Exercise 1. \(\text{HMAC} \)

Before HMAC was invented, it was quite common to define a MAC by \(\operatorname{Mac}_k(m) = H^*(k \parallel m) \) where \(H \) is a collision-resistant hash function. Show that this MAC is not unforgeable when \(H \) is constructed via the Merkle-Damgård transform.

Exercise 2. \(\text{SIS} \)

Definition 1 (Learning with Errors). Let \(\ell < k < m \in \mathbb{N}, q = 2^k, B = 2^\ell, A \leftarrow \mathcal{U}(\mathbb{Z}_q^{m \times n}) \). The Learning with Errors (LWE) distribution is defined as follows: \(D_{\text{LWE}, A} = (A, A \cdot s + e \mod q) \) for \(s \leftarrow \mathcal{U}(\mathbb{Z}_q^n) \) and \(e \leftarrow \mathcal{U}\left([-B, B]\cap\mathbb{Z}_m\right) \).

The \(\text{LWE}_A \) assumption states that, given suitable parameters \(k, \ell, m, n, q \), it is computationally hard to distinguish \(D_{\text{LWE}, A} \) from the distribution \((A, \mathcal{U}(\mathbb{Z}_q^n)) \).

Given a matrix \(A \in \mathbb{Z}_q^{m \times n} \) with \(m > n \lg q \), let us define the following hash function:

\[
H_A : \{0, 1\}^m \rightarrow \{0, 1\}^n \\
x \mapsto x^T \cdot A \mod q.
\]

1. Why finding a sufficiently “short” non-zero vector \(z \) such that \(z^T \cdot A = 0 \) is enough to distinguish \(D_{\text{LWE}, A} \) from the distribution \((A, \mathcal{U}(\mathbb{Z}_q^n)) \)? Define “short”.

2. Show that \(H_A \) is collision-resistant under the \(\text{LWE}_A \) assumption.

3. Is it still a secure hash function if we let \(H_A : x \in \{0, 1\}^m \mapsto x^T \cdot A \in \mathbb{Z}^n \)? (without the reduction modulo \(q \)).

Exercise 3. \(\text{One-time to Many-Times} \)

Let us define the following experiments for \(b \in \{0, 1\} \), and \(Q = \text{poly}(\lambda) \).

\[
\begin{array}{c}
\mathcal{A} \\
\text{Choose } (m_0^{(i)}, m_1^{(i)})_{i=1}^Q \\
\text{Output } b' \in \{0, 1\}
\end{array}
\begin{array}{c}
\mathcal{C} \leftarrow \text{Keygen}(1^\lambda) \\
\overset{pk}{\leftarrow} (pk, sk) \\
\left(\{c_0^{(i)}, c_1^{(i)}\}_{i=1}^Q \right) \leftarrow \text{Enc}_{pk}(m_b^{(i)})_{i=1}^Q
\end{array}
\]

The advantage of \(\mathcal{A} \) in the many-time CPA game is defined as

\[
\operatorname{Adv}_{\text{many-CPA}}(\mathcal{A}) = \left| \Pr_{(pk, sk)} [\mathcal{A} \rightarrow 1 \mid \mathcal{E}_{\text{many-CPA}^1}] - \Pr_{(pk, sk)} [\mathcal{A} \rightarrow 1 \mid \mathcal{E}_{\text{many-CPA}^0}] \right|
\]

1. Recall the definition of CPA-security that was given during the course. What is the difference?
2. Show that this two definitions are equivalent.

3. Do we have a similar equivalence in the secret-key setting?

Exercise 4.

We define a variant of the LWE problem with multiple secrets as follows.

Definition 2 (Multiple-secrets-LWE distribution). Let \(\ell < k \in \mathbb{N}, n < m \in \mathbb{N}, q = 2^k, B = 2^\ell, t = \text{poly}(m) \) be some integer, and \(A \leftarrow U(\mathbb{Z}_q^{m \times n}) \). The multiple-secrets-LWE distribution is defined as follows:

\[
D_{\text{msLWE},A} = (A, A \cdot S + E \mod q) \text{ for } S \leftarrow U(\mathbb{Z}_q^{n \times t}) \text{ and } E \leftarrow U \left(\left[\frac{B}{2}, \frac{B}{2} - 1 \right]^{m \times t} \cap \mathbb{Z}^{m \times t} \right).
\]

Note. The secret is now a matrix instead of a vector. Each column of this matrix can be seen as a secret.

1. Show that if the LWE assumption holds, then the multiple-secrets-LWE distribution is computationally indistinguishable from the uniform distribution \(U(\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^{m \times t}) \).

 Hint: you may want to use a hybrid argument.

