Church \Rightarrow Scott $=$ PTIME
 An application of resource sensitive realizability

Aloïs Brunel

Ecole Normale Supérieure de Lyon
(Joint work with Kazushige Terui)

Background (1/2)

Some well-known factors that can make complexity explodes:

- Non-Linearity: non-linear use of function variables can increase the complexity. We can limit the use of higher-order variables (e.g, using typing systems).
- Nested recursion : when functions are defined by multiple and nested recursions, there is a risk of complexity explosion.
Data tiering (Leivant) : multiple copies of the binary words algebra, indiced by tiers :

$$
\mathbb{W}_{0}, \mathbb{W}_{1}, \ldots, \mathbb{W}_{n}, \ldots
$$

the output of a function defined by recursion on a variable of tier n lives in a lower tier.

Background (2/2)

- Leivant and Marion (TLCA '93) used the concept of data tiering in a λ-calculus to characterize Ptime. One base (concrete) \mathbb{W} added to λ-calculus, where recursion is not allowed, and the (logical) binary algebra of Church words. The functions from Church words to \mathbb{W} are exactly the Ptime functions.
- We would like the characterization fully logical : replace \mathbb{W} by a logical data structure (Scott words) defined in a linear logic based type system.
- Realizability semantics: Dal Lago \& Hofmann
- Try to apply this proof technique to our system

Syntax of DIAL ${ }_{\text {lin }}$

DIAL ${ }_{\text {lin }}$ is a type system for the pure λ-calculus.

- Terms

$$
\begin{array}{r}
t, u::=x|\lambda x . t| t u \\
\quad(\lambda x . t) u \rightarrow_{\beta} t[u / x]
\end{array}
$$

- Reduction
- If it exists, we denote by $\llbracket t \rrbracket_{\beta}$ the β-normal form of t.

Linear formulas and general formulas

$$
\begin{aligned}
& L, M::=\alpha|\forall \alpha L| \mu \alpha L^{(*)} \mid L \multimap M \\
& A, B::=L|\forall \alpha A| L \multimap B \mid A \Rightarrow B .
\end{aligned}
$$

$(*)$: only if α occurs only positively in L.
Thus the linear formulas are the formulas that do not contain any \Rightarrow.

Typing rules of $D I A L_{\text {lin }}$

affine variables
typing judgement :
non-linear variables

$$
\begin{array}{cc}
\frac{\overline{x: A ; \vdash x: A}(a x 1)}{} & \overline{; x: L \vdash x: L}(a x 2) \\
\frac{\Gamma ; \Delta \vdash t: \mu \alpha L}{\Gamma ; \Delta \vdash t: L[\mu \alpha L / \alpha]}\left(\mu_{e}\right) & \frac{\Gamma ; \Delta \vdash t: L[\mu \alpha L / \alpha]}{\Gamma ; \Delta \vdash t: \mu \alpha L}\left(\mu_{i}\right) \\
\frac{\Gamma ; \Delta \vdash t: A \quad \alpha \notin F V(\Gamma ; \Delta)}{\Gamma ; \Delta \vdash t: \forall \alpha A}\left(\forall_{i}\right) & \frac{\Gamma ; \Delta \vdash t: \forall \alpha A}{\Gamma ; \Delta \vdash t: A[L / \alpha]}\left(\forall_{e}\right) \\
\frac{\Gamma_{1} ; \Delta \vdash t: A \Rightarrow B \quad \Gamma_{2} ; \vdash u: A}{\Gamma_{1}, \Gamma_{2} ; \Delta \vdash t u: B}\left(\Rightarrow_{e}\right) & \frac{\Gamma, z: A ; \Delta \vdash t: B}{\Gamma ; \Delta \vdash \lambda z t: A \Rightarrow B}\left(\Rightarrow_{i}\right) \\
\frac{\Gamma_{1} ; \Delta_{1} \vdash t: L \multimap B \quad \Gamma_{2} ; \Delta_{2} \vdash u: L}{\Gamma_{1}, \Gamma_{2} ; \Delta_{1}, \Delta_{2} \vdash t u: B}\left(\odot_{e}\right) & \frac{\Gamma ; \Delta, z: L \vdash t: B}{\Gamma ; \Delta \vdash \lambda z t: L \multimap B}\left(\odot_{i}\right) \\
\frac{\Gamma, x: A, y: A ; \Delta \vdash t: B}{\Gamma, z: A ; \Delta \vdash t[z / x, z / y]: B}(\text { Contr }) & \frac{\Gamma ; \Delta, x: L \vdash t: B}{\Gamma, x: L ; \Delta \vdash t: B}(\text { Derel }) \quad \frac{\Gamma ; \Delta \vdash t: B}{\Gamma, \Gamma^{\prime} ; \Delta, \Delta^{\prime} \vdash t: B}(\text { Weak })
\end{array}
$$

