The prime number theorem - Part 1

The goal of this exercise sheet and the next is to prove the prime number theorem : If $\pi(x)=\#\{p \leq x \mid p$ prime $\}$, then

$$
\pi(x) \underset{x \rightarrow+\infty}{\sim} \frac{x}{\log x} .
$$

This takes many steps and relies on properties of the Riemann zeta function, defined by

$$
\zeta(s)=\sum_{n \geq 1} \frac{1}{n^{s}}
$$

for $\mathfrak{R e}(s)>1$.
In the following, the letter p always denotes a prime number, a summation over $n \leq x$ means a summation over $\{n \in \mathbb{N} \mid n \leq x\}$ or $\left\{n \in \mathbb{N}^{*} \mid n \leq x\right\}$ depending on context, and \log denotes the natural logarithm. We also recall that \log admits a principal determination on $\mathbb{C} \backslash \mathbb{R}^{-}$which is a right inverse of the exponential function and which satisfies

$$
\log (1+z)=\sum_{n \geq 1} \frac{(-1)^{n+1} z^{n}}{n}
$$

for $|z|<1$.
Exercise 1. [Chebyshev's functions]
For $x \geq 2$, we let $\theta(x)=\sum_{p \leq x} \log p$ and $\psi(x)=\sum_{p, k \geq 1, p^{k} \leq x} \log p$.

1. Show that for every integer $n \geq 1, \theta(n)=\log P^{\#}(n)$, where $P^{\#}(n)=\prod_{p \leq n} p$, and $\psi(n)=\log \operatorname{lcm}(1, \ldots, n)$.
2. Let $n \geq 1$. Show that the binomial coefficient $\binom{2 n}{n}$ is divisible by every prime p such that $n<p \leq 2 n$.
3. Deduce that for any $n \geq 1, \theta(2 n)-\theta(n) \leq n \log 4$, and use it to show that $\theta(x) \leq$ $x \log 4$ for $x \geq 2$.
4. Prove that $\psi(x)-\theta(x)=O\left(x^{1 / 2}\right)$.
5. Let $\left(a_{n}\right)_{n}$ be a complex sequence and $f \in \mathcal{C}^{1}([0,+\infty[)$. For $t \in \mathbb{R}$, write $A(t)=$ $\sum_{n \leq t} a_{n}$ (with the convention $A(t)=0$ for $t<0$). Prove that

$$
\sum_{n \leq x} a_{n} f(n)=A(x) f(x)-\int_{0}^{x} A(t) f^{\prime}(t) \mathrm{d} t .
$$

(Hint: Write $\left.a_{n}=A(n)-A(n-1)\right)$
6. Deduce that

$$
\pi(x)=\frac{\theta(x)}{\log x}+\int_{2}^{x} \frac{\theta(t)}{t \log ^{2} t} \mathrm{~d} t
$$

7. By splitting the integral in two, show that

$$
\int_{2}^{x} \frac{\mathrm{~d} t}{\log ^{2} t}=O\left(\frac{x}{\log ^{2} x}\right)
$$

8. Prove that the prime number theorem is equivalent to

$$
\psi(x) \underset{x \rightarrow+\infty}{\sim} x .
$$

Remark. Chebyshev proved in 1852 that $\psi(x) \asymp x$, i.e. $\psi(x)=O(x)$ and $x=$ $O(\psi(x))$. As a consequence, $\pi(x) \asymp \frac{x}{\log x}$. He even proved that if $\frac{\pi(x) \log x}{x}$ admits a limit at infinity, it must be 1, but proving that this limit exists is the hard part...

Exercise 2. [The Von Mangoldt function]
We define the Von Mangoldt function by

$$
\Lambda(n)=\left\{\begin{array}{c}
\log p \text { if } n=p^{k} \\
0 \text { otherwise }
\end{array}\right.
$$

for every $n \in \mathbb{N}$.
Let Ω be the half-plane $\{s \in \mathbb{C} \mid \mathfrak{R e}(s)>1\}$.

