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Abstract

We study the Lambda function (obviously !) of Von Mangoldt and other greek
letters, and we show how they can be used to prove the Prime number Theorem®.

1 Introduction : the π function
The most important mathematical function is certainly (maybe not) the prime counting
function π, i.e. for all x ≥ 2,

π(x) := #{p ≤ x},

where here and below p will denote that the index set is the set of prime numbers. The
asymptotic behaviour of this function has focused, and is still focusing, the attention of
many mathematicians. The prime number theorem states that

π(x) ∼
x→+∞

x

log x,

or in other words
lim

x→+∞

π(x) log x
x

= 1.

It is a non-trivial result with a rich history (which was told in a previous Lambda seminar
[1]), and whose proof we are going to sketch.

The symbol log will denote the usual logarithm, and the principal branch of the complex
logarithm on C\R−, and we recall that f(x) = O(g(x)) means there exists a constant C > 0
such that |f(x)| ≤ Cg(x) holds for every relevant values of x.

2 From π to ψ, through θ

2.1 The θ function
One can write π(x) = ∑

p≤x 1. For a reason that should be clear later, it is more natural to
count prime numbers p with a weight log p. Let us introduce the θ function of Chebyshev
(1821-1894) : for all x ≥ 2,

θ(x) :=
∑
p≤x

log p.
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Note that, for all x ≥ 2, θ(x) is simply the logarithm of the primorial∏
p≤x

p.

In 1848, Chebyshev showed by elementary methods the following remarkable result : there
exist constants c1, c2 > 0 such that for all x ≥ 2,

c1
x

log x ≤ π(x) ≤ c2
x

log x.

On this occasion, he introduced the θ function, and the ψ function which we will talk about
soon.

Clearly, we havee θ(x) ≤ π(x) log x. We are going to see that we can compare those
quantities more precisely.

Lemma 2.1. For all x ≥ 2, we have

π(x) = θ(x)
log x +

∫ x

2

θ(t)
t(log t)2 dt.

Proof. This is an example of summation by parts, the discrete analog of integration by parts.
Let us show the following general result : if (an)n∈N is a sequence of complex numbers and
f : [0,+∞[−→ C is class C1 function then for every x ≥ 0,

∑
n≤x

anf(n) = A(x)f(x)−
∫ x

0
A(t)f ′(t) dt,

where A(x) := ∑
n≤x an. To show this, we use Abel summation, i.e. we write an = A(n) −

A(n− 1) (with the convention A(x) = 0 for x < 0) :∑
n≤x

anf(n) =
∑
n≤x

(A(n)− A(n− 1))f(n) =
∑
n≤x

A(n)f(n)−
∑

n≤x−1
A(n)f(n+ 1)

= A(bxc)f(bxc) +
∑

n≤x−1
A(n)(f(n)− f(n+ 1))

= A(bxc)f(bxc)−
∑

n≤x−1
A(n)

∫ n+1

n
f ′(t) dt

= A(bxc)f(bxc)−
∫ bxc

0
A(t)f ′(t) dt

since A is constant on every interval of the form [n, n + 1[. There only remains to observe
that A(x)f(x) = A(bxc)f(bxc) +

∫ x
bxcA(t)f ′(t) dt for the same reason.

Let us come back to our lemma. It is enough to apply the summation by parts formula
to the sequence defined by

an =

log p if n is a prime number p
0 otherwise

,
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whose summatory function is θ, and f = 1
log (note that θ(t) = 0 for t < 2). �

We easily deduce1 from this lemma that if θ(x) ∼
x→+∞

x then π(x) ∼
x→+∞

x
log x , that is, the

prime number theorem. This is the estimate we will be looking for.

2.2 The ψ function
Let us now introduce the following function : for all x ≥ 2, let

ψ(x) =
∑
k≥1

∑
pk≤x

log p.

This is some kind of generalization of the θ function, but we also take into consideration the
powers of prime numbers. One can see that, for every x ≥ 2, ψ(x) is the logarithm of the
LCM of the positive integers ≤ x. For all k ≥ 1 and prime number p, the conditions pk ≤ x
and p ≤ x1/k are equivalent, so that

ψ(x) =
+∞∑
k=1

θ(x1/k).

Note that for every x ≥ 2, this sum is in fact finite : θ(x1/k) is zero as soon as x1/k < 2, that
is when k > b log x

log 2c.

We will now show that if ψ(x) ∼
x→+∞

x then θ(x) ∼
x→+∞

x. To do this, we will need the
following lemma.

Lemma 2.2. We have
θ(x) = O(x)

for x ≥ 2.

Proof. We use a clever trick : for all integer n ≥ 1, the bnomial coefficient
(

2n
n

)
is divisible

by every p such that n < p ≤ 2n. Indeed, one has
(

2n
n

)
= (2n)!

(n!)2 and if n < p ≤ 2n, then p

divides (2n)! but not n!. By Gauss’ lemma, we obtain ∏
n<p≤2n

p

 | (2n
n

)
.

