admits a principal determination
on C\ R~ which is a right inverse of the exponential function and which satisfies
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for |z| < 1.

Exercise 1. [Chebyshev’s functions|
For x > 2, we let 0(z) = 3, logp and ¢(z) = 30, j>1 ph<s 1O P
1. Show that for every integer n > 1, 0(n) = log P#(n), where P#(n) = [[,<, p, and
Y(n) = loglem(1,...,n).
2. Let n > 1. Show that the binomial coefficient (2;1) is divisible by every prime p such
that n < p < 2n.

3. Deduce that for any n > 1, 8(2n) — 0(n) < nlog4, and use it to show that 6(z) <
xlog4 for x > 2.

4. Prove that ¥(z) — 0(x) = O(x'/?).

5. Let (a,), be a complex sequence and f € C([0,+oc[). For t € R, write A(t) =
>n<t G (With the convention A(t) = 0 for ¢ < 0). Prove that

S anf(n) = A)f() — [T A@L @)

(Hint : Write a, = A(n) — A(n — 1))
6. Deduce that
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7. By splitting the integral in two, show that
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8. Prove that the prime number theorem is equivalent to
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Remark. Chebyshev proved in 1852 that ¢(z) =< z, i.e. ¥(x) = O(z) and = =
O(h(z)). As a consequence, m(z) < . He even proved that if ”(x)xﬂ admits a limit at

infinity, it must be 1, but proving that this limit exists is the hard part...

Exercise 2. [The Von Mangoldt function]
We define the Von Mangoldt function by

~ flogp if n = pF
An) = { 0 otherwise

for every n € N.
Let € be the half-plane {s € C | Re(s) > 1}.

1. Show that 1) is the summatory function A ,i.e. (z) = X, <, A(n).
2. Let I be the Dirichlet series of A, i.e.

Compute the abscissa of convergence of F'.

3. Recall the Euler product
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for s € Q. Prove that ((s) # 0 for s € Q. (Hint : It suffices to prove it is the
exponential of a complex number).

4. By using the Euler product, expand log ((s) into a Dirichlet series, and identify the
function F. (Hint : To use the functional equation of the logarithm, check that two
analytic functions on S coincide on |1, 400])

5. Assuming for now that ¢ admits an analytic continuation to C, with only a simple
pole at 1, classify the poles of F' and give their orders and residues.

Exercise 3. [The functional equation of zetal
Recall the Gamma function is defined by
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for Re(s) > 0. By integrating by parts, one shows that T'(s + 1) = sT'(s).

1. Show that I' admits a meromorphic continuation to C, with simple poles at each

—k and residue (—k1!)k7 for £ € N.




2. Let s € C such that fRe(s) > 0 and n € N*. Show that
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3. Deduce that for PRe(s) > 1, one has
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where 0(t) = ¥,z e ™.

4. We admit the functional equation (1/t) = v/t0(t) for t > 0 (this is an application
of the Poisson summation formula). Show that 7=%/2T'(s/2)((s) = 8(871_1) + f(s) +

f(1 —s), where , 1 ;
o= (M) e

5. Deduce that I extends to a meromorphic function on C with simple pole at 0 and
1 and satisfying I(s) = I(1 — s).

6. Prove that ¢ admits an analytic continuation to C\ {1}, with a simple pole at 1
and "find" its zeros.

Exercise 4. [Elementary estimates on (]
In this exercise, the complex variable is denoted by s = o + it. We will provide upper
bounds on ¢ in different regions of the half-plane {s € C | Re(s) > 0}.

1. Let § > 0. Show that for ¢ > 1+ 9§, one has |((s)| < {(1 + ¢). In particular, ¢ is
bounded in any half-plane of the form {s € C | Re(s) > 1+ ¢}.

2. Use partial summation to prove that for 1 <z <y and s € C,
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where |-] is the integer part function.
3. Deduce that for o > 1 and x > 1,
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where {-} is the fractional part function.

4. Deduce another proof of the analytic continuation of  to {s € C | Re(s) > 0}.

Remark. By integrating by parts multiple times, or using the Euler-Maclaurin
summation formula, one can obtain the analytic continuation of ¢ to any half-plane

of the form {s € C | Re(s) > —k}, with k € N.
5. Prove that -5 < ((0) < -%; for 0 > 0. In particular, {(¢) < 0 for 0 < o < 1.

6. Let § > 0. Prove that )
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for 6 <o <2,t] <3.



7. Now assume |t| > 3 and take x = |t| in the result of 3.

(a) Show that
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n<x
for o > 0.
(b) Show that for o > 1 — == (where ¢ > 0 is a fixed constant),
= d
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(¢) Deduce that
¢(s) = O(log|t])

foraZmaX(é,l—@)JﬂZS.

Remark. In the same manner, we prove

for 6 <o <2, [t| <3 and
¢'(s) = O(log® |t])

foroEmax((S,l— ),]t\23.
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Exercise 5. [A first non-vanishing result]
1. Show that for every § € R, 2(1 + cos6)? = 3 + 4 cos 6 + cos(26).
2. Let 0 > 1 and t € R. Show that

3log (o) + 4Re(log(((o +it))) + Re(log(¢(o + 2it))) > 0

and deduce that
C(0)?I¢(o +it)[*[¢ (o + 2it)] > 1.

3. Prove by contradiction that (1 + it) # 0 for every t # 0.

Remark. With some work, one can show that this non-vanishing is actually equi-
valent to the prime number theorem, without an error term. In the next exercise sheet
we will show that a wider zero-free region for ¢ implies a corresponding error term in the
prime number theorem.



