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Background (1/2)

Some well-known factors that can make complexity explodes :

Non-Linearity : non-linear use of function variables can increase the

complexity. We can limit the use of higher-order variables (e.g, using

typing systems).

Nested recursion : when functions are de�ned by multiple and nested

recursions, there is a risk of complexity explosion.

Data tiering (Leivant) : multiple copies of the binary words algebra,

indiced by tiers :

W0,W1, ...,Wn, ...

the output of a function de�ned by recursion on a variable of tier n

lives in a lower tier.
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Background (2/2)

Leivant and Marion (TLCA '93) used the concept of data tiering in a

λ-calculus to characterize Ptime. One base (concrete) W added to

λ-calculus, where recursion is not allowed, and the (logical) binary

algebra of Church words. The functions from Church words to W are

exactly the Ptime functions.

We would like the characterization fully logical : replace W by a logical

data structure (Scott words) de�ned in a linear logic based type

system.

Realizability semantics : Dal Lago & Hofmann

Try to apply this proof technique to our system
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Syntax of DIALlin

DIALlin is a type system for the pure λ-calculus.

Terms t, u ::= x | λx .t | tu
Reduction (λx .t)u →β t[u/x ]

If it exists, we denote by [[t]]β the β-normal form of t.

Linear formulas and general formulas

L,M ::= α | ∀αL | µαL(∗) | L( M

A,B ::= L | ∀αA | L( B | A⇒ B.

(∗) : only if α occurs only positively in L.

Thus the linear formulas are the formulas that do not contain any ⇒.
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Typing rules of DIALlin

typing judgement : Γ︸︷︷︸
non-linear variables

;

a�ne variables︷︸︸︷
∆ ` t : A

(ax1)
x : A;` x : A

(ax2)
; x : L ` x : L

Γ; ∆ ` t : µαL
(µe)

Γ; ∆ ` t : L[µαL/α]

Γ; ∆ ` t : L[µαL/α]
(µi )

Γ; ∆ ` t : µαL

Γ; ∆ ` t : A α /∈ FV (Γ; ∆)
(∀i )

Γ; ∆ ` t : ∀αA

Γ; ∆ ` t : ∀αA
(∀e)

Γ; ∆ ` t : A[L/α]

Γ1; ∆ ` t : A⇒ B Γ2;` u : A
(⇒e)

Γ1, Γ2; ∆ ` tu : B

Γ, z : A; ∆ ` t : B
(⇒i )

Γ; ∆ ` λz t : A⇒ B

Γ1; ∆1 ` t : L( B Γ2; ∆2 ` u : L
((e)

Γ1, Γ2; ∆1,∆2 ` tu : B

Γ; ∆, z : L ` t : B
((i )

Γ; ∆ ` λz t : L( B

Γ, x : A, y : A; ∆ ` t : B
(Contr)

Γ, z : A; ∆ ` t[z/x , z/y ] : B

Γ; ∆, x : L ` t : B
(Derel)

Γ, x : L; ∆ ` t : B

Γ; ∆ ` t : B
(Weak)

Γ, Γ′; ∆,∆′ ` t : B
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Church numerals and words
Church naturals :

N• ≡ ∀α(α( α)⇒ (α( α)

n• = λfa. f (...f︸ ︷︷ ︸
n times

(a)...)

mult• = λnλmλf .n(m f )

mon•n = λxλf . x(...(x︸ ︷︷ ︸
n times

f )) : N• ⇒ N•

Church words :

W• ≡ ∀α(α( α)⇒ (α( α)⇒ (α( α)

w• = λf0λf1λa.fi1(...fin(a)...)

Iteration : only linear functions (of type α( α where α is linear).

Hence we cannot encode exponentiation which needs to iterate a

function like

double = λn.λfa.n f (n f a) : N• ⇒ N•
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Scott numerals

Scott numerals are represented by the linear type

N◦ ≡ µβ∀α(β( α)( (α( α). They have constant time successor,

predecessor and discriminator, but don't support iteration.