Typing rules of $D I A L_{\text {lin }}$

affine variables
typing judgement :

$$
\underbrace{\Gamma}_{\text {non-linear variables }}
$$

$$
\overbrace{\Delta} \vdash t: A
$$

$$
\frac{\Gamma ; \Delta \vdash t: \forall \alpha A}{\Gamma ; \Delta \vdash t: A[L / \alpha]}\left(\forall_{e}\right)
$$

$$
\begin{gathered}
\frac{\Gamma_{1} ; \Delta \vdash t: A \Rightarrow B \quad \Gamma_{2} ; \vdash u: A}{\Gamma_{1}, \Gamma_{2} ; \Delta \vdash t u: B}(\Rightarrow e \\
\frac{\Gamma, x: A, y: A ; \Delta \vdash t: B}{\Gamma, z: A ; \Delta \vdash t[z / x, z / y]: B}(\text { Contr })
\end{gathered}
$$

Church numerals and words

- Church naturals :

$$
\begin{aligned}
\mathrm{N}^{\bullet} & \equiv \forall \alpha(\alpha \multimap \alpha) \Rightarrow(\alpha \multimap \alpha) \\
\mathrm{n}^{\bullet} & =\lambda f a \cdot \underbrace{f(\ldots f}_{n \text { times }}(a) \ldots) \\
\text { mult }^{\bullet} & =\lambda n \lambda m \lambda f . n(m f) \\
\operatorname{mon}_{n}^{\bullet} & =\lambda x \lambda f \cdot \underbrace{x(\ldots(x}_{n \text { times }} f)): \mathrm{N}^{\bullet} \Rightarrow \mathrm{N}^{\bullet}
\end{aligned}
$$

- Church words :

$$
\begin{aligned}
\mathrm{W}^{\bullet} & \equiv \forall \alpha(\alpha \multimap \alpha) \Rightarrow(\alpha \multimap \alpha) \Rightarrow(\alpha \multimap \alpha) \\
\mathrm{w}^{\bullet} & =\lambda f_{0} \lambda f_{1} \lambda a . f_{i_{1}}\left(\ldots f_{i_{n}}(a) \ldots\right)
\end{aligned}
$$

- Iteration: only linear functions (of type $\alpha \multimap \alpha$ where α is linear). Hence we cannot encode exponentiation which needs to iterate a function like

$$
\text { double }=\lambda n . \lambda f a . n f(n f a): N^{\bullet} \Rightarrow N^{\bullet}
$$

Scott numerals

- Scott numerals are represented by the linear type $\mathrm{N}^{\circ} \equiv \mu \beta \forall \alpha(\beta \multimap \alpha) \multimap(\alpha \multimap \alpha)$. They have constant time successor, predecessor and discriminator, but don't support iteration.

$$
\begin{aligned}
\epsilon^{\circ} & =\lambda x y z \cdot z \\
(0 \mathrm{w})^{\circ} & =\lambda x y z \cdot x\left(\mathrm{w}^{\circ}\right) \\
(1 \mathrm{w})^{\circ} & =\lambda x y z \cdot y\left(\mathrm{w}^{\circ}\right) \\
\text { queue } & \\
& =\lambda w \cdot(w(\lambda x \cdot x)(\lambda x \cdot x)): \mathrm{W}^{\circ} \multimap \mathrm{W}^{\circ} \\
\text { e.g }(101)^{\circ} & =\lambda x y z \cdot y(\lambda x y z \cdot x(\lambda x y z \cdot y(\lambda x y z \cdot z)))
\end{aligned}
$$

- The only inhabitants of W° are scott words w°.

