Discriminants and integral bases

Exercise 1. [The ring of integers of a biquadratic field]
Let $m, n \neq 1$ be coprime square-free integers congruent to 1 modulo 4 , and let $K=$ $\mathbb{Q}(\sqrt{m}, \sqrt{n})$.

1. Prove that $\alpha \in K$ is an algebraic integer if and only if $\operatorname{Tr}_{K / \mathbb{Q}(\sqrt{m})}(\alpha), N_{K / \mathbb{Q}(\sqrt{m})}(\alpha) \in$ $\mathcal{O}_{Q(\sqrt{m})}$.
2. By looking at traces, show that for every $\alpha \in \mathcal{O}_{K}$, there exist $a, b, c, d \in \mathbb{Z}$ such that

$$
\alpha=\frac{a+b \sqrt{m}+c \sqrt{n}+d \sqrt{m n}}{4}
$$

and

$$
a \equiv b \equiv c \equiv d \bmod 2
$$

3. Show that there exists $a^{\prime}, b^{\prime}, c^{\prime}, k \in \mathbb{Z}$ such that

$$
\alpha-k \frac{1+\sqrt{m}}{2} \cdot \frac{1+\sqrt{n}}{2}=\frac{a^{\prime}+b^{\prime} \sqrt{m}+c^{\prime} \sqrt{n}}{2} .
$$

4. Deduce that $\left(1, \frac{1+\sqrt{m}}{2}, \frac{1+\sqrt{n}}{2}, \frac{1+\sqrt{m}}{2} \cdot \frac{1+\sqrt{n}}{2}\right)$ is an integral basis of \mathcal{O}_{K}.
5. Compute D_{K}.

Remark. When m and n are both congruent to 2 or 3 modulo 4 , one has to consider the cases $m n \equiv 1 \bmod 4$ and $m n \equiv 2,3 \bmod 4$ separately (why can't $m n \equiv 0 \bmod 4$ happen ?).
6. Let $K=\mathbb{Q}(\sqrt{2}, i)$. We admit the fact that $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{2}][\zeta]$, where $\zeta=\sqrt{2} \frac{1+i}{2}$. Let $\alpha=\alpha_{1}+\alpha_{2} \zeta \in K$, with $\alpha_{1}, \alpha_{2} \in \mathbb{Q}(\sqrt{2})$.
(a) Find $\beta_{1}, \beta_{2} \in \mathbb{Z}[\sqrt{2}]$ such that $\left|\alpha_{i}-\beta_{i}\right| \leq \frac{1}{2}$.
(b) Show that $N_{K / \mathbb{Q}(\sqrt{2})}(\alpha-\beta)<1$ with $\beta=\beta_{1}+\beta_{2} \zeta$, and deduce that \mathcal{O}_{K} is euclidean with respect to $N_{K / \mathbb{Q}(\sqrt{2})}$.

Exercise 2. [Eisenstein polynomials]
Let $P \in \mathbb{Z}[X]$ be Eisenstein at the prime p, i.e. writing $P=\sum_{i=0}^{n} a_{i} X^{i}$, we have $p \mid a_{i}$ for $0 \leq i<n, p \nmid a_{n}$ and $p^{2} \nmid a_{0}$.

1. Prove that P is irreducible in $\mathbb{Q}[X]$.
2. We now assume $a_{n}=1$. Let $K=\mathbb{Q}(\alpha)$ with $\alpha \in \mathbb{C}$ a root of P. We will show that $p \nmid\left[\mathcal{O}_{K}: \mathbb{Z}[\alpha]\right]$. Assume for a contradiction that $p \mid\left[\mathcal{O}_{K}: \mathbb{Z}[\alpha]\right]$.
(a) Prove that there exists $x \in \mathcal{O}_{K} \backslash \mathbb{Z}[\alpha]$ such that $x=\frac{1}{p}\left(u_{0}+u_{1} \alpha+\cdots+u_{n-1} \alpha^{n-1}\right)$ for some $u_{0}, \ldots, u_{n-1} \in \mathbb{Z}$.
(b) Let i_{0} be the smallest i such that $p \nmid u_{i}$. Prove that $\frac{u_{i_{0}} \alpha^{n-1}}{p} \in \mathcal{O}_{K}$.
(c) Prove that $p \mid u_{i_{0}}$ and deduce a contradiction.
3. Prove that $v_{p}\left(D_{K}\right)=v_{p}\left(\Delta\left(1, \alpha, \ldots, \alpha^{n-1}\right)\right)$.

