Geometry of numbers and quadratic forms

Exercise 1. [Sums of two squares] Let Σ_{2} be the set of integers of the form $a^{2}+b^{2}$ with $a, b \in \mathbb{Z}$.

1. Show that Σ_{2} is stable by multiplication.
2. Let p be a prime such that $p \equiv 3 \bmod 4$. Show that if p divides $a^{2}+b^{2}$ then p^{2} divides $a^{2}+b^{2}$.
3. Let p be a prime such that $p \equiv 1 \bmod 4$ and $u \in \mathbb{Z}$ such that $u^{2} \equiv-1 \bmod p$. Let $L=\left\{(a, b) \in \mathbb{Z}^{2} \mid b \equiv u a \bmod p\right\}$.
(a) Show that L is a sublattice of \mathbb{Z}^{2}.
(b) Show that if $(a, b) \in L$ then $p \mid a^{2}+b^{2}$.
(c) Use Minkowski's theorem to prove that there exists $(a, b) \in L$ such that $p=$ $a^{2}+b^{2}$.
Remark : We have obtained a new proof of the fact that $p \equiv 1 \bmod 4$ splits in $\mathbb{Q}(\sqrt{-1})$.
4. Describe the elements of Σ_{2}.

Exercise 2. [Legendre's theorem] We are going to show Legendre's theorem: Let a, b, c be coprime positive squarefree integers. The quadratic form $q(x, y, z)=a x^{2}+b y^{2}-c z^{2}$ represents 0 (non-trivially) if and only if $b c, a c$, and $-a b$ are quadratic residues modulo a, b and c respectively.

1. Show that the condition on Legendre symbols is necessary.
2. We now assume that the condition is satisfied, and let $u, v, w \in \mathbb{Z}$ such that

$$
u^{2} \equiv b c \bmod a, \quad v^{2} \equiv a c \bmod b, \quad w^{2} \equiv-a b \bmod c
$$

(a) Let $L=\left\{(x, y, z) \in \mathbb{Z}^{3} \mid u y \equiv c z \bmod a, v z \equiv-a x \bmod b, w x \equiv-b y \bmod c\right\}$. Show that L is a sublattice of \mathbb{Z}^{3}. What is its covolume?
(b) Apply Minkowski's theorem to $C=\left\{(x, y, z) \in \mathbb{R}^{3} \mid 0 \leq a x^{2}+b y^{2}-c z^{2} \leq R\right\}$ for a well-chosen R and show that there exists $(x, y, z) \neq(0,0,0)$ in \mathbb{Z}^{3} such that $q(x, y, z)=0$ (Hint: The volume of C is $\frac{4 \pi}{3} \sqrt{\frac{R^{3}}{a b c}}$).

Exercise 3. [Negative discriminant]

1. Let $K=\mathbb{Q}(\sqrt{-23})$.
(a) Let $I=\left(3, \frac{1+\sqrt{-23}}{2}\right)$ and $J=\left(13, \frac{1+\sqrt{-23}}{2}+4\right)$. Do I and J belong to the same class in $\mathcal{C} \ell\left(\mathcal{O}_{K}\right)$?
(b) Show that $\mathcal{C} \ell\left(\mathcal{O}_{K}\right) \simeq \mathbb{Z} / 3 \mathbb{Z}$.
2. Compute $\mathcal{C} \ell\left(\mathcal{O}_{\mathbb{Q}(\sqrt{-84})}\right)$.

Exercise 4. [Square discriminant] Let $k \in \mathbb{Z}, D=k^{2}$ and $q(x, y)=a x^{2}+b x y+c y^{2}$ a quadratic form with discriminant D.

1. Give a non-zero solution of $q(x, y)=0$.
2. Prove that $q \sim\left(0, k, c^{\prime}\right)$ for some $c^{\prime} \in\{0, \ldots, k-1\}$.
3. Prove that c^{\prime} is determined by q up to proper equivalence.

Exercise 5. [Lagrange's theorem]

1. Let p be a prime number and D a quadratic residue modulo $4 p$. Show that, up to equivalence, there exists a unique quadratic form of discriminant D that represents p.
2. Conversely, show that if there is a quadratic form with discriminant D that represents p then D is a square modulo $4 p$.
3. What are the prime numbers of the form $x^{2}+5 y^{2}$?

Exercise 6. [Positive discriminant] Show that, up to equivalence, there is a unique quadratic form of discriminant D for $D=5$ and $D=8$.

Exercise 7. [Trivial class groups]

1. Let $K=\mathbb{Q}(\alpha)$, with $\alpha^{3}-\alpha-1=0$. Show, using Minkowski's bound, that $\mathcal{C} \ell\left(\mathcal{O}_{K}\right)$ is trivial.
2. Let $K=\mathbb{Q}(\sqrt{-65})$. Show that $\mathcal{C} \ell\left(\mathcal{O}_{K}\right) \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}$.
3. Show that $\mathcal{O}_{\mathbb{Q}(\sqrt{d})}$ is principal for $d \in\{-163,-67,-43,-19,-11,-7,-3,-2,-1,2,3,5,13\}$.