1. Show that ψ is the summatory function Λ, i.e. $\psi(x)=\sum_{n \leq x} \Lambda(n)$.
2. Let F be the Dirichlet series of Λ, i.e.

$$
F(s)=\sum_{n \geq 1} \frac{\Lambda(n)}{n^{s}}
$$

Compute the abscissa of convergence of F.
3. Recall the Euler product

$$
\zeta(s)=\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1}
$$

for $s \in \Omega$. Prove that $\zeta(s) \neq 0$ for $s \in \Omega$. (Hint : It suffices to prove it is the exponential of a complex number).
4. By using the Euler product, expand $\log \zeta(s)$ into a Dirichlet series, and identify the function F. (Hint: To use the functional equation of the logarithm, check that two analytic functions on Ω coincide on $] 1,+\infty[$)
5. Assuming for now that ζ admits an analytic continuation to \mathbb{C}, with only a simple pole at 1 , classify the poles of F and give their orders and residues.

Exercise 3. [The functional equation of zeta]
Recall the Gamma function is defined by

$$
\Gamma(s)=\int_{0}^{+\infty} e^{-t} x^{s-1} \mathrm{~d} x
$$

for $\mathfrak{R e}(s)>0$. By integrating by parts, one shows that $\Gamma(s+1)=s \Gamma(s)$.

1. Show that Γ admits a meromorphic continuation to \mathbb{C}, with simple poles at each $-k$ and residue $\frac{(-1)^{k}}{k!}$, for $k \in \mathbb{N}$.
2. Let $s \in \mathbb{C}$ such that $\mathfrak{R e}(s)>0$ and $n \in \mathbb{N}^{*}$. Show that

$$
\frac{\Gamma(s / 2)}{n^{s}}=\pi^{s / 2} \int_{0}^{+\infty} e^{-\pi n^{2} y} y^{s / 2} \frac{\mathrm{~d} y}{y}
$$

3. Deduce that for $\mathfrak{R e}(s)>1$, one has

$$
I(s)=\pi^{-s / 2} \Gamma(s / 2) \zeta(s)=\int_{0}^{+\infty}\left(\frac{\theta(t)-1}{2}\right) t^{s / 2} \frac{\mathrm{dt}}{t}
$$

where $\theta(t)=\sum_{n \in \mathbb{Z}} e^{-\pi n^{2} t}$.
4. We admit the functional equation $\theta(1 / t)=\sqrt{t} \theta(t)$ for $t>0$ (this is an application of the Poisson summation formula). Show that $\pi^{-s / 2} \Gamma(s / 2) \zeta(s)=\frac{1}{s(s-1)}+f(s)+$ $f(1-s)$, where

$$
f(s)=\int_{1}^{+\infty}\left(\frac{\theta(t)-1}{2}\right) t^{s / 2} \frac{\mathrm{~d} t}{t}
$$

5. Deduce that I extends to a meromorphic function on \mathbb{C} with simple pole at 0 and 1 and satisfying $I(s)=I(1-s)$.
6. Prove that ζ admits an analytic continuation to $\mathbb{C} \backslash\{1\}$, with a simple pole at 1 and "find" its zeros.

Exercise 4. [Elementary estimates on ζ]
In this exercise, the complex variable is denoted by $s=\sigma+i t$. We will provide upper bounds on ζ in different regions of the half-plane $\{s \in \mathbb{C} \mid \mathfrak{R e}(s)>0\}$.

