Approx-SVP in Ideal lattices with Pre-Processing

Alice Pellet--Mary and Damien Stehlé

LIP, ENS de Lyon

Caen 2018, June 20
What is this talk about

Time/Approximation factor trade-off for SVP in ideal lattices:

- BKZ algorithm
- [CDPR16,CDW17]
- This work (with $2^{O(n)}$ pre-processing)
A lattice L is a discrete ‘vector space’ over \mathbb{Z}.

\[
\begin{pmatrix}
3 & 0 \\
1 & 2
\end{pmatrix}
\quad \text{and} \quad
\begin{pmatrix}
17 & 4 \\
11 & 2
\end{pmatrix}
\] are two bases of the above lattice.
A lattice L is a discrete ‘vector space’ over \mathbb{Z}. A basis of L is an invertible matrix B such that $L = \{Bx \mid x \in \mathbb{Z}^n\}$.

\[
\begin{pmatrix}
3 & 1 \\
0 & 2
\end{pmatrix}
\quad \text{and} \quad
\begin{pmatrix}
17 & 11 \\
4 & 2
\end{pmatrix}
\]

are two bases of the above lattice.
Lattices

Shortest Vector Problem (SVP)

Find a shortest (in Euclidean norm) non-zero vector. Its Euclidean norm is denoted λ_1.
Approximate Shortest Vector Problem (approx-SVP)

Find a short (in Euclidean norm) non-zero vector.
(e.g. of norm $\leq 2\lambda_1$).
Closest Vector Problem (CVP)

Given a target point t, find a point of the lattice closest to t.
Approximate Closest Vector Problem (approx-CVP)

Given a target point t, find a point of the lattice close to t.
Complexity of SVP/CVP

Applications

SVP and CVP in general lattices are conjectured to be hard to solve both quantumly and classically ⇒ used in cryptography
Complexity of SVP/CVP

Applications

SVP and CVP in general lattices are conjectured to be hard to solve both quantumly and classically \(\Rightarrow \) used in cryptography

Best Time/Approximation trade-off for general lattices: BKZ algorithm
Structured lattices

Improve efficiency of lattice-based crypto using structured lattices.
⇒ E.g. ideal lattices
Structured lattices

Improve efficiency of lattice-based crypto using structured lattices.
⇒ E.g. ideal lattices

Is approx-SVP still hard when restricted to ideal lattices?
SVP in ideal lattices

[CDPR16, CDW17]: Better than BKZ in the quantum setting

Heuristic

This work

- Heuristic
- Pre-processing $2^{O(n)}$, independent of the choice of the ideal (non-uniform algorithm).
This work

- Heuristic
- Pre-processing $2^{O(n)}$, independent of the choice of the ideal (non-uniform algorithm).

Disclaimer: In this talk, only principal ideal lattices
Outline of the talk

1. Definitions and objective

2. The CDPR algorithm

3. This work
First definitions

Notation

\[R = \mathbb{Z}[X]/(X^n + 1) \text{ for } n = 2^k \]
First definitions

Notation

\[R = \mathbb{Z}[X]/(X^n + 1) \text{ for } n = 2^k \]

- **Units:** \(R^\times = \{ a \in R \mid \exists b \in R, \ ab = 1 \} \)
First definitions

Notation

\[R = \mathbb{Z}[X]/(X^n + 1) \text{ for } n = 2^k \]

- Units: \(R^\times = \{ a \in R \mid \exists b \in R, ab = 1 \} \)
- Principal ideals: \(\langle g \rangle = \{ gr \mid r \in R \} \) (i.e. all multiples of \(g \))
 - \(g \) is called a generator of \(\langle g \rangle \)
 - The generators of \(\langle g \rangle \) are exactly the \(ug \) for \(u \in R^\times \)
First definitions

Notation

\[R = \mathbb{Z}[X]/(X^n + 1) \text{ for } n = 2^k \]

