Decomposition of ideals, class groups

Exercise 1. [Cyclotomic fields]

Let $n \geq 3$ be an integer, ζ_{n} a primitive $n^{\text {th }}$-root of unity in \mathbb{C} and $K=\mathbb{Q}\left(\zeta_{n}\right)$.

1. Let p be a prime not dividing n. What is the decomposition of Φ_{n} in \mathbb{F}_{p} ?
2. Deduce the decomposition of $p \mathcal{O}_{K}$.
3. Let p be an odd prime number. Show that for any $i, j \in\{1, \ldots, p-1\}, \frac{1-\zeta_{p}^{i}}{1-\zeta_{p}^{j}} \in \mathbb{Z}\left[\zeta_{p}\right]^{\times}$. What is the decomposition of $p \mathcal{O}_{K}$ in $\mathbb{Q}\left(\zeta_{p}\right)$?

Exercise 2. [Totally ramified primes]
We say that the prime number p is totally ramified in the number field K if $p \mathcal{O}_{K}=\mathfrak{p}^{n}$, where $n=[K: \mathbb{Q}]$, i.e. its ramification index is maximal.

1. Assume $K=\mathbb{Q}(\alpha)$ where the minimal polynomial of α over \mathbb{Q} is Eisenstein at p. Show that p is totally ramified in K.
2. We now show the converse. Assume p is totally ramified in K.
(a) Provide an explanation for why there exists $\alpha \in \mathfrak{p} \backslash \mathfrak{p}^{2}$.
(b) Show that $(\alpha)=\mathfrak{p} I$ where I is an ideal of \mathcal{O}_{K} relatively prime to \mathfrak{p}.
(c) Let $P=X^{n}+a_{n-1} X^{n-1}+\cdots+a_{0}$ be the minimal polynomial of α. Show that p divides a_{0} but p^{2} does not.
(d) Prove by induction that p divides a_{i} for $0 \leq i<n$. (Hint : Start by showing that p divides $a_{i} \alpha^{n-1}$ in \mathcal{O}_{K} and take the norm.)
(e) Conclude.

Exercise 3. [Finiteness of the class group]
Let K be a number field of degree $n, \sigma_{1}, \ldots, \sigma_{n}$ its embeddings and $\alpha_{1}, \ldots, \alpha_{n}$ a \mathbb{Z} basis of \mathcal{O}_{K}. We are going to show that $\operatorname{Cl}\left(\mathcal{O}_{K}\right)=I^{+}\left(\mathcal{O}_{K}\right) /\left\{(\alpha) \mid \alpha \in \mathcal{O}_{K}\right\}$, the class group of K is finite.

1. Let I be a non-zero ideal of \mathcal{O}_{K} and m an integer such that $m^{n} \leq N(I)<(m+1)^{n}$. Show that there exist integers k_{1}, \ldots, k_{n}, not all zero, such that $\left|k_{i}\right| \leq m$ for $1 \leq$ $i \leq n$ and $\alpha=k_{1} \alpha_{1}+\cdots+k_{n} \alpha_{n} \in I$.
2. Show that $\left|N_{K / \mathbb{Q}}(\alpha)\right| \leq C N(I)$, where

$$
C:=\prod_{i=1}^{n} \sum_{j=1}^{n}\left|\sigma_{i}\left(\alpha_{j}\right)\right| .
$$

3. Deduce that each class in $\mathrm{Cl}\left(\mathcal{O}_{K}\right)$ admits a representative of norm less than C, and conclude.
4. Deduce an algorithm to compute $\operatorname{Cl}\left(\mathcal{O}_{K}\right)$, and use it to show that $\mathbb{Z}[\sqrt{d}]$ is principal for $d \in\{-2,-1,2,3\}$.
5. Prove that, in $\mathbb{Z}[\sqrt{6}],(2)=(2-\sqrt{6})^{2},(3)=(3-\sqrt{6})^{2},(5)=(\sqrt{6}-1)(\sqrt{6}+1)$ and (7) and (11) are prime, and deduce that $\mathbb{Z}[\sqrt{6}]$ is principal.
6. Show that $\mathbb{Z}[\sqrt{-5}]$ has class number (the order of its class group) 2 .

Exercise 4. [Constructible numbers]
We say a complex number is constructible if the point it represents in the plane can be constructed from the unit segment $[0,1]$ using only the compass and the ruler.

1. Show that $\alpha \in \mathbb{C}$ is constructible if and only if there exist fields $K_{0}=\mathbb{Q} \subset K_{1} \subset$ $\cdots \subset K_{n}=\mathbb{Q}(\alpha)$ such that $\left[K_{i}: K_{i-1}\right]=2$ for $1 \leq i<n$.
2. Let L / K be a Galois extension of order 2^{n}. Show that there exist subfields $K_{0}=$ $K \subset K_{1} \subset \cdots \subset K_{n}=L$ such that $\left[K_{i}: K_{i-1}\right]=2$ for $1 \leq i<n$.
3. Show that if $\alpha \in \mathbb{C}$ is constructible, then its minimal polynomial has degree a power of 2 . Does the reciprocal hold?
4. Deduce that $\cos \left(\frac{2 \pi}{3}\right)$ and π are not constructible (i.e. the angle trisection and the squaring of the circle problems cannot be solved by compass and ruler).
5. Prove the Gauss-Wantzel theorem : ζ_{n} is constructible if and only if n is of the form $2^{r} \prod_{i=1}^{m} p_{i}$, where the p_{i} 's are Fermat primes, i.e. of the $2^{2^{s}}+1$.

Remark : In particular, the heptadecagon, or regular 17-gon, is constructible by ruler and compass, as was shown by Gauss when he was only 19.

