$\label{eq:church} \begin{array}{l} \mathsf{Church} \Rightarrow \mathsf{Scott} = \mathsf{PTIME} \\ \texttt{An application of resource sensitive realizability} \end{array}$

Aloïs Brunel

Ecole Normale Supérieure de Lyon

(Joint work with Kazushige Terui)

Background (1/2)

Some well-known factors that can make complexity explodes :

- Non-Linearity : non-linear use of function variables can increase the complexity. We can limit the use of higher-order variables (e.g, using typing systems).
- Nested recursion : when functions are defined by multiple and nested recursions, there is a risk of complexity explosion.
 Data tiering (Leivant) : multiple copies of the binary words algebra, indiced by tiers :

$$\mathbb{W}_0, \mathbb{W}_1, ..., \mathbb{W}_n, ...$$

the output of a function defined by recursion on a variable of tier n lives in a lower tier.

Background (2/2)

- Leivant and Marion (TLCA '93) used the concept of data tiering in a λ -calculus to characterize Ptime. One base (concrete) \mathbb{W} added to λ -calculus, where recursion is not allowed, and the (logical) binary algebra of Church words. The functions from Church words to \mathbb{W} are exactly the Ptime functions.
- We would like the characterization fully logical : replace W by a logical data structure (Scott words) defined in a linear logic based type system.
- Realizability semantics : Dal Lago & Hofmann
- Try to apply this proof technique to our system

Syntax of **DIAL**_{lin}

 DIAL_{lin} is a type system for the pure λ -calculus.

- Terms $t, u ::= x \mid \lambda x.t \mid tu$
- Reduction $(\lambda x.t)u \rightarrow_{\beta} t[u/x]$
- If it exists, we denote by $\llbracket t \rrbracket_{\beta}$ the β -normal form of t.

Linear formulas and general formulas

$$L, M ::= \alpha \mid \forall \alpha L \mid \mu \alpha L^{(*)} \mid L \multimap M$$

$$A, B ::= L \mid \forall \alpha A \mid L \multimap B \mid A \Rightarrow B.$$
(*) : only if α occurs only positively in L.

Thus the linear formulas are the formulas that do not contain any \Rightarrow .

Typing rules of DIAL_{lin}

Church numerals and words

• Church naturals :

$$N^{\bullet} \equiv \forall \alpha (\alpha \multimap \alpha) \Rightarrow (\alpha \multimap \alpha)$$

$$n^{\bullet} = \lambda fa. \underbrace{f(...f(a)...)}_{n \text{ times}}$$

$$mult^{\bullet} = \lambda n \lambda m \lambda f. n(m f)$$

$$mon_{n}^{\bullet} = \lambda x \lambda f. \underbrace{x(...(x f))}_{n \text{ times}} : N^{\bullet} \Rightarrow N^{\bullet}$$

• Church words :

$$W^{\bullet} \equiv \forall \alpha (\alpha \multimap \alpha) \Rightarrow (\alpha \multimap \alpha) \Rightarrow (\alpha \multimap \alpha)$$
$$w^{\bullet} = \lambda f_0 \lambda f_1 \lambda a. f_{i_1} (... f_{i_n} (a) ...)$$

 Iteration : only linear functions (of type α → α where α is linear). Hence we cannot encode exponentiation which needs to iterate a function like

$$double = \lambda n.\lambda fa.n f(n f a) : \mathbb{N}^{\bullet} \Rightarrow \mathbb{N}^{\bullet}$$

Scott numerals

Scott numerals are represented by the linear type
 N° ≡ μβ∀α(β → α) → (α → α). They have constant time successor, predecessor and discriminator, but don't support iteration.

$$\epsilon^{\circ} = \lambda xyz.z$$

$$(0w)^{\circ} = \lambda xyz.x(w^{\circ})$$

$$(1w)^{\circ} = \lambda xyz.y(w^{\circ})$$

$$queue^{\circ} = \lambda w.(w(\lambda x.x)(\lambda x.x)) : W^{\circ} - W^{\circ}$$

e.g
$$(101)^{\circ} = \lambda xyz.y(\lambda xyz.x(\lambda xyz.y(\lambda xyz.z)))$$

 $\bullet\,$ The only inhabitants of W° are scott words $w^\circ.$

Scott words

Scott words are represented by the linear type
 W° ≡ μβ∀α(β − α) − (β − α) − (α − α). They have constant time successor, predecessor and discriminator, but don't support iteration.