ε◦ = λxyz .z

(0w)◦ = λxyz .x(w◦)

(1w)◦ = λxyz .y(w◦)

queue◦ = λw .(w(λx .x)(λx .x)) : W◦(W◦

e.g (101)◦ = λxyz .y(λxyz .x(λxyz .y(λxyz .z)))

The only inhabitants of W◦ are scott words w◦.
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Scott words

Scott words are represented by the linear type

W◦ ≡ µβ∀α(β( α)( (β( α)( (α( α). They have constant

time successor, predecessor and discriminator, but don't support

iteration.

ε◦ = λxyz .z
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(1w)◦ = λxyz .y(w◦)

queue◦ = λw .(w(λx .x)(λx .x)) : W◦(W◦

e.g (101)◦ = λxyz .y(λxyz .x(λxyz .y(λxyz .z)))
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Results

Informally, we claim that

W• ⇒W◦ = PTIME

W• ⇒W◦ is expressive enough : we can type Church monomials and

we can encode the one-step transition function of a Turing Machine

using a linear type, we can then iterate it using a monomial.

→ PTIME-completeness

W• ⇒W◦ is not too permissive : we cannot type exponentials.

→ PTIME-soundness
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Results

PTIME-completeness

For every polynomial time function f : {0, 1}∗ → {0, 1}∗, there exists a
λ-term tf of type W• ⇒W◦ in DIALlin such that given w ∈ {0, 1}∗, we
have

[[tf w
•]]β = f(w)◦

→ usual encoding of Turing Machines in DIALlin

PTIME-soundness

For every λ-term t of type W• ⇒W◦, the associated function

ft : {0, 1}∗ → {0, 1}∗ de�ned by

ft(w1) = w2 ⇔ [[tw1
•]]β = w2

◦

is a polynomial time function.
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Weak call-by-value and time measure (Dal Lago & Martini)
(1/3)

Terms t, u ::= x | λx .t | tu

Values v ::= x |λx .t

Reduction

(λx .t)v → t[v/x ]

t1 → t2

t1u → t2u

t1 → t2

ut1 → ut2

Notations : We note |t| the size of t. We denote by t ⇓ the fact that t

normalizes for this strategy. If it exists, [[t]]CBV is the normal form of t

for this strategy (in contrast to [[t]]β which is the β-normal form).
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Weak call-by-value and time measure (Dal Lago & Martini)
(2/3)

Cost measure

t
0→→ t

t → u n = max{|u| − |t|, 1}

t
n→→ u

s
n→→ t t

m→→ u

s
n+m→→ u

If the variable x is a�ne in t (that is, x appears at most once in t), then

(λx .t)u → t[u/x ]

The duplication of the argument in the following reduction is taken into

account :

(n•g)→ (λa.(g ...(g︸ ︷︷ ︸
n times

a)...))
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Weak call-by-value and time measure (Dal Lago & Martini)
(3/3)

If t ⇓ then there exists a unique n ∈ N such that t
n→→ [[t]]CBV . We denote

it by Time(t).

Theorem (2006, Dal Lago& Martini)

There exists a Turing machine Meval with the following property : given a

λ-term t such that t ⇓ and TS(t) = Time(t) + |t| = n, Meval computes

[[t]]CBV in time O(n4).

→ allows us to reason only on λ-calculus instead of Turing Machines.
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How is it proved ?

PTIME-Soundness

For every λ-term t of type W• ⇒W◦, the associated function

ft : {0, 1}∗ → {0, 1}∗ de�ned by

ft(w1) = w2 ⇔ [[tw1
•]]β = w2

◦

is a polynomial time function.

This is proved in two steps :

1 Each bit of the result [[tw ]]β can be computed in polynomial time

(using weak call-by-value strategy).

2 The length of [[tw ]]β is polynomial of |w | (not proved here).

Each of these statements is proved using a variant of Dal Lago & Hofmann

realizability technique.
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The core of the realizability framework

Realizability is used to capture computational properties and to give

meaning to the logic.

A language Λ of realizers : the programs we want to state properties

on. In Dal Lago& Hofmann, realizers are closed values for the WCBV.

Here we take all the closed λ-terms.

A relation t 
 A, where t is a realizer and A a DIALlin formula,

de�ned only by the structure of A and the computational behaviour of

t. This relation informally means

"t is a program that behaves with respect to the speci�cation A"

An adequacy theorem : "If ` t : A then t 
 A".