Since
(

2n
n

)
≤ 4n (look at the expansion of (1 + 1)2n), we thus have

∏
n<p≤2n

p ≤ 4n.

Taking logarithms, we find
θ(2n)− θ(n) ≤ n log 4.

1∫ x

2
dt

(log t)2 dt =
∫ x1/2

2
dt

(log t)2 dt +
∫ x

x1/2
dt

(log t)2 dt = O(x1/2) + O
(

x
(log x)2

)
= o

(
x

log x

)
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Observe that, in fact,
θ(2x)− θ(x) ≤ x log 4

for every real x ≥ 2 since the left-hand side does not change when we replace x by its integer
part, and the right-hand side is an increasing function of x. To conclude, there simply remains
to sum those telescopic inequalities :

θ(x) = θ(x)− θ(x/2) + θ(x/2)− θ(x/4) + θ(x/4)− . . .

≤
(
x+ x

2 + x

22 + . . .
)

log 4 = 2x log 4.

�

We can now write

0 ≤ ψ(x)− θ(x) =
b log x

log 2 c∑
k=2

θ(x1/k) = O(x1/2 log x),

by upper bounding each b log x
log 2c − 1 = O(log x) terms by O(x1/2), which implies that if

ψ(x) ∼
x→+∞

x then θ(x) ∼
x→+∞

x, and that is what we are now going to show.

3 The Λ function
Let us now write the ψ function with a summation over all integers. To do this, we introduce
the Lambda function (finally !) of Von Mangoldt (1854-1925) : for every n ∈ N,

Λ(n) :=

log p if n is a power of a prime number p
0 otherwise

.

Therefore, we have for every x ≥ 2,

ψ(x) =
∑
n≤x

Λ(n).

To study the behaviour of a sequence, it is usual to study a generating function attached to
it. One could for example study the function

z 7→
+∞∑
n=0

Λ(n)zn

ou her cousin
z 7→

+∞∑
n=0

Λ(n)
n! zn,

but actually, it is preferable to work with Dirichlet (1805-1859) series in this context. Thus,
we introduce the function

F : s 7→
+∞∑
n=1

Λ(n)
ns

.
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It is clear that for n ≥ 1, Λ(n) ≤ log n, so that the above series converges asbolutely when
Re(s) > 1. Since the convergence is norma on every half-plane of the form Ωa := {s ∈ C |
Re(s) > a}, with a > 1, the function F is holomorphic on Ω1.

In the case of a power series f(z) = ∑
n≥0 anz

n, we know we can extract the coefficient
an with an integral formula, Cauchy’s (1789-1857) formula :

an = 1
2iπ

∫
C

f(z)
zn+1 dz,

where C is a sufficiently smooth closed curve looping around the origin. Can we do the same
for Dirichlet series ? The answer is given by Perron’s (1880-1975) formula, which we give
here in a simplified form.

Lemma 3.1 (Perron’s formula). Let

f(s) =
+∞∑
n=1

an
ns

be a Dirichlet series which converges absolutely for Re(s) ≥ c > 0. Then for every x ≥ 1 not
an integer, we have ∑

n≤x
an = 1

2iπ

∫ c+i∞

c−i∞
f(s)x

s

s
ds.

Remark. If x = N is an integer, one has to take aN
2 as the last term of the sum.

Proof. We only give an idea of the proof. We start by showing that

1
2iπ

∫ c+iT

c−iT

ys

s
ds =

{
1 si y > 1

0 si 0 < y < 1 +O

(
yc

T | log y|

)
,

by using the residue theorem (when y > 1 we integrate on a rectangle around 0 and send its
left side to infinity, when 0 < y < 1 we integrate on a rectangle not containing 0 and send
its right side to infinity, the error term is the contribution of the horizontal sides). We now
sum those equalities, taking y = x

n
, which yields

∑
n≤x

an =
+∞∑
n=1

1
2iπ

∫ c+iT

c−iT
an

(
x

n

)s ds
s

+ oT→+∞(1).

Finally, the normal convergence in the domain {s ∈ C | Re(s) ≥ c} allows us to permute the
sum and the integral. �

We have now established the very useful formula

ψ(x) = 1
2iπ

∫ c+i∞

c−i∞
F (s)x

s

s
ds,
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for every x ≥ 1 not an integer and every c > 1. For integer x, we saw in the previous remark
that there is a missing factor of Λ(x)

2 , which is clearly O(log x). Therefore, we have

ψ(x) = 1
2iπ

∫ c+i∞

c−i∞
F (s)x

s

s
ds+O(log x)

for every x ≥ 2 and c > 1. The asymptotic estimate we are after is x, so we can forget about
this extra term. We now need to identify the function F .