$$\begin{aligned} \epsilon^{\circ} &= \lambda xyz.z \\ (0w)^{\circ} &= \lambda xyz.x(w^{\circ}) \\ (1w)^{\circ} &= \lambda xyz.y(w^{\circ}) \\ queue^{\circ} &= \lambda w.(w(\lambda x.x)(\lambda x.x)) : W^{\circ} \multimap W^{\circ} \end{aligned}$$

$$e.g \quad (101)^{\circ} = \lambda xyz.y(\lambda xyz.x(\lambda xyz.y(\lambda xyz.z)))$$

 $\bullet\,$ The only inhabitants of W° are scott words w^\circ.

Results

Informally, we claim that

 $\mathsf{W}^{\bullet} \Rightarrow \mathsf{W}^{\circ} = \mathsf{PTIME}$

- W[•] ⇒ W[°] is expressive enough : we can type Church monomials and we can encode the one-step transition function of a Turing Machine using a linear type, we can then iterate it using a monomial.
 → PTIME-completeness
- W[•] ⇒ W[°] is not too permissive : we cannot type exponentials.
 → PTIME-soundness

Results

PTIME-completeness

For every polynomial time function $f : \{0, 1\}^* \to \{0, 1\}^*$, there exists a λ -term t_f of type $W^{\bullet} \Rightarrow W^{\circ}$ in **DIAL**_{lin} such that given $w \in \{0, 1\}^*$, we have

$$\llbracket t_{\mathsf{f}} \mathsf{w}^{\bullet} \rrbracket_{\beta} = \mathsf{f}(\mathsf{w})^{\circ}$$

 \rightarrow usual encoding of Turing Machines in DIAL_{lin}

PTIME-soundness

For every λ -term t of type $W^{\bullet} \Rightarrow W^{\circ}$, the associated function $f_t : \{0,1\}^* \rightarrow \{0,1\}^*$ defined by

$$f_t(w_1) = w_2 \Leftrightarrow \llbracket t w_1^{\bullet} \rrbracket_{\beta} = w_2^{\circ}$$

is a polynomial time function.

Results

PTIME-completeness

For every polynomial time function $f : \{0, 1\}^* \to \{0, 1\}^*$, there exists a λ -term t_f of type $W^{\bullet} \Rightarrow W^{\circ}$ in **DIAL**_{lin} such that given $w \in \{0, 1\}^*$, we have

$$\llbracket t_{\mathsf{f}} \mathsf{w}^{\bullet} \rrbracket_{\beta} = \mathsf{f}(\mathsf{w})^{\circ}$$

 \rightarrow usual encoding of Turing Machines in DIAL_{lin}

PTIME-soundness

For every λ -term t of type $W^{\bullet} \Rightarrow W^{\circ}$, the associated function $f_t : \{0, 1\}^* \rightarrow \{0, 1\}^*$ defined by

$$f_t(w_1) = w_2 \Leftrightarrow \llbracket t w_1^{\bullet} \rrbracket_{\beta} = w_2^{\circ}$$

is a polynomial time function.

Weak call-by-value and time measure (Dal Lago & Martini) (1/3)

• Terms
$$t, u ::= x \mid \lambda x.t \mid tu$$

- Values $v ::= x |\lambda x.t|$
- Reduction $\frac{t_1 \to t_2}{(\lambda x.t)v \to t[v/x]} \qquad \frac{t_1 \to t_2}{t_1 u \to t_2 u} \qquad \frac{t_1 \to t_2}{ut_1 \to ut_2}$
- Notations : We note |t| the size of t. We denote by t ↓ the fact that t normalizes for this strategy. If it exists, [[t]]_{CBV} is the normal form of t for this strategy (in contrast to [[t]]_β which is the β-normal form).