Aloïs Brunel (Ecole Normale Supérieure de Lyon)Church ⇒ Scott = PTIME 15 / 1



The core of the realizability framework

A language Λ of realizers : the programs we want to state properties

on. In Dal Lago & Hofmann, realizers are closed values for the WCBV.

Here we take all the closed λ-terms.

A set Π of majorizers, used to impose resource bound on the realizers.

In Dal Lago& Hofmann, Π can be any resource monoids. Here we take

higher-order additive terms.

A relation (t, p) 
 A, where t is a realizer, p a majorizer and A a

DIALlin formula. This means

"t is a program whose speci�cation is A and that uses at most p

resources to run"

An adequacy theorem : "If ` t : A then there exists p such that

(t, p) 
 A".

Aloïs Brunel (Ecole Normale Supérieure de Lyon)Church ⇒ Scott = PTIME 16 / 1



Dal Lago & Hofmann's realizability

Realizers are closed values.

The set of majorizers is a resource monoid (M,+, 0,≤,D) :

(M,+, 0,≤) is a preordered commutative monoid.

D(., .) is a kind of distance between elements of M.

Example : (N,+, 0,≤, (x , y) 7→ |y − x |).

The arrow construction : t, p 
 A( B i� for every argument u, q 
 A, we

have :

The result is bounded by some majorizer r : [[tu]], r 
 B

The time needed for the computation of this result is bounded :

Time(tu) ≤ D(p + q, r)
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Higher-order additive terms as resources representation

Simply typed λ-terms with base constants :
I Integers (base type), n : o.
I Addition on integers, + : o → o → o.

We identify terms by αβη-equivalence and usual arithmetic

equivalences.

Examples :
I λn.(n + 20) : o → o
I λf λn.(f (n) + f (n) + ...+ f (n)︸ ︷︷ ︸

1000 times

) : (o → o)→ o → o

For every higher-order additive term p, we can lower it to base type o.

The lowering operator is denoted by ↓ p.

A last notation : p + n = λx1...λxn.(p(x1, ..., xn) + n).
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o-translation (1/2)

Informally, t, p 
 A we require that the higher-order skeleton of p

follows the structure of A. That is, we de�ne a traduction o(A) of the

formula A of DIALlin into the simple types.

o(L) = o : we only need integers to bound linear realizers runtime.

o(L( B) = o(B)

o(A⇒ B) = o(A)→ o(B)

o(∀α.A) = o(A) : the quanti�er is linear
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o-translation (2/2)

For example, the translation of the Scott word type (which is a linear type)

is

o(W◦) = o

the translation of the Church word type is

o(W•) = o(∀α.(α( α)⇒ (α( α)⇒ α( α)

= o → o → o
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Saturated Sets

τ -saturated set

If τ is a higher-order additive type, we say that X ⊆ Λ× Π is saturated set

of type τ if whenever (t, p) ∈ X , p is a closed higher order additive term of

type τ and the following holds :

TS(t) ≤↓ p.
(t, p + n) ∈ X for every n ∈ N.
Others properties that mimic structural rules and identity (weakening,

contraction, exchange, identity). For example, the exchange condition

implies : If (λx1x2.t, p) ∈ X then (λx2x1.t, p) ∈ X .

In particular, { (t, n) | t ⇓ and TS(t) ≤ n } is the greatest o saturated

set.
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Time Realizability : the construction

(Realizability)

We de�ne the relation t, p 
η A, where t ∈ Λ, p is a closed higher order

additive term of type o(A) and η is a valuation (from atoms to o-saturated

set).

The de�nition proceeds by induction on A.

• t, n 
η α i� (t, n) ∈ η(α).

• t, p 
η L( A i� TS(t) ≤↓ p and u,m 
η L implies tu, p + m 
η A

for every u,m.