Scott words

- Scott words are represented by the linear type $\mathrm{W}^{\circ} \equiv \mu \beta \forall \alpha(\beta \multimap \alpha) \multimap(\beta \multimap \alpha) \multimap(\alpha \multimap \alpha)$. They have constant time successor, predecessor and discriminator, but don't support iteration.

$$
\begin{aligned}
\epsilon^{\circ} & =\lambda x y z \cdot z \\
(0 \mathrm{w})^{\circ} & =\lambda x y z \cdot x\left(\mathrm{w}^{\circ}\right) \\
(1 \mathrm{w})^{\circ} & =\lambda x y z \cdot y\left(\mathrm{w}^{\circ}\right) \\
\text { queue } & \\
& =\lambda w \cdot(w(\lambda x \cdot x)(\lambda x \cdot x)): \mathrm{W}^{\circ} \multimap \mathrm{W}^{\circ} \\
\text { e.g } \quad(101)^{\circ} & =\lambda x y z \cdot y(\lambda x y z \cdot x(\lambda x y z \cdot y(\lambda x y z \cdot z)))
\end{aligned}
$$

- The only inhabitants of W° are scott words w°.

Results

- Informally, we claim that

$$
\mathrm{W}^{\bullet} \Rightarrow \mathrm{W}^{\circ}=\mathrm{PTIME}
$$

- $\mathrm{W}^{\bullet} \Rightarrow \mathrm{W}^{\circ}$ is expressive enough : we can type Church monomials and we can encode the one-step transition function of a Turing Machine using a linear type, we can then iterate it using a monomial.
\rightarrow PTIME-completeness
- $W^{\bullet} \Rightarrow W^{\circ}$ is not too permissive : we cannot type exponentials. \rightarrow PTIME-soundness

Results

PTIME-completeness

For every polynomial time function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$, there exists a λ-term t_{f} of type $W^{\bullet} \Rightarrow W^{\circ}$ in DIAL $_{\text {lin }}$ such that given $w \in\{0,1\}^{*}$, we have

$$
\llbracket t_{f} \mathrm{w}^{\bullet} \rrbracket_{\beta}=\mathrm{f}(\mathrm{w})^{\circ}
$$

\rightarrow usual encoding of Turing Machines in $\mathrm{DIAL}_{\text {lin }}$
PTIME-soundness
For every λ-term t of type $\mathrm{W}^{\bullet} \Rightarrow \mathrm{W}^{\circ}$, the associated function $f_{t}:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ defined by

$$
f_{t}\left(w_{1}\right)=w_{2} \Leftrightarrow \llbracket t w_{1}{ }^{\bullet} \rrbracket_{\beta}=w_{2}{ }^{\circ}
$$

is a polynomial time function.

Results

PTIME-completeness

For every polynomial time function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$, there exists a λ-term t_{f} of type $W^{\bullet} \Rightarrow W^{\circ}$ in DIAL $_{\text {lin }}$ such that given $w \in\{0,1\}^{*}$, we have

$$
\llbracket t_{f} \mathrm{w}^{\bullet} \rrbracket_{\beta}=\mathrm{f}(\mathrm{w})^{\circ}
$$

\rightarrow usual encoding of Turing Machines in DIAL $_{\text {lin }}$

PTIME-soundness

For every λ-term t of type $\mathrm{W}^{\bullet} \Rightarrow \mathrm{W}^{\circ}$, the associated function $f_{t}:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ defined by

$$
f_{t}\left(w_{1}\right)=w_{2} \Leftrightarrow \llbracket t w_{1} \rrbracket_{\beta}=w_{2}^{\circ}
$$

is a polynomial time function.