Weak call-by-value and time measure (Dal Lago & Martini) (2/3)

Cost measure

$$\frac{t \to u \quad n = \max\{|u| - |t|, 1\}}{t \xrightarrow{n} u} \qquad \frac{s \xrightarrow{n} t \quad t \xrightarrow{m} u}{s \xrightarrow{n+m} u}$$

If the variable x is affine in t (that is, x appears at most once in t), then

$$(\lambda x.t)u \to t[u/x]$$

$$(n^{\bullet}g) \rightarrow (\lambda a.(\underbrace{g...(g}_{n \text{ times}} a)...))$$

Weak call-by-value and time measure (Dal Lago & Martini) (2/3)

Cost measure

$$\frac{t \to u \quad n = max\{|u| - |t|, 1\}}{t \xrightarrow{n} u} \qquad \frac{s \xrightarrow{n} t \quad t \xrightarrow{m} u}{s \xrightarrow{n+m} u}$$

If the variable x is affine in t (that is, x appears at most once in t), then

$$(\lambda x.t)u \stackrel{1}{\longrightarrow} t[u/x]$$

$$(\mathsf{n}^{\bullet}g) \rightarrow (\lambda a.(\underbrace{g...(g}_{n \text{ times}} a)...))$$

Weak call-by-value and time measure (Dal Lago & Martini) (2/3)

• Cost measure

$$\frac{t}{t \xrightarrow{0} t} \frac{t \rightarrow u \quad n = max\{|u| - |t|, 1\}}{t \xrightarrow{n} u} \qquad \frac{s \xrightarrow{n} t \quad t \xrightarrow{m} u}{s \xrightarrow{n+m} u}$$

If the variable x is affine in t (that is, x appears at most once in t), then

$$(\lambda x.t)u \xrightarrow{1} t[u/x]$$

$$(\lambda fa.(\underbrace{f...(f}_{n \text{ times}} a)...))g \xrightarrow{(n \times |g|+2)-(n+|g|+3)} (\lambda a.(\underbrace{g...(g}_{n \text{ times}} a)...))$$

Weak call-by-value and time measure (Dal Lago & Martini) (2/3)

Cost measure

$$\frac{t \to u \quad n = max\{|u| - |t|, 1\}}{t \xrightarrow{n} u} \qquad \frac{s \xrightarrow{n} t \quad t \xrightarrow{m} u}{s \xrightarrow{n+m} u}$$

If the variable x is affine in t (that is, x appears at most once in t), then

$$(\lambda x.t)u \xrightarrow{1} t[u/x]$$

$$(\mathsf{n}^{\bullet}g) \xrightarrow{((n-1)\times|g|-|g|-1)} (\lambda a.(\underbrace{g...(g}_{n \text{ times}} a)...))$$

Weak call-by-value and time measure (Dal Lago & Martini) (3/3)

If $t \downarrow$ then there exists a unique $n \in \mathbb{N}$ such that $t \xrightarrow{n} \llbracket t \rrbracket_{CBV}$. We denote it by Time(t).

Theorem (2006, Dal Lago& Martini)

There exists a Turing machine M_{eval} with the following property : given a λ -term t such that $t \Downarrow$ and TS(t) = Time(t) + |t| = n, M_{eval} computes $[t_{CBV}]_{CBV}$ in time $O(n^4)$.

ightarrow allows us to reason only on λ -calculus instead of Turing Machines.

How is it proved?

PTIME-Soundness

For every λ -term t of type W[•] \Rightarrow W[°], the associated function $f_t : \{0,1\}^* \rightarrow \{0,1\}^*$ defined by

$$f_t(w_1) = w_2 \Leftrightarrow \llbracket t w_1^{\bullet} \rrbracket_{\beta} = w_2^{\circ}$$

is a polynomial time function.

This is proved in two steps :

 Each bit of the result [[tw]]_β can be computed in polynomial time (using weak call-by-value strategy).

② The length of $[tw]_{\beta}$ is polynomial of |w| (not proved here).

Each of these statements is proved using a variant of Dal Lago & Hofmann realizability technique.

How is it proved?

PTIME-Soundness

For every λ -term t of type $W^{\bullet} \Rightarrow W^{\circ}$, the associated function $f_t : \{0,1\}^* \rightarrow \{0,1\}^*$ defined by

$$f_t(w_1) = w_2 \Leftrightarrow \llbracket t w_1^{\bullet} \rrbracket_{\beta} = w_2^{\circ}$$

is a polynomial time function.

This is proved in two steps :

- Each bit of the result [[tw]]_β can be computed in polynomial time (using weak call-by-value strategy).
- ② The length of $[tw]_{\beta}$ is polynomial of |w| (not proved here).

Each of these statements is proved using a variant of Dal Lago & Hofmann realizability technique.

How is it proved?

