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The prime number theorem - Part 1

The goal of this exercise sheet and the next is to prove the prime number theorem :
If π(x) = #{p ≤ x | p prime}, then

π(x) ∼
x→+∞

x

log x.

This takes many steps and relies on properties of the Riemann zeta function, defined by

ζ(s) =
∑
n≥1

1
ns

for Re(s) > 1.

In the following, the letter p always denotes a prime number, a summation over n ≤ x
means a summation over {n ∈ N | n ≤ x} or {n ∈ N∗ | n ≤ x} depending on context, and
log denotes the natural logarithm. We also recall that log admits a principal determination
on C \ R− which is a right inverse of the exponential function and which satisfies

log(1 + z) =
∑
n≥1

(−1)n+1zn

n

for |z| < 1.

Exercise 1. [Chebyshev’s functions]
For x ≥ 2, we let θ(x) = ∑

p≤x log p and ψ(x) = ∑
p,k≥1,pk≤x log p.

1. Show that for every integer n ≥ 1, θ(n) = logP#(n), where P#(n) = ∏
p≤n p, and

ψ(n) = log lcm(1, . . . , n).
2. Let n ≥ 1. Show that the binomial coefficient

(
2n
n

)
is divisible by every prime p such

that n < p ≤ 2n.
3. Deduce that for any n ≥ 1, θ(2n) − θ(n) ≤ n log 4, and use it to show that θ(x) ≤
x log 4 for x ≥ 2.

4. Prove that ψ(x)− θ(x) = O(x1/2).
5. Let (an)n be a complex sequence and f ∈ C1([0,+∞[). For t ∈ R, write A(t) =∑

n≤t an (with the convention A(t) = 0 for t < 0). Prove that

∑
n≤x

anf(n) = A(x)f(x)−
∫ x

0
A(t)f ′(t) dt.

(Hint : Write an = A(n)− A(n− 1))
6. Deduce that

π(x) = θ(x)
log x +

∫ x

2

θ(t)
t log2 t

dt.
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7. By splitting the integral in two, show that
∫ x

2

dt
log2 t

= O

(
x

log2 x

)
.

8. Prove that the prime number theorem is equivalent to

ψ(x) ∼
x→+∞

x.

Remark. Chebyshev proved in 1852 that ψ(x) � x, i.e. ψ(x) = O(x) and x =
O(ψ(x)). As a consequence, π(x) � x

log x . He even proved that if π(x) log x
x

admits a limit at
infinity, it must be 1, but proving that this limit exists is the hard part...

Exercise 2. [The Von Mangoldt function]
We define the Von Mangoldt function by

Λ(n) =
{

log p if n = pk

0 otherwise

for every n ∈ N.
Let Ω be the half-plane {s ∈ C | Re(s) > 1}.
1. Show that ψ is the summatory function Λ ,i.e. ψ(x) = ∑

n≤x Λ(n).
2. Let F be the Dirichlet series of Λ, i.e.

F (s) =
∑
n≥1

Λ(n)
ns

.

Compute the abscissa of convergence of F .
3. Recall the Euler product

ζ(s) =
∏
p

(
1− 1

ps

)−1

for s ∈ Ω. Prove that ζ(s) 6= 0 for s ∈ Ω. (Hint : It suffices to prove it is the
exponential of a complex number).

4. By using the Euler product, expand log ζ(s) into a Dirichlet series, and identify the
function F . (Hint : To use the functional equation of the logarithm, check that two
analytic functions on Ω coincide on ]1,+∞[)

5. Assuming for now that ζ admits an analytic continuation to C, with only a simple
pole at 1, classify the poles of F and give their orders and residues.

Exercise 3. [The functional equation of zeta]
Recall the Gamma function is defined by

Γ(s) =
∫ +∞

0
e−txs−1 dx

for Re(s) > 0. By integrating by parts, one shows that Γ(s+ 1) = sΓ(s).
1. Show that Γ admits a meromorphic continuation to C, with simple poles at each
−k and residue (−1)k

k! , for k ∈ N.
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2. Let s ∈ C such that Re(s) > 0 and n ∈ N∗. Show that

Γ(s/2)
ns

= πs/2
∫ +∞

0
e−πn

2yys/2 dy
y
.