Weak call-by-value and time measure (Dal Lago \& Martini) (1/3)

- Terms $t, u::=x|\lambda x . t| t u$
- Values $\quad v::=x \mid \lambda x . t$
- Reduction

$$
\frac{t_{1} \rightarrow t_{2}}{(\lambda x . t) v \rightarrow t[v / x]} \quad \frac{t_{1} \rightarrow t_{2}}{t_{1} u \rightarrow t_{2} u} \quad \frac{t_{1} \rightarrow u t_{2}}{}
$$

- Notations : We note $|t|$ the size of t. We denote by $t \Downarrow$ the fact that t normalizes for this strategy. If it exists, $\llbracket t \rrbracket_{C B V}$ is the normal form of t for this strategy (in contrast to $\llbracket t \rrbracket_{\beta}$ which is the β-normal form).

Weak call-by-value and time measure (Dal Lago \& Martini) (2/3)

- Cost measure

If the variable x is affine in t (that is, x appears at most once in t), then

$$
(\lambda x . t) u \rightarrow t[u / x]
$$

The duplication of the argument in the following reduction is taken into account :

$$
\left(n^{\bullet} g\right) \rightarrow(\lambda a .(\underbrace{g \ldots(g}_{n \text { times }} a) \ldots))
$$

Weak call-by-value and time measure (Dal Lago \& Martini) (2/3)

- Cost measure

$$
\overline{t \xrightarrow{0} t} \quad \frac{t \rightarrow u \quad n=\max \{|u|-|t|, 1\}}{t \xrightarrow[\longrightarrow]{n} u} \quad \frac{s \xrightarrow[\longrightarrow]{n} t \quad t \xrightarrow[\longrightarrow]{m} u}{s \xrightarrow{n+m} u}
$$

If the variable x is affine in t (that is, x appears at most once in t), then

$$
(\lambda x . t) u \xrightarrow{\frac{1}{\rightarrow}} t[u / x]
$$

The duplication of the argument in the following reduction is taken into account :

$$
\left(n^{\bullet} g\right) \rightarrow(\lambda a \cdot(\underbrace{g \ldots(g}_{n \text { times }} a) \ldots))
$$

Weak call-by-value and time measure (Dal Lago \& Martini) (2/3)

- Cost measure

$$
\overline{t \xrightarrow{0} t} \quad \stackrel{t \rightarrow u \quad n=\max \{|u|-|t|, 1\}}{t \xrightarrow[\longrightarrow]{n} u} \quad \frac{s \xrightarrow[\longrightarrow]{n} t \quad t \xrightarrow[\longrightarrow]{m} u}{s \xrightarrow{n+m} u}
$$

If the variable x is affine in t (that is, x appears at most once in t), then

$$
(\lambda x . t) u \xrightarrow{\frac{1}{\rightarrow}} t[u / x]
$$

The duplication of the argument in the following reduction is taken into account :

$$
(\lambda f a .(\underbrace{f \ldots(f}_{n \text { times }} a) \ldots)) g \xrightarrow[\longrightarrow]{(n \times|g|+2)-(n+|g|+3)}(\lambda a \cdot(\underbrace{g \ldots(g}_{n \text { times }} a) \ldots))
$$

Weak call-by-value and time measure (Dal Lago \& Martini) (2/3)

- Cost measure

If the variable x is affine in t (that is, x appears at most once in t), then

$$
(\lambda x . t) u \xrightarrow{\frac{1}{\rightarrow}} t[u / x]
$$

The duplication of the argument in the following reduction is taken into account :

$$
\left(n^{\bullet} g\right) \xrightarrow{((n-1) \times|g|-|g|-1)}(\lambda a \cdot(\underbrace{g \ldots(g}_{n \text { times }} a) \ldots))
$$

Weak call-by-value and time measure (Dal Lago \& Martini) (3/3)

If $t \Downarrow$ then there exists a unique $n \in \mathbb{N}$ such that $t \xrightarrow{n} \llbracket t \rrbracket_{C B V}$. We denote it by $\operatorname{Time}(t)$.

