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The prime number theorem - Part 2

In this exercise sheet we finish proving (by admitting some technical steps) the prime
number theorem, in the following form :

π(x) = Li(x) +O (x exp (−c(log x)a)) ,

where
Li(x) =

∫ x

2

dt
log t

and a, c > 0 are constants.

Exercise 1. [Li(x) is a better approximation than x
log x ]

1. By integrating by parts, show that Li(x) ∼
x→+∞

x
log x .

2. Show that the prime number theorem in the form above implies

π(x) =
N∑
k=1

(k − 1)!x
(log x)k +O

(
x

(log x)N+1

)

for any N ≥ 1.

Exercise 2. [The Perron formula]
For c, T, y > 0, let

δ(y) =


1 if y > 1
1
2 if y = 1
0 if y < 1

and
Ic(T, y) = 1

2iπ

∫ c+iT

c−iT

ys

s
ds.

1. By using the residue theorem, prove that for y 6= 1,

|Ic(T, y)− δ(y)| ≤ yc

πT | log y|

and that
|Ic(T, 1)− δ(1)| < c

πT
.

2. Show that if (an)n≥1 is a complex sequence, F (s) = ∑
n≥1

an
ns

its Dirichlet series with
abscissa of absolute convergence σa, then for every c > max(σa, 0) and x > 0, one
has Perron’s formula ∑

n≤x

′
an = 1

2iπ

∫ c+i∞

c−i∞
F (s)x

s

s
ds,

where ∑′n≤x an = ∑
n<x an + 1

2ax and ax = 0 if x 6∈ N. In particular,

ψ(x) = 1
2iπ

∫ c+i∞

c−i∞
−ζ
′

ζ
(s)x

s

s
ds+O(log x).
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Remark. Define the Mellin transform of a suitable function f by

Mf (s) =
∫ +∞

0
f(x)xs−1 dx.

By a simple change of variable, it is easy to see that, as a function of t = Im(s), this is
the Fourier transform of a function related to f , and one can show that Perron’s formula
is a consequence of the Fourier inversion formula.

Exercise 3. [Zero-free regions and end of the proof]
We now admit the following facts which would require a bit more time to prove :
i) The Perron formula with c = 1+ 1

log x and truncating the integral to imaginary parts
between −T and T , combined with the residue theorem lead to

ψ(x) = x−
∑

ρ=β+iγ,ζ(ρ)=0
0≤β≤1,|γ|≤T

xρ

ρ
+O

(
x log2 x

T

)

for 2 ≤ T ≤ x.
ii) General results on the distribution of zeros of holomorphic functions (Jensen’s

formula) imply that for T ≥ 2, the number of zeros ρ = β + iγ of ζ with
0 ≤ β ≤ 1, T ≤ γ ≤ T + 1 is O(log T ).

1. Let δ ∈]0, 1/2[. Assume that ζ has no zero ρ = β + iγ with β ≥ 1 − δ. Show that
ψ(x) = x+O(x1−δ(log x)2) (Hint : Split the sum in i) in intervals of length 1 for γ,
use ii) and choose T wisely). Deduce that π(x) = Li(x) +O(x1−δ log x).
Remark. This is unknown as of today for any such δ. The Riemann Hypothesis
is about knowing this for all such δ. The case δ = 0 actually suffices to prove the
prime number theorem, but without an error term.

2. Combining the trigonometric trick of TD 11, Exercise 5 with some more estimates
on ζ, one can prove the following : There exists c > 0 such that ζ has no zero
ρ = β + iγ with |γ| ≥ 2 and β ≥ 1− δ(γ), where δ(γ) = c

log |γ| .

Show that ψ(x) = x + O
(
x exp

(
−c′
√

log x
))

and deduce that π(x) = Li(x) +
O
(
x exp

(
−c′′
√

log x
))

for some c′, c′′ > 0.
Remark. In 1958, Korobov and Vinogradov proved a larger zero-free region, with

δ(γ) = c
(log |γ|)2/3(log log |γ|)1/3 , which implies that

π(x) = Li(x) +O

(
x exp

(
−c′ (log x)3/5

(log log x)1/5

))
.