• t, p 
η B ⇒ A i� TS(t) ≤↓ p and u, q 
η B implies tu, p(q) 
η A

for every u, q.
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Time Realizability : the remaining cases

The universal quanti�er construction is :

(t, p) 
η ∀αA i� for every o-saturated set X , (t, p) 
η{α←X} A

→ corresponds to a linear quanti�er

We can use a well chosen Tarski least �xpoint on some operator to

de�ne the interpretation of the µ construction and to obtain that :

→ (t, p) 
η µαL⇔ (t, p) 
η L[µαL/α]

Aloïs Brunel (Ecole Normale Supérieure de Lyon)Church ⇒ Scott = PTIME 23 / 1



Time Realizability : the remaining cases

The universal quanti�er construction is :

(t, p) 
η ∀αA i� for every o-saturated set X , (t, p) 
η{α←X} A

→ corresponds to a linear quanti�er

We can use a well chosen Tarski least �xpoint on some operator to

de�ne the interpretation of the µ construction and to obtain that :

→ (t, p) 
η µαL⇔ (t, p) 
η L[µαL/α]

Aloïs Brunel (Ecole Normale Supérieure de Lyon)Church ⇒ Scott = PTIME 23 / 1



Time Realizability

We can prove that for each formula A, the set of (t, p) such that

t, p 
 A is o(A)-saturated.

In particular, t, p 
η A implies TS(t) ≤↓ p.

For every n ∈ N, we have n•, pn 
 N• with
pn = λz .n(z + 3) + 3 : o → o

For every w ∈ {0, 1}n, we have w•, qw 
W• with
qw = λz0z1.|w |(z0 + z1 + 3) + 3 : o → o → o
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Time Realizability : adequacy lemma

Adequacy (very simpli�ed version)

If ` t : A is derivable in DIALlin, then there exists a majorizer p : o(A)
such that for any valuation η we have t, p 
η A
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Applying adequacy (1/2)

We have observed that every Church word w• is bounded by a linear

majorizer qw = λz0z1.|w |(z0 + z1 + 3) + 3.

Weak soundness

Let L be a linear formula. If we have ` t : W• ⇒ L, then there exists a

polynomial P such that for every w ∈ {0, 1}∗, Time(tw•) ≤ P(|w |).

If w ∈ {0, 1}∗, then because of adequacy, there is some

p : (o → o → o)→ o such that t, p 
W• ⇒ L then tw•, p(qw ) 
 L. And

in particular TS(tw•) ≤ p(qw ).

But we can show that p(qw ) is polynomial in |w |.
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Applying adequacy (2/2)

We de�ne booleans : B◦2 = ∀α.α( α( α, b◦0 = λxy .x and b◦1 = λxy .y .

P-soundness for predicates

If t : W• ⇒ B◦2, then the predicate ft : {0, 1}∗ → {0, 1} de�ned by

ft(w) = 1 ⇔ [[tw•]]β = b1
◦ is a polynomial time predicate.

This is basically because when λx .txb◦0b
◦
1 : W• ⇒ B◦2 and because

(λx .txb◦0b
◦
1)w• reduces either to b◦0 or b

◦
1 by the weak call-by-value strategy.

Using the same kind of trick, for each t : W• ⇒W◦, and for each

w ∈ {0, 1}∗, we can compute in polynomial time each bit of the result

tw•.

We can prove that the size of the result [[tw•]]β , that is the number of

bits of the output word, is bounded by a polynomial in the size of |w |
(using another realizability argument).
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Conclusion and remaining questions

We have used a variant of Dal Lago & Hofmann realizability framework to

prove that in DIALlin, Church⇒ Scott = Ptime, which recasts the original

result of Leivant and Marion.

Questions :

Can we drop the restriction on( ?

We have to deal with a dual type system. Can we deal directly with

the ! connective.

Saturation by biorthogonality ?

Can we �nd other typing systems to accomodate di�erent complexity

classes like PSPACE ?
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Thank you !
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Comparisons with Dal Lago & Hofmann realizability

In Dal Lago & Hofmann realizability : realizers are closed values.

The de�nition would be

t, p 
 A⇒ B i� every time u, q 
 A then

there exists some p̄ : o(B)
such that

I [[tu]]CBV , p(q) 
 B

I p̄ ≤ p(q)

I TS(tu)

+ ↓ p̄

≤↓ (p(q))

t, p 
 A⇒ B i� TS(t) ≤↓ p and u, q 
 B implies tu, p(q) 
 B for

every u, q.
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