Theorem (2006, Dal Lago\& Martini)
There exists a Turing machine $M_{\text {eval }}$ with the following property : given a λ-term t such that $t \Downarrow$ and $T S(t)=\operatorname{Time}(t)+|t|=n, M_{\text {eval }}$ computes $\llbracket t \rrbracket_{C B V}$ in time $O\left(n^{4}\right)$.
\rightarrow allows us to reason only on λ-calculus instead of Turing Machines.

How is it proved?

PTIME-Soundness

For every λ-term t of type $\mathrm{W}^{\bullet} \Rightarrow \mathrm{W}^{\boldsymbol{}}$, the associated function $f_{t}:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ defined by

$$
f_{t}\left(w_{1}\right)=w_{2} \Leftrightarrow \llbracket t w_{1}{ }^{\bullet} \rrbracket_{\beta}=w_{2}{ }^{\circ}
$$

is a polynomial time function.

This is proved in two steps :

Each of these statements is proved using a variant of Dal Lago \& Hofmann realizability technique.

How is it proved?

PTIME-Soundness

For every λ-term t of type $\mathrm{W}^{\bullet} \Rightarrow \mathrm{W}^{\circ}$, the associated function $f_{t}:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ defined by

$$
f_{t}\left(w_{1}\right)=w_{2} \Leftrightarrow \llbracket t w_{1}{ }^{\bullet} \rrbracket_{\beta}=w_{2}{ }^{\circ}
$$

is a polynomial time function.

This is proved in two steps:
(1) Each bit of the result $\llbracket t w \rrbracket_{\beta}$ can be computed in polynomial time (using weak call-by-value strategy).
(2) The length of $\left[t w \rrbracket_{\beta}\right.$ is polynomial of $|w|$ (not proved here).

Each of these statements is proved using a variant of Dal Lago \& Hofmann realizability technique.

How is it proved?

PTIME-Soundness

For every λ-term t of type $\mathrm{W}^{\bullet} \Rightarrow \mathrm{W}^{\circ}$, the associated function $f_{t}:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ defined by

$$
f_{t}\left(w_{1}\right)=w_{2} \Leftrightarrow \llbracket t w_{1} \rrbracket_{\beta}=w_{2}{ }^{\circ}
$$

is a polynomial time function.

This is proved in two steps:
(1) Each bit of the result $\llbracket t w \rrbracket_{\beta}$ can be computed in polynomial time (using weak call-by-value strategy).
(2) The length of $\llbracket t w \rrbracket_{\beta}$ is polynomial of $|w|$ (not proved here).

Each of these statements is proved using a variant of Dal Lago \& Hofmann realizability technique.

The core of the realizability framework

Realizability is used to capture computational properties and to give meaning to the logic.

- A language Λ of realizers : the programs we want to state properties on. In Dal Lago\& Hofmann, realizers are closed values for the WCBV. Here we take all the closed λ-terms.
- A relation $t \Vdash A$, where t is a realizer and A a $\mathrm{DIAL}_{\text {lin }}$ formula, defined only by the structure of A and the computational behaviour of
t. This relation informally means
" t is a program that behaves with respect to the specification A "
- An adequacy theorem : "If $\vdash t: A$ then $t \Vdash A$ ".

The core of the realizability framework

- A language Λ of realizers : the programs we want to state properties on. In Dal Lago \& Hofmann, realizers are closed values for the WCBV. Here we take all the closed λ-terms.
- A set Π of majorizers, used to impose resource bound on the realizers. In Dal Lago\& Hofmann, Π can be any resource monoids. Here we take higher-order additive terms.
- A relation $(t, p) \Vdash A$, where t is a realizer, p a majorizer and A a DIAL $_{\text {lin }}$ formula. This means " t is a program whose specification is A and that uses at most p resources to run"
- An adequacy theorem: "If $\vdash t: A$ then there exists p such that $(t, p) \Vdash A^{\prime \prime}$.

Dal Lago \& Hofmann's realizability

Realizers are closed values.
The set of majorizers is a resource monoid $(M,+, 0, \leq, D)$:

- $(M,+, 0, \leq)$ is a preordered commutative monoid.
- $D(.,$.$) is a kind of distance between elements of M$.

