Cyclotomic fields

If m is a positive integer, we write $\zeta_{m}=e^{\frac{2 i \pi}{m}}$ a primitive $m^{\text {th }}$-root of unit in \mathbb{C}. Recall that φ is Euleur's totient, such that $\varphi(m)=\prod_{p \mid m}^{r}(p-1) p^{v_{p}(m)-1}$.

Exercise 1. [Equality of cyclotomic fields]

1. Let m be an odd integer. Show that $\mathbb{Q}\left(\zeta_{2 m}\right)=\mathbb{Q}\left(\zeta_{m}\right)$.
2. Show that if m is even and r is a multiple of m such that $\varphi(r) \leq \varphi(m)$ then $r=m$.
3. Show that the only roots of unity in $K=\mathbb{Q}\left(\zeta_{m}\right)$ are the powers of ζ_{m} if m is even, and the powers of $\zeta_{2 m}$ if m is odd. (Hint: When m is even, show that if ω is a primitive $k^{\text {th }}$-root of unity in K, then there exist $u, v \in \mathbb{Z}$ such that $\zeta_{r}=\zeta_{m}^{u} \omega^{v}$, where $r=\operatorname{lcm}(k, m)$)
4. Give necessary and sufficient conditions on m and n for $\mathbb{Q}\left(\zeta_{m}\right)$ to be equal to $\mathbb{Q}\left(\zeta_{n}\right)$.

Exercise 2. [Maximal real subfields of cyclotomic fields]
Let p be an odd prime number and $K=\mathbb{Q}\left(\zeta_{p}\right)$.

1. Show that $\left\{\zeta_{p}^{i} \left\lvert\,-\frac{p-1}{2} \leq i \leq \frac{p-1}{2}\right., i \neq 0\right\}$ is an integral basis of \mathcal{O}_{K}.
2. Let $F=\mathbb{Q}\left(\zeta_{p}\right)^{+}=K \cap \mathbb{R}$. Show that $F=\mathbb{Q}\left(\cos \left(\frac{2 \pi}{p}\right)\right)$.
3. Show that $\mathcal{O}_{F}=\mathbb{Z}\left[2 \cos \left(\frac{2 \pi}{p}\right)\right]$.

Remark : A totally imaginary number field K which is a quadratic extension of a totally real number field F is called a CM-field, for complex multiplication.

Exercise 3. [Kronecker's lemma]
Let K be a number field and $x \in \mathcal{O}_{K}$ such that $|\sigma(x)| \leq 1$ for every embedding $\sigma: K \hookrightarrow \mathbb{C}$. We will show that x is a root of unity.

1. Let $P_{k}=\prod_{\sigma: K \hookrightarrow \mathbb{C}}\left(X-\sigma\left(x^{k}\right)\right)$. Show that $P_{k} \in \mathbb{Z}[X]$.
2. Show that the set $\left\{P_{k} \mid k \geq 1\right\}$ is finite.
3. Deduce that x is a root of unity.

Remark : Real algebraic integers of absolute value >1 whose other conjugates have absolute value <1 are called Pisot numbers, and they have remarkable diophantine properties. For instance, it is easy to see that their powers get closer and closer to integers.

Exercise 4. [Units of $\mathbb{Z}\left[\zeta_{p}\right]$]
Let p be an odd prime number and $u \in \mathbb{Z}\left[\zeta_{p}\right]^{\times}$.

1. Show that there exists $a \in \mathbb{Z}$ such that $\frac{u}{\bar{u}}= \pm \zeta_{p}^{a}$. (Hint: Use Exercises 1 and 3.)
2. Assume that $\frac{u}{\bar{u}}=-\zeta_{p}^{a}$. Show that $u \equiv \bar{u} \bmod \left(1-\zeta_{p}\right)$ and deduce that $u \equiv$ $-u \bmod \left(1-\zeta_{p}\right)$.
3. Show $\mathbb{Z}\left[\zeta_{p}\right] /\left(1-\zeta_{p}\right)$ is an integral ring of characteristic p, and deduce a contradiction. Remark : This is often called Kummer's lemma.
4. Show that $u=\zeta_{p}^{r} v$ for some $r \in \mathbb{Z}$ and $v \in \mathcal{O}_{Q\left(\zeta_{p}\right)^{+}}^{\times}$

Exercise 5. [Quadratic subfields of cyclotomic fields]

1. Let p be an odd prime number. Show that the only quadratic subfield $\mathbb{Q}\left(\zeta_{p}\right)$ is $\mathbb{Q}\left(\sqrt{p^{*}}\right)$, where $p^{*}=\left\{\begin{array}{c}p \text { if } p \equiv 1 \bmod 4 \\ -p \text { if } p \equiv 3 \bmod 4\end{array}\right.$. (Hint: Use the discriminant.)
2. Define the $p^{\text {th }}$-quadratic Gauss sum to be $G_{p}=\sum_{a \in \mathbb{Z} / p \mathbb{Z} \times}\left(\frac{a}{p}\right) \zeta_{p}^{a}$, where $\left(\frac{a}{p}\right)$ is Legendre's symbol, defined by

$$
\left(\frac{a}{p}\right)=\left\{\begin{array}{c}
1 \text { if } a \text { is a square } \bmod p \\
-1 \text { otherwise }
\end{array} .\right.
$$

Show that $G_{p}^{2}=p^{*}$.
3. Compute $\left(\zeta_{8}+\zeta_{8}^{-1}\right)^{2}$ and find every subfield of $Q\left(\zeta_{8}\right)$. What is the quadratic subfield of $\mathbb{Q}\left(\zeta_{4}\right)$?
4. Show that every quadratic field is contained in a cyclotomic field.

Remark : The Kronecker-Weber theorem, also called Kronecker's Jugendtraum (Kronecker's dream of youth), states that every abelian extension of \mathbb{Q} is contained in a cyclotomic field. This is better explained by class field theory.

Exercise 6. [Fermat continued] Recall from TD 1 that we wanted to prove that the equation $(F)_{p}: x^{p}+y^{p}=z^{p}$ admits no non-trivial integer solution for $p \geq 5$ an odd prime.

We had assumed for a contradiction that (x, y, z) was a primitive solution of $(F)_{p}$ in \mathbb{Z}^{3} satisfying $x y z \not \equiv 0 \bmod p$. Assuming $\mathbb{Z}\left[\zeta_{p}\right]$ is a factorial domain, we had established that $x+\zeta_{p} y=u \alpha^{p}$ for some $\alpha \in \mathbb{Z}\left[\zeta_{p}\right]$ and $u \in \mathbb{Z}\left[\zeta_{p}\right]^{\times}$.

1. Show that there exists $a \in \mathbb{Z}$ such that $\alpha^{p} \equiv a \bmod p$.
2. Show that there exists $k \in\{0, \ldots, p-1\}$ such that $x+\zeta_{p} y \equiv\left(x+\zeta_{p}^{-1} y\right) \zeta_{p}^{k} \bmod p$. (Hint: Use Kummer's lemma.)
3. By using the fact that ζ_{p} has degree $p-1$ over \mathbb{Q}, show that $k=1$.
4. Deduce that $x \equiv y \bmod p$.
5. The same reasoning shows that $x \equiv-z \bmod p$. Deduce the contradiction $p \mid 3 x^{p}$.

Remark : With a bit more work, one can also deduce a contradiction in the case $p \mid x y z$.

