1 An algorithm for computing the characteristic polynomial

Let \(A \in \mathcal{M}_n(\mathbb{K}) \), the goal of the following method is to compute the characteristic polynomial of \(A \) with a cost better than \(O(n^4) \).

1. Let \(T \) be the transvection which acts on the left of a matrix \(A \) through \(L_i \leftarrow L_i + \alpha L_j \), i.e., \(T = I_n + \alpha E_{ij} \). Describe the action of \(T^{-1} \) on the right of \(A \) in terms of column operations.

2. Using question 1, show that one can find a matrix \(R \) such that

 \[
 RAR^{-1} = \begin{bmatrix}
 a_{1,1} & a'_{1,2} & \cdots & a'_{1,n} \\
 l_2 & a'_{2,2} & \ddots & a'_{2,n} \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & a'_{n,2} & \cdots & a'_{n,n}
 \end{bmatrix}
 \]

 (Hint: perform row operations by multiplying on the left by some transvection matrices \(T_i \) and see what happens on the columns when you multiply on the right by \(T_i^{-1} \)).

3. Give an algorithm to compute the matrices \(R_n \) and \(M \) such that

 \[
 R_nAR_n^{-1} = M = \begin{bmatrix}
 m_{1,1} & m_{1,2} & m_{1,3} & \cdots & m_{1,n} \\
 l_2 & m_{2,2} & m_{2,3} & \ddots & m_{2,n} \\
 0 & l_3 & m_{3,3} & \ddots & m_{3,n} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 0 & \cdots & 0 & l_n & m_{n,n}
 \end{bmatrix}
 \]

 using \(O(n^3) \) operations in \(\mathbb{K} \).

 Remark: such an “almost triangular” shape matrix is called an upper Hessenberg matrix; we have shown how to reduce any matrix into (upper) Hessenberg form.

4. Deduce an algorithm to compute the characteristic polynomial of \(A \), with a complexity bound \(O(n^3) \).

5. Could it be possible to find \(R \) such that \(R^{-1}AR = M \) is upper triangular by (arbitrarily many) elementary operations in \(\mathbb{K} \)? If yes, explain how. If not, explain why.
2 Toeplitz linear systems

Let $M \in \mathcal{M}_n(K)$ be a Toeplitz matrix, that is,

$$M = \begin{bmatrix} m_0 & m_{-1} & \cdots & m_{-n+2} & m_{-n+1} \\ m_1 & m_0 & \ddots & \ddots & m_{-n+2} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ m_{n-2} & \ddots & \ddots & m_1 & m_0 \\ m_{n-1} & m_{n-2} & \cdots & m_1 & m_0 \end{bmatrix}$$

for some $m_{-n+1}, \ldots, m_0, \ldots, m_{n-1} \in K$. The goal of this exercise is to solve the linear system $M \vec{x} = \vec{y}$ more efficiently than with general-purpose algorithms.

1. What is the size of the input of our problem? And the size of the output?

 For $k \in [n]$, we denote M_k the upper left sub-matrix of M of size $k \times k$. We shall assume that M_k is non-singular (invertible) for all k.

 We denote by $e_k^{(1)} \in K^k$ the vector $(1, 0, \cdots, 0)^T$ and by $e_k^{(k)} \in K^k$ the vector $(0, \cdots, 0, 1)^T$ of size k. For $k \in [n]$, we define $\vec{f}_k \in K^k$ by $M_k \vec{f}_k = e_k^{(1)}$, and $\vec{b}_k \in K^k$ by $M_k \vec{b}_k = e_k^{(k)}$.

2. Find \vec{f}_1 and \vec{b}_1.

3. Let $\vec{f}_k = (f_{k-1}^T, 0)^T$, and $\vec{b}_k = (0, \vec{b}_{k-1}^T)^T$. Compute $M_k \vec{f}_k$ and $M_k \vec{b}_k$. Deduce \vec{f}_k and \vec{b}_k.

 For $k \in [n]$, let $\vec{y}^{(k)} = (y_1, \cdots, y_k)$ and define $\vec{x}^{(k)} \in K^k$ by $M_k \vec{x}^{(k)} = \vec{y}^{(k)}$. Note that we have $\vec{x} = \vec{x}^{(n)}$.

4. Give an algorithm, which on input $\vec{x}^{(k-1)}$, y_k and \vec{b}_k, computes $\vec{x}^{(k)}$.

5. Deduce an algorithm to solve a Toeplitz linear system. Give a complexity bound for your algorithm.

3 Hensel-type strategy for solving linear system

In this exercise, we study algorithms to solve $Mx = b$, $M \in \mathcal{M}_n(K[X])$, $b \in K[X]^n$. We shall assume that the degree of all coordinates of M, b is $\leq d$.

Cramer’s formulas show that if x is a solution of $Mx = b$, $(\det M) \cdot x \in K[X]^n$, and the coefficients of $(\det M) \cdot x$ have degree $\leq nd$. We’ll also assume that $\det M(u) \neq 0$ for all $u \in K$.

1. What is the complexity of computing $B := (M \mod X)^{-1}$?

 Let $y_i \in K[X]^n$ be a solution of $My_i = b \mod X^i$, and define $r_i = b - My_i$.

2. Prove that $r_i = \lambda_i X^i$ for some $\lambda_i \in K[X]^n$. If $z_i = B\lambda_i \mod X$, prove that $y_{i+1} = y_i + X^i z_i$ and $r_{i+1} = r_i - X^i M z_i$.

3. What is the complexity of computing y_{nd+1} using this method? Assuming that $\det M$ is given as input or precomputed, deduce an algorithm for solving $Mx = b$.

4. If we need to compute $\det M$ beforehand, then this computation is going to dominate the complexity of linear system solving. Can we avoid computing the determinant? (Hint: use rational reconstruction.)