Example : $(\mathbb{N},+, 0, \leq,(x, y) \mapsto|y-x|)$.
The arrow construction : $t, p \Vdash A \multimap B$ iff for every argument $u, q \Vdash A$, we have:

- The result is bounded by some majorizer $r: \llbracket t u \rrbracket, r \Vdash B$
- The time needed for the computation of this result is bounded :

$$
\operatorname{Time}(t u) \leq D(p+q, r)
$$

Higher-order additive terms as resources representation

- Simply typed λ-terms with base constants :
- Integers (base type), $n: o$.
- Addition on integers, $+: o \rightarrow o \rightarrow o$.
- We identify terms by $\alpha \beta \eta$-equivalence and usual arithmetic equivalences.
- Examples:
- $\lambda n .(n+20): o \rightarrow o$
- $\lambda f \lambda n .(\underbrace{f(n)+f(n)+\ldots+f(n)}_{1000 \text { times }}):(o \rightarrow o) \rightarrow o \rightarrow o$
- For every higher-order additive term p, we can lower it to base type o. The lowering operator is denoted by $\downarrow p$.
- A last notation : $p+n=\lambda x_{1} \ldots \lambda x_{n} \cdot\left(p\left(x_{1}, \ldots, x_{n}\right)+n\right)$.

o-translation (1/2)

- Informally, $t, p \Vdash A$ we require that the higher-order skeleton of p follows the structure of A. That is, we define a traduction $O(A)$ of the formula A of DIAL $_{\text {lin }}$ into the simple types.
- $o(L)=0$: we only need integers to bound linear realizers runtime.
- $o(L \multimap B)=o(B)$
- $o(A \Rightarrow B)=o(A) \rightarrow o(B)$
- $o(\forall \alpha . A)=o(A):$ the quantifier is linear

o-translation (2/2)

For example, the translation of the Scott word type (which is a linear type) is

$$
o\left(\mathrm{~W}^{\circ}\right)=0
$$

the translation of the Church word type is

$$
\begin{aligned}
o\left(\mathrm{~W}^{\bullet}\right) & =o(\forall \alpha \cdot(\alpha \multimap \alpha) \Rightarrow(\alpha \multimap \alpha) \Rightarrow \alpha \multimap \alpha) \\
& =o \rightarrow 0 \rightarrow 0
\end{aligned}
$$

Saturated Sets

τ-saturated set

If τ is a higher-order additive type, we say that $X \subseteq \Lambda \times \Pi$ is saturated set of type τ if whenever $(t, p) \in X, p$ is a closed higher order additive term of type τ and the following holds:

- $T S(t) \leq \downarrow p$.
- $(t, p+n) \in X$ for every $n \in \mathbb{N}$.
- Others properties that mimic structural rules and identity (weakening, contraction, exchange, identity). For example, the exchange condition implies: If $\left(\lambda x_{1} x_{2} . t, p\right) \in X$ then $\left(\lambda x_{2} x_{1} . t, p\right) \in X$.

In particular, $\{(t, n) \mid t \Downarrow$ and $T S(t) \leq n\}$ is the greatest o saturated set.

Time Realizability : the construction

(Realizability)

We define the relation $t, p \Vdash_{\eta} A$, where $t \in \Lambda, p$ is a closed higher order additive term of type $o(A)$ and η is a valuation (from atoms to o-saturated set).

The definition proceeds by induction on A.

```
- t, n \Vdash
for every }u,m\mathrm{ .
for every u,q.
```


Time Realizability : the construction

(Realizability)

We define the relation $t, p \Vdash_{\eta} A$, where $t \in \Lambda, p$ is a closed higher order additive term of type $o(A)$ and η is a valuation (from atoms to o-saturated set).

The definition proceeds by induction on A.

- $t, n \Vdash_{\eta} \alpha$ iff $(t, n) \in \eta(\alpha)$.
for every u, m.
for every u, q.

