ENS de Lyon TD7 Master 1 – Introduction à la Théorie des Nombres 2020-2021

Decomposition in Galois extensions

Exercise 1. [Cyclotomic extensions]

Let $n \geq 3$ be an integer, $K = \mathbb{Q}(\zeta_n)$ and p a prime number. Let $\chi : \operatorname{Gal}(K/\mathbb{Q}) \to (\mathbb{Z}/n\mathbb{Z})^{\times}$ be the isomorphism such that for $\sigma \in \operatorname{Gal}(K/\mathbb{Q}), \sigma(\zeta_n) = \zeta_n^{\chi(\sigma)}$.

- 1. Show that p is ramified in K if and only if $p \mid n$. In that case, compute $e(\mathfrak{p}/p)$ and $f(\mathfrak{p}/p)$ for any prime \mathfrak{p} of \mathcal{O}_K above p, and also g_p , the number of prime ideals above p.
- 2. Assume that $p \nmid n$. Compute $\chi(\operatorname{Frob}_p)$, $f(\mathfrak{p}/p)$ and g_p for any prime \mathfrak{p} of \mathcal{O}_K above p.

Exercise 2. [A concrete example] Let $\zeta = \zeta_{15}$ and $K = \mathbb{Q}(\zeta)$.

- 1. Show that $\mathfrak{p} = (2, \zeta^4 + \zeta + 1)$ is a prime ideal of \mathcal{O}_K above 2, and give $e(\mathfrak{p}/2)$ and $f(\mathfrak{p}/2)$.
- 2. What are the decompositions of $3\mathcal{O}_K$ and $5\mathcal{O}_K$?
- 3. Compute the decomposition and inertia subgroups $D(\mathfrak{p}/2)$ and $I(\mathfrak{p}/2)$. Do the same for 3 and 5.

Exercise 3. [Inertia and decomposition groups]

Let L/K be a Galois extension of number fields, and \mathfrak{p} a non-zero prime ideal of \mathcal{O}_K . Let \mathfrak{P} be a prime ideal of \mathcal{O}_L above \mathfrak{p} and write e, f and g the ramification index and the inertial degree of $\mathfrak{P}/\mathfrak{p}$, and the number of primes of \mathcal{O}_L above \mathfrak{p} respectively.

- 1. Recall the definitions of the decomposition and inertia subgroups of $\mathfrak{P}/\mathfrak{p}$, and give their orders in terms of e, f, g.
- 2. Describe theses groups for every prime number p when $K = \mathbb{Q}$ and $L = \mathbb{Q}(\sqrt{d})$.
- 3. Let $\mathfrak{P}_D = \mathfrak{P} \cap L^{D(\mathfrak{P}/\mathfrak{p})}$ and $\mathfrak{P}_I = \mathfrak{P} \cap L^{I(\mathfrak{P}/\mathfrak{p})}$.
 - (a) Write the inclusions between the fields $K, L, L^{I(\mathfrak{P}/\mathfrak{p})}$ and $L^{D(\mathfrak{P}/\mathfrak{p})}$.
 - (b) Show that $[L^{D(\mathfrak{P}/\mathfrak{p})}:K] = g$ and that \mathfrak{p} splits completely in $L^{D(\mathfrak{P}/\mathfrak{p})}$.
 - (c) Show that $[L^{I(\mathfrak{P}/p)}: L^{D(\mathfrak{P}/p)}] = f$ and that \mathfrak{P}_D is inert in $L^{I(\mathfrak{P}/p)}$.
 - (d) Show that $[L: L^{I(\mathfrak{P}/\mathfrak{p})}] = e$ and that \mathfrak{P}_I is totally ramified in L.
- 4. Let K' be an intermediate extension between K and L, and let $\mathfrak{p}' = \mathfrak{P} \cap K'$. Show that \mathfrak{p}' is unramified over \mathfrak{p} if and only if $K' \subset L^{I(\mathfrak{P}/\mathfrak{p})}$, and that \mathfrak{p}' splits completely over \mathfrak{p} if and only if $K' \subset L^{D(\mathfrak{P}/\mathfrak{p})}$.

Exercise 4. [Computing Galois groups with Frobenius]

1. Let P be a monic irreducible polynomial in $\mathbb{Z}[X]$, K its splitting field over \mathbb{Q} and p a prime number such that $\overline{P} \in \mathbb{F}_p[X]$ is separable. Write

$$\overline{P} = \pi_1 \dots \pi_q$$

the decomposition of \overline{P} in irreducible factors, and let $n_i = \deg \pi_i$.

Show that $\operatorname{Gal}(K/\mathbb{Q})$, seen as a subgroup of $\mathfrak{S}_{\operatorname{deg} P}$, contains a permutation of type (n_1, \ldots, n_r) .

2. Let $P = X^5 - X - 1$. Show that P is irreducible in $\mathbb{Q}[X]$ and that its Galois group is \mathfrak{S}_5 .

Exercise 5. [Biquadratic extensions]

Let m, n be distinct square-free integers, p a prime number and let $L = \mathbb{Q}(\sqrt{m}, \sqrt{n})$. Write $K_1 = \mathbb{Q}(\sqrt{m}), K_2 = \mathbb{Q}(\sqrt{n})$ and $K_3 = \mathbb{Q}(\sqrt{k})$ with $k = \frac{mn}{\gcd(m,n)^2}$.

- 1. Show that p is totally ramified in L if and only if it is ramified in K_1, K_2 and K_3 . When does this happen?
- 2. Show that p splits completely in L if and only if it splits completely in K_1, K_2 and K_3 . When does this happen?
- 3. Can p be inert in L?
- 4. What are the possible decompositions of $p\mathcal{O}_L$?