 We study another variant of the LWE problem, where the matrix \(A \) is chosen uniformly among the matrices with coefficients in \(\{0,1\} \) instead of with coefficients in \(\mathbb{Z}_q \). We want to show that this variant of LWE is also secure, as long as the LWE assumption holds.

Definition 3 (Binary-matrix-LWE). Let \(\ell < k \in \mathbb{N}, n < m \in \mathbb{N}, q = 2^k, B = 2^\ell, A \leftarrow U(\{0,1\}^{m \times n}) \). The binary-matrix-LWE distribution is defined as follows:

\[
D_{\text{binLWE},A} = (A, A \cdot s + e \mod q) \text{ for } s \leftarrow U(\mathbb{Z}_q^n) \text{ and } e \leftarrow U \left(\left[\frac{B}{2}, \frac{B}{2} - 1 \right]^m \cap \mathbb{Z}^m \right).
\]

We write binary-matrix-LWE\(_{n,m,\ell,k}\) when the parameters need to be specified.

2. Show that there exist a matrix \(G \in \mathbb{Z}_q^{nk \times n} \) such that for any matrix \(A \in \mathbb{Z}_q^{m \times n} \), there exist a binary matrix \(A_{\text{bin}} \in \{0,1\}^{m \times nk} \) such that \(A = A_{\text{bin}}G \).

3. Show that if \(A \) is sampled uniformly in \(\mathbb{Z}_q^{m \times n} \), then \(A_{\text{bin}} \) is uniform in \(\{0,1\}^{m \times nk} \).

4. Let \(s \in \mathbb{Z}_q^n \) be sampled uniformly. Is \(G \cdot s \) still a uniform vector in \(\mathbb{Z}_q^n \)? Is it computationally indistinguishable from a uniform vector?

5. Let \(A \leftarrow U(\mathbb{Z}_q^{m \times n}) \) and \(e \) be some error sampled as in the LWE distribution. Let \(s \) be any vector (not necessarily uniform) and let \(u \) be either \(As + e \) or some uniform vector in \(\mathbb{Z}_q^m \). Show that given \((A, u) \) you can construct \((A, u') \) such that \(u' \) is either uniform in \(\mathbb{Z}_q^m \) or is of the form \(As' + e \) for \(s' \) uniform in \(\mathbb{Z}_q^m \).

6. Show that if the LWE\(_{n,m,\ell,k}\) problem holds, then the binary-matrix-LWE\(_{kn,m,\ell,k}\) distribution is indistinguishable from uniform.

7. Is the LWE problem still hard when both \(A \) and \(s \) are binary?

Exercise 5.

Pollard-rho

Let \(\mathcal{G} \) be a cyclic group generated by \(g \), of (known) prime order \(q \), and let \(h \) be an element of \(\mathcal{G} \). Let \(F : \mathcal{G} \to \mathbb{Z}_q \) be a nonzero function, and let us define the function \(H : \mathcal{G} \to \mathcal{G} \) by \(H(\alpha) = \alpha \cdot h \cdot g^{F(\alpha)} \).

We consider the following algorithm (called Pollard \(\rho \) Algorithm).
Pollard ρ Algorithm

Input: $h, g \in \mathbb{G}$

Output: $x \in \{0, \ldots, q - 1\}$ such that $h = g^x$ or fail.

1. $i \leftarrow 1$
2. $x \leftarrow 0, \alpha \leftarrow h$
3. $y \leftarrow F(\alpha); \beta \leftarrow H(\alpha)$
4. while $\alpha \neq \beta$ do
5. $x \leftarrow x + F(\alpha) \mod q; \alpha \leftarrow H(\alpha)$
6. $y \leftarrow y + F(\beta) \mod q; \beta \leftarrow H(\beta)$
7. $y \leftarrow y + F(\beta) \mod q; \beta \leftarrow H(\beta)$
8. $i \leftarrow i + 1$
9. end while
10. if $i < q$ then
11. return $(x - y)/i \mod q$
12. else
13. return fail
14. end if

To study this algorithm, we define the sequence (γ_i) by $\gamma_1 = h$ and $\gamma_{i+1} = H(\gamma_i)$ for $i \geq 1$.

1. Show that in the while loop from lines 4 to 9 of the algorithm, we have $\alpha = \gamma_i = g^xh^i$ and $\beta = \gamma_{2i} = g^{2xh^{2i}}$.

2. Show that if this loop finishes with $i < q$, then the algorithm returns the discrete logarithm of h in basis g.

3. Let j be the smallest integer such that $\gamma_j = \gamma_k$ for $k < j$. Show that $j \leq q + 1$ and that the loop ends with $i < j$.

4. Show that if F is a random function, then the average execution time of the algorithm is in $O(q^{1/2})$ multiplications in \mathbb{G}.