Exercise 3. [An application]

1. Let $K=\mathbb{Q}(\alpha)$ with $\alpha=\sqrt[4]{2}$. Compute $\Delta\left(1, \alpha, \alpha^{2}, \alpha^{3}\right)$ and D_{K}. Deduce that $\left(1, \alpha, \alpha^{2}, \alpha^{3}\right)$ is an integral basis of \mathcal{O}_{K}.
2. Let $K=\mathbb{Q}(\alpha)$ with $\alpha=\sqrt[3]{2}$.
(a) Compute $v_{2}\left(D_{K}\right)$.
(b) Compute $v_{3}\left(D_{K}\right)$. (Hint : Compute the minimal polynomial of $\beta=\alpha+1$)
(c) Prove that $\left(1, \alpha, \alpha^{2}\right)$ is an integral basis of \mathcal{O}_{K}.

Exercise 4. [A basis for the ring of integers]
Let K be a number field and $\alpha \in \mathcal{O}_{K}$ both of degree n. We write $d=\Delta\left(1, \alpha, \ldots, \alpha^{n-1}\right)$.
For all $k \in\{0, \ldots, n-1\}$, let F_{k} be the \mathbb{Z}-module generated by $\left(\frac{1}{d}, \frac{\alpha}{d}, \ldots, \frac{\alpha^{k}}{d}\right)$ and $R_{k}=F_{k} \cap \mathcal{O}_{K}$. We are going to define monic polynomials $f_{1}, \ldots, f_{n-1} \in \mathbb{Z}[X]$ with f_{i} of degree i, and integers $d_{1}|\cdots| d_{n-1}$ such that for $0 \leq k \leq n-1,\left(\frac{1}{d}, \frac{f_{1}(\alpha)}{d_{1}}, \ldots, \frac{f_{k}(\alpha)}{d_{k}}\right)$ is an integral basis of R_{k}.

1. Explain why $R_{n-1}=\mathcal{O}_{K}$, and prove the result for $k=0$.
2. By induction, assume the f_{i} have been constructed for each $i \leq k<n-1$ (with $f_{0}=1$). Let π be the projection from F_{k+1} to $\mathbb{Z} \frac{\alpha^{k+1}}{d}$. Prove that there exists a $\beta \in R_{k+1}$ such that $\pi\left(R_{k+1}\right)=\mathbb{Z} \pi(\beta)$. Prove that $\left(1, \ldots, \frac{f_{k}(\alpha)}{d_{k}}, \beta\right)$ is an integral basis of R_{k+1}.
3. Prove that $\frac{\alpha^{k+1}}{d_{k}}=\pi\left(\alpha \frac{f_{k}(\alpha)}{d_{k}}\right)$ and deduce that $\frac{\alpha^{k+1}}{d_{k}} \in R_{k+1}$. Find an integer d_{k+1} and a monic polynomial $f_{k+1} \in \mathbb{Q}[X]$ of degree $k+1$ such that $d_{k} \mid d_{k+1}$ and $\beta=\frac{f_{k+1}(\alpha)}{d_{k+1}}$.
4. Prove that $\frac{f_{k+1}(\alpha)-\alpha f_{k}(\alpha)}{d_{k}} \in R_{k}$, and that it can be written $\frac{g(\alpha)}{d_{k}}$ for some $g \in \mathbb{Z}[X]$ of degree $<k$.
5. Show that $f_{k+1}-X f_{k}=g$ and conclude.
