ENS de Lyon TD2 Master 1 – Introduction à la Théorie des Nombres 2020-2021

Resultant, number fields and trace forms

Exercise 1. [Resultant of two polynomials]

Let k be a field, $P := \sum_{i=0}^{n} a_i X^i, Q := \sum_{i=0}^{m} b_i X^i \in k[X]$ with $a_n, b_m \neq 0$. The Sylvester matrix of P and Q is the $(n+m) \times (n+m)$ -matrix

$$Sylv(P,Q) := \begin{pmatrix} a_n & a_{n-1} & a_{n-2} & \dots & a_0 & 0 & \dots & 0 \\ 0 & a_n & a_{n-1} & \dots & a_1 & a_0 & \dots & 0 \\ & \ddots & \ddots & \ddots & \ddots & \ddots \\ 0 & 0 & \dots & a_n & a_{n-1} & \dots & a_1 & a_0 \\ b_m & b_{m-1} & b_{m-2} & \dots & b_0 & 0 & \dots & 0 \\ 0 & b_m & b_{m-1} & \dots & b_1 & b_0 & \dots & 0 \\ & \ddots & \ddots & \ddots & \ddots & \ddots \\ 0 & 0 & \dots & b_m & b_{m-1} & \dots & b_1 & b_0 & \end{pmatrix}$$

and their resultant is $\operatorname{Res}(P,Q) := \operatorname{det}(\operatorname{Sylv}(P,Q)).$

- 1. Show that ^tSylv(P,Q) is the matrix of the k-linear map $\Phi_{P,Q} : (U,V) \mapsto UP + VQ$ in suitable bases $k_{m-1}[X] \times k_{n-1}[X]$ and $k_{n+m-1}[X]$.
- 2. Show that $\operatorname{Res}(P, Q) = 0$ if and only if P and Q have a common root in an algebraic closure of k.
- 3. Let $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_m \in \overline{k}$ be the roots of P and Q. Let $P_Y := P(Y X) \in k[X][Y]$. Show that $\operatorname{Res}(P_Y, Q(Y))$ is a polynomial in k[X] whose roots in \overline{k} are the $\alpha_i + \beta_j$. Deduce that the sum of two algebraic numbers is an algebraic number. **Remark** : Similarly, $\operatorname{Res}_Y(X^n P(Y/X), Q(Y))$ has the $\alpha_i \beta_j$ as roots in \overline{k} , and the product of two algebraic numbers is an algebraic number.
- 4. Fact : We have $\operatorname{Res}(P,Q) = a_n^m \prod_{i=1}^n Q(\alpha_i)$. Show that $\operatorname{disc}(P) := \prod_{i < j} (\alpha_i - \alpha_j)^2 = \frac{(-1)^{\frac{n(n-1)}{2}}}{a_n^{2n-1}} \operatorname{Res}(P,P')$. Show that $\operatorname{disc}(P) \neq 0$ if and only if P is separable.

Exercise 2. [Embeddings and trace forms]

- 1. Let $K = \mathbb{Q}(\alpha)$, with $\alpha^3 \alpha^2 2\alpha 8 = 0$.
 - (a) Show that $P_{\alpha} := X^3 X^2 2X 8$ is irreducible over \mathbb{Q} .
 - (b) Determine the values of r_1 and r_2 (the numbers of real and pairs of complex embeddings of K, respectively).
- 2. Let $K = \mathbb{Q}(\alpha)$, where α is a root of an irreducible polynomial $P_{\alpha} := X^3 + pX + q \in \mathbb{Q}[X]$, with p > 0. Determine the values of r_1 and r_2 in this case.
- 3. If K is a number field of degree n and $(\omega_1, \ldots, \omega_n) \in K^n$, the discriminant of $(\omega_1, \ldots, \omega_n)$ is

$$\Delta(\omega_1,\ldots,\omega_n) = \det\left(\left(\mathrm{Tr}_{K/\mathbb{Q}}(\omega_i\omega_j)\right)_{1\leq i,j\leq n}\right).$$

In both previous cases, compute $\Delta(1, \alpha, \alpha^2)$.