PTIME-Soundness

For every λ -term t of type $W^{\bullet} \Rightarrow W^{\circ}$, the associated function $f_t : \{0,1\}^* \rightarrow \{0,1\}^*$ defined by

$$f_t(w_1) = w_2 \Leftrightarrow \llbracket t w_1^{\bullet} \rrbracket_{\beta} = w_2^{\circ}$$

is a polynomial time function.

This is proved in two steps :

- Each bit of the result [[tw]]_β can be computed in polynomial time (using weak call-by-value strategy).
- 2 The length of $[tw]_{\beta}$ is polynomial of |w| (not proved here).

Each of these statements is proved using a variant of Dal Lago & Hofmann realizability technique.

The core of the realizability framework

Realizability is used to capture computational properties and to give meaning to the logic.

- A language Λ of *realizers* : the programs we want to state properties on. In Dal Lago& Hofmann, realizers are closed values for the WCBV. Here we take all the closed λ-terms.
- A relation t ⊨ A, where t is a realizer and A a DIAL_{lin} formula, defined only by the structure of A and the computational behaviour of t. This relation informally means
 "t is a program that behaves with respect to the specification A"
- An adequacy theorem : "If $\vdash t : A$ then $t \Vdash A$ ".

The core of the realizability framework

- A language Λ of *realizers*: the programs we want to state properties on. In Dal Lago & Hofmann, realizers are closed values for the WCBV. Here we take all the closed λ-terms.
- A set Π of *majorizers*, used to impose resource bound on the realizers. In Dal Lago& Hofmann, Π can be any resource monoids. Here we take higher-order additive terms.
- A relation (t, p) ⊢ A, where t is a realizer, p a majorizer and A a DIAL_{lin} formula. This means
 "t is a program whose specification is A and that uses at most p resources to run"
- An adequacy theorem : "If $\vdash t : A$ then there exists p such that $(t, p) \Vdash A$ ".

Dal Lago & Hofmann's realizability

Realizers are closed values.

The set of majorizers is a resource monoid $(M, +, 0, \leq, D)$:

- $(M, +, 0, \leq)$ is a preordered commutative monoid.
- D(.,.) is a kind of distance between elements of M.

Example : $(\mathbb{N}, +, 0, \leq, (x, y) \mapsto |y - x|)$.

The arrow construction : $t, p \Vdash A \multimap B$ iff for every argument $u, q \Vdash A$, we have :

- The result is bounded by some majorizer $r : \llbracket tu \rrbracket, r \Vdash B$
- The time needed for the computation of this result is bounded :

$$Time(tu) \leq D(p+q,r)$$

Higher-order additive terms as resources representation

- Simply typed λ -terms with base constants :
 - Integers (base type), n : o.
 - Addition on integers, $+: o \rightarrow o \rightarrow o$.
- We identify terms by $\alpha\beta\eta$ -equivalence and usual arithmetic equivalences.
- Examples :

$$\lambda n.(n+20): o \to o \lambda f \lambda n.(\underbrace{f(n)+f(n)+\ldots+f(n)}_{1000 \ times}): (o \to o) \to o \to o$$

- For every higher-order additive term p, we can lower it to base type o. The lowering operator is denoted by ↓ p.
- A last notation : $p + n = \lambda x_1 \dots \lambda x_n . (p(x_1, \dots, x_n) + n).$

o-translation (1/2)

 Informally, t, p ⊢ A we require that the higher-order skeleton of p follows the structure of A. That is, we define a traduction o(A) of the formula A of DIAL_{lin} into the simple types.

• o(L) = o : we only need integers to bound linear realizers runtime.

•
$$o(L \multimap B) = o(B)$$

•
$$o(A \Rightarrow B) = o(A) \rightarrow o(B)$$

•
$$o(orall lpha. A) = o(A)$$
 : the quantifier is linear

o-translation (2/2)

For example, the translation of the Scott word type (which is a linear type) is

$$o(\mathsf{W}^\circ) = o$$

the translation of the Church word type is

$$o(\mathsf{W}^{\bullet}) = o(\forall \alpha. (\alpha \multimap \alpha) \Rightarrow (\alpha \multimap \alpha) \Rightarrow \alpha \multimap \alpha)$$
$$= o \to o \to o$$

Saturated Sets

au-saturated set

If τ is a higher-order additive type, we say that $X \subseteq \Lambda \times \Pi$ is saturated set of type τ if whenever $(t, p) \in X$, p is a closed higher order additive term of type τ and the following holds :

- $TS(t) \leq \downarrow p$.
- $(t, p+n) \in X$ for every $n \in \mathbb{N}$.
- Others properties that mimic structural rules and identity (weakening, contraction, exchange, identity). For example, the exchange condition implies : If (λx₁x₂.t, p) ∈ X then (λx₂x₁.t, p) ∈ X.

