Quadratic residues and quadratic reciprocity law

Exercise 1.

1. For which odd primes is 3 a quadratic residue?
2. Let p be an odd prime such that $q=2 p+1$ is also prime. Show that 2 is a generator of \mathbb{F}_{q}^{\times}if and only if $p \equiv 1 \bmod 4$.
3. Let p_{1}, \ldots, p_{n} be primes which are congruent to 3 modulo 8 . Show that $N=$ $\left(p_{1} \ldots p_{n}\right)^{2}+2$ admits a prime factor congruent to 3 modulo 8 which is not p_{1}, \ldots, p_{n}. Conclude.
4. What prime numbers can be written as $a^{2}+a b+b^{2}$, with $a, b \in \mathbb{Z}$?

Exercise 2. [Jacobi symbol] Let $a \in \mathbb{Z}$ and $b=\prod_{i=1}^{r} p_{i}^{n_{i}}$ with the p_{i} 's odd prime numbers not dividing a. We define the Jacobi symbol of a modulo b by

$$
\left(\frac{a}{b}\right)=\prod_{i=1}^{r}\left(\frac{a}{p_{i}}\right)^{n_{i}} .
$$

1. Show that $\left(\frac{a}{b}\right)$ only depends on $a \bmod b$, and is multiplicative in both a and b.
2. Find an example where $\left(\frac{a}{b}\right)=1$ yet a is not a quadratic residue modulo b.
3. Determine $\left(\frac{-1}{b}\right)$ and $\left(\frac{2}{b}\right)$.
4. Show that, if a is also odd, $\left(\frac{a}{b}\right)=\left(\frac{b}{a}\right)$ is a or b is 1 modulo 4 , and $\left(\frac{a}{b}\right)=-\left(\frac{b}{a}\right)$ otherwise.
5. Deduce an algorithm to compute any Jacobi symbol.
6. Compute $\left(\frac{7}{15}\right),\left(\frac{12}{43}\right),\left(\frac{13}{53}\right)$ and $\left(\frac{10}{99}\right)$.

Exercise 3. Let n be an integer which is not a square. We will show that n is not a quadratic residue modulo an infinite number of primes. In particular, an integer n such $\left(\frac{n}{p}\right)=1$ for every large prime p is a square.

1. Show that we can assume n is square-free.
2. First, assume that $n \neq 2$, so we write $n=2^{e} p_{1} \ldots p_{r}$ with $e \in\{0,1\}$ and the p_{i} 's pairwise distinct prime numbers. Let s be a non-quadratic residue modulo p_{r} and $\ell_{1}, \ldots, \ell_{k}$ odd prime numbers different from p_{1}, \ldots, p_{r}. Find an integer m such that

$$
\left\{\begin{array}{c}
m \equiv 1 \bmod \ell_{i} \text { for } 1 \leq i \leq k \\
m \equiv 1 \bmod 8 \\
m \equiv 1 \bmod p_{j} \text { for } 1 \leq j \leq r-1 \\
m \equiv s \bmod p_{r}
\end{array}\right.
$$

3. Show that $\left(\frac{n}{m}\right)=-1$, and deduce that there exists a prime number p different from $p_{1}, \ldots, p_{r}, \ell_{1}, \ldots, \ell_{k}$ such that n is not a quadratic residue modulo p and conclude.
4. In the case $n=2$, we build inductively odd primes $\ell_{1}, \ldots, \ell_{k}$ different from 3 such that $\left(\frac{2}{\ell_{i}}\right)=-1$ for $1 \leq i \leq k$ (starting with $\ell_{1}=5$). Let $m=8 \ell_{1} \ldots \ell_{k}+3$. Show that $\left(\frac{2}{m}\right)=-1$ and deduce that there exists a prime number p different from $\ell_{1}, \ldots, \ell_{k}$ such that n is not a quadratic residue modulo p and conclude.

Remark. One can show that if n is not a square, then actually

$$
\lim _{x \rightarrow+\infty} \frac{\#\left\{p \leq x \left\lvert\,\left(\frac{n}{p}\right)=1\right.\right\}}{\#\{p \leq x\}}=\frac{1}{2}
$$

in other words, n is a quadratic residue modulo primes "half of the time".
Exercise 4. [Gaussian sums] Let $p=2 u-1$ be an odd prime number, $\zeta_{p}=e^{\frac{2 i \pi}{p}}$ and $G_{p}=\sum_{a \in \mathbb{Z} / p \mathbb{Z}}\left(\frac{a}{p}\right) \zeta_{p}^{a}$. Recall we've shown in TD4, Exercise 5, that $G_{p}^{2}=p^{*}$, where

$$
p^{*}=\left\{\begin{array}{c}
p \text { if } p \equiv 1 \bmod 4 \\
-p \text { if } p \equiv 3 \bmod 4 .
\end{array}\right.
$$

Therefore,

$$
G_{p}=\left\{\begin{array}{c}
\pm \sqrt{p} \text { if } p \equiv 1 \bmod 4 \\
\pm i \sqrt{p} \text { if } p \equiv 3 \bmod 4 .
\end{array}\right.
$$

We now determine the sign.

1. Show that $\prod_{k=1}^{\frac{p-1}{2}}\left(\zeta_{p}^{k u}-\zeta_{p}^{-k u}\right)^{2}=p^{*}$. (Hint : Recall that $\left.\prod_{i=1}^{p-1}\left(1-\zeta_{p}\right)=p\right)$
2. Show that

$$
\prod_{k=1}^{\frac{p-1}{2}}\left(\zeta_{p}^{2 k-1}-\zeta_{p}^{-2 k+1}\right)=\left\{\begin{array}{c}
\sqrt{p} \text { if } p \equiv 1 \bmod 4 \\
i \sqrt{p} \text { if } p \equiv 3 \bmod 4
\end{array}\right.
$$

We now write $G_{p}=\varepsilon \prod_{k=1}^{\frac{p-1}{2}}\left(\zeta_{p}^{k u}-\zeta_{p}^{-k u}\right)$, with $\varepsilon= \pm 1$.
3. Let $P=\sum_{k=0}^{p-1}\left(\frac{k}{p}\right) X^{k}-\varepsilon \prod_{k=1}^{\frac{p-1}{2}}\left(X^{k u}-X^{p-k u}\right)$. Show that $\Phi_{p} \mid P$ in $\mathbb{Z}[X]$.
4. Let $Y=X-1$. Show that $P \equiv 0 \bmod \left(p, Y^{p-1}\right)$.
5. Show that

$$
P \equiv\left(\frac{-1}{((p-1) / 2)!}-\varepsilon\left(\frac{p-1}{2}\right)!(-1)^{\frac{p-1}{2}}\right) Y^{\frac{p-1}{2}} \bmod \left(p, Y^{\frac{p+1}{2}}\right) .
$$

(Hint : Expand both terms in P with respect to $X=1+Y$. For the product, treat each term separately modulo Y^{2})
6. Conclude.