Exercise 3. [Discriminant of a number field]

Let K be a number field with embeddings $\sigma_1, \ldots, \sigma_n$. Let $\alpha_1, \ldots, \alpha_n \in \mathcal{O}_K$ be such that $\mathcal{O}_K = \bigoplus_{i=1}^n \mathbb{Z}\alpha_i$. The *discriminant* of K is defined as $D_K = \Delta(\alpha_1, \ldots, \alpha_n)$. You will see in class that such a family $(\alpha_1, \ldots, \alpha_n)$ exists and that D_K does not depend on $\alpha_1, \ldots, \alpha_n$.

- 1. Show that $\Delta(\alpha_1, \ldots, \alpha_n) = \det((\sigma_i(\alpha_j))_{1 \le i,j \le n})^2$.
- 2. Compute D_K when $K = \mathbb{Q}(\sqrt{d})$ with $d \neq 0, 1$ square-free.
- 3. Show that $D_K \in \mathbb{Z}$ and $D_K \equiv 0, 1 \mod 4$ (Stickleberger's criterion). *Hint* : Write the determinant as the difference between two algebraic integers.
- 4. Show that D_K is of sign $(-1)^{r_2}$ where r_2 is the number of pairs of complex embeddings of K.

Exercise 4. [Number of roots of a monic polynomial]

Let P be a monic separable polynomial in $\mathbb{R}[X]$ and $A = \mathbb{R}[X]/(P)$. Denote by r (respectively s) the number of distinct real roots of P (respectively of non-real roots of P).

- 1. Show that the signature (p,q) of the bilinear form $(x,y) \mapsto \operatorname{Tr}_{A/\mathbb{R}}(xy)$ on A^2 satisfies r = p q and s = 2q.
- 2. Determine r and s when P is not necessarily separable.

Exercise 5. Let $\alpha = \sqrt[4]{2}$ and $K = \mathbb{Q}(\alpha)$. Let p be an odd prime number, and assume for a contradiction that there exist $a, b, c, d \in \mathbb{Q}$ such that $\sqrt{p} = a + b\alpha + c\alpha^2 + d\alpha^3$.

- 1. Show that $\operatorname{Tr}_{K/\mathbb{Q}}(\alpha) = \operatorname{Tr}_{K/\mathbb{Q}}(\sqrt{p}) = 0$. Deduce that a = 0.
- 2. By considering $\frac{\sqrt{p}}{\alpha}$, show that b = 0.
- 3. By considering $\frac{\sqrt{p}}{\alpha^2}$, deduce a contradiction.

Exercise 6. [A ring of integers with no power basis]

Let $K = \mathbb{Q}(\sqrt{7}, \sqrt{10})$. We will show that \mathcal{O}_K is not of the form $\mathbb{Z}[\alpha]$ for some $\alpha \in \mathcal{O}_K$. Therefore, assume for a contradiction that $\mathcal{O}_K = \mathbb{Z}[\alpha]$, where $\alpha \in \mathcal{O}_K$ has minimal polynomial P over \mathbb{Q} .

- 1. For every $Q \in \mathbb{Z}[X]$, show that $3 \mid Q(\alpha)$ in \mathcal{O}_K if and only if $\overline{P} \mid \overline{Q}$ in $\mathbb{F}_3[X]$.
- 2. Let

$$\alpha_1 := (1+\sqrt{7})(1+\sqrt{10}), \alpha_2 := (1+\sqrt{7})(1-\sqrt{10}), \alpha_3 := (1-\sqrt{7})(1+\sqrt{10}), \alpha_4 := (1-\sqrt{7})(1-\sqrt{10}).$$

Show that $3 \mid \alpha_i \alpha_j$ in \mathcal{O}_K for $i \neq j$.

- 3. Compute $\operatorname{Tr}_{K/\mathbb{Q}}(\alpha_i)$ for $1 \leq i \leq 4$.
- 4. Let $P_i \in \mathbb{Z}[X]$ be such that $P_i(\alpha) = \alpha_i$ for $1 \le i \le 4$. Show that $\overline{P} \mid \overline{P_i P_j}$ but $\overline{P} \nmid \overline{P_i^n}$ in $\mathbb{F}_3[X]$, for $1 \le i \ne j \le 4$ and $n \ge 1$.
- 5. Deduce that for $1 \leq i \neq j \leq n$, there exists an irreducible polynomial of \overline{P} dividing $\overline{P_i}$ but not $\overline{P_j}$. Deduce that \overline{P} has four distinct roots in \mathbb{F}_3 and derive a contradiction.