
Quantitative (polarised) classical realizability

OPLSS 2011

Aloïs Brunel

LIPN - Université Paris 13

Classical realizability has been introduced by J-L. Krivine to :

Investigate extensions of the CH correspondence to ZF + axioms

Build strange models of ZF set theory

Study the computational meaning of Cohen’s forcing

But it can be used to :

Prove computational properties of typed programs

e.g : soundness of light linear logic w.r.t PTIME

In fact, here we use polarized classical realizability (G. Munch).

Classical realizability has been introduced by J-L. Krivine to :

Investigate extensions of the CH correspondence to ZF + axioms

Build strange models of ZF set theory

Study the computational meaning of Cohen’s forcing

But it can be used to :

Prove computational properties of typed programs

e.g : soundness of light linear logic w.r.t PTIME

In fact, here we use polarized classical realizability (G. Munch).

Classical realizability has been introduced by J-L. Krivine to :

Investigate extensions of the CH correspondence to ZF + axioms

Build strange models of ZF set theory

Study the computational meaning of Cohen’s forcing

But it can be used to :

Prove quantitative computational properties of typed programs

e.g : soundness of light linear logic w.r.t PTIME

In fact, here we use polarized classical realizability (G. Munch).

Classical realizability has been introduced by J-L. Krivine to :

Investigate extensions of the CH correspondence to ZF + axioms

Build strange models of ZF set theory

Study the computational meaning of Cohen’s forcing

But it can be used to :

Prove quantitative computational properties of typed programs

e.g : soundness of light linear logic w.r.t PTIME

In fact, here we use polarized classical realizability (G. Munch).

Interaction and orthogonality

A usual notion in mathematics : orthogonality.

In computer science

Define the behavior of a "program" by observing its interaction
with "environments".

We say that t⊥e if 〈t |e〉 is a good process.

e.g : termination, non-termination, etc.

If X is a set of programs, then its orthogonal is :

X⊥ = { e | ∀t ∈ X , t⊥e }

X⊥⊥ is the set of programs that behave like those in X .

Main idea : types A are behaviors (i.e : sets X s.t X = X⊥⊥).

−→ Membership tested interactively.

Examples

Interaction between programs : Krivine’s classical realizability,
Girard’s ludics

Interaction between cliques in a graph : coherence spaces

Interaction between operators in a Von Neumann algebra :
Geometry of Interaction

Proving computational properties :

t⊥e ≡ 〈t |e〉 terminates

|A ⇒ B | = { u.e | u ∈ |A | ∧ e ∈ |B |⊥ }⊥

Adequacy lemma

If ` t : A then t ∈ |A | .

Usually N is not sufficient, we use a resource monoid

(Dal Lago & Hofmann)

Proving computational properties :

t⊥e ≡ 〈t |e〉 terminates

|A ⇒ B | = { u.e | u ∈ |A | ∧ e ∈ |B |⊥ }⊥

Adequacy lemma

If ` t : A then t ∈ |A | .

Usually N is not sufficient, we use a resource monoid

(Dal Lago & Hofmann)

Proving quantitative computational properties :

(t , p)⊥(e, q) ≡ 〈t |e〉 terminates in less than p + q steps

|A ⇒ B | = { (u.e, q + r) | (u, q) ∈ |A | ∧ (e, r) ∈ |B |⊥ }⊥

Adequacy lemma

If ` t : A then there exists some p such that (t , p) ∈ |A |.

Usually N is not sufficient, we use a resource monoid

(Dal Lago & Hofmann)

Proving quantitative computational properties :

(t , p)⊥(e, q) ≡ 〈t |e〉 terminates in less than p + q steps

|A ⇒ B | = { (u.e, q + r) | (u, q) ∈ |A | ∧ (e, r) ∈ |B |⊥ }⊥

Adequacy lemma

If ` t : A then there exists some p such that (t , p) ∈ |A |.

Usually N is not sufficient, we use a resource monoid

(Dal Lago & Hofmann)

We have :

A biorthogonality-based framework to prove quantitative properties

Soundness proofs of various type systems w.r.t complexity classes

A uniform treatment of CBN and CBV

A formal relation with forcing (in the style of [Miquel, LICS 2011])

Compiler correctness

In progress work with M. Gaboardi, G. Jaber and N. Tabareau.

Based on :

Compiler correctness using classical realizability

[Jaber & Tabareau, LOLA 2010]

Linear dependent types for capturing complexity

[Dal Lago & Gaboardi, LICS 2011]

Quantitative realizability

−→ prove complexity preservation property for a compiler.

Conclusion

Things to do :

Extend to side-effects (see [Madet & Amadio, TLCA 2011])

Apply to quantitative properties different from resource consumption

I’m also interested in other topics like :

Dependent types and proof-nets

Formalizing (some) complex analysis in Coq

