Dedekind rings

Exercise 1. [Ideals of Dedekind rings]
Let A be a Dedekind ring.

1. Let I be a non-zero ideal of A. Prove that for every non-zero prime ideal \mathfrak{p} of A, $v_{\mathfrak{p}}(I)$ is the largest integer n such that $I \subset \mathfrak{p}^{n}$.
2. Let I, J be non-zero ideals of A. Compute $v_{\mathfrak{p}}(I+J), v_{\mathfrak{p}}(I J)$ and $v_{\mathfrak{p}}(I \cap J)$. Deduce that $I J=(I+J)(I \cap J)$.
3. Does the above formula hold in general (commutative integral) rings?
4. In this question, assume A has characteristic 0 . Let \mathfrak{p} be a non-zero prime ideal of A. Prove that there exists a prime number p below \mathfrak{p}, i.e. $\mathfrak{p} \cap \mathbb{Z}=p \mathbb{Z}$, and show that A / \mathfrak{p} is a finite extension of \mathbb{F}_{p}.
5. Prove the approximation lemma : for every distinct non-zero prime ideals $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}$ of A, every $x_{1}, \ldots, x_{r} \in A$ and every $n_{1}, \ldots, n_{r} \in \mathbb{N}$, there exists $x \in A$ such that $v_{\mathfrak{p}_{i}}\left(x-x_{i}\right) \geq n_{i}$ for $1 \leq i \leq r$.
6. Let $\mathfrak{a}=\prod_{i=1}^{r} \mathfrak{p}_{i}^{n_{i}}$ be a a non-zero ideal of A. We will show that \mathfrak{a} can be generated by two elements.
(a) Prove that there exists $x \in \mathfrak{a}$ such that $v_{\mathfrak{p}_{i}}(x)=n_{i}$ for $1 \leq i \leq r$.
(b) Write $x A=\prod_{i=1}^{s} \mathfrak{p}_{i}^{n_{i}}$ (with $s \geq r$). Show that there exists $y \in \mathfrak{a}$ such that $v_{\mathfrak{p}_{i}}(y)=n_{i}+1$ for $1 \leq i \leq r$ and $v_{\mathfrak{p}_{i}}(y)=0$ for $r<i \leq s$.
(c) Show that $\mathfrak{a}=(x, y)$.
7. Show that if A has finitely many prime ideals, then A is principal. Give an example of such a ring.
8. Show that any ideal of A is projective. (Hint : Use $I I^{-1}=A$.)

Exercise 2. [Local characterization of Dedekind rings]
Show that an integral noetherian ring A is a Dedekind ring if and only if $A_{\mathfrak{p}}$ is a principal ideal domain for every non-zero prime ideal \mathfrak{p} of A.

Exercise 3. [Decomposition of primes in quadratic number fields] Let $d \neq 0,1$ be a squarefree integer, $K=\mathbb{Q}(\sqrt{d})$ and p an prime number. Show that:

1. If $p \mid d$ then $p \mathcal{O}_{K}=(p, \sqrt{d})^{2}$ and (p, \sqrt{d}) is prime.
2. If $\left(\frac{d}{p}\right)=1$ then $p \mathcal{O}_{K}=(p, x+\sqrt{d})(p, x-\sqrt{d})$, where $x \in \mathbb{Z}$ is such that $x^{2} \equiv d \bmod p$, and $(p, x+\sqrt{d})$ and $(p, x-\sqrt{d})$ are both prime.
3. If $\left(\frac{d}{p}\right)=-1$ then $p \mathcal{O}_{K}$ is prime.
4. Find the decomposition of $2 \mathcal{O}_{K}$. (Hint : When $d \equiv 1 \bmod 4$, argue according to the value of $d \bmod 8$.)
