Exercise 1. **Secure pairing-based signature in the ROM**
In this exercise, we assume that we have two cyclic groups \(G \) and \(G_T \) of the same cardinality \(q \), and a generator \(g \) of \(G \). We also assume that we have a pairing function \(e : G \times G \to G_T \), with the following properties: it is non-degenerate, i.e., \(e(g, g) \neq 1 \); it is bilinear, i.e., \(e(g^a, g^b) = e(g, g)^{ab} \) for all \(a, b \in \mathbb{Z}/q\mathbb{Z} \); it is computable in polynomial-time. Note that the bilinearity property implies that \(e(g^a, g) = e(g, g^a) = e(g, g)^a \) holds for all \(a \in \mathbb{Z}/q\mathbb{Z} \).

1. Show that the Decision Diffie-Hellman problem (DDH) on \(G \) can be solved in polynomial-time.

2. Generalize the Diffie-Hellman key exchange protocol to derive a secure 1-round key exchange protocol between three parties. Formalize the underlying hardness assumption.

3. We consider the following signature scheme (due to Boneh, Lynn and Shacham):

 - **KeyGen** takes as inputs a security parameter and returns \(G, g, q, G_T \) and a description of the generator \(g \) of \(G \). Sample \(x \) uniformly in \(\mathbb{Z}/q\mathbb{Z} \). The verification key is \(vk = g^x \), whereas the signing key is \(sk = x \).
 - **Sign** takes as inputs \(sk \) and a message \(M \in \{0, 1\}^* \). It computes \(h = H(M) \in G \) where \(H \) is a hash function, and returns \(\sigma = h^x \).
 - **Verify** takes as inputs the verification key \(vk = g^x \), a message \(M \) and a signature \(\sigma \), and returns 1 if and only if \(e(\sigma, g) = e(H(M), vk) \).

 Show that this signature scheme is EU-CMA secure under the Computational Diffie Hellman assumption (CDH) relative to \(G \), when \(H(\cdot) \) is modeled as a (full-domain hash) random oracle. Recall that the CDH problem asks to compute \(g^{ab} \) given \(g^a \) and \(g^b \).

Exercise 2. **Chameleon hash functions**
A chameleon hash function is a regular hash function with an additional algorithm **Trap_Coll** that computes collisions when given as input a trapdoor information. More formally, a chameleon hash function is a triple of probabilistic polynomial-time algorithms (\(\text{Gen, Hash, Trap_Coll} \)) with the following specifications:

- **Gen** takes as input a security parameter and returns a public key \(pk \) and a trapdoor \(trap \).

- **Hash** is deterministic; it takes as inputs a public key \(pk \), a message \(M \) and an \(r \) that can be viewed as a random string, and returns \(\text{Hash}(pk; M, r) \).

- **Trap_Coll** takes as inputs \(pk, trap \), a pair \((M_1, r_1)\) and a message \(M_2 \), and returns \(r_2 \) such that \(\text{Hash}(pk; M_1, r_1) = \text{Hash}(pk; M_2, r_2) \). Intuitively, it finds a collision by modifying the random string used to hash. Moreover, we want that if \(r_1 \) is uniform and independent of \(M_1 \) and \(M_2 \), then so is \(r_2 \).

- **Collision resistance**: Given \(pk \) (but not \(trap \)), it must be hard to find \((M_1, r_1) \neq (M_2, r_2)\) such that \(\text{Hash}(pk; M_1, r_1) = \text{Hash}(pk; M_2, r_2) \).

- **Uniformity**: For any two messages \(M_1, M_2 \), the distributions \(\text{Hash}(pk; M_1, r) \) and \(\text{Hash}(pk; M_2, r) \) for \(r \) uniform must be identical.

We consider the following chameleon hash function \(H_{\text{cham}} \):
• Given a security parameter n, algorithm Gen samples (G, g, q) where $G = \langle g \rangle$ is a cyclic group of cardinality q, a prime number. It samples x uniformly in $(\mathbb{Z}/q\mathbb{Z})^\times$ and computes $h = g^x$. It returns $pk = (G, g, q, h)$ and $t = x$.

• To hash $M \in \mathbb{Z}/q\mathbb{Z}$ with the random string $r \in \mathbb{Z}/q\mathbb{Z}$, return $H_{cham}(pk; M, r) = g^{M \cdot h}$.

1. Show that H_{cham} is collision-resistant, under the assumption that the Discrete Logarithm Problem (DLP) is hard for G.

2. Describe a correct algorithm Trap_Coll.

3. Show that h is a generator of G. Derive that H_{cham} satisfies the uniformity property.

Chameleon hashing is used to transform a signature scheme that is existentially unforgeable under static chosen message (stat-EU-CMA) into a signature scheme that is existentially unforgeable under adaptive chosen message (EU-CMA). Stat-EU-CMA security of a signature scheme $(KeyGen, Sign, Verify)$ is defined by the following game:

- The adversary gives to the challenger the messages (M_1, \ldots, M_q) he is querying;
- The challenger replies with a verification key vk and valid signatures (S_1, \ldots, S_q), i.e., satisfying $Verify(vk; M_i, S_i) = 1$ for all i;
- The adversary sends a pair (M^*, S^*) to the challenger;
- The adversary wins the game if $M^* \notin \{M_1, \ldots, M_q\}$ and $Verify(vk; M^*, S^*) = 1$.

The scheme is stat-EU-CMA-secure if no probabilistic polynomial-time adversary wins this game with non-negligible probability. We recall that in the EU-CMA security game, the message queries are sent from the adversary to the challenger after the challenger has made the verification key vk available to the adversary.

We now assume that we have a stat-EU-CMA-secure signature scheme $(KeyGen, Sign, Verify)$ and a secure chameleon hash $(Gen, Hash, Trap_Coll)$. Our goal is to build a signature scheme $(KeyGen', Sign', Verify')$ that is EU-CMA-secure. We define:

- $KeyGen'$: Run $KeyGen$ to get a verification key vk and a secret key sk; Run Gen to get a public key pk and a trapdoor t. Return $vk' = (vk, pk)$ and $sk' = sk$.
- $Sign'$: To sign M using $sk' = sk$, sample a uniform r, compute $h = Hash(pk; M, r)$, and return $S = (r, Sign(sk; h))$.

4. Give a (non-trivial) polynomial-time algorithm $Verify'$ that accepts properly generated signatures.

5. Show that if $(KeyGen, Sign, Verify)$ is stat-EU-CMA-secure and $(Gen, Hash, Trap_Coll)$ is a secure chameleon hash function, then $(KeyGen', Sign', Verify')$ is EU-CMA-secure.