In particular, $\{(t, n) \mid t \Downarrow$ and $TS(t) \le n \}$ is the greatest o saturated set.

(Realizability)

We define the relation $t, p \Vdash_{\eta} A$, where $t \in \Lambda$, p is a closed higher order additive term of type o(A) and η is a valuation (from atoms to *o*-saturated set).

The definition proceeds by induction on A.

- $t, n \Vdash_{\eta} \alpha$ iff $(t, n) \in \eta(\alpha)$.
- $t, p \Vdash_{\eta} L \multimap A$ iff $TS(t) \leq \downarrow p$ and $u, m \Vdash_{\eta} L$ implies $tu, p + m \Vdash_{\eta} A$ for every u, m.

(Realizability)

We define the relation $t, p \Vdash_{\eta} A$, where $t \in \Lambda$, p is a closed higher order additive term of type o(A) and η is a valuation (from atoms to *o*-saturated set).

The definition proceeds by induction on A.

- $t, n \Vdash_{\eta} \alpha$ iff $(t, n) \in \eta(\alpha)$.
- $t, p \Vdash_{\eta} L \multimap A$ iff $TS(t) \leq \downarrow p$ and $u, m \Vdash_{\eta} L$ implies $tu, p + m \Vdash_{\eta} A$ for every u, m.

(Realizability)

We define the relation $t, p \Vdash_{\eta} A$, where $t \in \Lambda$, p is a closed higher order additive term of type o(A) and η is a valuation (from atoms to *o*-saturated set).

The definition proceeds by induction on A.

- $t, n \Vdash_{\eta} \alpha$ iff $(t, n) \in \eta(\alpha)$.
- $t, p \Vdash_{\eta} L \multimap A$ iff $TS(t) \leq \downarrow p$ and $u, m \Vdash_{\eta} L$ implies $tu, p + m \Vdash_{\eta} A$ for every u, m.

(Realizability)

We define the relation $t, p \Vdash_{\eta} A$, where $t \in \Lambda$, p is a closed higher order additive term of type o(A) and η is a valuation (from atoms to *o*-saturated set).

The definition proceeds by induction on A.

- $t, n \Vdash_{\eta} \alpha$ iff $(t, n) \in \eta(\alpha)$.
- $t, p \Vdash_{\eta} L \multimap A$ iff $TS(t) \leq \downarrow p$ and $u, m \Vdash_{\eta} L$ implies $tu, p + m \Vdash_{\eta} A$ for every u, m.

Time Realizability : the remaining cases

• The universal quantifier construction is :

 $(t,p) \Vdash_{\eta} orall lpha A$ iff for every o-saturated set X, $(t,p) \Vdash_{\eta \{ lpha \leftarrow X \}} A$

ightarrow corresponds to a linear quantifier

• We can use a well chosen Tarski least fixpoint on some operator to define the interpretation of the μ construction and to obtain that :

$$\rightarrow \quad (t,p) \Vdash_{\eta} \mu \alpha L \Leftrightarrow (t,p) \Vdash_{\eta} L[\mu \alpha L/\alpha]$$

Time Realizability : the remaining cases

• The universal quantifier construction is :

 $(t,p) \Vdash_{\eta} orall lpha A$ iff for every o-saturated set X, $(t,p) \Vdash_{\eta \{ lpha \leftarrow X \}} A$

ightarrow corresponds to a linear quantifier

• We can use a well chosen Tarski least fixpoint on some operator to define the interpretation of the μ construction and to obtain that :

$$\rightarrow \quad (t,p) \Vdash_{\eta} \mu \alpha L \Leftrightarrow (t,p) \Vdash_{\eta} L[\mu \alpha L/\alpha]$$

Time Realizability

- We can prove that for each formula A, the set of (t, p) such that $t, p \Vdash A$ is o(A)-saturated.
- In particular, $t, p \Vdash_{\eta} A$ implies $TS(t) \leq \downarrow p$.