Time Realizability : the construction

(Realizability)

We define the relation $t, p \Vdash_{\eta} A$, where $t \in \Lambda, p$ is a closed higher order additive term of type $o(A)$ and η is a valuation (from atoms to o-saturated set).

The definition proceeds by induction on A.

- $t, n \Vdash_{\eta} \alpha$ iff $(t, n) \in \eta(\alpha)$.
- $t, p \Vdash_{\eta} L \multimap A$ iff $T S(t) \leq \downarrow p$ and $u, m \Vdash_{\eta} L$ implies $t u, p+m \Vdash_{\eta} A$ for every u, m.

Time Realizability : the construction

(Realizability)

We define the relation $t, p \Vdash_{\eta} A$, where $t \in \Lambda, p$ is a closed higher order additive term of type $o(A)$ and η is a valuation (from atoms to o-saturated set).

The definition proceeds by induction on A.

- $t, n \Vdash_{\eta} \alpha$ iff $(t, n) \in \eta(\alpha)$.
- $t, p \Vdash_{\eta} L \multimap A$ iff $T S(t) \leq \downarrow p$ and $u, m \Vdash_{\eta} L$ implies $t u, p+m \Vdash_{\eta} A$ for every u, m.
- $t, p \Vdash_{\eta} B \Rightarrow A$ iff $T S(t) \leq \downarrow p$ and $u, q \Vdash_{\eta} B$ implies $t u, p(q) \Vdash_{\eta} A$ for every u, q.

Time Realizability : the remaining cases

- The universal quantifier construction is :

$$
(t, p) \Vdash_{\eta} \forall \alpha A \text { iff for every o-saturated set } X,(t, p) \Vdash_{\eta\{\alpha \leftarrow X\}} A
$$

\rightarrow corresponds to a linear quantifier

- We can use a well chosen Tarski least fixpoint on some operator to define the interpretation of the μ construction and to obtain that :

Time Realizability : the remaining cases

- The universal quantifier construction is :

$$
(t, p) \Vdash_{\eta} \forall \alpha A \text { iff for every o-saturated set } X,(t, p) \Vdash_{\eta\{\alpha \leftarrow X\}} A
$$

\rightarrow corresponds to a linear quantifier

- We can use a well chosen Tarski least fixpoint on some operator to define the interpretation of the μ construction and to obtain that:
$\rightarrow \quad(t, p) \Vdash_{\eta} \mu \alpha L \Leftrightarrow(t, p) \Vdash_{\eta} L[\mu \alpha L / \alpha]$

Time Realizability

- We can prove that for each formula A, the set of (t, p) such that $t, p \Vdash A$ is $o(A)$-saturated.
- In particular, $t, p \Vdash_{\eta} A$ implies $T S(t) \leq \downarrow p$.
- For every $n \in \mathbb{N}$, we have $\mathrm{n}^{\bullet}, p_{n} \Vdash \mathrm{~N}^{\bullet}$ with

$$
p_{n}=\lambda z \cdot n(z+3)+3: o \rightarrow 0
$$

- For every $w \in\{0,1\}^{n}$, we have $w^{\bullet}, q_{w} \Vdash W^{\bullet}$ with $q_{w}=\lambda z_{0} z_{1} \cdot|w|\left(z_{0}+z_{1}+3\right)+3: o \rightarrow 0 \rightarrow 0$

Time Realizability : adequacy lemma

Adequacy (very simplified version)
If $\vdash t: A$ is derivable in DIAL ${ }_{l i n}$, then there exists a majorizer $p: o(A)$ such that for any valuation η we have $t, p \Vdash_{\eta} A$

Applying adequacy $(1 / 2)$

We have observed that every Church word w^{\bullet} is bounded by a linear majorizer $q_{w}=\lambda z_{0} z_{1} \cdot|w|\left(z_{0}+z_{1}+3\right)+3$.

Weak soundness

Let L be a linear formula. If we have $\vdash t: \mathrm{W}^{\bullet} \Rightarrow L$, then there exists a polynomial P such that for every $w \in\{0,1\}^{*}$, $\operatorname{Time}\left(t w^{\bullet}\right) \leq P(|w|)$.