- Units: \(R^\times = \{ a \in R \mid \exists b \in R, ab = 1 \} \)
- Principal ideals: \(\langle g \rangle = \{ gr \mid r \in R \} \) (i.e. all multiples of \(g \))
 - \(g \) is called a generator of \(\langle g \rangle \)
 - The generators of \(\langle g \rangle \) are exactly the \(ug \) for \(u \in R^\times \)

Minkowski’s embedding

- \(\zeta \in \mathbb{C} \) primitive \(2n \)-th root of unity (\(\zeta^{2n} = 1 \))
- For \(r \in R \), define
 \[
 \sigma(r) = (r(\zeta), r(\zeta^3), \ldots, r(\zeta^{n-1})) \in \mathbb{C}^{n/2} \cong \mathbb{R}^n
 \]
Geometric and algebraic structures

Notation

$$\sigma(r) = (\tilde{r}_1, \ldots, \tilde{r}_{n/2}) \in \mathbb{C}^{n/2}$$

Geometric structure:

- Euclidean norm: $$\|r\| = \sqrt{\sum_{i=1}^{n/2} |\tilde{r}_i|^2}$$
- $$R \subset \mathbb{C}^{n/2} \cong \mathbb{R}^n$$ is a lattice

$$\langle g \rangle$$ is a sub-lattice of $$R$$.
Geometric and algebraic structures

Notation

\[\sigma(r) = (\tilde{r}_1, \cdots, \tilde{r}_{n/2}) \in \mathbb{C}^{n/2} \]

Geometric structure:

- Euclidean norm: \[\|r\| = \sqrt{\sum_{i=1}^{n/2} |\tilde{r}_i|^2} \]
- \(R \subset \mathbb{C}^{n/2} \cong \mathbb{R}^n \) is a lattice
- \(\langle g \rangle \) is a sub-lattice of \(R \).
Geometric and algebraic structures

Notation

\[\sigma(r) = (\tilde{r}_1, \cdots, \tilde{r}_{n/2}) \in \mathbb{C}^{n/2} \]

Geometric structure:
- Euclidean norm: \(\|r\| = \sqrt{\sum_{i=1}^{n/2} |\tilde{r}_i|^2} \)
- \(R \subset \mathbb{C}^{n/2} \cong \mathbb{R}^n \) is a lattice
- \(\langle g \rangle \) is a sub-lattice of \(R \).

Algebraic structure:
- Algebraic norm: \(\mathcal{N}(r) = \prod_{i=1}^{n/2} |\tilde{r}_i|^2 \in \mathbb{R} \).
Geometric and algebraic structures

Notation

\[\sigma(r) = (\tilde{r}_1, \cdots, \tilde{r}_{n/2}) \in \mathbb{C}^{n/2} \]

Geometric structure:

- Euclidean norm: \[\|r\| = \sqrt{\sum_{i=1}^{n/2} |\tilde{r}_i|^2} \]
- \(R \subset \mathbb{C}^{n/2} \cong \mathbb{R}^n \) is a lattice
- \(\langle g \rangle \) is a sub-lattice of \(R \).

Algebraic structure:

- Algebraic norm: \(\mathcal{N}(r) = \prod_{i=1}^{n/2} |\tilde{r}_i|^2 \in \mathbb{R} \):
 - \(\mathcal{N}(ab) = \mathcal{N}(a) \cdot \mathcal{N}(b) \) for all \(a, b \in R \),
 - \(\mathcal{N}(a) \geq 1 \) and \(\mathcal{N}(a) \in \mathbb{Z} \) for all \(a \in R \setminus \{0\} \),
 - \(\mathcal{N}(u) = 1 \iff u \in R^\times \).
Relations between algebraic/geometric structures

Reminder: \(\sigma(r) = (\tilde{r}_1, \cdots, \tilde{r}_{n/2}) \)

- \(\|r\| = \sqrt{\sum_i |\tilde{r}_i|^2} \)
- \(\mathcal{N}(r) = \prod_i |\tilde{r}_i|^2 \)
Relations between algebraic/geometric structures

