TD 1: Play with definitions

Notation. For $n > 0$, we write \mathbb{Z}_n the ring $\mathbb{Z}/n\mathbb{Z}$ of integers modulo n.

Exercise 1. Distributions and (in)distinguishability
We consider two distributions D_0 and D_1 over $\{0, 1\}^n$.

1. Recall the definitions that were given in class for the notions of distinguisher and indistinguishability of D_0 and D_1.

Now, we consider the following experiment.

\[
\begin{array}{c|c}
\mathcal{C} & \mathcal{A} \\
\hline
\text{sample } b \leftarrow \mathcal{U}(0, 1) & \text{compute a bit } b' \\
\text{sample } x \leftarrow D_b & \text{send } b' \text{ to } \mathcal{C} \\
\text{send } x \text{ to } \mathcal{A} & \\
\text{If } b = b', \text{ say “Win”, else say “Lose”} & \\
\end{array}
\]

We say that a PPT algorithm \mathcal{A} is a distinguisher if there exists a non-negligible ε such that, in this experiment, $\Pr[\text{Win}] \geq 1/2 + \varepsilon$. The distributions D_0 and D_1 are said to be indistinguishable if there is no such distinguisher.

2. Show that this definition of indistinguishability is equivalent to the one recalled in the previous question.

3. A rebellious student decides to define a distinguisher as a PPT algorithm \mathcal{A} with $\Pr[\text{Win}] \leq 1/2 - \varepsilon$ in the above experiment (rather than $\geq 1/2 + \varepsilon$). Is this a revolutionary idea?

Exercise 2. Statistical distance

Definition 1 (Statistical distance). Let X and Y be two discrete random variables over a countable set S. The statistical distance between X and Y is the quantity

\[
\Delta(X, Y) = \frac{1}{2} \sum_{a \in S} |\Pr[X = a] - \Pr[Y = a]|.
\]

The statistical distance verifies usual properties of distance function, i.e., it is a positive definite binary symmetric function that satisfies the triangle inequality:

- $\Delta(X, Y) \geq 0$, with equality if and only if X and Y are identically distributed,
- $\Delta(X, Y) = \Delta(Y, X)$,
- $\Delta(X, Z) \leq \Delta(X, Y) + \Delta(Y, Z)$.

1. Show that if $\Delta(X, Y) = 0$, then for any adversary \mathcal{A} we have $\text{Adv}_\mathcal{A}(X, Y) = 0$.

We also recall the following property: if X and Y are two random variables over a common set A, then for any (possibly randomized) function f with domain S we have

\[
\Delta(f(X), f(Y)) \leq \Delta(X, Y);
\]

besides, if f is injective then the equality holds.

2. Show that for any adversary \mathcal{A}, we have $\text{Adv}_\mathcal{A}(X, Y) \leq \Delta(X, Y)$.
3. Assuming the existence of a secure PRG $G : \{0,1\}^s \rightarrow \{0,1\}^n$, show that $\Delta(G(U(\{0,1\}^s)), U(\{0,1\}^n))$ can be much larger than $\max_{A \text{ PPT}} \text{Adv}_A(G(U(\{0,1\}^s)), U(\{0,1\}^n))$.

Exercise 3.

Introduction to Computational Hardness Assumptions

Definition 2 (Decisional Diffie-Hellman distribution). Let G be a cyclic group of prime order q, and let g be a publicly known generator of G. The decisional Diffie-Hellman distribution (DDH) is, $D_{\text{DDH}} = (g^a, g^b, g^{ab}) \in G^3$ with a, b sampled independently and uniformly at random in \mathbb{Z}_q.

Definition 3 (Decisional Diffie-Hellman assumption). The decisional Diffie-Hellman assumption states that there exists no probabilistic polynomial-time distinguisher between D_{DDH} and (g^a, g^b, g^c) with a, b, c sampled independently and uniformly at random in \mathbb{Z}_q.

1. Does the DDH assumption hold if $G = (\mathbb{Z}_p, +)$ for $p = 2 \lambda^k$ prime?
2. Same question for $G = (\mathbb{Z}_p^*, \times)$ of order $p - 1$.
3. Now we take \mathbb{Z}_p such that $p = 2q + 1$ with q prime (also called a safe-prime). Let us work in a subgroup G of order q in \mathbb{Z}_p^*. Let $G = (\mathbb{Z}_p^*, \times)$.

 (a) Given a generator g of G, propose a construction for a function $\hat{G} : \mathbb{Z}_q \rightarrow G \times G$ (which may depend on public parameters) such that $\hat{G}(U(\mathbb{Z}_q))$ is computationally indistinguishable from $U(G \times G)$ based on the DDH assumption on G (where, in $\hat{G}(U(\mathbb{Z}_q))$, the probability is also taken over the public parameters of \hat{G}).

 (b) What is the size of the output of \hat{G} given the size of its input?

 (c) Why is it not a pseudo-random generator from $\{0,1\}^\ell$ to $\{0,1\}^{2\ell}$ for $\ell = \lceil \lg q \rceil$?

Exercise 4.

Let us go post-quantum!

Definition 4 (Learning with Errors). Let $\ell < k \in \mathbb{N}$, $n \in \mathbb{N}$, $q = 2^k$, $B = 2^{\ell}$, $A \leftarrow U(\mathbb{Z}_q^{n \times n})$. The Learning with Errors (LWE) distribution is defined as follows: $D_{\text{LWE},A} = (A, A \cdot s + e \mod q)$ for $s \leftarrow U(\mathbb{Z}_q^n)$ and $e \leftarrow U\left(\left[-\frac{B}{2}, \frac{B}{2} - 1\right]^m \cap \mathbb{Z}^m\right)$.

Note. In this setting, the vector s is called the secret, and e the noise.

The LWE assumption states that, given suitable parameters k, ℓ, m, n, it is computationally hard to distinguish $D_{\text{LWE},A}$ from the distribution $(A, U(\mathbb{Z}_q^m))$.

Let us propose the following generator: $G_{\text{A}}(s, e) = A \cdot s + e \mod q$.

1. Given the binary representation of s, e, compute the bitsize of the input and the output of the function G with respect to k, ℓ, m, n.
2. Evaluate the cost of a brute-force attack to retrieve the input s, e in terms of arithmetic operations in \mathbb{Z}_q.
3. What happens if $B = 0$? \Rightarrow *This bound can prove useful: $\prod_{i=1}^n (1 - 2^{-i}) > 0.288$.*
4. Given the previous question, refine the brute-force attack of question 2. What does it mean for the security of the generator G?
5. What happens if $\ell = k$?
6. Given suitable ℓ, k, n, m such that the LWE problem holds in this setting, show that G_{A} is a pseudo-random generator.