Quantitative (polarised) classical realizability

OPLSS 2011

Aloïs Brunel

LIPN - Université Paris 13

- Investigate extensions of the CH correspondence to ZF + axioms
- Build strange models of *ZF* set theory
- Study the computational meaning of Cohen's forcing

- Investigate extensions of the CH correspondence to ZF + axioms
- Build strange models of *ZF* set theory
- Study the computational meaning of Cohen's forcing

But it can be used to :

• Prove computational properties of typed programs

- Investigate extensions of the CH correspondence to ZF + axioms
- Build strange models of *ZF* set theory
- Study the computational meaning of Cohen's forcing

But it can be used to :

• Prove quantitative computational properties of typed programs e.g : soundness of light linear logic w.r.t PTIME

- Investigate extensions of the CH correspondence to ZF + axioms
- Build strange models of ZF set theory
- Study the computational meaning of Cohen's forcing

But it can be used to :

• Prove quantitative computational properties of typed programs e.g : soundness of light linear logic w.r.t **PTIME**

In fact, here we use polarized classical realizability (G. Munch).

Interaction and orthogonality

A usual notion in mathematics : orthogonality.

In computer science

Define the behavior of a "program" by observing its **interaction** with "environments".

We say that $t \perp e$ if $\langle t | e \rangle$ is a **good** process.

e.g : termination, non-termination, etc.

If X is a set of programs, then its orthogonal is :

$$X^{\perp} = \{ e \mid \forall t \in X, t \perp e \}$$

 $X^{\perp\perp}$ is the set of programs that behave like those in *X*.

Main idea : types A are **behaviors** (i.e : sets X s.t $X = X^{\perp \perp}$).

 \rightarrow Membership tested **interactively**.

Examples

 Interaction between programs : Krivine's classical realizability, Girard's ludics

• Interaction between cliques in a graph : coherence spaces

 Interaction between operators in a Von Neumann algebra : Geometry of Interaction Proving computational properties :

• $t \perp e \equiv \langle t | e \rangle$ terminates

•
$$|A \Rightarrow B| = \{ u.e \mid u \in |A| \land e \in |B|^{\perp} \}^{\perp}$$

Proving computational properties :

- $t \perp e \equiv \langle t | e \rangle$ terminates
- $|A \Rightarrow B| = \{ u.e \mid u \in |A| \land e \in |B|^{\perp} \}^{\perp}$

Adequacy lemma

If $\vdash t : A$ then $t \in |A|$.

Proving quantitative computational properties :

- $(t, p) \perp (e, q) \equiv \langle t | e \rangle$ terminates in less than p + q steps
- $|A \Rightarrow B| = \{ (u.e, q + r) \mid (u, q) \in |A| \land (e, r) \in |B|^{\perp} \}^{\perp}$

Adequacy lemma

If $\vdash t : A$ then there exists some *p* such that $(t, p) \in |A|$.

Proving quantitative computational properties :

- $(t, p) \perp (e, q) \equiv \langle t | e \rangle$ terminates in less than p + q steps
- $|A \Rightarrow B| = \{ (u.e, q + r) \mid (u, q) \in |A| \land (e, r) \in |B|^{\perp} \}^{\perp}$

Adequacy lemma

If $\vdash t : A$ then there exists some *p* such that $(t, p) \in |A|$.

Usually \mathbb{N} is not sufficient, we use a resource monoid

(Dal Lago & Hofmann)

We have :

A biorthogonality-based framework to prove quantitative properties

Soundness proofs of various type systems w.r.t complexity classes

A uniform treatment of CBN and CBV

• A formal relation with forcing (in the style of [Miquel, LICS 2011])

Compiler correctness

In progress work with M. Gaboardi, G. Jaber and N. Tabareau.

Based on :

- Compiler correctness using classical realizability [Jaber & Tabareau, LOLA 2010]
- Linear dependent types for capturing complexity [Dal Lago & Gaboardi, LICS 2011]
- Quantitative realizability

 \rightarrow prove complexity preservation property for a compiler.

Conclusion

Things to do :

- Extend to side-effects (see [Madet & Amadio, TLCA 2011])
- Apply to quantitative properties different from resource consumption

I'm also interested in other topics like :

- Dependent types and proof-nets
- Formalizing (some) complex analysis in Coq