Reminder: \(\sigma(r) = (\tilde{r}_1, \cdots, \tilde{r}_{n/2}) \)

- \(\|r\| = \sqrt{\sum_i |\tilde{r}_i|^2} \)
- \(\mathcal{N}(r) = \prod_i |\tilde{r}_i|^2 \)

- Euclidean/algebraic norm:
 - \(\|r\| \text{ small} \Rightarrow \mathcal{N}(r) \text{ relatively small.} \)
 - \(\mathcal{N}(r) \text{ small} \not\Rightarrow \|r\| \text{ relatively small (e.g. } (2^{-50}, 2^{50}))\).
Relations between algebraic/geometric structures

Reminder: \(\sigma(r) = (\tilde{r}_1, \cdots, \tilde{r}_{n/2}) \)

- \(\|r\| = \sqrt{\sum_i |\tilde{r}_i|^2} \)
- \(\mathcal{N}(r) = \prod_i |\tilde{r}_i|^2 \)

- Euclidean/algebraic norm:
 - \(\|r\| \) small \(\Rightarrow \) \(\mathcal{N}(r) \) relatively small.
 - \(\mathcal{N}(r) \) small \(\not\Rightarrow \) \(\|r\| \) relatively small (e.g. \((2^{-50}, 2^{50}) \)).

- \(\lambda_1(\langle g \rangle) = \text{poly}(n) \cdot \mathcal{N}(g)^{1/n} \)
Objective of this talk

Objective

Given a basis of a principal ideal $\langle g \rangle$ and $\alpha \in (0, 1]$,

Find $r \in \langle g \rangle$ such that $\|r\| \leq 2^{\tilde{O}(n^\alpha)} \cdot \lambda_1 = 2^{\tilde{O}(n^\alpha)} \cdot \mathcal{N}(g)^{1/n}$.

The BKZ algorithm can do it in time $2^{\tilde{O}(n^{1-\alpha})}$, can we do better?

Time Approximation factor

$2^{0.5n}$ poly

$2^{0.5n}$ poly
Objective of this talk

Objective

Given a basis of a principal ideal $\langle g \rangle$ and $\alpha \in (0, 1]$, find $r \in \langle g \rangle$ such that $\|r\| \leq 2^\tilde{O}(n^\alpha) \cdot \lambda_1 = 2^\tilde{O}(n^\alpha) \cdot N(g)^{1/n}$.

BKZ algorithm can do it in time $2^\tilde{O}(n^{1-\alpha})$, can we do better?
Outline of the talk

1. Definitions and objective

2. The CDPR algorithm

3. This work
Overview of the CDPR algorithm (on an idea of [CGS14])

Important points

- Large algebraic norm \Rightarrow large Euclidean norm.
- In $\langle g \rangle$, the elements with the smallest algebraic norm are the generators.

[CGS14]: P. Campbell, M. Groves, and D. Shepherd. Soliloquy: A cautionary tale.
[BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields, SODA.
Overview of the CDPR algorithm (on an idea of [CGS14])

Important points

- Large algebraic norm \Rightarrow large Euclidean norm.
- In $\langle g \rangle$, the elements with the smallest algebraic norm are the generators.

The CDPR algorithm: find a generator with a smallest Euclidean norm

[CGS14]: P. Campbell, M. Groves, and D. Shepherd. Soliloquy: A cautionary tale.
[BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields, SODA.
Overview of the CDPR algorithm (on an idea of [CGS14])

Important points

- Large algebraic norm \Rightarrow large Euclidean norm.
- In $\langle g \rangle$, the elements with the smallest algebraic norm are the generators.

The CDPR algorithm: find a generator with a smallest Euclidean norm

- Find a generator g_1 of $\langle g \rangle$
 - [BS16]: quantum time $\text{poly}(n)$
 - [BEFGK17]: classical time $2^{\tilde{O}(\sqrt{n})}$

- Find $u \in R^\times$ which minimizes $\|ug_1\|$.