4 The relation between F and ζ

The infamous Riemann (1826-1866) zeta function, defined for Re(s) > 1 by

ζ(s) :=
+∞∑
n=1

1
ns

now comes into play. Its usefulness lies in its factorization as Euler (1707-1783) product :

ζ(s) =
∏
p

(
1− 1

ps

)−1

,

which is a formal evidence when we expand each factor as a geometric series. The convergence
of the series ∑p log

(
1− 1

ps

)
on Ω1 implies that ζ does not vanish on this domain, and one

can take its complex logarithm. We have, still for Re(s) > 1,

log ζ(s) =
∑
p

− log
(

1− 1
ps

)
=
∑
p

+∞∑
k=1

1
kpks

.

Keeping an eye on convergence issues, we get by differentiating

(log ζ)′(s) = −
∑
p

+∞∑
k=1

log p
pks

.

We now observe that the coefficient in front of 1
ns

in the above Dirichlet series is simply
−Λ(n). In other words, we established that the analytic function F is actually

−(log ζ)′ = −ζ
′

ζ
.

We have at our disposal Von Mangoldt’s formula :

ψ(x) = 1
2iπ

∫ c+i∞

c−i∞
−ζ
′

ζ
(s)x

s

s
ds+O(log x),

for every x ≥ 2 and c > 1. Let us recall that our goal is to estimate the size of the quantity
ψ(x), more precisely to show that ψ(x) ∼

x→+∞
x. To do this, we going to use the residue

theorem once again, to get an estimate on the size of this integral. One has to ask about the
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location of poles of the integrand. We previously observed that the ζ function has no zero
on Ω1, so there is no pole in sight for the function s 7→ − ζ′

ζ
(s)xs

s
, defined on Ω1. However, as

Riemann showed in 1859, this function admits an analytic continuation to the whole complex
plane. Riemann actually shows that ζ has a meromorphic continuation to C, with only one
simple pole at 1, with residue 1. We will be content with the following computation : by
summation by parts, we have

∑
1≤n≤x

1
ns

= bxc
xs

+ s
∫ x

1

btc
ts+1 dt.

Thus, when Re(s) > 1, we get, by taking the limit in x,

ζ(s) = s
∫ +∞

1

btc
ts+1 dt = s

∫ +∞

1

dt
ts
− s

∫ +∞

1

{t}
ts+1 dt = s

s− 1 − s
∫ +∞

1

{t}
ts+1 dt

and this last expression clearly defines a meromorphic function on Ω0, with a simple pole at
1, with residue 1.

Let us now look at the poles of the function s 7→ − ζ′

ζ
(s)xs

s
inside Ω0. The pole of ζ at 1

provides a pole with residue x and each zero ρ (counted with multiplicity) of ζ contributes
to a pole, with residue −xρ

ρ
. More estimates from complex analysis and the residue theorem

allow us to show that
1

2iπ

∫ c+i∞

c−i∞
−ζ
′

ζ
(s)x

s

s
ds = x−

∑
ρ

xρ

ρ
+Oc(1),

where the summation is taken over the set of zeros ρ of ζ satisfying 0 < Re(ρ) ≤ 1. It now
appears to be crucial to locate the zeros of ζ to conclude the proof.

Theorem 4.1 (Hadamard, De la Vallée-Poussin, 1896). The ζ function does not vanish on
the line {s ∈ C | Re(s) = 1}.

This argument is at the core of the original proof by Hadamard (1865-1963) and De la
Vallée-Poussin (1866-1962) of the prime number theorem (and later in the proofs of Wiener
(1894-1964) and Ikehara (1904-1984)). In our current argumentation, it would be in fact
necessary to establish a zero-free region for the ζ-function. There could be zeros of the ζ
function with real parts accumulating to 1, making the sum∑

ρ
xρ

ρ
too large and not negligible

compared to the main term x (recall that the absolute value of xρ is xRe(ρ)). The zero-free
region of De la Vallée-Poussin allows us to prove

ψ(x) = x+O
(
x exp(−c

√
log x)

)
,

where c > 0 is a constant, which completes the proof of

ψ(x) ∼
x→+∞

x,

and as we have seen of
π(x) ∼

x→+∞

x

log x.
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5 Conclusion
We have shown the links between the different counting functions π, θ and ψ, and how to
obtain the prime number theorem using results on the location of zeros of the Riemann ζ
function. At the core of this was the Von Mangoldt Λ function.

There exist differents proofs of the prime number theorem, but each of them involves the
Λ function in one way or another. It is also involved in the proofs of other types of prime
number theorem, such as the prime number theorem in arithmetic progressions, the theorem
of Chebotarev (1894-1947).

The smallest error term possible in the estimate ψ(x) ∼
x→+∞

x is O(x1/2 log x). It corre-
sponds to the Riemann hypothesis : the zeros ρ of ζ such that 0 < Re(ρ) < 1 have real part
1/2. We are far from being able to proving this : the best zero-free region for the ζ function
hasn’t been improved since 1958 (Korobov (1917-2004) and Vinogradov (1891-1983)) and it
doesn’t even exclude the possibility of zeros with real parts accumulating to 1. For more
details and developments on this, we recommand the excellent [2].
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