If $w \in\{0,1\}^{*}$, then because of adequacy, there is some $p:(o \rightarrow 0 \rightarrow 0) \rightarrow 0$ such that $t, p \Vdash W^{\bullet} \Rightarrow L$ then $t w^{\bullet}, p\left(q_{w}\right) \Vdash L$. And in particular $T S\left(t w^{\bullet}\right) \leq p\left(q_{w}\right)$.

But we can show that $p\left(q_{w}\right)$ is polynomial in $|w|$.

Applying adequacy (2/2)

We define booleans : $\mathrm{B}_{2}^{\circ}=\forall \alpha . \alpha \multimap \alpha \multimap \alpha, \mathrm{b}_{0}^{\circ}=\lambda x y \cdot x$ and $\mathrm{b}_{1}^{\circ}=\lambda x y \cdot y$.

P-soundness for predicates

If $t: \mathrm{W}^{\bullet} \Rightarrow \mathrm{B}_{2}^{\circ}$, then the predicate $f_{t}:\{0,1\}^{*} \rightarrow\{0,1\}$ defined by $f_{t}(w)=1 \Leftrightarrow \llbracket t w^{\bullet} \rrbracket_{\beta}=\mathrm{b}_{1}{ }^{\circ}$ is a polynomial time predicate.

This is basically because when $\lambda x \cdot t x \mathrm{~b}_{0}^{\circ} \mathrm{b}_{1}^{\circ}: \mathrm{W}^{\bullet} \Rightarrow \mathrm{B}_{2}^{\circ}$ and because $\left(\lambda x . t x b_{0}^{\circ} \mathrm{b}_{1}^{\circ}\right) \mathrm{w}^{\bullet}$ reduces either to b_{0}° or b_{1}° by the weak call-by-value strategy.

- Using the same kind of trick, for each $t: \mathrm{W}^{\bullet} \Rightarrow \mathrm{W}^{\circ}$, and for each $w \in\{0,1\}^{*}$, we can compute in polynomial time each bit of the result $t w^{\bullet}$.
- We can prove that the size of the result $\llbracket t w^{\bullet} \rrbracket_{\beta}$, that is the number of bits of the output word, is bounded by a polynomial in the size of $|w|$ (using another realizability argument).

Conclusion and remaining questions

We have used a variant of Dal Lago \& Hofmann realizability framework to prove that in DIAL $_{\text {lin }}$, Church \Rightarrow Scott $=$ Ptime, which recasts the original result of Leivant and Marion.
Questions:

- Can we drop the restriction on - ?
- We have to deal with a dual type system. Can we deal directly with the! connective.
- Saturation by biorthogonality?
- Can we find other typing systems to accomodate different complexity classes like PSPACE?

Thank you!

Comparisons with Dal Lago \& Hofmann realizability

In Dal Lago \& Hofmann realizability : realizers are closed values.
The definition would be

- $t, p \Vdash A \Rightarrow B$ iff every time $u, q \Vdash A$ then
- $\llbracket t u \rrbracket_{C B V}, p(q) \Vdash B$
- TS(tu) $\leq \downarrow(p(q))$
- $t, p \Vdash A \Rightarrow B$ iff $T S(t) \leq \downarrow p$ and $u, q \Vdash B$ implies $t u, p(q) \Vdash B$ for every u, q.

Comparisons with Dal Lago \& Hofmann realizability

In Dal Lago \& Hofmann realizability : realizers are closed values.
The definition would be

- $t, p \Vdash A \Rightarrow B$ iff every time $u, q \Vdash A$ then there exists some $\bar{p}: o(B)$ such that
- $\llbracket t u \rrbracket_{C B V}, \bar{p} \Vdash B$
- $\bar{p} \leq p(q)$
- $T S(t u)+\downarrow \bar{p} \leq \downarrow(p(q))$
- $t, p \Vdash A \Rightarrow B$ iff $T S(t) \leq \downarrow p$ and $u, q \Vdash B$ implies $t u, p(q) \Vdash B$ for every u, q.

