Resultant, number fields and trace forms

Exercise 1. [Resultant of two polynomials]
Let k be a field, $P:=\sum_{i=0}^{n} a_{i} X^{i}, Q:=\sum_{i=0}^{m} b_{i} X^{i} \in k[X]$ with $a_{n}, b_{m} \neq 0$. The Sylvester matrix of P and Q is the $(n+m) \times(n+m)$-matrix

$$
\operatorname{Sylv}(P, Q):=\left(\begin{array}{cccccccc}
a_{n} & a_{n-1} & a_{n-2} & \ldots & a_{0} & 0 & \ldots & 0 \\
0 & a_{n} & a_{n-1} & \ldots & a_{1} & a_{0} & \ldots & 0 \\
& & \ddots & \ddots & & \ddots & \ddots & \\
0 & 0 & \ldots & a_{n} & a_{n-1} & \ldots & a_{1} & a_{0} \\
b_{m} & b_{m-1} & b_{m-2} & \ldots & b_{0} & 0 & \ldots & 0 \\
0 & b_{m} & b_{m-1} & \ldots & b_{1} & b_{0} & \ldots & 0 \\
& & \ddots & \ddots & & \ddots & \ddots & \\
0 & 0 & \ldots & b_{m} & b_{m-1} & \ldots & b_{1} & b_{0}
\end{array}\right)
$$

and their resultant is $\operatorname{Res}(P, Q):=\operatorname{det}(\operatorname{Sylv}(P, Q))$.

1. Show that ${ }^{t} \operatorname{Sylv}(P, Q)$ is the matrix of the k-linear map $\Phi_{P, Q}:(U, V) \mapsto U P+V Q$ in suitable bases $k_{m-1}[X] \times k_{n-1}[X]$ and $k_{n+m-1}[X]$.
2. Show that $\operatorname{Res}(P, Q)=0$ if and only if P and Q have a common root in an algebraic closure of k.
3. Let $\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{m} \in \bar{k}$ be the roots of P and Q. Let $P_{Y}:=P(Y-X) \in$ $k[X][Y]$. Show that $\operatorname{Res}\left(P_{Y}, Q(Y)\right)$ is a polynomial in $k[X]$ whose roots in \bar{k} are the $\alpha_{i}+\beta_{j}$. Deduce that the sum of two algebraic numbers is an algebraic number.
Remark : Similarly, $\operatorname{Res}_{Y}\left(X^{n} P(Y / X), Q(Y)\right)$ has the $\alpha_{i} \beta_{j}$ as roots in \bar{k}, and the product of two algebraic numbers is an algebraic number.
4. Fact: We have $\operatorname{Res}(P, Q)=a_{n}^{m} \prod_{i=1}^{n} Q\left(\alpha_{i}\right)$.

Show that $\operatorname{disc}(P):=\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)^{2}=\frac{(-1)^{\frac{n(n-1)}{2 n-1}}}{a_{n}^{2 n-1}} \operatorname{Res}\left(P, P^{\prime}\right)$. Show that $\operatorname{disc}(P) \neq 0$ if and only if P is separable.

Exercise 2. [Embeddings and trace forms]

1. Let $K=\mathbb{Q}(\alpha)$, with $\alpha^{3}-\alpha^{2}-2 \alpha-8=0$.
(a) Show that $P_{\alpha}:=X^{3}-X^{2}-2 X-8$ is irreducible over \mathbb{Q}.
(b) Determine the values of r_{1} and r_{2} (the numbers of real and pairs of complex embeddings of K, respectively).
2. Let $K=\mathbb{Q}(\alpha)$, where α is a root of an irreducible polynomial $P_{\alpha}:=X^{3}+p X+q \in$ $\mathbb{Q}[X]$, with $p>0$. Determine the values of r_{1} and r_{2} in this case.
3. If K is a number field of degree n and $\left(\omega_{1}, \ldots, \omega_{n}\right) \in K^{n}$, the discriminant of $\left(\omega_{1}, \ldots, \omega_{n}\right)$ is

$$
\Delta\left(\omega_{1}, \ldots, \omega_{n}\right)=\operatorname{det}\left(\left(\operatorname{Tr}_{K / \mathbb{Q}}\left(\omega_{i} \omega_{j}\right)\right)_{1 \leq i, j \leq n}\right) .
$$

In both previous cases, compute $\Delta\left(1, \alpha, \alpha^{2}\right)$.