[CGS14]: P. Campbell, M. Groves, and D. Shepherd. Soliloquy: A cautionary tale.
[BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields, SODA.
The Log unit lattice

Definitions

\[
\text{Log} : \sigma(R) \rightarrow \mathbb{R}^{n/2} \\
(\tilde{r}_1, \cdots, \tilde{r}_{n/2}) \mapsto (\log |\tilde{r}_1|, \cdots, \log |\tilde{r}_{n/2}|)
\]

Let \(1 = (1, \cdots, 1) \) and \(H = 1^\perp \).
The Log unit lattice

Definitions

\[
\text{Log} : \sigma(R) \rightarrow \mathbb{R}^{n/2} \\
(\tilde{r}_1, \cdots, \tilde{r}_{n/2}) \mapsto (\log |\tilde{r}_1|, \cdots, \log |\tilde{r}_{n/2}|)
\]

Let \(\mathbf{1} = (1, \cdots, 1) \) and \(H = \mathbf{1}^\perp \).

Theorem (Dirichlet)

\(\Lambda := \text{Log}(R^\times) \) is a lattice included in \(H \).
The Log unit lattice

Definitions

\[\text{Log} : \sigma(R) \to \mathbb{R}^{n/2} \]
\[(\tilde{r}_1, \cdots, \tilde{r}_{n/2}) \mapsto (\log |\tilde{r}_1|, \cdots, \log |\tilde{r}_{n/2}|) \]

Let \(1 = (1, \cdots, 1) \) and \(H = 1^\perp \).

Theorem (Dirichlet)

\(\Lambda := \text{Log}(R^\times) \) is a lattice included in \(H \).

Write \(\text{Log}(r) = h + a1 \), with \(h \in H \)

- \(||r|| \leq \sqrt{n} \cdot 2^a \cdot 2||h|| \)
- \(a = \frac{\log |\mathcal{N}(r)|}{n} \)
CDPR (upper bound)

Reminder \(\text{Log}(r) = h + a1 \)

- \(\|r\| \leq \sqrt{n} \cdot 2^a \cdot 2\|h\| \)
- \(a = \frac{\log |N(r)|}{n} \)

The CDPR Algorithm:
- Find a generator \(g_1 \) of \(\langle g \rangle \).
 - quantum poly time [BS16]
CDPR (upper bound)

Reminder (Log(r) = h + a1)

- \|r\| \leq \sqrt{n} \cdot 2^a \cdot 2\|h\|
- a = \frac{\log |N(r)|}{n}

The CDPR Algorithm:
- Find a generator \(g_1 \) of \(\langle g \rangle \).
 - quantum poly time [BS16]
CDPR (upper bound)

Reminder \((\Log(r) = h + a\mathbf{1})\)

- \(\|r\| \leq \sqrt{n} \cdot 2^a \cdot 2\|h\|\)
- \(a = \frac{\log |N(r)|}{n}\)

The CDPR Algorithm:
- Find a generator \(g_1\) of \(\langle g \rangle\).
 - quantum poly time [BS16]
CDPR (upper bound)

Reminder \((\text{Log}(r) = h + a\mathbf{1})\)

- \(\|r\| \leq \sqrt{n} \cdot 2^a \cdot 2\|h\|
- \(a = \frac{\log |N(r)|}{n}\)

The CDPR Algorithm:

- Find a generator \(g_1\) of \(\langle g \rangle\).
 - quantum poly time [BS16]
CDPR (upper bound)

Reminder \((\log(r) = h + a1)\)

- \(|r| \leq \sqrt{n} \cdot 2^a \cdot 2^{|h|}\)
- \(a = \frac{\log |\mathcal{N}(r)|}{n}\)

The CDPR Algorithm:
- Find a generator \(g_1\) of \(\langle g \rangle\).
 - quantum poly time [BS16]
CDPR (upper bound)