3. Deduce that for Re(s) > 1, one has

I(s) = π−s/2Γ(s/2)ζ(s) =
∫ +∞

0

(
θ(t)− 1

2

)
ts/2 dt

t

where θ(t) = ∑
n∈Z e

−πn2t.
4. We admit the functional equation θ(1/t) =

√
tθ(t) for t > 0 (this is an application

of the Poisson summation formula). Show that π−s/2Γ(s/2)ζ(s) = 1
s(s−1) + f(s) +

f(1− s), where

f(s) =
∫ +∞

1

(
θ(t)− 1

2

)
ts/2 dt

t
.

5. Deduce that I extends to a meromorphic function on C with simple pole at 0 and
1 and satisfying I(s) = I(1− s).

6. Prove that ζ admits an analytic continuation to C \ {1}, with a simple pole at 1
and "find" its zeros.

Exercise 4. [Elementary estimates on ζ]
In this exercise, the complex variable is denoted by s = σ + it. We will provide upper

bounds on ζ in different regions of the half-plane {s ∈ C | Re(s) > 0}.
1. Let δ > 0. Show that for σ ≥ 1 + δ, one has |ζ(s)| ≤ ζ(1 + δ). In particular, ζ is

bounded in any half-plane of the form {s ∈ C | Re(s) ≥ 1 + δ}.
2. Use partial summation to prove that for 1 ≤ x < y and s ∈ C,

∑
x<n≤y

1
ns

= byc
ys
− bxc

xs
+ s

∫ y

x

buc
us+1 du,

where b·c is the integer part function.
3. Deduce that for σ > 1 and x ≥ 1,

ζ(s) =
∑
n≤x

1
ns

+ x1−s

s− 1 + {x}
xs
− s

∫ +∞

x

{u}
us+1 du,

where {·} is the fractional part function.
4. Deduce another proof of the analytic continuation of ζ to {s ∈ C | Re(s) > 0}.

Remark. By integrating by parts multiple times, or using the Euler-Maclaurin
summation formula, one can obtain the analytic continuation of ζ to any half-plane
of the form {s ∈ C | Re(s) > −k}, with k ∈ N.

5. Prove that 1
σ−1 < ζ(σ) < σ

σ−1 for σ > 0. In particular, ζ(σ) < 0 for 0 < σ < 1.
6. Let δ > 0. Prove that

ζ(s) = 1
s− 1 +O(1)

for δ ≤ σ ≤ 2, |t| ≤ 3.
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7. Now assume |t| ≥ 3 and take x = |t| in the result of 3.
(a) Show that ∣∣∣∣∣∣

∑
n≤x

1
ns

∣∣∣∣∣∣ ≤ 1 +
∫ x

1

du
uσ

for σ ≥ 0.
(b) Show that for σ ≥ 1− c

log x (where c ≥ 0 is a fixed constant),

∫ x

1

du
uσ

= O(log x).

(c) Deduce that
ζ(s) = O(log |t|)

for σ ≥ max
(
δ, 1− c

log |t|

)
, |t| ≥ 3.

Remark. In the same manner, we prove

ζ ′(s) = −1
(s− 1)2 +O(1)

for δ ≤ σ ≤ 2, |t| ≤ 3 and
ζ ′(s) = O(log2 |t|)

for σ ≥ max
(
δ, 1− c

log |t|

)
, |t| ≥ 3.

Exercise 5. [A first non-vanishing result]
1. Show that for every θ ∈ R, 2(1 + cos θ)2 = 3 + 4 cos θ + cos(2θ).
2. Let σ > 1 and t ∈ R. Show that

3 log ζ(σ) + 4Re(log(ζ(σ + it))) + Re(log(ζ(σ + 2it))) ≥ 0

and deduce that
ζ(σ)3|ζ(σ + it)|4|ζ(σ + 2it)| ≥ 1.

3. Prove by contradiction that ζ(1 + it) 6= 0 for every t 6= 0.

Remark. With some work, one can show that this non-vanishing is actually equi-
valent to the prime number theorem, without an error term. In the next exercise sheet
we will show that a wider zero-free region for ζ implies a corresponding error term in the
prime number theorem.
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