ENS de Lyon TD8 Master 1 – Introduction à la Théorie des Nombres 2020-2021

Quadratic residues and quadratic reciprocity law

Exercise 1.

- 1. For which odd primes is 3 a quadratic residue?
- 2. Let p be an odd prime such that q = 2p + 1 is also prime. Show that 2 is a generator of \mathbb{F}_q^{\times} if and only if $p \equiv 1 \mod 4$.
- 3. Let p_1, \ldots, p_n be primes which are congruent to 3 modulo 8. Show that $N = (p_1 \ldots p_n)^2 + 2$ admits a prime factor congruent to 3 modulo 8 which is not p_1, \ldots, p_n . Conclude.
- 4. What prime numbers can be written as $a^2 + ab + b^2$, with $a, b \in \mathbb{Z}$?

Exercise 2. [Jacobi symbol] Let $a \in \mathbb{Z}$ and $b = \prod_{i=1}^{r} p_i^{n_i}$ with the p_i 's odd prime numbers not dividing a. We define the Jacobi symbol of a modulo b by

$$\left(\frac{a}{b}\right) = \prod_{i=1}^r \left(\frac{a}{p_i}\right)^{n_i}.$$

- 1. Show that $\left(\frac{a}{b}\right)$ only depends on $a \mod b$, and is multiplicative in both a and b.
- 2. Find an example where $\left(\frac{a}{b}\right) = 1$ yet a is not a quadratic residue modulo b.
- 3. Determine $\left(\frac{-1}{b}\right)$ and $\left(\frac{2}{b}\right)$.
- 4. Show that, if a is also odd, $\left(\frac{a}{b}\right) = \left(\frac{b}{a}\right)$ is a or b is 1 modulo 4, and $\left(\frac{a}{b}\right) = -\left(\frac{b}{a}\right)$ otherwise.
- 5. Deduce an algorithm to compute any Jacobi symbol.
- 6. Compute $\left(\frac{7}{15}\right)$, $\left(\frac{12}{43}\right)$, $\left(\frac{13}{53}\right)$ and $\left(\frac{10}{99}\right)$.

Exercise 3. Let *n* be an integer which is not a square. We will show that *n* is not a quadratic residue modulo an infinite number of primes. In particular, an integer *n* such $\left(\frac{n}{n}\right) = 1$ for every large prime *p* is a square.

- 1. Show that we can assume n is square-free.
- 2. First, assume that $n \neq 2$, so we write $n = 2^e p_1 \dots p_r$ with $e \in \{0, 1\}$ and the p_i 's pairwise distinct prime numbers. Let s be a non-quadratic residue modulo p_r and ℓ_1, \dots, ℓ_k odd prime numbers different from p_1, \dots, p_r . Find an integer m such that

$$\begin{cases} m \equiv 1 \mod \ell_i \text{ for } 1 \le i \le k \\ m \equiv 1 \mod 8 \\ m \equiv 1 \mod p_j \text{ for } 1 \le j \le r-1 \\ m \equiv s \mod p_r. \end{cases}$$

3. Show that $\left(\frac{n}{m}\right) = -1$, and deduce that there exists a prime number p different from $p_1, \ldots, p_r, \ell_1, \ldots, \ell_k$ such that n is not a quadratic residue modulo p and conclude.

4. In the case n = 2, we build inductively odd primes ℓ_1, \ldots, ℓ_k different from 3 such that $\left(\frac{2}{\ell_i}\right) = -1$ for $1 \le i \le k$ (starting with $\ell_1 = 5$). Let $m = 8\ell_1 \ldots \ell_k + 3$. Show that $\left(\frac{2}{m}\right) = -1$ and deduce that there exists a prime number p different from ℓ_1, \ldots, ℓ_k such that n is not a quadratic residue modulo p and conclude.

Remark. One can show that if n is not a square, then actually

$$\lim_{x \to +\infty} \frac{\#\{p \le x \mid \left(\frac{n}{p}\right) = 1\}}{\#\{p \le x\}} = \frac{1}{2},$$

in other words, n is a quadratic residue modulo primes "half of the time". **Exercise 4.** [Gaussian sums] Let p = 2u - 1 be an odd prime number, $\zeta_p = e^{\frac{2i\pi}{p}}$ and $G_p = \sum_{a \in \mathbb{Z}/p\mathbb{Z}} \left(\frac{a}{p}\right) \zeta_p^a$. Recall we've shown in TD4, Exercise 5, that $G_p^2 = p^*$, where

$$p^* = \begin{cases} p \text{ if } p \equiv 1 \mod 4\\ -p \text{ if } p \equiv 3 \mod 4 \end{cases}$$

Therefore,

$$G_p = \begin{cases} \pm \sqrt{p} \text{ if } p \equiv 1 \mod 4\\ \pm i \sqrt{p} \text{ if } p \equiv 3 \mod 4. \end{cases}$$

We now determine the sign.

- 1. Show that $\prod_{k=1}^{\frac{p-1}{2}} (\zeta_p^{ku} \zeta_p^{-ku})^2 = p^*$. (*Hint* : Recall that $\prod_{i=1}^{p-1} (1 \zeta_p) = p$)
- 2. Show that

$$\prod_{k=1}^{\frac{p-1}{2}} (\zeta_p^{2k-1} - \zeta_p^{-2k+1}) = \begin{cases} \sqrt{p} \text{ if } p \equiv 1 \mod 4\\ i\sqrt{p} \text{ if } p \equiv 3 \mod 4. \end{cases}$$

We now write $G_p = \varepsilon \prod_{k=1}^{\frac{p-1}{2}} (\zeta_p^{ku} - \zeta_p^{-ku})$, with $\varepsilon = \pm 1$. 3. Let $P = \sum_{k=0}^{p-1} \left(\frac{k}{p}\right) X^k - \varepsilon \prod_{k=1}^{\frac{p-1}{2}} (X^{ku} - X^{p-ku})$. Show that $\Phi_p \mid P$ in $\mathbb{Z}[X]$.

- 4. Let Y = X 1. Show that $P \equiv 0 \mod(p, Y^{p-1})$.
- 5. Show that

$$P \equiv \left(\frac{-1}{((p-1)/2)!} - \varepsilon \left(\frac{p-1}{2}\right)! (-1)^{\frac{p-1}{2}}\right) Y^{\frac{p-1}{2}} \operatorname{mod}(p, Y^{\frac{p+1}{2}}).$$

(*Hint* : Expand both terms in P with respect to X = 1 + Y. For the product, treat each term separately modulo Y^2)

6. Conclude.