Reminder \((\text{Log}(r) = h + a\textbf{1})\)

- \(\|r\| \leq \sqrt{n} \cdot 2^a \cdot 2\|h\|\)
- \(a = \frac{\log |\mathcal{N}(r)|}{n}\)

The CDPR Algorithm:
- Find a generator \(g_1\) of \(\langle g \rangle\).
 - quantum poly time [BS16]
- Solve CVP in \(\Lambda\).
CDPR (upper bound)

Reminder ($\log(r) = h + a\mathbf{1}$)
- $\|r\| \leq \sqrt{n} \cdot 2^a \cdot 2\|h\|$
- $a = \frac{\log |N(r)|}{n}$

The CDPR Algorithm:
- Find a generator g_1 of $\langle g \rangle$.
 - quantum poly time [BS16]
- Solve CVP in Λ.
CDPR (upper bound)

Reminder \((\log(r) = h + a1)\)

\[\|r\| \leq \sqrt{n} \cdot 2^a \cdot 2\|h\| \]
\[a = \frac{\log |\mathcal{N}(r)|}{n} \]

The CDPR Algorithm:
- Find a generator \(g_1\) of \(\langle g \rangle\).
 - quantum poly time [BS16]
- Solve CVP in \(\Lambda\).
 - Good basis of \(\Lambda\)
 \[\Rightarrow \text{CVP in poly time} \]
 \[\Rightarrow \|h\| \leq \tilde{O}(\sqrt{n}) \]
CDPR (upper bound)

Reminder ($\log(r) = h + a1$)

- $\|r\| \leq \sqrt{n} \cdot 2^a \cdot 2\|h\|$
- $a = \frac{\log |\mathcal{N}(r)|}{n}$

The CDPR Algorithm:

- Find a generator g_1 of $\langle g \rangle$.
 - quantum poly time [BS16]

- Solve CVP in Λ.
 - Good basis of Λ
 - \Rightarrow CVP in poly time
 - \Rightarrow $\|h\| \leq \tilde{O}(\sqrt{n})$

$$\|ug_1\| \leq \mathcal{N}(ug_1)^{1/n} \cdot 2\tilde{O}(\sqrt{n})$$
CDPR (upper bound)

Reminder \((\log(r) = h + a \mathbf{1})\)

- \(\|r\| \leq \sqrt{n} \cdot 2^a \cdot 2\|h\|\)
- \(a = \frac{\log |\mathcal{N}(r)|}{n}\)
- \(\lambda_1 = \text{poly}(n) \cdot \mathcal{N}(g)^{1/n}\)

The CDPR Algorithm:

- Find a generator \(g_1\) of \(\langle g \rangle\).
 - quantum poly time [BS16]
- Solve CVP in \(\Lambda\).
 - Good basis of \(\Lambda\)
 \(\Rightarrow\) CVP in poly time
 \(\Rightarrow\) \(\|h\| \leq \tilde{O}(\sqrt{n})\)

\[\|ug_1\| \leq \mathcal{N}(ug_1)^{1/n} \cdot 2\tilde{O}(\sqrt{n})\]
\[\leq 2\tilde{O}(\sqrt{n}) \cdot \lambda_1\]
CDPR (upper bound)

Reminder: \(\log(r) = h + a1 \)

- \(\|r\| \leq \sqrt{n} \cdot 2^a \cdot 2\|h\| \)
- \(a = \frac{\log |\mathcal{N}(r)|}{n} \)
- \(\lambda_1 = \text{poly}(n) \cdot \mathcal{N}(g)^{1/n} \)

The CDPR Algorithm:

- Find a generator \(g_1 \) of \(\langle g \rangle \).
 - quantum poly time [BS16]

- Solve CVP in \(\Lambda \).
 - Good basis of \(\Lambda \)
 - CVP in poly time
 - \(\|h\| \leq \tilde{O}(\sqrt{n}) \)

\[
\|ug_1\| \leq \mathcal{N}(ug_1)^{1/n} \cdot 2^{\tilde{O}(\sqrt{n})} \\
\leq 2^{\tilde{O}(\sqrt{n})} \cdot \lambda_1
\]
Outline of the talk