1. Let $\delta>0$. Show that for $\sigma \geq 1+\delta$, one has $|\zeta(s)| \leq \zeta(1+\delta)$. In particular, ζ is bounded in any half-plane of the form $\{s \in \mathbb{C} \mid \mathfrak{R e}(s) \geq 1+\delta\}$.
2. Use partial summation to prove that for $1 \leq x<y$ and $s \in \mathbb{C}$,

$$
\sum_{x<n \leq y} \frac{1}{n^{s}}=\frac{\lfloor y\rfloor}{y^{s}}-\frac{\lfloor x\rfloor}{x^{s}}+s \int_{x}^{y} \frac{\lfloor u\rfloor}{u^{s+1}} \mathrm{~d} u,
$$

where $\lfloor\cdot\rfloor$ is the integer part function.
3. Deduce that for $\sigma>1$ and $x \geq 1$,

$$
\zeta(s)=\sum_{n \leq x} \frac{1}{n^{s}}+\frac{x^{1-s}}{s-1}+\frac{\{x\}}{x^{s}}-s \int_{x}^{+\infty} \frac{\{u\}}{u^{s+1}} \mathrm{~d} u,
$$

where $\{\cdot\}$ is the fractional part function.
4. Deduce another proof of the analytic continuation of ζ to $\{s \in \mathbb{C} \mid \mathfrak{R e}(s)>0\}$.

Remark. By integrating by parts multiple times, or using the Euler-Maclaurin summation formula, one can obtain the analytic continuation of ζ to any half-plane of the form $\{s \in \mathbb{C} \mid \mathfrak{R e}(s)>-k\}$, with $k \in \mathbb{N}$.
5. Prove that $\frac{1}{\sigma-1}<\zeta(\sigma)<\frac{\sigma}{\sigma-1}$ for $\sigma>0$. In particular, $\zeta(\sigma)<0$ for $0<\sigma<1$.
6. Let $\delta>0$. Prove that

$$
\zeta(s)=\frac{1}{s-1}+O(1)
$$

for $\delta \leq \sigma \leq 2,|t| \leq 3$.
7. Now assume $|t| \geq 3$ and take $x=|t|$ in the result of 3 .
(a) Show that

$$
\left|\sum_{n \leq x} \frac{1}{n^{s}}\right| \leq 1+\int_{1}^{x} \frac{\mathrm{~d} u}{u^{\sigma}}
$$

for $\sigma \geq 0$.
(b) Show that for $\sigma \geq 1-\frac{c}{\log x}$ (where $c \geq 0$ is a fixed constant),

$$
\int_{1}^{x} \frac{\mathrm{~d} u}{u^{\sigma}}=O(\log x)
$$

(c) Deduce that

$$
\zeta(s)=O(\log |t|)
$$

for $\sigma \geq \max \left(\delta, 1-\frac{c}{\log |t|}\right),|t| \geq 3$.
Remark. In the same manner, we prove

$$
\zeta^{\prime}(s)=\frac{-1}{(s-1)^{2}}+O(1)
$$

for $\delta \leq \sigma \leq 2,|t| \leq 3$ and

$$
\zeta^{\prime}(s)=O\left(\log ^{2}|t|\right)
$$

for $\sigma \geq \max \left(\delta, 1-\frac{c}{\log |t|}\right),|t| \geq 3$.
Exercise 5. [A first non-vanishing result]

1. Show that for every $\theta \in \mathbb{R}, 2(1+\cos \theta)^{2}=3+4 \cos \theta+\cos (2 \theta)$.
2. Let $\sigma>1$ and $t \in \mathbb{R}$. Show that

$$
3 \log \zeta(\sigma)+4 \mathfrak{R e}(\log (\zeta(\sigma+i t)))+\mathfrak{R e}(\log (\zeta(\sigma+2 i t))) \geq 0
$$

and deduce that

$$
\zeta(\sigma)^{3}|\zeta(\sigma+i t)|^{4}|\zeta(\sigma+2 i t)| \geq 1
$$

3. Prove by contradiction that $\zeta(1+i t) \neq 0$ for every $t \neq 0$.

Remark. With some work, one can show that this non-vanishing is actually equivalent to the prime number theorem, without an error term. In the next exercise sheet we will show that a wider zero-free region for ζ implies a corresponding error term in the prime number theorem.