This is still the best result as of today.

Exercise 4. [Consequences of the prime number theorem]
1. Let pn denote the nth prime number. Show that pn ∼

n→+∞
n log n.

2. Let ε > 0. Show that if x is large enough, then there exists a prime number in
[x, (1 + ε)x] (the case ε = 1 is called Bertrand’s postulate and was proved by
Chebyshev).
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3. Prove that ∑
p≤x

1
p

= log log x+ C + o

(
1

log x

)
,

where C is a constant.
4. Deduce that the average number of prime factors of n is about log log n, i.e.

1
x

∑
n≤x

ω(n) ∼
x→+∞

log log x,

where ω(n) is the number of prime factors of n.
5. Prove that lim supn→+∞

ω(n) log logn
logn = 1. Thus ω(n) is close to logn

log logn infinitely often.
(Hint : What kind of numbers could maximize their number of prime factors with
respect to their size ?)

6. Let π2(x) denote the number of n ≤ x which are the product of two distinct prime
numbers. Show that

π2(x) =
∑
p≤
√
x

π

(
x

p

)
+O

(
x

(log x)2

)

and deduce that
π2(x) = x log log x

log x +O

(
x

log x

)
.

Exercise 5. [The prime ideal theorem in Q(
√
d)]

The prime ideal theorem, proved by Landau in 1903, states that if K is a number field
and πK(x) = |{p prime ideal of OK | N(p) ≤ x}|, then

πK(x) ∼
x→+∞

x

log x.

In fact, πK(x) ∼
x→+∞

πK,1(x), where πK,1(x) = |{p prime ideal of OK | f(p) = 1, N(p) =
p ≤ x}|.

1. (a) Show that for x ≥ 2, πQ(
√
−1)(x) = 2π(x; 4, 1) + π(x1/2; 4, 3) + 1, where

π(x; q, a) = |{p ≤ x | p ≡ amod q}|.
(b) Let us admit the prime number theorem in arithmetic progressions : for a prime

to q, π(x; q, a) ∼
x→+∞

1
ϕ(q)

x
log x . Prove the prime ideal theorem for Q(

√
−1).

2. Let d 6= 0, 1 be squarefree and K = Q(
√
d). Prove the prime ideal theorem in K by

generalizing the above question.

Remark. The quadratic reciprocity law was used in the general case above. More ge-
nerally, if K/Q is an abelian extension, then splitting of primes in K are also determined
by congruences, but this lies much deeper as this uses Artin’s reciprocity law, which is a
vast generalization of quadratic reciprocity.

Exercise 6. [The prime number theorem over finite fields]
Let Pq(n) = {P ∈ Fq[X] | P irreducible, degP = n} and πq(n) = |Pq(n)|.
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1. Show that
Xqn −X =

∏
d|n

∏
P∈Pq(d)

P.

2. Prove that qn = ∑
d|n πq(d).

3. Deduce that πq(n) ∼
n→+∞

qn

n
. (Hint : Recall the Möbius inversion formula. If f(n) =∑

d|n g(d) then g(n) = ∑
d|n µ

(
n
d

)
f(d).)

4. The size of the polynomial P ∈ Fq[X] is |P | = qdegP (it is the cardinality of the
quotient Fq[X]/(P )). Prove the prime number theorem in Fq[X] :

|{P ∈ Fq[X] | P irreducible, |P | ≤ x}| ∼
x→+∞

x

logq(x) .

Remark. In fact we obtain the Riemann Hypothesis for P1(Fq) in this case :

|{P ∈ Fq[X] | P irreducible, |P | ≤ x} = x

logq(x) +O(x1/2+ε)

for any ε > 0. In a more general context, the Riemann Hypothesis over finite fields has
been proved by Weil in the 40’s for curves, and by Deligne in the 70’s for varieties, but
this is extremely deep.

4