1 Definitions and objective

2 The CDPR algorithm

3 This work
Idea

\[\log(g_1) \]

\[\approx \sqrt{n} \]

\[H \]

\[\log(g_1) + \Lambda \]

\[\Lambda \]
Idea

\[\log(g_1) \]

\[\log(r) \]

\[\approx \sqrt{n} \]

\[\log(g_1) + \Lambda \]

\[\Lambda \]
Idea

\[\log(g_1) \]
\[\log(r) \]
\[\log(rg_1) \]
\[\log(g_1) + \Lambda \]

\[H \]
\[\approx \sqrt{n} \]

\[\Lambda \]

\[1 \]
Idea

\[\text{Log}(g_1) \]

\[H \]

\[t \]

\[\text{Log}(r) \]

\[\Lambda \]
Idea

Log(g_1)

2Log(r)

Log(r)

Log(r)

Λ

H

t
Idea
Idea

$\log(g_1)$

H

t

$h_{\log(r_2)} + \Lambda$

$h_{\log(r)} + \Lambda$

1

Λ
Formalisation

Difficulties

- We cannot subtract $\log(r_i)$
- We cannot add too many $\log(r_i)$'s

\Rightarrow This is not a lattice
Formalisation

Difficulties
- We cannot subtract $\log(r_i)$
- We cannot add too many $\log(r_i)$

\Rightarrow This is not a lattice

We consider the lattice

\[
\begin{array}{c|c}
\Lambda & h_{\log r_1}, \ldots, h_{\log r_n} \\
0 & 1 \quad 1 \\
& \cdots \\
& 1 \\
\end{array}
\]
Difficulties

- We cannot subtract $\log(r_i)$
- We cannot add too many $\log(r_i)$'s

\Rightarrow This is not a lattice

We consider the lattice and CVP target

<table>
<thead>
<tr>
<th>Λ</th>
<th>$h_{\log r_1}, \ldots, h_{\log r_n}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 1 \ldots 1</td>
</tr>
<tr>
<td>-</td>
<td>$-h_{\log g_1}$</td>
</tr>
<tr>
<td>small > 0</td>
<td></td>
</tr>
</tbody>
</table>
Summary

Compute r_1, \ldots, r_n of small algebraic norms $p(n)/2 \tilde{\sim} O(\sqrt{n})$.

Compute a generator of $\langle g \rangle$ poly$(n)/2 \tilde{\sim} O(\sqrt{n})$.

$\Lambda_0 h \log r_1, \ldots, h \log r_n$.

Construct $L :=$ and $t := -h \log g_1 c > 0$.

Solve CVP in L with target t (for some $\alpha \in [0, 1]$) \Rightarrow get a vector $s \in L$ such that $\|s - t\| \leq \tilde{O}(n^\alpha)$.

Write $s = h \log r^*$ for some $r \in \mathbb{R}$ poly(n) $\|rg_1\| \leq 2 \tilde{O}(n^\alpha) \cdot \lambda_1$.

A. Pellet--Mary Approx-SVP in Ideal lattices Caen 2018 20 / 23
Summary

Compute r_1, \ldots, r_n of small algebraic norms
Summary

Compute r_1, \cdots, r_n of small algebraic norms

Compute g_1 a generator of $\langle g \rangle$
Summary

Compute \(r_1, \ldots, r_n \) of small algebraic norms

Compute \(g_1 \) a generator of \(\langle g \rangle \)

\[
\begin{array}{c|c|c}
\wedge & h_{\log r_1}, \ldots, h_{\log r_n} & \hline \\
0 & 1 & \ldots \\
1 & & 1 \\
\end{array}
\]