• For every
$$n \in \mathbb{N}$$
, we have $n^{\bullet}, p_n \Vdash \mathbb{N}^{\bullet}$ with $p_n = \lambda z.n(z+3) + 3 : o \to o$

• For every
$$w \in \{0,1\}^n$$
, we have $w^{\bullet}, q_w \Vdash W^{\bullet}$ with $q_w = \lambda z_0 z_1 \cdot |w| (z_0 + z_1 + 3) + 3 : o \to o \to o$

Time Realizability : adequacy lemma

Adequacy (very simplified version)

If $\vdash t : A$ is derivable in **DIAL**_{lin}, then there exists a majorizer p : o(A) such that for any valuation η we have $t, p \Vdash_{\eta} A$

Applying adequacy (1/2)

We have observed that every Church word w[•] is bounded by a linear majorizer $q_w = \lambda z_0 z_1 . |w|(z_0 + z_1 + 3) + 3$.

Weak soundness

Let L be a linear formula. If we have $\vdash t : W^{\bullet} \Rightarrow L$, then there exists a polynomial P such that for every $w \in \{0, 1\}^*$, $Time(tw^{\bullet}) \leq P(|w|)$.

If
$$w \in \{0,1\}^*$$
, then because of adequacy, there is some $p: (o \to o \to o) \to o$ such that $t, p \Vdash W^\bullet \Rightarrow L$ then $tw^\bullet, p(q_w) \Vdash L$. And in particular $TS(tw^\bullet) \leq p(q_w)$.

But we can show that $p(q_w)$ is polynomial in |w|.

Applying adequacy (2/2)

We define booleans : $B_2^\circ = \forall \alpha. \alpha \multimap \alpha \multimap \alpha$, $b_0^\circ = \lambda xy. x$ and $b_1^\circ = \lambda xy. y$.

P-soundness for predicates

If $t: W^{\bullet} \Rightarrow B_2^{\circ}$, then the predicate $f_t: \{0, 1\}^* \to \{0, 1\}$ defined by $f_t(w) = 1 \Leftrightarrow \llbracket tw^{\bullet} \rrbracket_{\beta} = b_1^{\circ}$ is a polynomial time predicate.

This is basically because when $\lambda x.txb_0^{\circ}b_1^{\circ}: W^{\bullet} \Rightarrow B_2^{\circ}$ and because $(\lambda x.txb_0^{\circ}b_1^{\circ})w^{\bullet}$ reduces either to b_0° or b_1° by the weak call-by-value strategy.

- Using the same kind of trick, for each t : W[●] ⇒ W[◦], and for each w ∈ {0,1}*, we can compute in polynomial time each bit of the result tw[●].
- We can prove that the size of the result [[tw[•]]]_β, that is the number of bits of the output word, is bounded by a polynomial in the size of |w| (using another realizability argument).

Conclusion and remaining questions

We have used a variant of Dal Lago & Hofmann realizability framework to prove that in $DIAL_{lin}$, $Church \Rightarrow Scott = Ptime$, which recasts the original result of Leivant and Marion.

Questions :

- Can we drop the restriction on $-\infty$?
- We have to deal with a dual type system. Can we deal directly with the ! connective.
- Saturation by biorthogonality?
- Can we find other typing systems to accomodate different complexity classes like **PSPACE**?

Thank you!

Comparisons with Dal Lago & Hofmann realizability

In Dal Lago & Hofmann realizability : realizers are closed values. The definition would be

- $t, p \Vdash A \Rightarrow B$ iff every time $u, q \Vdash A$ then
 - $[[tu]]_{CBV}, p(q) \Vdash B$
 - $TS(tu) \leq \downarrow (p(q))$

• $t, p \Vdash A \Rightarrow B$ iff $TS(t) \leq \downarrow p$ and $u, q \Vdash B$ implies $tu, p(q) \Vdash B$ for every u, q.

Comparisons with Dal Lago & Hofmann realizability

In Dal Lago & Hofmann realizability : realizers are closed values. The definition would be

- $t, p \Vdash A \Rightarrow B$ iff every time $u, q \Vdash A$ then there exists some $\overline{p} : o(B)$ such that
 - $\llbracket tu \rrbracket_{CBV}, \overline{p} \Vdash B$
 - $\bar{p} \leq p(q)$
 - $TS(tu) + \downarrow \bar{p} \leq \downarrow (p(q))$

• $t, p \Vdash A \Rightarrow B$ iff $TS(t) \leq \downarrow p$ and $u, q \Vdash B$ implies $tu, p(q) \Vdash B$ for every u, q.