Master 1 – Introduction à la Théorie des Nombres 2020-2021

Dedekind rings

Exercise 1. [Ideals of Dedekind rings]

Let A be a Dedekind ring.

- 1. Let I be a non-zero ideal of A. Prove that for every non-zero prime ideal \mathfrak{p} of A, $v_{\mathfrak{p}}(I)$ is the largest integer n such that $I \subset \mathfrak{p}^n$.
- 2. Let I, J be non-zero ideals of A. Compute $v_{\mathfrak{p}}(I+J), v_{\mathfrak{p}}(IJ)$ and $v_{\mathfrak{p}}(I \cap J)$. Deduce that $IJ = (I+J)(I \cap J)$.
- 3. Does the above formula hold in general (commutative integral) rings?
- 4. In this question, assume A has characteristic 0. Let \mathfrak{p} be a non-zero prime ideal of A. Prove that there exists a prime number p below \mathfrak{p} , *i.e.* $\mathfrak{p} \cap \mathbb{Z} = p\mathbb{Z}$, and show that A/\mathfrak{p} is a finite extension of \mathbb{F}_p .
- 5. Prove the approximation lemma : for every distinct non-zero prime ideals $\mathfrak{p}_1, \ldots, \mathfrak{p}_r$ of A, every $x_1, \ldots, x_r \in A$ and every $n_1, \ldots, n_r \in \mathbb{N}$, there exists $x \in A$ such that $v_{\mathfrak{p}_i}(x-x_i) \geq n_i$ for $1 \leq i \leq r$.
- 6. Let $\mathfrak{a} = \prod_{i=1}^{r} \mathfrak{p}_i^{n_i}$ be a non-zero ideal of A. We will show that \mathfrak{a} can be generated by two elements.
 - (a) Prove that there exists $x \in \mathfrak{a}$ such that $v_{\mathfrak{p}_i}(x) = n_i$ for $1 \leq i \leq r$.
 - (b) Write $xA = \prod_{i=1}^{s} \mathfrak{p}_{i}^{n_{i}}$ (with $s \geq r$). Show that there exists $y \in \mathfrak{a}$ such that $v_{\mathfrak{p}_{i}}(y) = n_{i} + 1$ for $1 \leq i \leq r$ and $v_{\mathfrak{p}_{i}}(y) = 0$ for $r < i \leq s$.
 - (c) Show that $\mathfrak{a} = (x, y)$.
- 7. Show that if A has finitely many prime ideals, then A is principal. Give an example of such a ring.
- 8. Show that any ideal of A is projective. (*Hint* : Use $II^{-1} = A$.)

Exercise 2. [Local characterization of Dedekind rings]

Show that an integral noetherian ring A is a Dedekind ring if and only if $A_{\mathfrak{p}}$ is a principal ideal domain for every non-zero prime ideal \mathfrak{p} of A.

Exercise 3. [Decomposition of primes in quadratic number fields] Let $d \neq 0, 1$ be a squarefree integer, $K = \mathbb{Q}(\sqrt{d})$ and p an prime number. Show that :

- 1. If $p \mid d$ then $p\mathcal{O}_K = (p, \sqrt{d})^2$ and (p, \sqrt{d}) is prime.
- 2. If $\left(\frac{d}{p}\right) = 1$ then $p\mathcal{O}_K = (p, x + \sqrt{d})(p, x \sqrt{d})$, where $x \in \mathbb{Z}$ is such that $x^2 \equiv d \mod p$, and $(p, x + \sqrt{d})$ and $(p, x \sqrt{d})$ are both prime.
- 3. If $\left(\frac{d}{p}\right) = -1$ then $p\mathcal{O}_K$ is prime.
- 4. Find the decomposition of $2\mathcal{O}_K$. (Hint : When $d \equiv 1 \mod 4$, argue according to the value of $d \mod 8$.)