Construct \(L := \) and \(t := \)

\[
\begin{array}{c|c|c}
\wedge & h_{\log g_1} & \hline \\
0 & 1 & \hline \\
1 & & -h_{\log g_1} \\
\end{array}
\]

\[
t = c > 0
\]
Compute r_1, \ldots, r_n of small algebraic norms

Compute g_1 a generator of $\langle g \rangle$

Construct $L := \Lambda \begin{bmatrix} h_{\log r_1} & \cdots & h_{\log r_n} \\ 1 & 1 & \cdots & 1 \end{bmatrix}$ and $t := \begin{bmatrix} -h_{\log g_1} \\ c > 0 \end{bmatrix}$

Solve CVP in L with target t (for some $\alpha \in [0, 1]$)

⇒ get a vector $s \in L$ such that $\|s - t\| \leq \tilde{O}(n^\alpha)$
Summary

Compute \(r_1, \cdots, r_n \) of small algebraic norms

Compute \(g_1 \) a generator of \(\langle g \rangle \)

<table>
<thead>
<tr>
<th>&</th>
<th>(h_{\log r_1}, \ldots, h_{\log r_n})</th>
<th>(\log g_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>(c > 0)</td>
</tr>
<tr>
<td>1</td>
<td>(\cdots)</td>
<td>1</td>
</tr>
</tbody>
</table>

Construct \(L := \begin{vmatrix}
\& \\
h_{\log r_1}, \ldots, h_{\log r_n} \\
\end{vmatrix} \) and \(t := \begin{vmatrix}
\log g_1 \\
\end{vmatrix} \)

Solve CVP in \(L \) with target \(t \) (for some \(\alpha \in [0, 1] \))
\(\Rightarrow \) get a vector \(s \in L \) such that \(\|s - t\| \leq \tilde{O}(n^\alpha) \)

Write \(s = \begin{vmatrix}
h_{\log r} \\
\end{vmatrix} \) for some \(r \in R \)
Summary

Compute r_1, \ldots, r_n of small algebraic norms

Compute g_1 a generator of $\langle g \rangle$

Construct $L := \wedge \begin{array}{c} \cup \\ 0 \\ 1 \\ \vdots \\ 1 \end{array} \begin{array}{c} h_{\log r_1}, \ldots, h_{\log r_n} \\ 1 \\ \cdots \\ 1 \end{array}$ and $t := \begin{array}{c} -h_{\log g_1} \\ c > 0 \end{array}$

Solve CVP in L with target t (for some $\alpha \in [0, 1]$)
⇒ get a vector $s \in L$ such that $\|s - t\| \leq \tilde{O}(n^\alpha)$

Write $s = \begin{array}{c} h_{\log r} \\ \ast \end{array}$ for some $r \in R$

$\|rg_1\| \leq 2\tilde{O}(n^\alpha) \cdot \lambda_1$
Summary

Compute r_1, \cdots, r_n of small algebraic norms

Compute g_1 a generator of $\langle g \rangle$

Construct $L := \Lambda \begin{bmatrix} h_{\log r_1}, \ldots, h_{\log r_n} \\ 1 & \cdots & 1 \end{bmatrix}$ and $t := -h_{\log g_1}
\begin{bmatrix} \cdots \\ c > 0 \end{bmatrix}$

Solve CVP in L with target t (for some $\alpha \in [0, 1]$)

⇒ get a vector $s \in L$ such that $\|s - t\| \leq \tilde{O}(n^\alpha)$

Write $s = h_{\log r} \begin{bmatrix} \cdots \\ \ast \end{bmatrix}$ for some $r \in R$

$\|rg_1\| \leq 2\tilde{O}(n^\alpha) \cdot \lambda_1$
Compute r_1, \ldots, r_n of small algebraic norms

Compute g_1 a generator of $\langle g \rangle$

Construct $L := \begin{bmatrix} \land & h_{\log r_1}, \ldots, h_{\log r_n} \\ \ast & 1 & \cdots \\ 0 & 1 & \cdots \\ \ast & 1 \end{bmatrix}$ and $t := \begin{bmatrix} -h_{\log g_1} \\ c > 0 \end{bmatrix}$

