Master 1 – Introduction à la Théorie des Nombres 2020-2021

Geometry of numbers and quadratic forms

Exercise 1. [Sums of two squares] Let Σ_2 be the set of integers of the form $a^2 + b^2$ with $a, b \in \mathbb{Z}$.

- 1. Show that Σ_2 is stable by multiplication.
- 2. Let p be a prime such that $p \equiv 3 \mod 4$. Show that if p divides $a^2 + b^2$ then p^2 divides $a^2 + b^2$.
- 3. Let p be a prime such that $p \equiv 1 \mod 4$ and $u \in \mathbb{Z}$ such that $u^2 \equiv -1 \mod p$. Let $L = \{(a, b) \in \mathbb{Z}^2 \mid b \equiv ua \mod p\}.$
 - (a) Show that L is a sublattice of \mathbb{Z}^2 .
 - (b) Show that if $(a, b) \in L$ then $p \mid a^2 + b^2$.
 - (c) Use Minkowski's theorem to prove that there exists $(a, b) \in L$ such that $p = a^2 + b^2$.

Remark : We have obtained a new proof of the fact that $p \equiv 1 \mod 4$ splits in $\mathbb{Q}(\sqrt{-1})$.

4. Describe the elements of Σ_2 .

Exercise 2. [Legendre's theorem] We are going to show Legendre's theorem : Let a, b, c be coprime positive squarefree integers. The quadratic form $q(x, y, z) = ax^2 + by^2 - cz^2$ represents 0 (non-trivially) if and only if bc, ac, and -ab are quadratic residues modulo a, b and c respectively.

- 1. Show that the condition on Legendre symbols is necessary.
- 2. We now assume that the condition is satisfied, and let $u, v, w \in \mathbb{Z}$ such that

 $u^2 \equiv bc \mod a, \quad v^2 \equiv ac \mod b, \quad w^2 \equiv -ab \mod c.$

- (a) Let $L = \{(x, y, z) \in \mathbb{Z}^3 \mid uy \equiv cz \mod a, vz \equiv -ax \mod b, wx \equiv -by \mod c\}$. Show that L is a sublattice of \mathbb{Z}^3 . What is its covolume?
- (b) Apply Minkowski's theorem to $C = \{(x, y, z) \in \mathbb{R}^3 \mid 0 \le ax^2 + by^2 cz^2 \le R\}$ for a well-chosen R and show that there exists $(x, y, z) \ne (0, 0, 0)$ in \mathbb{Z}^3 such that q(x, y, z) = 0 (*Hint*: The volume of C is $\frac{4\pi}{3}\sqrt{\frac{R^3}{abc}}$).

Exercise 3. [Negative discriminant]

- 1. Let $K = \mathbb{Q}(\sqrt{-23})$.
 - (a) Let $I = \left(3, \frac{1+\sqrt{-23}}{2}\right)$ and $J = \left(13, \frac{1+\sqrt{-23}}{2}+4\right)$. Do I and J belong to the same class in $\mathcal{C}\ell(\mathcal{O}_K)$?
 - (b) Show that $\mathcal{C}\ell(\mathcal{O}_K) \simeq \mathbb{Z}/3\mathbb{Z}$.
- 2. Compute $\mathcal{C}\ell(\mathcal{O}_{\mathbb{Q}(\sqrt{-84})})$.

Exercise 4. [Square discriminant] Let $k \in \mathbb{Z}$, $D = k^2$ and $q(x, y) = ax^2 + bxy + cy^2$ a quadratic form with discriminant D.

- 1. Give a non-zero solution of q(x, y) = 0.
- 2. Prove that $q \sim (0, k, c')$ for some $c' \in \{0, ..., k-1\}$.
- 3. Prove that c' is determined by q up to proper equivalence.

Exercise 5. [Lagrange's theorem]

- 1. Let p be a prime number and D a quadratic residue modulo 4p. Show that, up to equivalence, there exists a unique quadratic form of discriminant D that represents p.
- 2. Conversely, show that if there is a quadratic form with discriminant D that represents p then D is a square modulo 4p.
- 3. What are the prime numbers of the form $x^2 + 5y^2$?

Exercise 6. [Positive discriminant] Show that, up to equivalence, there is a unique quadratic form of discriminant D for D = 5 and D = 8.

Exercise 7. [Trivial class groups]

- 1. Let $K = \mathbb{Q}(\alpha)$, with $\alpha^3 \alpha 1 = 0$. Show, using Minkowski's bound, that $\mathcal{C}\ell(\mathcal{O}_K)$ is trivial.
- 2. Let $K = \mathbb{Q}(\sqrt{-65})$. Show that $\mathcal{C}\ell(\mathcal{O}_K) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$.
- 3. Show that $\mathcal{O}_{\mathbb{Q}(\sqrt{d})}$ is principal for $d \in \{-163, -67, -43, -19, -11, -7, -3, -2, -1, 2, 3, 5, 13\}.$