Exercise 3. [Discriminant of a number field]
Let K be a number field with embeddings $\sigma_{1}, \ldots, \sigma_{n}$. Let $\alpha_{1}, \ldots, \alpha_{n} \in \mathcal{O}_{K}$ be such that $\mathcal{O}_{K}=\oplus_{i=1}^{n} \mathbb{Z} \alpha_{i}$. The discriminant of K is defined as $D_{K}=\Delta\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. You will see in class that such a family $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ exists and that D_{K} does not depend on $\alpha_{1}, \ldots, \alpha_{n}$.

1. Show that $\Delta\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\operatorname{det}\left(\left(\sigma_{i}\left(\alpha_{j}\right)\right)_{1 \leq i, j \leq n}\right)^{2}$.
2. Compute D_{K} when $K=\mathbb{Q}(\sqrt{d})$ with $d \neq 0,1$ square-free.
3. Show that $D_{K} \in \mathbb{Z}$ and $D_{K} \equiv 0,1 \bmod 4$ (Stickleberger's criterion). Hint : Write the determinant as the difference between two algebraic integers.
4. Show that D_{K} is of sign $(-1)^{r_{2}}$ where r_{2} is the number of pairs of complex embeddings of K.

Exercise 4. [Number of roots of a monic polynomial]
Let P be a monic separable polynomial in $\mathbb{R}[X]$ and $A=\mathbb{R}[X] /(P)$. Denote by r (respectively s) the number of distinct real roots of P (respectively of non-real roots of $P)$.

1. Show that the signature (p, q) of the bilinear form $(x, y) \mapsto \operatorname{Tr}_{A / \mathbb{R}}(x y)$ on A^{2} satisfies $r=p-q$ and $s=2 q$.
2. Determine r and s when P is not necessarily separable.

Exercise 5. Let $\alpha=\sqrt[4]{2}$ and $K=\mathbb{Q}(\alpha)$. Let p be an odd prime number, and assume for a contradiction that there exist $a, b, c, d \in \mathbb{Q}$ such that $\sqrt{p}=a+b \alpha+c \alpha^{2}+d \alpha^{3}$.

1. Show that $\operatorname{Tr}_{K / \mathbb{Q}}(\alpha)=\operatorname{Tr}_{K / \mathbb{Q}}(\sqrt{p})=0$. Deduce that $a=0$.
2. By considering $\frac{\sqrt{p}}{\alpha}$, show that $b=0$.
3. By considering $\frac{\sqrt{p}}{\alpha^{2}}$, deduce a contradiction.

Exercise 6. [A ring of integers with no power basis]
Let $K=\mathbb{Q}(\sqrt{7}, \sqrt{10})$. We will show that \mathcal{O}_{K} is not of the form $\mathbb{Z}[\alpha]$ for some $\alpha \in \mathcal{O}_{K}$. Therefore, assume for a contradiction that $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$, where $\alpha \in \mathcal{O}_{K}$ has minimal polynomial P over \mathbb{Q}.

1. For every $Q \in \mathbb{Z}[X]$, show that $3 \mid Q(\alpha)$ in \mathcal{O}_{K} if and only if $\bar{P} \mid \bar{Q}$ in $\mathbb{F}_{3}[X]$.
2. Let

$$
\alpha_{1}:=(1+\sqrt{7})(1+\sqrt{10}), \alpha_{2}:=(1+\sqrt{7})(1-\sqrt{10}), \alpha_{3}:=(1-\sqrt{7})(1+\sqrt{10}), \alpha_{4}:=(1-\sqrt{7})(1-\sqrt{10}) .
$$

Show that $3 \mid \alpha_{i} \alpha_{j}$ in \mathcal{O}_{K} for $i \neq j$.
3. Compute $\operatorname{Tr}_{K / \mathbb{Q}}\left(\alpha_{i}\right)$ for $1 \leq i \leq 4$.
4. Let $P_{i} \in \mathbb{Z}[X]$ be such that $P_{i}(\alpha)=\alpha_{i}$ for $1 \leq i \leq 4$. Show that $\bar{P} \mid \overline{P_{i} P_{j}}$ but $\bar{P} \nmid \overline{P_{i}^{n}}$ in $\mathbb{F}_{3}[X]$, for $1 \leq i \neq j \leq 4$ and $n \geq 1$.
5. Deduce that for $1 \leq i \neq j \leq n$, there exists an irreducible polynomial of \bar{P} dividing $\overline{P_{i}}$ but not $\overline{P_{j}}$. Deduce that \bar{P} has four distinct roots in \mathbb{F}_{3} and derive a contradiction.