Solve CVP in L with target t (for some $\alpha \in [0, 1]$)
⇒ get a vector $s \in L$ such that $\|s - t\| \leq \tilde{O}(n^\alpha)$

Write $s = \begin{bmatrix} h_{\log r} \\ \ast \end{bmatrix}$ for some $r \in R$

$\|rg_1\| \leq 2\tilde{O}(n^\alpha) \cdot \lambda_1$
Summary

Compute r_1, \ldots, r_n of small algebraic norms

Compute g_1 a generator of $\langle g \rangle$

\[
\begin{array}{|c|c|}
\hline
\wedge & h_{\log r_1}, \ldots, h_{\log r_n} \\
0 & 1 \\
1 & 1 \\
\hline
\end{array}
\]

Construct $L := \ldots$ and $t := -h_{\log g_1} c > 0$

Solve CVP in L with target t (for some $\alpha \in [0, 1]$)

\Rightarrow get a vector $s \in L$ such that $\|s - t\| \leq \sim\tilde{O}(n^\alpha)$

Write $s = h_{\log r}$ for some $r \in R$

$\|rg_1\| \leq 2\sim\tilde{O}(n^\alpha) \cdot \lambda_1$
How to solve CVP in L?

<table>
<thead>
<tr>
<th>CDPR</th>
<th>This work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good basis of Λ</td>
<td>No good basis of L known</td>
</tr>
</tbody>
</table>

How to solve CVP in L?

<table>
<thead>
<tr>
<th>CDPR</th>
<th>This work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good basis of Λ</td>
<td>No good basis of L known</td>
</tr>
</tbody>
</table>

Key observation

$L := \begin{array}{c|c|c|c}
\Lambda & h_{\log n} & \cdots & h_{\log n} \\
0 & 1 & 1 & \cdots & 1 \\
\end{array}$

does not depend on $\langle g \rangle$

How to solve CVP in L?

<table>
<thead>
<tr>
<th>CDPR</th>
<th>This work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good basis of Λ</td>
<td>No good basis of L known</td>
</tr>
</tbody>
</table>

Key observation

$L := \begin{bmatrix}
\Lambda & h_{\log n}, \ldots, h_{\log n} \\
0 & 1 & 1 \\
& & \ddots \\
& & & 1
\end{bmatrix}$

does not depend on $\langle g \rangle$ \Rightarrow Pre-processing on L

How to solve CVP in L?

<table>
<thead>
<tr>
<th>CDPR</th>
<th>This work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good basis of Λ</td>
<td>No good basis of L known</td>
</tr>
</tbody>
</table>

Key observation

$L := \begin{bmatrix} \Lambda & h_{\log n}, \ldots, h_{\log n} \\ 0 & 1 \\ \vdots & \vdots \\ 1 & \end{bmatrix}$

does not depend on $\langle g \rangle$ \implies Pre-processing on L

[Laa16]:
- Find $s \in L$ such that $\|s - t\| = \tilde{O}(n^\alpha)$
- Time: $2\tilde{O}(n^{1-2\alpha})$ (query) + $2O(n)$ (pre-processing)

Conclusion

<table>
<thead>
<tr>
<th>Approximation</th>
<th>Query time</th>
<th>Pre-processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2\tilde{O}(n^\alpha)$</td>
<td>$2\tilde{O}(n^{1-2\alpha}) + (\text{poly}(n) \text{ or } 2\tilde{O}(\sqrt{n}))$</td>
<td>$2^O(n)$</td>
</tr>
</tbody>
</table>

\[+2^O(n) \text{ Pre-processing / Non-uniform algorithm}\]
Extensions

- Non principal ideals ✓
- Generalization to other number fields ?
- Removing (or testing) the heuristics ?
Extensions

- Non principal ideals ✓
- Generalization to other number fields ?
- Removing (or testing) the heuristics ?

Questions?